To appear in: ECAI-2025

Landmark-Assisted Monte Carlo Planning

David H. Chan®*, Mark Roberts® and Dana S. Nau®®

4Department of Computer Science, University of Maryland, College Park, MD, USA
PInstitute for Systems Research, University of Maryland, College Park, MD, USA
“Navy Center for Applied Research in Artificial Intelligence, U.S. Naval Research Laboratory, Washington, DC, USA

Abstract. Landmarks—conditions that must be satisfied at some
point in every solution plan—have contributed to major advancements
in classical planning, but they have seldom been used in stochastic
domains. We formalize probabilistic landmarks and adapt the UCT
algorithm to leverage them as subgoals to decompose MDPs; core to
the adaptation is balancing between greedy landmark achievement and
final goal achievement. Our results in benchmark domains show that
well-chosen landmarks can significantly improve the performance of
UCT in online probabilistic planning, while the best balance of greedy
versus long-term goal achievement is problem-dependent. The results
suggest that landmarks can provide helpful guidance for anytime
algorithms solving MDPs.

1 Introduction

Landmarks are conditions that must be true in any solution to a
planning problem. In classical planning, landmarks have been used to
focus search [12] and for heuristic guidance [21]. Ongoing work has
developed landmarks for more sophisticated heuristics (see §6).

In stochastic planning, however, landmarks have only been used
in limited settings. Speck et al. [28] used a kind of landmark anal-
ysis to identify necessary observations. There is also some notable
work on using landmarks, or critical states, for plan explanation:
Sreedharan et al. [29] defined policy landmarks in MDPs to gener-
ate user-explainable policies. To our knowledge, there is scant work
exploring the direct application of landmarks to MDP algorithms.

To address this gap, we develop an algorithm called LAMP—
Landmark-Assisted Monte Carlo Planning—that uses landmarks as
subgoals to solve stochastic planning problems, much like their origi-
nal use in classical planning. During rollouts, exploiting landmarks
is often more helpful with fewer rollouts and less helpful for a larger
rollout budget. So, we develop a mechanism that balances a focus on
achieving near-term landmarks with a focus on the long-term goal in
a manner reminiscent of Weighted A* within LAMA [21].

The contributions in this paper include:

e formalizing probabilistic landmarks as a natural extension of clas-
sical landmarks, first defined by Porteous et al. [19];

e adapting UCT to use landmarks as subgoals during rollouts and
developing a weighting parameter that balances between greedily
focusing on the next landmark to achieve and the final goal;

e describing the LAMP algorithm, which uses landmark-assisted
UCT rollouts to learn a landmark-sensitive QQ-function; and,
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e demonstrating significant performance improvements by LAMP
over standard UCT in five of six probabilistic planning benchmark
domains, with the optimal weighting varying across problems.

The results from LAMP highlight the effectiveness of landmarks for
probabilistic planning. Similar to the finding that landmarks often
resulted in better anytime search for LAMA [23], our results show
that using landmarks early in search can yield better solutions.

2 Background: classical landmarks

Following the definitions of Ghallab et al. [10], a classical planning
domain X¢ is a tuple (S, Ac,7yc), where S and A¢ are finite sets
of states and actions, respectively; and y¢ : S X Ac — Sisa
deterministic state-transition function. An action a € Ac is applicable
in state s € S if yco(s,a) is defined; we write Applicable(s) to
denote the set of all applicable actions in s. A plan is a sequence of
actions ¢ = (aa, ..., an). We write y¢ (s, m¢) to denote the state
produced by starting at s and applying the actions in 7w¢ in order, if all
of them are applicable. Let Pc = (X¢, so, g) be a classical planning
problem, where so € S is the initial state and g is the goal condition.
A solution to Pc is a plan w¢ such that yc (so, 7¢) = ¢.

Adopting definitions of landmarks from Richter and Westphal [21],
let Pc = (X¢, so0, g) be a classical planning problem and let m¢ =
(a1,...,an) be aplan. A condition ¢ is:

e true at time i in w¢ if yo (so, (a1, ..., a:)) = .
e added at time ¢ in 7 if  is true at time ¢ but not at time ¢ — 1.
o first added at time ¢ in 7¢ if ¢ is true at time ¢, but not at any
time j < .
Then, a condition ¢ is a landmark for Pc if for all plans m¢ such
that vc (so, m¢) [E g, @ is true at some time in 7¢. Let ¢1 and @2 be
conditions. In problem Pc, there is a:

e natural ordering 1 — (- if for all ¢, in every plan where 3 is
true at time ¢, (o1 is true at some time j < ¢.

e necessary ordering 1 —, 2 if for all 4, in every plan where @2
is added at time ¢, ¢ is true at time ¢ — 1.

o greedy-necessary ordering o1 —, > if for all ¢, in every plan
where (9 is first added at time 4, ¢ is true at time ¢ — 1.

