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Abstract

In traditional machine learning, models are defined by a set of parameters, which
are optimized to perform specific tasks. In neural networks, these parameters
correspond to the synaptic weights. However, in reality, it is often infeasible to
control or update all weights. This challenge is not limited to artificial networks but
extends to biological networks, such as the brain, where the extent of distributed
synaptic weight modification during learning remains unclear. Motivated by these
insights, we theoretically investigate how different allocations of a fixed number of
learnable weights influence the capacity of neural networks. Using a teacher-student
setup, we introduce a benchmark to quantify the expressivity associated with each
allocation. We establish conditions under which allocations have ‘maximal’ or
‘minimal’ expressive power in linear recurrent neural networks and linear multi-layer
feedforward networks. For suboptimal allocations, we propose heuristic principles
to estimate their expressivity. These principles extend to shallow ReLU networks
as well. Finally, we validate our theoretical findings with empirical experiments.
Our results emphasize the critical role of strategically distributing learnable weights
across the network, showing that a more widespread allocation generally enhances
the network’s expressive power.

1 Introduction

A foundational principle in neuroscience posits that changes in synaptic weights drive learning and
adaptive behaviors (Martin et al., 2000; Humeau and Choquet, 2019). This principle is mirrored in
artificial neural networks (NNs), where modern algorithms adjust weights when training a network
to perform a task. However, while typically in NNs it is common for all weights to be adaptable, the
scale of this process in the brain is unclear.

Recent evidence suggests that only a small subset of synaptic weights is modified when an animal
learns a new task (Hayashi-Takagi et al., 2015) and that training a subset of neurons can induce
broad changes in neural activity as animals acquire new skills (Kim et al., 2023). Perturbing just a
few neurons has been shown to significantly alter decision-making, perception, and memory-guided
behaviors (Daie et al., 2021; Marshel et al., 2019; Robinson et al., 2020). These findings raise
fundamental questions about the distributed nature of learnable weights in intelligent systems: To
what extent are synaptic weight changes spread throughout the network, and what strategies should
the learnable system use to allocate the subset of learnable weights?

While most algorithms used in NNs do not constrain which weights are trained, a few research
directions explore this question, primarily from a practical standpoint. For example, training only
a subset of the weights is used for pruning networks to make models more suitable for storage-
constrained environments (Guo et al., 2021), to reduce computational costs (Thangarasa et al.,
2023) and to reduce communication overheads in distributed systems (Sung et al., 2021). Similarly,
transfer learning often fine-tunes large models by adjusting only a fraction of the weights (“parameter
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allocating,” see Wang et al. (2024)). Such a strategy is particularly useful for continual learning,
helping to mitigate catastrophic forgetting (e.g., Mallya and Lazebnik, 2018; Mallya et al., 2018;
Serrà et al., 2018; Wortsman et al., 2020; Zaken et al., 2022).

In both biological and artificial neural network research, similar questions arise regarding learning
with only a subset of the available weights: If resources are constrained, what are the most effective
strategies to allocate the learnable weights? Should learnable weights be confined to specific subsets
of neurons, or distributed more broadly? And given an allocation strategy, how well can a network
perform a task? Motivated by these questions, we theoretically study how learnable weights should
be allocated within a network. More generally, we consider a model in which a task is learned under
resource constraints—where only a fraction of the model’s parameters is adaptable, while others
remain fixed. In this setting, we explore how the selection of learnable parameters affects overall
performance.

1.1 Our contribution

In this paper, we provide the first theoretical framework for analyzing the expressive power of various
allocation strategies in NNs. Motivated by our goal of understanding how learnable weights should
be organized in the brain, we apply our framework to explore the impact of allocating learnable
weights on the expressivity of recurrent neural networks (RNNs). RNNs are particularly relevant
to neuroscience as they serve as models to how neural systems maintain and process information
over time (Hopfield, 1982; Elman, 1990; Barak, 2017; Qian et al., 2024). We focus on linear RNNs
(LRNNs) due to their analytical tractability, grounded in the well-established literature on linear
dynamical systems (e.g Heij et al. (2006)). Notably, we found that subset learning in LRNNs often
produces non-trivial results, with insights that extend to feedforward architectures and even shallow
ReLU networks. Our specific contributions are:

• We formalize the problem of how to allocate learnable parameters in a model using a
student-teacher setup. We introduce a benchmark (Definition 2.3), which defines the match
probability—the likelihood that a student, with a specific allocation of learnable parameters,
can replicate the teacher’s outputs. This measure of expressivity allows us to determine
which allocations maximize the model’s expressive power.

