
AdaGrasp: Learning an Adaptive Gripper-Aware Grasping Policy

Zhenjia Xu Beichun Qi Shubham Agrawal Shuran Song
Columbia University

https://adagrasp.cs.columbia.edu

Abstract— This paper aims to improve robots’ versatility and
adaptability by allowing them to use a large variety of end-
effector tools and quickly adapt to new tools. We propose
AdaGrasp, a method to learn a single grasping policy that
generalizes to novel grippers. By training on a large collection
of grippers, our algorithm is able to acquire generalizable
knowledge of how different grippers should be used in various
tasks. Given a visual observation of the scene and the gripper,
AdaGrasp infers the possible grasp poses and their grasp scores
by computing the cross convolution between the shape encod-
ings of the gripper and scene. Intuitively, this cross convolution
operation can be considered as an efficient way of exhaustively
matching the scene geometry with gripper geometry under
different grasp poses (i.e., translations and orientations), where
a good “match” of 3D geometry will lead to a successful
grasp. We validate our methods in both simulation and real-
world environments. Our experiment shows that AdaGrasp
significantly outperforms the existing multi-gripper grasping
policy method, especially when handling cluttered environments
and partial observations. Code and Data are available at
https://adagrasp.cs.columbia.edu.

I. INTRODUCTION

In many real-world systems, a robot’s end-effector is
designed with a specific application in mind, where its
specific geometry and kinematic structure often lead to
distinct strengths and weaknesses. However, the vast majority
of robotic research has been limited to single end-effector
setups where the learned policy cannot generalize to new
gripper hardware without extensive retraining. On the other
hand, we humans can easily use various tools to accomplish
different tasks and quickly adapt to unseen tools. Can we
allow our robot system to do the same? This capability would
benefit a robot manipulation system in the following ways:
• Versatility via diversity. Since different gripper designs of-

ten provide complementary strengths and weaknesses, and
by learning to adequately use a diverse set of grippers, the
system can effectively improve its versatility on handling
a larger variety of objects and tasks.

• Adaptability via generalization. Since the learned grasping
policy can generalize across different gripper hardware,
it can also quickly adapt to new grippers by directly
analyzing its geometry and structure. It is different from
the existing multi-gripper systems [1], [2] that need to
collect new training data for any new gripper hardware.

The authors would like to thank Lin Shao and Unigrasp authors for
sharing code and models for comparison, Iretiayo A. Akinola for his help
in setting up BarretHand Gripper and Google for the UR5 robot hardware.
This work was supported in part by the Amazon Research Award and the
National Science Foundation under CMMI-2037101

(a) WSG 50 (b) RG2 (c) Barrett Hand

Fig. 1. Gripper-Aware Grasping Policy. The goal of AdaGrasp is to
produce grasping strategies that are conditioned on input gripper description
(a,b,c). For example, since the RG2 gripper has a wider fixed opening
than WSG 50 (which can control its opening width), it chooses a different
grasp pose to avoid double-picking or collision. Barrett Hand grasps the big
triangle shape, which can be challenging for other two-finger grippers.

To achieve this goal, we propose AdaGrasp, a learning-
based algorithm that learns a unified policy for different
grippers and can generalize to novel gripper designs. At
its core, AdaGrasp uses cross convolution (CrossConv)[3]
operation between the shape encoding of the robot gripper
and the scene to infer the grasp score for all possible grasp
poses. Intuitively, this operation can be considered as an
efficient way of exhaustively matching the scene and the
gripper geometry under different grasp poses, where a good
“match” of their 3D geometry will lead to a successful grasp.

The 3D geometry of a robot gripper and its kinematic
structure often inform how it should be used for a given
task [4]. By learning to use a large collection of different
grippers, the algorithm should be able to acquire a general-
izable knowledge of how different grippers should be used
in various tasks. For example, a gripper’s opening width
determines what object shape can fit into the gripper, and the
thickness of each finger determines what narrow space the
finger can get into without collision. Fig.1 illustrates different
grasp poses that are suitable for different grippers.

The primary contribution of this paper is AdaGrasp, a
learning-based grasping algorithm that leverages generalized
shape matching via cross convolution to produce a grasping
policy that works across different gripper hardwares. We val-
idate our methods in both simulation and real-world environ-
ments. Our experiments show that AdaGrasp outperforms the
state-of-the-art method for multi-gripper grasping, especially
in a cluttered environment and with partial observation.

ar
X

iv
:2

01
1.

14
20

6v
3

 [
cs

.R
O

]
 1

4
M

ar
 2

02
1

https://adagrasp.cs.columbia.edu
https://adagrasp.cs.columbia.edu

(c) Cross Convolution
Grasp Score

for Different Orientations

 C
on

fig
ur

at
io

n
Sa

m
pl

es ...

Grasp
Execution

...

 G
ri

pp
er

 S
am

pl
es

...

Initial Final

Depth

(b) Scene
Encoder

(d) Grasp
Evaluation
Network

(a) Gripper
Encoder

Max

Fig. 2. Approach Overview. At its core, AdaGrasp infers grasp scores for all candidate grasp poses by computing the cross convolution between the
gripper encoding produced by the gripper encoder (a) and the scene encoding produced by the scene encoder (b). This cross convolution operation (c)
matches the scene and gripper encoding under all grasp poses by translating and rotating the gripper kernel, where a good “match” of their encoding
results in a high grasp score. Different initial opening configuration of a gripper are treated as different grippers and fed to the network in parallel. The
action associated with the highest grasp score is executed. The action for a grasp attempt includes selecting the suitable gripper, deciding its initial joint
configuration, and choosing a proper grasp pose.