They also defined reasonable orderings [21], but such orderings are
not mandatory. They are not used in LAMP, so we omit them here.
3 Probabilistic landmarks

A probabilistic planning domain X is a tuple (S, A, v, Pr), where S
and A are finite sets of states and actions, respectively; v : S x A —



25 is a nondeterministic state-transition function; and Pr(s’ | s,a)
is a distribution over (s, a) giving the probability of reaching state
s’ when executing action a in state s. An action a € A is applicable
in state s € S if y(s,a) # @; we write Applicable(s) to denote
the set of all applicable actions. A policy is a partial function 7 :
S — A with domain Dom(7) C S such that for all s € Dom(7),
m(s) € Applicable(s). The policy  is total if Dom(w) = S. We
will assume all actions have unit cost.

Let P = (X, so, g) be a probabilistic planning problem, where so
is the initial state and g is the goal condition. Solutions to P take
the form of a policy. For a policy 7 and initial state so, a history
o is a finite sequence of states (so, s1, . .., Sn), starting in so, such
that for all ¢ € {1,...,h}, s; € y(si—1,m(si—1)) and for all i,
((si = g) V (si ¢ Dom(w))) <= i = h. Let |o| denote the
length of ¢, and o_; denote the final state in o. The probability of a
history o of a policy 7 from state so is defined to be Pr(c | 7, s9) =
H‘Zi‘l Pr(s; | si—1,m(si—1)). We write H(so,n, g) to denote the
subset of all histories of 7 from s¢ that end in a state that satisfies g.
A policy  is safe for Pif > . - o Pr(o|m, s0) = 1.

We extend the definition of landmarks and landmark orderings to
probabilistic planning domains. Let P = (X, s¢, g) be a probabilistic
planning problem. For a policy 7 and a history o = (so, ..., sx) €
H(so,m,g), acondition ¢ is:

e true at time i in o if s; = ¢.
e added at time ¢ in o if s; | p and s;-1 £ .
e first added at time i in o if s; = @ and s; [~ ¢ forall j < i.

Then, a condition ¢ is a landmark for P if for all policies 7 and all
histories o € H(so, 7, g), ¢ is true at some time in 0. Let ¢1 and ¢2
be conditions. In problem P, there is a:

e natural ordering ¢1 — 2 if for all ¢, for every policy 7w and
every history o € H(so, 7, g) where @3 is true at time i, @1 is
true at some time j < .

e necessary ordering 1 —, 2 if for all ¢, for every policy 7 and
every history o € H(so, T, g) where @2 is added at time i, o1 is
true at time ¢ — 1.

e greedy-necessary ordering 1 —¢, 2 if for all ¢, for every policy
m and every history o € H(so, 7, g) where ¢ is first added at
time 4, 1 is true at time ¢ — 1.

We will construct probabilistic landmarks for P = (X, s, g) using
the all-outcomes determinization of ¥ = (S, A, ~, Pr), which is
a classical domain, denoted X p = (S, Ap,vp), where each action
in X is replaced by a set of deterministic actions, one for each pos-
sible outcome of the original action. More formally, let s € .S and
a € Applicable(s), and suppose v(s,a) = {o1, ..., 0r }. We trans-
form a into a set of deterministic actions det(s,a) = {d1,...,dx}
corresponding to each outcome in (s, a), where 0; = yp(s,d;)
foralli € {1,...,k}. Then Ap = U c5 ueapplicable(s) d€t(s, @)
Landmarks in ¥ p carry over to X as follows:

Lemma 1. Let P = (X, so, g) be a probabilistic planning problem,
where ¥ = (S, A,v,Pr). Let Pp = (Xp, so,9) be the classical
planning problem where Xp = (S, Ap,~p) is the all-outcomes
determinization of ¥.. Let w be a policy for P. For every history o =
(s1,...,8n) € H(so,m,g), there exists a plan 7p = (a1, ...,an)
for Pp such that forall i € {1,...,h}, yp(so,{(a1,...,a:)) = ss;
that is, wp reaches the same sequence of states as o.

Proof. Let o0 = (so,...,sn) € H(so,m,g) be a history. For all
i € {1,...,h}, si € 7(si—1,7(si—1)), thus there exists d; €

det(si—1,7(si—1)) C Ap where s; = yp(si—1,d;). By induction,
it follows that for all ¢ € {1,..., h}, yp(so, (d1,...,ds)) = si, sO
wp = {(d1,...,dn) reaches the same sequence of states as o. O

Theorem 2. Let P = (3, so, g) be a probabilistic planning problem,
where ¥ = (S, A,~,Pr). Let Pp = (¥p, s0,9) be the classical
planning problem where ¥.p is the all-outcomes determinization of
3. If g is a landmark for Pp, then @ is a landmark for P.

Proof. Let 7 be apolicy for P,andleto € H(so,7,g). By Lemma 1,
there exists a plan 7p that reaches the same sequence of states as o.
Suppose ¢ is a landmark for Pp. Then ¢ must be true at some time
in mp, and so it follows that ¢ is also true at some time in o. O

Moreover, landmark orderings also carry over from the all-outcomes
determinization to the probabilistic domain.