• For LRNNs, we prove several theorems that highlight the effects of different allocation
strategies for learnable parameters in the encoder, decoder, and in the recurrent interactions
(Theorems 3.1, 3.2, 3.4 and 3.5). These theorems identify conditions under which allocations
can be maximal, leading to full expressivity, or minimal, resulting in zero expressive power.
For cases where neither conditions are met, we propose heuristic principles to estimate the
match probability. These results show a sharp transition between allocations with minimal
expressivity to maximal expressivity.

• We show that similar concepts from LRNNs apply for fully connected multi-layer linear
feed-forward networks (LFFN). We use these concepts to provide similar conditions that
identify allocations that lead to large match probability.

• We show that similar concepts can be used to analyze the performance of the possible
allocation strategies in one-layer ReLU feed-forward network.

Our theoretical findings suggest that, as a rule of thumb, allocations tend to become more optimal
when distributing the learnable weights throughout the network. Specifically, distributing the same
number of learnable weights over more neurons, such that there are fewer learnable weights per
neuron, increases the network’s expressive power. This principle pertained to LRNN, LFFN and
shallow ReLU networks.

1.2 Related work

Expressive Power of Neural Networks. The expressive power of neural networks has been
extensively studied. Cover (1965) established limits on the expressivity of a single perceptron,
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while Cybenko (1989) and Hornik et al. (1989) demonstrated that shallow NNs serve as universal
approximators. More recent work by Raghu et al. (2017); Cohen et al. (2016); Montúfar et al. (2014),
highlighted the greater expressive power of deep networks compared to shallow ones. Additionally,
the expressivity of specific architectures were investigated, like convolutional neural networks (CNNs)
(Cohen et al., 2016), RNNs (Siegelmann and Sontag, 1995; Khrulkov et al., 2018), and graph neural
networks (GNNs) (Joshi et al., 2024). Collins et al. (2017) showed that different RNN architectures,
such as GRU, LSTM, and UGRNN, exhibit similar expressivity, suggesting that insights into RNN
expressivity could generalize to other recurrent models. In contrast to these studies that focus on
the expressivity of a fully learned model, here we will study how different allocations of a subset of
parameters affect the model expressivity.

Theory on subset learning and related techniques. Adaptation, a technique similar to subset
learning, is widely used for fine-tuning neural networks. Despite its prevalence in practice, few
studies have explored the expressive power of these methods. For instance, Englert and Lazic (2022)
demonstrated that neural reprogramming (Elsayed et al., 2018), a strategy that alters only the input
while keeping the pretrained network unchanged, can adapt a random two-layer ReLU network to
achieve near-perfect accuracy on a specific data model. Similarly, Giannou et al. (2023) examined
the expressive power of fine-tuning normalization parameters, while Zeng and Lee (2024) recently
analyzed the expressive power of low-rank adaptation, a concept that is reminiscent of subset learning.
Furthermore, the lottery ticket hypothesis (Frankle and Carbin, 2019; Malach et al., 2020) suggests
that within a neural network, subnetworks exist that are capable of matching the test accuracy of
the full model.

2 Settings and definitions

We consider a model MW with weights W ∈ Rp:

y = MW (x)

with x ∈ Rq and y ∈ Rd. We study expressivity using a student-teacher framework (Figure 1)
(Gardner and Derrida, 1989). Both models share the same architecture but have different weights,
where the teacher’s weights W ∗ are fixed and known. Our goal is to find a student model that
can exactly match the teacher, but with limited resources. The challenge is to match the labels
produced by the teacher, which uses all p weights, while the student controls only r < p weights.
The remaining weights are drawn from the same weight distribution as of the teacher, but are not
learned. We will show that different strategies for allocating the subset of r learnable weights in the
student model determine its ability to match the teacher. When considering m samples, we denote
the output as Y = MW (X), where X ∈ Rq×m represents the m inputs, and Y ∈ Rd×m corresponds
to the m outputs produced by the model.

Definition 2.1 An allocation A for a model MW with weights W ∈ Rp is defined as the subset
A ⊂ {1, 2, . . . , p}, which identifies the indices of the learnable weights.

Definition 2.2 For an allocation A of size |A| = r and constant weights Ŵ ∈ Rp−r, let Ā = {1 ≤
i ≤ p | i /∈ A} be the complement of A, the realization set of A with respect to Ŵ is defined as:

RA;Ŵ
=

{
W ∈ Rp s.t. W [Ā] = Ŵ

}
.