II. RELATED WORK

Learning-based single-gripper systems. Recent data-driven
methods have made great progress on learning object-
agnostic grasping policies that detect grasps by exploiting
visual features, without explicitly using object-specific prior
knowledge [5]–[16]. These algorithms demonstrate the abil-
ity to generalize to new objects and scene configurations.
However, they are often designed and trained with a fixed
hardware setup. Hence, they cannot adapt to any changes in
the gripper hardware without extensive retraining.

Learning-based multi-gripper systems. To take advantage
of complementary skills between different grippers, more
recent works have started to use multiple end-effectors for
grasping. For example, both Zeng et al. [1], [17] and Mahler
et al. [18] used a setup with one suction cup gripper and
one parallel jaw gripper. However, in both the systems, the
algorithm learns a separate policy for each gripper, i.e., their
policies cannot generalize to new grippers. As a result, these
algorithms are often limited to a small number of grippers.

Contact-based grasping policy. Many analytical grasping
models have been proposed to evaluate grasp quality through
contact-point reasoning and force-closure analysis [19]–[23].
The work most related to us is UniGrasp [24], where the
algorithm takes in the gripper point cloud and a single object
point cloud, samples N points from the object point cloud
as contact points for N fingers, and uses inverse kinematics
to get gripper joint configuration.

While a contact-based policy generalizes to new grippers,
it also brings in limitations. First, since measuring precise
contact points in real-world is challenging, the algorithm
can only be trained with simulation. Moreover, it is trained
using static force closure analysis, which does not consider
the object dynamics during grasping. Second, to reason
about force closure, the algorithm assumes a complete object
representation as input which relies on a perception algorithm
to perfectly detect the target object and provide full 3D
geometry. Since the algorithm only samples contact points
on the object surface, a partial observation of the object
will lead to unstable contact point selection and inaccurate
force closure evaluation, as we showed in our experiments.
In contrast, our method’s action space won’t be limited by
partial observation. Furthermore, it does not consider the
gripper geometry beyond contact points, which increases the

likelihood of collision in cluttered environments. In contrast,
our algorithm does not require any explicit contact point su-
pervision or complete object representation. Therefore, it can
better handle cluttered environments and partial observation.

III. APPROACH

The goal of our algorithm is to learn a policy that can
produce the optimal grasping strategy for a novel gripper
by estimating the probability of grasp success (i.e., grasp
score) for all candidate gripper configurations and grasp
poses. Concretely, taking a visual observation of the scene
(RGB-D images) and the gripper design (defined as URDF
files) as input, the algorithm infers the possible grasp poses
along with their grasp scores that would allow the gripper to
successfully grasp a target object.

The core of our approach is a Grasp Evaluation Network
fgrasp(s,g)→ a that infers the grasp score for all candidate
grasp poses a by computing the cross convolution between
the gripper encoding g and scene encoding s. The grasp
pose is parameterized by rotation about the z-axis and 2D
translation. This cross convolution operation can be con-
sidered as an efficient way of exhaustively matching the
scene geometry with gripper geometry in all possible grasp
poses by translating and rotating the gripper kernel. The
matching score is finally represented as a dense grasp score
map, where a higher value indicates a higher chance of a
successful grasp. We train the algorithm with a collection
of grippers and environment setups and test it with unseen
grippers and objects. Fig. 2 shows the network overview, and
the following sections provide details of our approach.

A. Gripper and Scene Representation

Gripper encoding. The gripper geometry is captured by 10
depth images and encoded as a 3D TSDF volume [25]. The
volume dimension is 64× 64× 32 (voxel) with voxel size
vg = 0.004 (m). We compute TSDF volume for the gripper
at its initial open state and final closed state and stack them
as input Ig ∈ R2×64×64×32. The gripper encoder network (Fig
2 a) starts with two 3D convolution layers with kernel size
3×3×3, resulting in a feature ∈ R64×32×32×16. Then we use
one 3D convolution with kernel size 1×1×16 reducing the
z dimension to 1. Finally, we use 5 2D convolution layers
to produce the gripper features ψ(g) ∈ R16×32×32.

Scene encoding The input scene is captured with a top-

Testing GrippersTraining Grippers

Kinova KG-3

Robotiq 3F Robotiq 2F-140

Sawyer

Franka Hand

EZGripperWSG 32 Barrett Hand

Robotiq 2F-85

RG2

WSG 50

Fig. 3. Training and testing grippers used in our experiments.

down depth image and encoded as a 3D TSDF volume.
The workspace dimension is 192× 192× 64 (voxel) with a
voxel size vs = 0.002 (m). In multi-object obstacle cases,
the obstacle mask is provided as an additional channel.
This channel will be 0 for other cases. The scene volume
Is ∈R2×192×192×64 is then fed into the scene encoder network
(Fig 2 b). Similar to the gripper encoder network, it consists
of three 3D convolution layers with downsample scale=4, one
layer for z-axis reduction, and five 2D convolution layers.
The output is the scene features φ(s) ∈ R16×48×48.

B. Grasp Evaluation via Shape Matching

After the encoding network, the scene and gripper geom-
etry are mapped into a query φ(s) and key ψ(g) features.
We carefully set the number of downsampling size in scene
encoder and gripper encoder so that both features share
a similar physical receptive field. As a result, the spatial
alignment is maintained, and shape matching in feature space
(via CrossConv) is meaningful. The algorithm then computes
the cross convolution between the ψ(g) and φ(s) by treating
ψ(g) as the convolution kernel (Fig. 2 c). The output shares
the same size as the scene feature φ(s). We repeat this step
for r = 16 times [26], each time rotate the scene TSDF
volume by θ = 2π/r about z-axis. Finally, the output of
cross convolution is fed into a grasp evaluation network (Fig
2-d) that estimates dense grasp scores for all possible actions
Q∈RXs×Ys×r, where each grasp score Q(i, j,k) in the Q value
map corresponds to one grasp pose.