Theorem 3. Let P = (3, so, g) be a probabilistic planning problem,
where ¥ = (S, A,~,Pr). Let Pp = (¥p, S0,9) be the classical
planning problem where Xp = (Sp, Ap,p) is the all-outcomes
determinization of ¥.. Let p1 and 2 be conditions.

(1) If o1 = @2 in Pp, then p1 — 2 in P.
(2) If o1 —n @2 in Pp, then p1 —n @2 in P.
(3) If p1 —en 2 in Pp, then o1 —gn @2 in P.

Proof. Proofs for (1), (2), and (3) are similar. To prove (1) (resp. (2);
(3)), suppose 1 and 2 are landmarks in Pp, with 1 — 2 (resp.
P1 —n P25 1 —ren 2). Let m be a policy for P, leto € H(so, 7, g),
and suppose (> is true (resp. added; first added) at time ¢ in 0. By
Lemma 1, there exists a plan 7p that reaches the same sequence of
states as o, so ¢z is also true (resp. added; first added) at time ¢ in 7p.
Then, (1 is true at some time 7 < 4 (resp. time ¢ — 1; time ¢ — 1) in
wp. Thus, @1 is also true at time j (resp.¢ — 1;¢ — 1) in . O

Therefore, to generate landmarks for a probabilistic planning problem
P = (3, s0,9), we can use existing classical landmark extraction
algorithms, like LMRHW [22], to generate classical landmarks for the
all-outcomes determinized planning problem Pp = (Xp, so, g), and
directly use those landmarks and their orderings in P.

3.1 Landmarks as subgoals

Before we introduce LAMP (§4), we will discuss the expected benefit
that landmarks might provide while also considering some subtleties
of using landmarks to solve MDPs that make this a nontrivial task. In
classical and probabilistic planning, subgoals can be used to decom-
pose large planning problems into smaller, easier-to-solve subprob-
lems. A domain-independent approach to generating subgoals is to
compute landmarks and use them as subgoals. We can decompose
a planning task into subtasks, each with the goal of achieving one
landmark, then combine their solutions, a procedure inspired by Hoff-
mann et al. [12]. However, this straightforward sequential approach to
achieving landmarks is not guaranteed to succeed, even if a solution
exists for the original problem. A key limitation is that achieving one
landmark can lead to a state from which future landmarks, or the final
goal itself, are unreachable. We will elaborate on this point later.

Let Pc = (X¢,S0,9) be a classical planning problem, let
(p1,--.,pk) be a sequence of landmarks, and suppose @y, =g
For each i € {1,...,k}, suppose there exists a solution plan ¢, for

the problem (X¢, s;—1, i), where s;_1 = yo(so,m& 0 --- o h)

for ¢ > 1. Then, a solution to Pc can be obtained by concatenat-
ing 7& o - - - o mk. Note that this solution depends on the choice of
sequence {1, ..., @) as well as the plans 7.



A similar approach can be applied to probabilistic planning prob-
lems. To illustrate, let P = (X, so, g) be a probabilistic planning
problem and let (@1, ..., px) be a sequence of landmarks where
wr = g.Forall i € {1,...,k}, suppose there exists a safe policy
m; which achieves o, from all states s;_1 |= @;_1 reachable by run-
ning m;_1, or from s if ¢ = 1. We can obtain a solution to P by
running policies 71, . . ., T in sequence (see Appendix A for more
details [4]). This procedure again depends on the choice of sequence
(¢1, .-, k) and policies ;.

In the ideal best-case, the landmark-based approach could yield
up to an exponential speed-up in plan time. Consider an unbounded
search space with branching factor b and a goal g at depth d from
the initial state so. A breadth-first planner would take O(b%) time to
reach the goal. However, suppose there exists a sequence of landmarks
(p1,--.,pr) where o, = g, 1 is at depth d/k from sq, and for all
ie{l,...,k—1},if s; |= @i, then ;41 is at depth d/k from s;. In
this best case, a breadth-first planner takes O (b%/*) to achieve each
landmark. With & landmarks, this reduces the total planning time to
O(kb?*), an exponential speed-up (see Appendix A Figure Al [4]).

However, the existence of such policies for each landmark is not
guaranteed. This limitation underpins the incompleteness of this se-
quential landmark achievement approach: even when a safe policy
for the original planning problem exists, this approach might fail to
reach the top-level goal g. These failures can occur in two situations:
the current, chosen landmark is unreachable, or a deadlock state is en-
countered from which the final goal is unreachable [12] (see Appendix
A Figure A3 for an example [4]).

These failures stem from the approach’s inherent myopia: by fo-
cusing on achieving landmarks, the planner can be led to states that
hinder or prevent further progress towards future landmarks or the
final goal. In the classical setting, Hoffmann et al. [12] proposed a
“safety net” to address the issue of unreachable landmarks—in the
event that an unreachable landmark is selected, the planner reverts to
a base planner that seeks to achieve the final goal, disregarding the
landmark graph. In the probabilistic setting, we mitigate these failure
modes with an approach that balances the pursuit of landmarks with
the pursuit of the final goal by tuning a greediness parameter (§4.2).