In other words, the realization set RA;Ŵ
consists of all vectors W that match the constant weights

Ŵ at the positions indexed by Ā. When the constant weights Ŵ are clear from the context, we
denote the realization set simply as RA. We use this notation to define our benchmark:

Definition 2.3 Let A be an allocation of size |A| = r. For some weights distribution W and samples
distribution X , we define the match probability of A to be:

MP (A,m) = Pr
[
∃W ∈ RA;Ŵ

s.t. MW (X) = MW∗(X)
]

where Ŵ and W ∗ are sampled from W and X from Xm.
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Namely, the match probability for an allocation is the probability of the student, when learning
the weights allocated, to express the same m labels for the same m samples as the teacher. Match
probability will be used as a benchmark for the expressive power of an allocation in a given model,
i.e., higher MP for an allocation leads to a improved expressive power of the model. Since our
focus is on evaluating expressivity, rather than the optimization algorithm, we will focus on the
existence of such W , without considering the optimization process of how to find it. In addition,
although we assume throughout the paper that the teacher and student share the same architecture,
this assumption is not strictly required (see Section 6). Using samples to measure expressivity is
inspired by Cover (1965), where expressivity is assessed by having labeled samples and examining
the probability of expressing those labels.

In this paper we investigate MP
(
A, r

d

)
. As said, our goal is to use r weights to make the student

output the same Y , consisting of dm independent entries. In the models we consider in this paper,
this means that if r < dm this will not be possible. Thus, the most optimal allocation will be able
to match at most m = r

d samples. Thus, MP
(
A, r

d

)
measures how optimal the allocations is, i.e if

MP
(
A, r

d

)
= 1 it means that the r resources are always fully utilized. Since we only use MP

(
A, r

d

)
we short it to MP (A).

Throughout this paper, we will frequently encounter conditions where allocations that meet them
result in MP (A) = 1 or MP (A) = 0. For brevity, we define ‘minimal allocation’ as an allocation A
such that MP (A) = 0, and ‘maximal allocation’ as an allocation A such that MP (A) = 1.

Assumptions. In this paper, we assume that the weight distribution W is normal with mean
0 and that there are no correlations between the different weights. This assumption guarantees
that matrices are invertible and diagonalizable (see Appendix F). Additionally, we assume that the
distribution X is such that any drawn q samples are linear independent, which means that any square
matrix of inputs is invertible. In few of the sections there are additional assumptions that are stated
in the relevant section. Furthermore, in the linear models, we assume that the model is such that a
fully-learned teacher can express any linear function. For example, in feed-forward linear network,
we assume that there is no layer with size smaller than the output.

y( (W), X)

y*(X) = y( (W), X)?y*(X)

y( (W), X)
y( (W), X)

Teacher

Student

input X

Expressive 
power of 
allocation 

Match Probability (MP)

learned weights
fixed weights

Figure 1: Schema of the student-teacher
setup. The match probability (MP) esti-
mates the expressive power of a student
with an allocation Ai of its learnable
weights by measuring its ability to match
the teacher.

2.1 Warm up: Linear estimator model

To better understand the settings and the goal, we start with a simple example of a linear estimator,
y = Wx, with W ∈ Rd×q. Considering m samples we can write:

Y = MW (X) = WX

with X ∈ Rq×m, Y ∈ Rd×m. We thus ask how to allocate the r learnable weights in W such that the

student matches the teacher successfully on all samples. For a realization of W ∗, X and Ŵ , we seek
for W ∈ RA; Ŵ

such that:

WX = W ∗X

Denote Wi and W ∗
i as the ith row of the matrices, ri the number of learnable weights in Wi, and W̃i

as the subset of Wi corresponding to these ri weights. Additionally, let X̃ represent the corresponding
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rows of the input samples, X, Ŵi denote the remaining (fixed) weights of Wi, and X̂ represent the
remaining rows of X. We then have:

W̃iX̃ = W ∗
i X − ŴiX̂ (2.1)

where all the student and teacher weights on the r.h.s of Equation (2.1) are constants. As X̃ ∈ Rri×m,
if ri < m we will have more equations than variables in Equation (2.1) and there will be no solution
to the set of these linear equations. In contrast, if ri = m there is always a solution:

W̃i =
(
W ∗

i X − ŴiX̂
)
X̃−1 (2.2)

As ri is the number of learnable weights in the ith row of W , we have r =
∑d

i=1 ri. This means that
an allocation must have an equal division between the rows of W , each row consisting of exactly r

d
learnable weights. Based on Equation (2.2) we can allocate the learnable weights to create W ∈ RA
such that W ∗X = WX. Therefore, in that case MP (A) = 1, namely a maximal allocation, and
otherwise MP (A) = 0, namely minimal allocation.