The grasp pose is parameterized by its position
(x,y,z) and orientation θ = kπ/r about z-axis, where
x = xmin + vsi, y = ymin + vs j, z = H (O(i, j)) − 0.05,
[xmin,ymin,zmin,xmax,ymax,zmax] is the workspace bound,
H (O(i, j)) is the height of z-dimention in the scene volume
O at location (i, j). During grasp execution, the gripper starts
at location (x,y,zmax), moves downward along z-axis until
having contact with an object or reaching the target position
(x,y,z), and then close its finger. The gripper will then move
upwards and this execution is considered successful if and
only if exactly one target object is lifted > 0.2m. Grasping
an obstacle or more than one objects is classified as a failure.

Network training. The whole network is trained end-to-end
with self-supervised grasping trials, similar to prior work [5],
[26]. Based on the object height after grasping, each grasp
trial is labeled with its grasp outcome (1 = success, 0 =
failure). The network is trained to predict the grasp outcome
for all possible actions, and it is supervised by the grasping

outcome of the executed action (one action out of Xs×Ys×r
actions) using softmax loss.

During training, the network chooses its action using
ε−greedy. We use the normalized predicted grasp scores
as the probability of choosing each pose. At training epoch
e, ε decreases linearly from εmax to εmin. After n epochs,
ε = εmin. We set n = 2000,εmin = 0.2,εmax = 0.8. All the
grasp trails are stored in a FIFO replay buffer (size=12000).
At each training step, we sample a batch of examples from
the replay buffer with a 1:1 positive to negative ratio. We also
used data augmentation to overcome overfitting. The scene
inputs obtained from the replay buffer have a probability
of 0.7 to be randomly shifted and rotated. We applied the
same transformation to the corresponding grasp pose. The
final model is trained for 5000 epochs, 8 sequences of data
collection, and 32 iterations of training per epoch with Adam
optimizer and learning rate 0.0005.

C. Improving Grasp Quality via Gripper Selection

To execute the grasp, the algorithm selects the pre-
dicted best action from the grasp evaluation network a =
argmaxa Q. However, depending on the input gripper, some-
times even the best action might still not be good enough
to achieve a successful grasp (e.g., the input gripper or its
initial configuration is too small to enclose the object inside).
In such cases, the algorithm will compare and select between
different input grippers to improve its grasp quality.

To do so, the network predicts a grasp score for a list
of N candidate grippers, then selects the one that produces
the highest grasp score. Note that the list of candidate
grippers can include completely different grippers or the
same gripper with different initial joint configurations. Since
the grasp evaluation network is trained for many grippers,
the estimated grasp score for different grippers is naturally
comparable, where a higher score indicates a better gripper
for the task. During testing, we allow the algorithm to
choose the best configuration for a given gripper (AdaGrasp-
fixGripper in Tab. I) or choose both the best gripper and its
best configuration at the same time (AdaGrasp in Tab. I).

Configuration Sampling. To sample possible initial configu-
ration for a given gripper, we linearly map the gripper’s joint
configuration into a scalar value in the range [0,1], where 0
represents the fully closed state, and 1 represents the fully
open state. Note that the algorithm only needs to choose
grippers’ initial configuration, since the final configuration is
determined – the gripper will always try to close its fingers
all the way to its fully closed state.

During training, each gripper has 4 initial configuration
options randomly sampled between 0.4 and 1.0. Since two
fingers of Barrett Hand have flexible palm joints, we define
the following 3 presets: (1) palm joint = 0, two flexible
fingers are parallel and next to each other. (2) palm joint
= 0.1π , the angle between two flexible fingers is 0.2π . (3)
palm joint = 0.5π and remove the finger with a fixed palm
joint. This configuration mimics a broken Barrett Hand with
two remaining fingers (Barrett Hand-B).

TABLE I
GRASP SUCCESS RATE.

Algorithm Single object Multi-object Multi-object w. obstacles
Otr-Gtr Otr-Gte Ote-Gtr Ote-Gte Otr-Gtr Otr-Gte Ote-Gtr Ote-Gte Otr-Gtr Otr-Gte Ote-Gtr Ote-Gte

SceneOnly 0.613 0.730 0.596 0.686 0.493 0.528 0.497 0.531 0.347 0.368 0.271 0.303
SingleGripper [26] - 0.930 - 0.930 - 0.788 - 0.886 - - - -
UniGrasp [24] - - - 0.812 - - - 0.228 - - - -

AdaGrasp-initOnly 0.721 0.792 0.719 0.753 0.637 0.674 0.638 0.626 0.494 0.353 0.513 0.343
AdaGrasp-fixConfig 0.766 0.855 0.770 0.854 0.706 0.751 0.685 0.764 0.612 0.523 0.603 0.569
AdaGrasp-fixGripper 0.923 0.905 0.959 0.938 0.849 0.842 0.875 0.854 0.775 0.658 0.813 0.703
AdaGrasp 0.960 1.000 0.970 0.990 0.912 0.908 0.896 0.936 0.853 0.747 0.887 0.793

Test case is labeled by Oobject type-Ggripper type (tr: train, te: test). Note: UniGrasp is tested with 4-camera input, all others are tested with 1-camera input.

IV. EXPERIMENTS

We run the following experiments to verify that the
proposed AdaGrasp algorithm is able to (1) learn different
grasping strategies for different grippers, (2) generalize to
new grippers, (3) select a suitable gripper and gripper con-
figuration for a given task. We have also provided real-world
experiments to validate our approach.