4 Landmark-assisted Monte Carlo planning

Intuitively, using landmarks during MDP planning is straightforward.
Algorithm 1 shows a simple procedure, called LANDMARKPLAN,
that first computes a collection of landmarks ¢ (Line 2) and then
iteratively selects a landmark (Lines 5—7) and actions to achieve that
landmark (Lines 8—10). The behavior of LANDMARKPLAN depends
largely on how selection on Lines 7 and 9 are implemented.

Algorithm 2 shows LAMP, the main algorithm of this paper, which
is a specific implementation of LANDMARKPLAN based on Monte
Carlo tree search. Like LANDMARKPLAN, it has stages for selecting
landmarks (Lines 7-9) and actions (Lines 10-12). LAMP learns Q-
functions (Lines 5-6) to predict the best landmark (Q 1, ar), the best
action for the current landmark (Q.,), and the best action for the final
goal (Qg). Crucially, LAMP uses a greediness parameter o to achieve
a balance between greedy actions to achieve the current landmark
with actions that advance toward the top-level goal (Line 11). If a
dead-end is encountered, the algorithm fails.

Section 5 will demonstrate that LAMP performs well in several
benchmark problems and that the best « is problem dependent; the
results present strong evidence that landmarks can be helpful for
solving MDPs. More generally, landmarks can be incorporated into
MDP algorithms in many ways; LAMP is one instance in a family

Algorithm 1 A general procedure for landmark-guided planning.

1: procedure LANDMARKPLAN(P)
2: ® + LANDMARKGRAPH(P) U {g}

3: 8 < Sp; ¢ < NIL

4: while ® # @ and s |~ g do

5 if ¢ = NIL or s = ¢ then > select landmark
6: D« d\{p}

7: select ¢ € leaves(P)

8: else > select action
9: select a € Applicable(s) to achieve

10: S < APPLY (s, a)

Algorithm 2 The LAMP algorithm, a particular implementation
of LANDMARKPLAN. P = (3,s0,g) is a planning problem,
n_rollouts is the number of rollouts, budget is a cost limit, depth is
the maximum rollout depth, and « is the greediness parameter.

1: procedure LAMP(P, n_rollouts, budget, depth, o)

2: ® + LANDMARKGRAPH(P) U {g}

3: (p — NIL; s < so; cost < 0
4: while ® # @ and s [~ g and cost < budget do
5: fori <« 1,...,n_rolloutsdo >learn Qris, Qp, Qg
6: ROLLOUT(s, ¢, ®, depth, a, cost)
7: if o = NIL or s |= ¢ then > select landmark
8: D+ D\{p}
9: ¢+ argmax (Qrm(®,¢"))
@’ Eleaves(P)
10: else > select action
11: a<+ argmax (aQe(s,a)+ (1 —a)Qq(s,a))
a€Applicable(s)
12: s <= APPLY (S, a)
13: cost < cost + 1

based on LANDMARKPLAN which uses UCT [14], a simple, well-
established planning algorithm that allows us to easily modulate the
amount of work done to learn a policy and examine the effect of
using landmarks. Future work should explore other variations of
LANDMARKPLAN, including non-sampling-based approaches.

Next, we describe the key components of LAMP in determining:
how to choose a landmark (§4.1), how to choose an action (§4.2), and
how to learn the ()-functions (§4.3).

4.1 Choosing landmarks in LAMP

To learn an ordering of the landmarks, we frame the selection of land-
marks as a planning problem. Let P = (X, s, g) be a probabilistic
planning problem and let ¢ be a collection of landmarks for P. Let
Yo be a planning domain with state space Se = 2%, action space
Ag = @, and state-transition function vs : (s,a) — s\{a}ifa € s.
Actions in this domain are deterministic, meaning Pr(s’ | s,a) =
1, (s,a)(s"). However, these actions do not have unit cost. Instead,
the cost of executing a € Ag is determined by the cost of running
policy 7, in X to achieve landmark a. This cost depends not only on
the action a € Ag and the current state s € S, but also the state in
Y from which 7, is initiated, meaning that the cost also depends on
the history of previously executed actions.

To further restrict the set of applicable actions in X4, we can impose
a strict partial order < on ® using landmark orderings. Then, for any
®' C P, we can view ®’ as a directed acyclic graph and define

leaves(®') = {¢ € ® | ¢ has no <-predecessors}. (1)



Figure 1. Suppose ¢ is a landmark such that s2 |= ¢ and s3 |= . Starting
at sq, a greedy algorithm may achieve ¢ by performing action a4, leading to
a worse solution.

We can then restrict Applicable(s) = leaves(s). We will also as-
sume g € @, with ¢ < g for all ¢ € ®\{g} to ensure the top-level
goal g is achieved. Then, landmark selection can be viewed as a

planning problem Ps = (X4, ®, go ), where s |= go iff s = @.

LAMP’s landmark selection bears some similarity to the options
framework in hierarchical reinforcement learning [32]. That is, &
is semi-Markov. To see why, consider an option (Z, 7, 3) which
consists of an initiation set Z C S, a policy 7 : S x A — [0,1],
and a termination condition 8 : S — [0, 1]. A total, safe policy 7,
for landmark a € Ag can be viewed as an option (Z, 7, 8)a with
initiation set Z = S, policy 7 = 1{x, (s)=a’](s’, @), and termination
condition 8 = 1[y=4)(s"). Since options are known to be semi-
Markov by Sutton et al. [32], we know that ¥ is semi-Markov,
meaning that landmarks offer a similar benefit to options in providing
temporal abstractions to decompose a problem.

4.2 Choosing actions in LAMP

To solve P using the approach outlined in Algorithm 1, we must solve
two planning problems concurrently: the landmark selection problem
in X (Algorithm 2 Lines 7-9) and the action selection problem in
> (Algorithm 2 Lines 10-12). For our implementation of LAMP, we
use UCT for both landmark selection and action selection, but we
note that other techniques can be applied.

A greedy approach is one in which selection on Line 11 is done
solely with respect to the current landmark ¢, without regard for the
top-level goal g. While this reduces the complexity of the planning
task, it may compromise optimality. We can see this demonstrated in
the example in Figure 1. Suppose we want to achieve landmark ¢ with
top-level goal g. Assuming actions are deterministic, we can achieve
by either executing (a1, az) or {(a4). Although (a1, a2) leads to a
shorter solution for the top-level goal, the greedy planner favors {(a4)
because it achieves the landmark ¢ more efficiently.

To address this, we adopt a hybrid approach in LAMP that
balances rewards for both ¢ and g. With a greediness parameter
a € [0, 1], suppose Qg4 and ), are action value functions with re-
spect to g and ¢, respectively. Rather than using the greedy approach
arg MaX, ¢ s pplicable(s) @w (8 @), the balanced approach uses

(aQqe(s,a) + (1 — a)Qq(s,a)) @)

arg max
a€Applicable(s)

(cf. Algorithm 2 Line 11). In Figure 1, suppose Qg (s0,a1) = 1,
1

1 1
Qq(s0,04) = 5, Qu(s0,a1) = 3, Qu(s0,a4) = 1. Soa > £
selects action a4, while o < % selects action a1. Random selection is
used to break ties.

4.3 Learning Q-functions for LAMP

To learn these (Q-values, LAMP uses an approach based on Monte
Carlo tree search (MCTS). MCTS is a general approach to Markov

decision processes that has garnered considerable attention after its
noteworthy success at computer Go [25]. It is often applied in domains
with a large branching factor where it may be difficult or impossible
to explore the entire search tree. MCTS combines a tree search with
Monte Carlo rollouts and uses the outcome of these rollouts to evaluate
states in a search tree.

MCTS iteratively builds a search tree using rollouts from the current
state. Within the family of MCTS algorithms, Upper Confidence
Bound applied to Trees (UCT) is the most widely used in practice
[14]. It uses a solution to the multi-armed bandit problem [1] that
provides a principled balance between exploration and exploitation
when selecting nodes to expand.

UCT planning traditionally uses reward signals from rollouts to
iteratively update an action value function @), where Q(s, a) is an
approximation of the expected reward of executing action a in state s.
To tailor UCT for our setting of goal-directed MDPs, we use GUBS
(Goals with Utility-Based Semantic), a criterion for solving SSPs with
dead-ends which provides a principled tradeoft between maximizing
the probability of reaching the goal and minimizing expected cost
with a utility-based model [8, 9]. The utility function U captures a
smooth tradeoff between goal achievement and cost, where the utility
of a history o is

Ulo) = ullo]) + Kglio_, ) €)

w is a strictly decreasing utility function over cost, and K4 is a constant
utility for reaching the goal g.

By using UCT with the GUBS criterion, )-values estimate ex-
pected utility as specified by the GUBS utility function [6]. This
allows it to maintain the exploration-exploitation balance of UCT
while properly handling scenarios with unavoidable dead ends—cases
where conventional expected cost minimization breaks down.

In LAMP, we further adapt UCT to learn action values for not only
the top-level goal g, but also each landmark ¢ € ®, as well as to learn
as landmark values.

e (QQ4(s,a) estimates the expected utility of executing action a in
state s for top-level goal g

e QQ,(s,a) estimates the expected utility of executing action a in
state s for landmark ¢

o Qrum (P, p) estimates the expected utility of first achieving land-
mark ¢ € @ for top-level goal g.

We also maintain corresponding values for Ny, N, and N s, where
N (s, a) is the number of times a was selected in state s, and N (s) is
the number of times s was visited.

We modified the UCT rollouts to learn these (J-values simultane-
ously (Algorithm 3). In standard UCT, during each rollout, actions
are selected using UCB1 values for each state-action pair, where

og(N (5))
]%I(sﬁa) (4)

UCBL(Q, N, s,a) = Q(s,a) + C

and C is the exploration constant. In state s, the action that yields
the highest UCB1-value is selected. However, in Algorithm 3 Line 9,
we adjusted the algorithm to account for the greediness parameter
«; actions are selected using a linear combination of UCB1 values
corresponding to both the top-level goal and the current landmark (cf.
Equation 2).