Scene setup: We use Pybullet [27] as our simulation en-
vironment. The target objects and obstacles are randomly
dropped within a rectangular workspace. All objects used
in simulation are from Dexnet 2.0 [28] object dataset. The
training dataset has 801 objects: 400 from the 3DNet subset
and 401 from the Kit subset. The test dataset has 57 objects:
13 from Adversarial subset and the remaining object from
the Kit category that are not used in training.

For our method, we use a single top-down RGB-D camera
to capture the scene. For UniGrasp, we use 3 additional
cameras to provide a complete 3D point cloud input since
it is sensitive to partial observation. Tab. II studies both
algorithm’s performance with respect to scene visibility. We
tested the following scenarios:
• Single object. One random object is dropped into the scene

with random position and orientation.
• Multiple objects. There are 5 objects in the scene, and the

gripper is expected to grasp one object at a time until the
scene is empty or a maximum attempt of 7 is reached.

• Multiple objects with obstacles. There are 3 targets and 3
obstacles. We provide the obstacle mask. The algorithm
needs to grasp the target object while avoiding obstacles.

Gripper: We have 7 training grippers and 4 testing grippers
as shown in Fig. 3. One of the testing grippers is Barrett
Hand with one finger missing, which is equivalent to a 2
finger gripper. During training, grippers are globally scaled
by a random factor of t ∈ (0.8,1.2) to increase the training
gripper diversity. During testing, gripper scale is fixed at 1.

Metric: The algorithm performance is measured by grasp
success rate = #successful grasps

#total grasp attempts . The grasp success for each
attempt is measured by whether the gripper grasps strictly
one target. For example, in the multi-object setup, grasping
two objects simultaneously is considered a failure (double-
picking). The objects can be grasped in any order.

We evaluate the algorithms on all grippers separately and
use the average performance, except in our final policy, the
algorithm has the freedom to select from a set of grippers.

For each type of scene, the test scene generation is consistent
across all algorithms and grippers.

Algorithm comparisons:
• UniGrasp [24]: it takes in the gripper point cloud and

object point cloud (background removed), samples N (2 or
3) points from the object as contact points for N fingers,
respectively, and use inverse kinematics to compute gripper
joint configurations for grasp execution. We directly test
the pre-trained model provided by the authors.

• SceneOnly: a single policy trained using all training grip-
pers (uniformly sampled during training). The policy can
only access the scene observation without gripper infor-
mation; hence, it predicts uniformly across all grippers.

• SingleGripper [26]: a learning based grasping method from
Zeng et al. using only Robotiq 2F-85.

• AdaGrasp-initOnly: the gripper input is the initial gripper
state. The policy selects the best grasp pose (position and
orientation) for a given gripper.

• AdaGrasp-fixConfig: same as AdaGrasp-initOnly, but grip-
per input has both its initial and final state.

• AdaGrasp-fixGripper: the algorithm linearly samples the
gripper configurations and infer grasp score for each
configuration. Then, the algorithm selects the gripper con-
figuration with the highest grasp score to execute.

• AdaGrasp: On top of the gripper configuration and grasp
pose, this algorithm also selects the best gripper with the
highest grasp score to use. This is our final policy.

In testing, SceneOnly, AdaGrasp-initOnly, and AdaGrasp-
fixConfig uses a random initial configuration sampled from
[0.5, 0.625, 0.75, 0.875, 1.0]; AdaGrasp-fixGripper and Ada-
Grasp will select the configuration from the same list.

A. Experimental Results

Comparison to prior work. We compare our approach
with state-of-the-art multi-gripper system UniGrasp [24]. The
number of cameras during AdaGrasp’s training is randomly
chose in {1,2,3,4}. Both algorithms are evaluated on test
objects and test grippers under a fixed-gripper and fixed-
camera setting (i.e., the algorithm can choose the input
gripper’s initial configuration but cannot switch gripper). In
the single object case, AdaGrasp-fixGripper achieves better
performance (+10%) comparing to UniGrasp. The advantage
is much more salient in multi-object case, where AdaGrasp-
fixGripper is able to outperform UniGrasp by around 60%.

Fail

Succ

Fail

Fail

Succ

Succ

Single Object Multi-ObjectMulti-Object
A

da
G

ra
sp

(1
 c

am
er

a)
U

ni
G

ra
sp

(1
 c

am
ar

e)
U

ni
G

ra
sp

(4
 c

am
er

a)

Succ

Fail

Fail
Fig. 4. Comparisons. UniGrasp often fails on incomplete input point
clouds since it samples contact points directly from the pointcloud (2nd row
with 1 camera). It also struggles with cluttered scenes, frequently sampling
contact points on multiple objects or failing to account for collision.
AdaGrasp is able to handle both partial observability and scene clutter.

TABLE II
GRASP SUCC RATE W.R.T PARTIAL OBSERVATION.

Single Object Multi Object
Camera 4 3 2 1 4 3 2 1

UniGrasp [24] 0.812 0.788 0.768 0.732 0.228 0.258 0.254 0.175
AdaGrasp-fixGripper 0.896 0.892 0.889 0.891 0.854 0.863 0.846 0.821

The success rate of UniGrasp degrades as the number of cameras and scene
visibility decreases, whereas AdaGrasp performs consistently throughout.
Both algorithms are tested with our test objects and test grippers under a
fixed-gripper setting.

This result highlights AdaGrasp’s ability in handling clut-
tered environments. Fig. 4 shows qualitative comparisons,
where UniGrasp samples contact points on multiple objects
or misses potential collisions.