During each rollout, four values are backpropagated through the
search tree: the rollout cost for the current landmark ¢, the rollout
cost for the top-level goal g, and boolean values to indicate whether ¢
and g were actually achieved. The subgoal cost is used to update @,



Algorithm 3 The Monte Carlo rollout procedure for LAMP. s is the
current state,  is the current landmark, & is the current landmark
graph, d is the remaining rollout depth, « is the greediness parameter,
c is the cumulative cost, u is a utility function over cost, and K|
is the goal-utility constant. Qras, Noav, @y, Ny, Qg, and Ny are
maps with default value 0. ROLLOUT returns a tuple (A, B, Ag, Bg).
where A\, and )\ are rollout costs for ¢ and g, respectively, and S,
and 34 are booleans indicating the achievement of ¢ and g, respec-
tively. The standard UCT rollout procedure is shown in gray and
modifications or additions are emphasized in black.

1: . P d
2: =0 0, true
3: if ¢ = NIL or s |= ¢ then
4: ¢ + argmax UCB1(Qrm,Npam,®,¢")
@’ €leaves(®)\{p}
5: (Aps By Ag, Bg) < ROLLOUT(57‘Pl,(b\{‘ﬂ}:d:(%c)
6: UCB-UPDATE(Qrn, N, @, 0, Ag + ¢, Bg)
7 return (0, true, Ay, By)
8: d, false
_ aUCB1(Qy, Ny, s,a)+
9: (1 o a)
10:
11: Ao, Be e, @ o

12: Ap Ao + 15

13: UCB-UPDATE(Qy, Ny, S, a, Ay + ¢, By)
14:

15: Ao, Bos

16:

17:

18:

while the top-level cost is used to update )4 and Q1. Whenever
a landmark ¢ is achieved, it is removed from the landmark graph
®, and a new landmark ¢’ € leaves(®) is selected using UCBI1
values calculated from Q1 as. The rollout then continues with the new
subgoal, and a subgoal cost of 0 is backpropagated. Whenever the
top-level goal is reached, the rollout terminates and both a top-level
cost and subgoal cost of 0 are backpropagated.

We additionally imposed a maximum depth for rollouts. If a termi-
nal state is not reached after a fixed number of actions, the rollout is
halted. During rollouts, action pruning, as implemented in PROST
[13], is used to reduce the branching factor by removing actions with
the same distribution over successor states as another action.

We emphasize that these modifications to UCT only add minimal
computational overhead. LAMP adds decision nodes to the Monte
Carlo search tree whenever a landmark needs to be selected, which
means that during each rollout, the number of nodes visited increases
at most by the number of landmarks in ®. Assuming the number of
landmarks is small, i.e. |®| < |S|, the runtime for a rollout does not
significantly increase; each rollout incurs at most O(|®|) overhead.
If no landmarks are present, a single trivial subgoal corresponding to
the final goal g is used, and LAMP is equivalent to standard UCT.

5 Experiments using LAMP

We evaluated LAMP (Algorithm 2) on a set of benchmark proba-
bilistic planning problems. For our experiments, we set an execution
budget of 200 action executions, a maximum rollout depth of 20, and
an exploration constant of /2. We used a non-heuristic implementa-
tion of UCT; all Q and N values were initialized to 0. For the GUBS

criterion, the goal utility constant K, was set to 1, and the utility
function u : cost — exp(— 15 cost) was used, mirroring the default
parameter settings of [6].

We also used Fast-Downward’s implementation of the LMRHY
landmark extraction algorithm [22] to compute a landmark graph,
including all landmark orderings. Landmarks trivially satisfied in the
initial state were pruned from the landmark graph, and the top-level
goal was added to the landmark graph, ordered such that all other
landmarks are predecessors of the top-level goal.

In the experiments that follow, we varied the number of rollouts
n_rollouts € {5, 10,20, 50, 100, 200, 500, 1000, 2000, 5000} and
the greediness parameter « € {0,0.2,0.5,0.8,1}. When o = 0,
LAMP is equivalent to standard UCT and serves as the baseline. The
code for our implementation is available [5].

5.1 Early benchmarks

Our first set of experiments use domains and problem instances from
the probabilistic track of the Fifth International Planning Competition,
which are publicly available [2].

e prob_blocksworld: a probabilistic variation of the standard
blocksworld where blocks have a chance of slipping from the grip-
per onto the table when being picked up, stacked, and unstacked.

e clevators: a person must navigate between floors and elevator
shafts to collect coins while avoiding gates which may send the
person back to the first floor.

e zenotravel: people must move between cities using airplanes.
An airplane requires fuel to fly, and can be flown at two different
speeds—the higher speed requiring more fuel.