Another advantage of AdaGrasp is its ability in handling
partial observations. UniGrasp is very sensitive to the quality
and visibility of scene observation since it directly samples
contact points from the input point cloud, which is limited
to the observed surface (Fig. 4-a). In contrast, AdaGrasp is
able to reason about the object grasp point beyond the visible
surfaces using 3D TSDF representation. Results in Tab. II
demonstrate that when the scene observation is incomplete
(i.e., with fewer cameras), UniGrasp’s performance decreases
significantly, while AdaGrasp has consistent performance.
Inference time of AdaGrasp is 1.05s for each gripper with 5
initial configurations and 16 rotations.

Can AdaGrasp learn gripper-aware grasping policy? To
verify AdaGrasp’s ability to infer different grasping strategies
conditioned on the input gripper, we perform the following
experiments. All models in Tab. I are trained and tested under
single-camera setting. First, we compare AdaGrasp-fixConfig
with an “SceneOnly” policy, i.e., a single policy trained with
all training grippers without the gripper as input. Results
in Tab. I shows that AdaGrasp-fixConfig’s performance is
always significantly better than the “SceneOnly”, which
demonstrates that AdaGrasp-fixConfig improves the grasp
prediction by analyzing the input gripper. We visualize the
top grasp pose prediction for different grippers given the
same scene setup (Fig. 6 7). From the visualization, we can
see that the algorithm is able to infer diverse grasp poses
that are suitable for each input gripper and configuration.

Can AdaGrasp generalize to new grippers? To test the

Camera
UR5 Robot

Workspace

Test
Objects Gripper

Fig. 5. Real-world Setup. Robot and camera setup (left) and test objects
(right). Videos of experiments are available in supp. video and website.

TABLE III
REAL-WORLD GRASP SUCC RATE ON UNSEEN GRIPPERS AND OBJECTS.

WSG 50 RG2 Barrett Hand Barrett Hand-B

Single Object 0.92 0.92 0.88 0.80
Multiple Objects 0.90 0.88 0.78 0.66

algorithm’s adaptability to new gripper hardware, we tested
the learned policy with five unseen grippers, including three
2-finger grippers, one 3-finger grippers, and a “damaged” 3-
finger gripper (Barrett hand with a missing finger). While
test grippers are never used during training, AdaGrasp-
fixGripper is able to get performance comparable to that on
the training grippers. In Tab. I AdaGrasp-fixGripper improves
the SceneOnly policy performance by 18% to 54%.

Can AdaGrasp select the right configuration and gripper
for a given task? To check whether the predicted grasp
score is informative for comparing and selecting the grip-
per’s initial configuration, we compare the algorithm perfor-
mance with and without configuration selection (AdaGrasp-
fixConfig v.s. AdaGrasp-fixGripper). Both algorithms pre-
dicts the grasp scores for the same gripper. The difference
is that AdaGrasp-fixGripper selects the configuration with
the highest grasp score while AdaGrasp-fixConfig randomly
picks one configuration. Compared to AdaGrasp-fixConfig,
AdaGrasp-fixGripper performance is better in all cases, im-
proving 5% to 21%. This result validates that the predicted
grasp score is informative for selecting the best initial
configuration. Fig. 7-b shows an example of configuration
selection for WSG 50.

Similarly, we showed that the grasp score is also compa-
rable across different grippers. As a result, the algorithm is
able to further improve its grasping performance by choosing
the “right tool” (gripper) for a given task at hand (object
to grasp). Comparing AdaGrasp with AdaGrasp-fixGripper
in Tab. I, we can see the 1% to 9% improvement in all
scenarios. The performance of AdaGrasp is also better than
SingerGripper, which only evaluates on Robotiq 2F-85. This
result indicates that if combined with an automatic tool
changing hardware [29], AdaGrasp can improve the grasping
performance by allowing the system to properly use a diverse
set of grippers.

Is gripper final state encoding helpful? The input gripper
encoding includes both gripper’s initial and final state. It

Franka Hand Barrett HandWSG 50RG2 RobotIq-2f-85EZGripper Robotiq 3FKinova KG-3Scene Barrett Hand-B

Fig. 6. Gripper-Aware Grasping Policy. Given the same input scene in each row, AdaGrasp predicts a different grasp pose suitable for each gripper.
Here are example grasps inferred by AdaGrasp for training grippers (left) and testing grippers (right) in multi-object setups (Row 1-2), and multi-object +
obstacle setups (Row 3). Brown surface: input TSDF. Green surface: obstacles input as additional mask. More examples available on our website.

Scene GripperGrasp Score Visualization Scene GripperGrasp Score Visualization

RG2

Barrett Hand

WSG 50-1.0

WSG 50-0.5

0° 22.5°22.5 90°45° 112.5°
0.975

0.976 0.977

0.980

0.991

0.812

0.373

0.976

0.304

0.179

0.865

(b)(a)

... ...

0.970

Fig. 7. Grasp Score Visualization. Dense grasp score predictions are shown for 3 out of 16 different grasp orientations. The highest grasp score for each
orientation is shown at the top left. For each gripper, the orientation with the highest score is highlighted in red. In scene (a), the target object is a mug.
RG2 prefers to grasp the cup’s edge or handle, while Barrett Hand prefers to grasp across the whole cup. In scene (b), the target object is surrounded by
two obstacles (green). We visualize the grasp poses for the WSG 50 gripper under different initial configurations (opening size). With a larger opening,
the algorithm chooses to grasp vertically (90°) to avoid collisions, while with a smaller opening, it chooses to grasp horizontally (22.5°) since the object’s
length is now larger than the gripper width. Between these two configurations, the algorithm chooses the wider opening.

allows the algorithm to reason about the gripper’s dynamics
during the closing action beyond its static 3D geometry. To
see the effect of final state encoding, we compare the model
without the final-state, which is AdaGrasp-initOnly. In al-
most all test cases, AdaGrasp-fixConfig has a higher success
rate, and it is most salient in the multi-object with obstacles
setup (up to +23% improvement). Moreover, AdaGrasp-
fixConfig demonstrates better generalizability when testing
on new gripper hardware.

Real-robot experiment Finally, we validate our method
on a real-world robot platform with a UR5 robot and a
calibrated RGB-D camera (Intel RealSense D415). Fig. 5
shows the real-world setup and test objects. In this experi-
ment, we directly tested AdaGrasp-fixGripper policy trained
in simulation on four different physical grippers – WSG
50, RG2, Barrett Hand, and Barrett Hand-B, all of which
are unseen during training. The test objects used in this
experiment include 20 objects from YCB dataset [30] and
five 3D printed adversarial objects from DexNet 2.0, all
unseen during training. For single object tests, we place a
single object randomly. For multi-object tests, we created 8
scenes each containing 4 randomly chosen objects and made
sure that the placement of objects in 8 scenes is consistent
across grippers for fair comparison. For each multi-object
scene, we provide 7 attempts to a gripper for grasping

objects. The grasp success rates are reported in Tab. III. The
average success rates for single object and multi-object are
86% and 80.5%, respectively, comparable with the algorithm
performance in simulation. We noticed that unlike parallel
jaw grippers, Barrett Hand and Barrett Hand-B have a curved
grasping gait, i.e., fingers take a curved trajectory while
closing in. Thus, the Barrett Hand cannot create contact at a
smaller height and fails to grasp shorter objects like banana
and adversarial objects. On the other hand, Barrett Hand is
good at grasping bigger objects like big triangle or baseball
ball, which are challenging for smaller grippers like RG2.

V. CONCLUSION AND FUTURE DIRECTIONS

We introduced AdaGrasp, a unified policy that generalizes
to novel gripper designs. Extensive experiments demonstrate
that AdaGrasp is able to improve the system’s versatility
and adaptability, and outperforms the current state-of-the-art
multi-gripper grasping method. However, since our algorithm
focuses on the gripper geometry for mechanical gripper,
it does not extend to other gripper types (e.g., suction or
deformable) and variable physical parameters (e.g. friction).
It is also limited to top-down grasps due to the reduced
action space. As future directions, it will be interesting to
investigate larger range of gripper types in general dexterous
manipulation.

REFERENCES

[1] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. Hogan, M. Bauza, D. Ma,
O. Taylor, M. Liu, E. Romo, N. Fazeli, F. Alet, N. Chavan-Dafle,
R. Holladay, I. Morona, P. Q. Nair, D. Green, I. Taylor, W. Liu,
T. Funkhouser, and A. Rodriguez, “Robotic Pick-and-Place of Novel
Objects in Clutter with Multi-Affordance Grasping and Cross-Domain
Image Matching,” in IEEE International Conference on Robotics and
Automation (ICRA), 2018.

[2] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley,
and K. Goldberg, “Learning ambidextrous robot grasping policies,”
Science Robotics, vol. 4, no. 26, p. eaau4984, 2019.

[3] T. Xue, J. Wu, K. L. Bouman, and W. T. Freeman, “Visual dynamics:
Probabilistic future frame synthesis via cross convolutional networks,”
in Advances In Neural Information Processing Systems, 2016.

[4] H. Ha, S. Agrawal, and S. Song, “Fit2form: 3d generative model for
robot gripper form design,” arXiv preprint arXiv:2011.06498, 2020.

[5] S. Song, A. Zeng, J. Lee, and T. Funkhouser, “Grasping in the wild:
Learning 6dof closed-loop grasping from low-cost demonstrations,”
Robotics and Automation Letters, 2020.

[6] J. Redmon and A. Angelova, “Real-time grasp detection using convo-
lutional neural networks,” in ICRA, 2015.

[7] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” in ICRA, 2016.

[8] M. Gualtieri, A. Ten Pas, K. Saenko, and R. Platt, “High precision
grasp pose detection in dense clutter,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2016,
pp. 598–605.

[9] Q. Lu, K. Chenna, B. Sundaralingam, and T. Hermans, “Planning
multi-fingered grasps as probabilistic inference in a learned deep
network,” in Int’l Symp. on Robotics Research, 2017.

[10] A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational
grasp generation for object manipulation,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 2901–2910.

[11] M. Gualtieri and R. Platt, “Learning 6-dof grasping and pick-place
using attention focus,” in Proceedings of 2nd Conference on Robot
Learning (CoRL 2018), 2018.

[12] D. Morrison, P. Corke, and J. Leitner, “Closing the loop for robotic
grasping: A real-time, generative grasp synthesis approach,” RSS,
2018.

[13] C. Choi, W. Schwarting, J. DelPreto, and D. Rus, “Learning object
grasping for soft robot hands,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 2370–2377, 2018.

[14] X. Yan, J. Hsu, M. Khansari, Y. Bai, A. Pathak, A. Gupta, J. Davidson,
and H. Lee, “Learning 6-dof grasping interaction via deep geometry-
aware 3d representations,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 3766–3773.

[15] H. Liang, X. Ma, S. Li, M. Görner, S. Tang, B. Fang, F. Sun, and
J. Zhang, “PointNetGPD: Detecting grasp configurations from point
sets,” in IEEE International Conference on Robotics and Automation
(ICRA), 2019.

[16] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-dof
grasping for target-driven object manipulation in clutter,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020,
pp. 6232–6238.

[17] A. Zeng, K.-T. Yu, S. Song, D. Suo, E. Walker Jr, A. Rodriguez,
and J. Xiao, “Multi-view self-supervised deep learning for 6d pose
estimation in the amazon picking challenge,” in Proceedings of the
IEEE International Conference on Robotics and Automation, 2017.

[18] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-
net 3.0: Computing robust vacuum suction grasp targets in point
clouds using a new analytic model and deep learning,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 1–8.