In Figure 2, we selected one problem instance from each domain.
For each problem, we reported the average cost of solutions generated
by LAMP, averaged over 75 runs. Runs that exceeded the execution
budget of 200 were halted and contributed 200 to the average. Ad-
ditional results from another 26 problem instances in these domains
were qualitatively similar, and are presented in Appendix B [4].

These results show that a greedy approach can significantly improve
performance when the planner is constrained to fewer rollouts. Even
though standard UCT (o = 0) provably converges to an optimal
solution [14], in domains like prob_blocksworld, elevators
and zenotravel, a greedy approach performs significantly better
than standard UCT because the number of rollouts is insufficient for
the non-greedy approach to converge. For the zenot ravel problem,
standard UCT was never able to reach a goal within the cost budget
while the greedy approach could, even with 5000 rollouts. However,
we also observe that the optimal greediness value o depends not
only on the problem, but also the number of rollouts performed. A
greediness value of @ ~ 0.2 yielded the lowest average cost for
the prob_blocksworld problem, except in the cases of 5 and
200 rollouts where o« = 0.5 performed best. In contrast, o = 0.8
yielded the lowest average cost for the elevators problem, except
in the cases of 5 and 10 rollouts. For the zenotravel problem, the
optimal greediness value varied between 0.2 and 1.

These observed differences are often significant. We ran a t-test
between LAMP and baseline UCT (a = 0) at the same number of roll-
outs for each value of a. LAMP statistically (p < 0.0125, the Bonfer-
roni adjusted csrr = 0.05/4) dominates standard UCT in 4 of 10 rows
for the zenotravel problem, 9 of 10 rows for the elevators
problem, and all 10 rows for the prob_blocksworld problem
(details in Appendix B [4]). In the complete set of results, LAMP
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Figure 2. Average cost (lower is better) of the solutions generated by LAMP. LMRHW generated 10, 11, and 12 nontrivial landmarks for these problem
instances, respectively. Underlined values indicate the best performing a-value in the row. Boldfaced values indicate where LAMP significantly (p < 0.0125)
dominated standard UCT (a = 0) at the same number of rollouts. Statistical analysis and results from other problem instances are in Appendix B [4].

significantly outperformed standard UCT in 25 of 29 early benchmark
problems, and in 172 of 290 total rows.

5.2 Probabilistically interesting benchmarks

The prob_blocksworld, elevators and zenotravel do-
mains do not contain deadlock states, i.e. states from which the top-
level goal is not reachable, meaning some may find these problems
to be “probabilistically uninteresting”, a term coined by Little and
Thiebaux [15]. There is, however, no free lunch. As we will see, in
problems with deadlock states, a greedy approach together with a
poorly placed landmark can quickly lead the planner to fail. In the
results that follow, we identify problem instances from three dead-
locking domains that demonstrate this to varying degrees:

e exploding_blocksworld [2]: a dead-end variation of stan-
dard blocksworld where blocks can detonate upon being put down.

e tireworld [2]: a vehicle must navigate a road network to reach
a goal. Every time the vehicle moves, it has a 40% chance of getting
a flat tire. Some locations have spare tires.

e triangle_tireworld [15]: a variation of tireworld with
a 50% flat-tire rate and a triangular road network (Figure 4).

In Figure 3, we selected one problem instance from each domain.
Given the potential for failure, for each problem, we reported the
success rate of LAMP in reaching the goal within the execution
budget, over 75 runs. Additional results from another 26 problem
instances in these domains are presented in Appendix C [4].

In the exploding_blocksworld problem, standard UCT per-
forms significantly worse, even at 1000 rollouts, with a greedi-
ness value between 0.2 and 0.5 yielding the best results. In the
tireworld problem, a greedy approach dominates standard UCT
when constrained to fewer than 10 rollouts, but gradually loses its
advantage as the number of rollouts increases.

The triangle tireworld problem, depicted in Figure 4, is
specifically chosen to elicit pathological behavior from a greedy plan-
ner, representing a worst-case scenario for LAMP. Although a safe
solution exists, where the car moves to node 9, then to the goal, the
identified landmarks can mislead a greedy planner toward an unsafe
path. Starting from node 1, the fastest way to achieve the first land-
mark, (1, is to move to node 3. Although not an immediate deadlock,
it is unsafe, which explains why any inclination toward greediness

will only lower the overall success rate. A greedy approach may enter
unsafe or deadlock states while achieving a landmark, overlooking
that this may prevent it from reaching a future subgoal.

We analyzed the significance of the observed differences between
LAMP and baseline UCT using a two-tailed Boschloo exact test
(similar to a Fisher exact test) with a Bonferroni adjusted o =
0.05/4. LAMP statistically dominates standard UCT in 6 of 10 rows
in the exploding_blocksworld problem, and in 2 of 10 rows
in the tireworld problem. However, standard UCT dominates
all greedy variants in the traingle_tireworld problem. Full
statistical analysis and results from other problems are in Appendix C
[4]. In the complete set of results, LAMP significantly outperformed
standard UCT in 11 of 29 probabilistically interesting benchmark
problems, and in 42 of 290 total rows.

5.3 Discussion

The results indicate that in problems without deadlock states, when
the algorithm is constrained to a small number of rollouts, a greedy
approach (o > 0) often outperforms standard UCT (« = 0). As the
number of rollouts grows, standard UCT will eventually converge to
an optimal solution; however, for larger planning problems, this can
take prohibitively long. In contrast, a greedy approach decomposes the
large problem into smaller subproblems, allowing UCT to converge to
viable policies for these subproblems much more quickly than for the
top-level goal. This makes a greedy algorithm an advantageous choice
in large domains or for anytime settings. However, in a domain with
deadlock states, a greedy approach may inadvertently enter a deadlock
state while achieving a landmark, thereby preventing it from achieving
the top-level goal. While a greedy approach can still outperform the
baseline in such scenarios, careful selection of landmarks is crucial to
ensure that none of them contain or lead to deadlock states.

6 Related work

Porteous et al. [19] first introduced landmarks for propositional plan-
ning. Although deciding whether a propositional formula is a land-
mark is PSPACE-complete, they proposed an algorithm, LM*FC,
that could efficiently extract landmarks and orderings using a delete-
relaxed planning graph (RPG). Using the resulting landmark graph,
their proposed method restricted the action space by disallowing ac-
tions that would achieve landmarks out of order, achieving limited
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Figure 4. A depiction of triangle_tireworld problem p2 of moving
a car from node 1 to node 15. Each time the car moves between nodes, there is
a 50% chance it gets a flat tire. There are spare tires at circular nodes. All
roads are “one-way.” The only safe solution is to move to node 9, then to node
15. The landmarks generated by LMRHW are shown in the dashed boxes; e.g.
p2 = (car-at(7) V car-at(10) V car-at(13)).

results. Hoffmann et al. [12] later developed an alternative approach
that used landmarks to decompose the planning problem by iteratively
searching for a plan to the nearest landmark with no predecessors,
rather than searching for a plan to the goal, demonstrating a more
substantial speed-up. Vernhes et al. [33] later revisited this problem-
splitting approach with a search framework based on landmark order-
ings for a given landmark graph.

There have also been significant developments in using landmarks
to generate heuristic values to guide planning [35, 22, 11, 18, 3].
Others have extended these approaches beyond classical planning to
numeric [24] and lifted planning [34].

Landmarks have not been as widely used in probabilistic planning
problems. Speck et al. [28] used landmarks to compute a set of nec-
essary observations used to minimize the number of sensors on an
agent in a partially observable nondeterministic domain. Sreedharan
et al. [29] defined policy landmarks for MDPs to identify subgoals
for a given policy. These policy landmarks were then used to provide
high-level explanations of policies and required actions [30].

Within reinforcement learning, the options framework [32] is an
example of a hierarchical approach that models temporally extended
actions or skills, allowing an agent to solve smaller subproblems
and compose the resulting policies. Several works aim to learn op-

tions that navigate to “bottleneck”™ states that occur frequently on
solution trajectories [16, 31, 17, 26, 27], or prototypical states of
well-connected regions of the state space [20]. Then, these options
may be used alongside primitive actions in learning methods such as
Q@-learning. Landmarks have also been used to guide reinforcement
learning agents through POMDPs by providing guiding rewards based
on the value of visiting each landmark in the task [7].

7 Conclusion and future work

We extended classical landmarks to probabilistic settings and in-
troduced LAMP, a particular implementation of LANDMARKPLAN
based on UCT, as a domain-independent probabilistic planner that
leverages classical landmarks as subgoals in MDPs. LAMP outper-
forms standard UCT on several benchmark planning problems, demon-
strating the effectiveness of using landmarks for probabilistic planning,
and suggesting that it may be worthwhile to incorporate landmark
guidance in more sophisticated probabilistic planning systems.

We also studied the trade-oft between a greedy and non-greedy
approach to achieving landmarks during planning. A non-greedy
approach—equivalent to UCT—provably converges to an optimal
solution without landmarks but may take prohibitively long to find
solutions in large planning domains, making it impractical for online
or time-constrained applications. In contrast, a greedy approach de-
composes the planning task into a sequence of simpler subproblems.
It often outperforms plain UCT with fewer rollouts, albeit at the cost
of completeness. Problems where landmarks may include deadlock
states or unsafe states may pose a challenge to a greedy algorithm.

Future work could focus on integrating deadlock detection and
avoidance into LAMP, mitigating the risk of poorly chosen land-
marks. More broadly, it could investigate alternative methods, beyond
probabilistic landmarks, to identify effective subgoals for problem
decomposition. Since we observed that the optimal greediness value
« depends on both the problem domain and the number of rollouts,
future work could investigate the potential for an adaptive a-value
that changes as planning progresses. Finally, using other probabilistic
planning techniques, including non-sampling-based approaches, to
implement the general landmark-based decomposition approach out-
lined in LANDMARKPLAN (Algorithm 1) could yield improvements
similar to those achieved by our UCT-based approach.
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