[19] J. Varley, J. Weisz, J. Weiss, and P. Allen, “Generating multi-fingered
robotic grasps via deep learning,” in 2015 IEEE/RSJ international
conference on intelligent robots and systems (IROS). IEEE, 2015,
pp. 4415–4420.

[20] M. Veres, M. Moussa, and G. W. Taylor, “Modeling grasp motor
imagery through deep conditional generative models,” IEEE Robotics
and Automation Letters, vol. 2, no. 2, pp. 757–764, 2017.

[21] Q. V. Le, D. Kamm, A. F. Kara, and A. Y. Ng, “Learning to grasp
objects with multiple contact points,” in 2010 IEEE International
Conference on Robotics and Automation. IEEE, 2010, pp. 5062–
5069.

[22] J. Varley, C. DeChant, A. Richardson, J. Ruales, and P. Allen, “Shape
completion enabled robotic grasping,” in 2017 IEEE/RSJ international
conference on intelligent robots and systems (IROS). IEEE, 2017, pp.
2442–2447.

[23] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry,
K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg, “Dex-net 1.0:
A cloud-based network of 3d objects for robust grasp planning using
a multi-armed bandit model with correlated rewards,” in 2016 IEEE
international conference on robotics and automation (ICRA). IEEE,
2016, pp. 1957–1964.

[24] L. Shao, F. Ferreira, M. Jorda, V. Nambiar, J. Luo, E. Solowjow,
J. A. Ojea, O. Khatib, and J. Bohg, “Unigrasp: Learning a unified
model to grasp with multifingered robotic hands,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 2286–2293, 2020.

[25] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
2011 10th IEEE International Symposium on Mixed and Augmented
Reality. IEEE, 2011, pp. 127–136.

[26] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning Synergies between Pushing and Grasping with Self-
supervised Deep Reinforcement Learning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018.

[27] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

[28] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” RSS, 2017.

[29] A. industrial Automation, “Automatic / robotic tool changers,” -.
[Online]. Available: http://engineering.purdue.edu/∼mark/puthesis

[30] B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srini-
vasa, P. Abbeel, and A. M. Dollar, “Yale-cmu-berkeley dataset for
robotic manipulation research,” The International Journal of Robotics
Research, vol. 36, no. 3, pp. 261–268, 2017.

http://engineering.purdue.edu/~mark/puthesis

TA
B

L
E

A
1

G
R

A
S

P
S

U
C

C
E

S
S

R
A

T
E

O
F

E
A

C
H

G
R

IP
P

E
R

Sc
en

e
A

lg
or

ith
m

O
bj

ec
t

Tr
ai

ni
ng

G
ri

pp
er

s
Te

st
in

g
G

ri
pp

er
s

W
SG 32

Sa
w

ye
r

Fr
an

ka
R

ob
ot

iq
2F

-1
40

E
Z

G
ri

pp
er

K
in

ov
a

K
G

-3
R

ob
ot

iq
3F

Av
g.

W
SG 50

R
G

2
R

ob
ot

iq
2F

-8
5

B
ar

re
tt

H
an

d-
B

B
ar

re
tt

H
an

d
Av

g.

Si
ng

le
O

bj
ec

t

Sc
en

eO
nl

y
Tr

ai
n

0.
36

0
0.

34
0

0.
71

0
0.

82
0

0.
74

0
0.

60
0

0.
72

0
0.

61
3

0.
75

0
0.

72
0

0.
67

0
0.

73
0

0.
78

0
0.

73
0

Te
st

0.
38

0
0.

33
0

0.
53

0
0.

86
0

0.
82

0
0.

62
0

0.
63

0
0.

59
6

0.
68

0
0.

56
0

0.
64

0
0.

83
0

0.
72

0
0.

68
6

A
da

G
ra

sp
-i

ni
tO

nl
y

Tr
ai

n
0.

60
0

0.
53

0
0.

80
0

0.
73

0
0.

85
0

0.
71

0
0.

83
0

0.
72

1
0.

90
0

0.
77

0
0.

64
0

0.
77

0
0.

88
0

0.
79

2
Te

st
0.

61
0

0.
49

0
0.

69
0

0.
74

0
0.

86
0

0.
79

0
0.

85
0

0.
71

9
0.

86
0

0.
65

0
0.

66
0

0.
81

0
0.

78
5

0.
75

3
A

da
G

ra
sp

-fi
xC

on
fig

Tr
ai

n
0.

65
0

0.
57

0
0.

81
0

0.
89

0
0.

81
0

0.
80

0
0.

83
0

0.
76

6
0.

91
0

0.
84

0
0.

81
0

0.
87

0
0.

84
5

0.
85

5
Te

st
0.

61
0

0.
50

0
0.

78
0

0.
95

0
0.

89
0

0.
81

0
0.

85
0

0.
77

0
0.

88
0

0.
89

0
0.

78
0

0.
87

0
0.

85
0

0.
85

4
A

da
G

ra
sp

-fi
xG

ri
pp

er
Tr

ai
n

0.
89

0
0.

99
0

0.
98

0
0.

96
0

0.
90

0
0.

92
0

0.
82

0
0.

92
3

1.
00

0
0.

89
0

0.
91

0
0.

91
0

0.
81

5
0.

90
5

Te
st

0.
95

0
0.

98
0

1.
00

0
1.

00
0

0.
92

0
0.

97
0

0.
89

0
0.

95
9

0.
99

0
0.

94
0

0.
97

0
0.

94
0

0.
85

0
0.

93
8

A
da

G
ra

sp
Tr

ai
n

-
-

-
-

-
-

-
0.

96
0

-
-

-
-

-
1.

00
0

Te
st

-
-

-
-

-
-

-
0.

97
0

-
-

-
-

-
0.

99
0

M
ul

ti
O

bj
ec

t

Sc
en

eO
nl

y
Tr

ai
n

0.
32

4
0.

36
4

0.
59

6
0.

68
8

0.
66

8
0.

42
8

0.
38

0
0.

49
3

0.
67

6
0.

58
4

0.
58

0
0.

34
8

0.
45

0
0.

52
8

Te
st

0.
32

8
0.

32
0

0.
48

4
0.

73
6

0.
72

8
0.

49
6

0.
38

4
0.

49
7

0.
58

0
0.

57
2

0.
57

6
0.

45
6

0.
47

2
0.

53
1

A
da

G
ra

sp
-i

ni
tO

nl
y

Tr
ai

n
0.

55
6

0.
50

4
0.

66
4

0.
65

6
0.

75
2

0.
61

6
0.

71
2

0.
63

7
0.

76
0

0.
65

2
0.

53
2

0.
64

8
0.

77
6

0.
67

4
Te

st
0.

54
4

0.
44

0
0.

56
8

0.
73

2
0.

78
8

0.
67

2
0.

72
4

0.
63

8
0.

70
0

0.
48

4
0.

50
4

0.
71

2
0.

73
0

0.
62

6
A

da
G

ra
sp

-fi
xC

on
fig

Tr
ai

n
0.

59
6

0.
50

4
0.

72
4

0.
90

4
0.

78
4

0.
66

4
0.

76
4

0.
70

6
0.

78
0

0.
82

4
0.

68
4

0.
68

8
0.

77
8

0.
75

1
Te

st
0.

52
8

0.
44

0
0.

69
2

0.
90

4
0.

86
4

0.
68

4
0.

68
4

0.
68

5
0.

80
4

0.
80

0
0.

68
4

0.
76

0
0.

77
0

0.
76

4
A

da
G

ra
sp

-fi
xG

ri
pp

er
Tr

ai
n

0.
86

0
0.

91
2

0.
93

6
0.

85
2

0.
85

2
0.

82
0

0.
71

2
0.

84
9

0.
91

6
0.

89
2

0.
85

6
0.

76
0

0.
78

4
0.

84
2

Te
st

0.
88

4
0.

91
6

0.
95

6
0.

91
2

0.
84

8
0.

90
4

0.
70

4
0.

87
5

0.
94

0
0.

87
6

0.
88

0
0.

79
6

0.
78

0
0.

85
4

A
da

G
ra

sp
Tr

ai
n

-
-

-
-

-
-

-
0.

91
2

-
-

-
-

-
0.

90
8

Te
st

-
-

-
-

-
-

-
0.

89
6

-
-

-
-

-
0.

93
6

M
ul

ti
O

bj
ec

t
w

ith
O

bs
ta

cl
e

Sc
en

eO
nl

y
Tr

ai
n

0.
19

3
0.

19
3

0.
40

0
0.

51
3

0.
50

7
0.

30
7

0.
31

3
0.

34
7

0.
36

7
0.

42
0

0.
40

0
0.

29
3

0.
36

0
0.

36
8

Te
st

0.
13

3
0.

14
0

0.
26

0
0.

43
3

0.
40

7
0.

26
7

0.
26

0
0.

27
1

0.
35

3
0.

30
0

0.
26

7
0.

30
7

0.
28

7
0.

30
3

A
da

G
ra

sp
-i

ni
tO

nl
y

Tr
ai

n
0.

45
3

0.
34

7
0.

61
3

0.
67

3
0.

53
3

0.
44

0
0.

40
0

0.
49

4
0.

25
3

0.
43

3
0.

46
0

0.
36

0
0.

25
7

0.
35

3
Te

st
0.

44
7

0.
33

3
0.

58
0

0.
75

3
0.

64
7

0.
36

7
0.

46
7

0.
51

3
0.

26
0

0.
36

0
0.

48
7

0.
35

3
0.

25
3

0.
34

3
A

da
G

ra
sp

-fi
xC

on
fig

Tr
ai

n
0.

48
7

0.
48

0
0.

70
0

0.
75

3
0.

68
7

0.
58

7
0.

59
3

0.
61

2
0.

62
0

0.
67

3
0.

58
0

0.
24

7
0.

49
3

0.
52

3
Te

st
0.

48
0

0.
38

7
0.

63
3

0.
77

3
0.

73
3

0.
58

7
0.

62
7

0.
60

3
0.

64
0

0.
72

0
0.

60
7

0.
34

0
0.

53
7

0.
56

9
A

da
G

ra
sp

-fi
xG

ri
pp

er
Tr

ai
n

0.
81

3
0.

86
0

0.
87

3
0.

69
3

0.
72

0
0.

78
0

0.
68

7
0.

77
5

0.
78

0
0.

76
0

0.
69

3
0.

42
7

0.
63

0
0.

65
8

Te
st

0.
84

7
0.

86
7

0.
86

7
0.

79
3

0.
78

0
0.

82
0

0.
72

0
0.

81
3

0.
78

7
0.

80
0

0.
78

7
0.

47
3

0.
66

7
0.

70
3

A
da

G
ra

sp
Tr

ai
n

-
-

-
-

-
-

-
0.

85
3

-
-

-
-

-
0.

74
7

Te
st

-
-

-
-

-
-

-
0.

88
7

-
-

-
-

-
0.

79
3

	I Introduction
	II Related Work
	III Approach
	III-A Gripper and Scene Representation
	III-B Grasp Evaluation via Shape Matching
	III-C Improving Grasp Quality via Gripper Selection

	IV Experiments
	IV-A Experimental Results

	V Conclusion and Future Directions
	References