Notice the dichotomy here - there is an allocation that perfectly matches the teacher, but its not
robust. A slight change in the allocation, such as moving a single learnable weight from one row
to another, will create an allocation that will never match the teacher (a minimal allocation). This
concept will return later on.

3 Linear RNN model

We begin by applying our framework to study allocations of learnable weights in RNNs. We focus on
RNNs both because of their relevance to modeling neural circuits, as well as the non-trivial results
arising from allocating the learnable weights in their recurrent weights.

Consider a linear recurrent neural network:

ht = Wht−1 +Bxt (3.1)

yt = Dht−1 (3.2)

with the hidden state ht ∈ Rn, the initial state h0 = 0, a step input xt ∈ Rb, and with t = 1...T . The
input to the network is driven through the encoder matrix B ∈ Rn×b, and W ∈ Rn×n is the recurrent
connections. The hidden state is read out through the decoder D ∈ Rd×n, such that the network’s
output is yt ∈ Rd. We consider yT+1 as the output of the network, and denote y = yT+1. The RNN
is thus a function F : RTb → Rd. We assume n ≫ b, d. Additionally, when referring to m inputs, we
denote Xt ∈ Rb×m, where each column represents one of the m inputs at step t across all samples.

First, due to a key attribute of LRNN, we assume that Tb ≤ n and Td ≤ n (see Theorem B.1 for
details).

Second, solving the recursion gives:

Y = D

T∑
t=1

WT−t+1BXt (3.3)

This implies that for the student to match the teacher, it must solve a system of dm = r polynomials
(since Y ∈ Rd×m) with r variables. Notably, the high polynomial degree arises only when allocating
weights in W . As a result, we show that allocating the subset of learnable synapses to the encoder,
decoder, or the recurrent interactions lead to very different allocation strategies.

3.1 Learning the decoder

We first consider allocations that learn the decoder, D. Denote X ′ =
∑T

t=1 W
T−t+1BXt, we get that

Y = DX ′. Learning the decoder is, therefore, analogous to that of a linear estimator. The conditions
for the allocation to be optimal are the same as those described in Section 2.1. We formalize that as
a theorem:

5
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Theorem 3.1 For any allocation A learning the decoder D ∈ Rd×n, if every row has exactly m
learnable weights the allocation is maximal, else it is minimal.

3.2 Learning the encoder

We continue with considering allocations that learn the encoder, B. In this section we assume the
sample distribution is element-wise i.i.d. Similar to the decoder, this scenario reduces to a system of
linear equations, where the matrix is regular for some allocations and singular for others, leading to a
match probability of either 1 or 0 for each allocation. However, unlike the decoder, constructing and
analyzing the matrix is more involved, as B is embedded within the dynamics (see Equation (3.3))
rather than appearing at the end.

Theorem 3.2 Any allocation A learning the encoder B ∈ Rn×b that follows both of the following
conditions is maximal:

1. No row of B has more than Tm learnable weights

2. No columns of B has more than Td learnable weights

Every other allocation is minimal.

As mentioned, each allocation exhibits a dichotomy — being either minimal or maximal — with
maximal expressivity achieved when the allocation is more distributed.

3.3 Learning the recurrent connections

Although the proofs for allocating the learnable subset to the decoder or encoder differed, the
underlying rationale was similar. In both cases, we transformed the problem into a system of
linear equations, and the maximality and minimality conditions emerged from situations where
matrix inversion was not feasible. However, when the allocation is applied to learning the recurrent
connections, as shown in Equation (3.3), the problem shifts to solving a system of polynomials of
degree T , making it more complex than the linear cases.

We illustrate this phenomenon in Appendix B.1.1 with a simple example network, where T = 2. In
this scenario, Equation (3.3) simplifies into two equations, one linear and one quadratic, which can
be combined into a single quadratic equation, represented as ax2 + bx+ c. It is well-known that this
type of equation is solvable if and only if b2 ≥ 4ac. We demonstrate that for different allocations,
distinct expressions for a, b, and c arise, leading to varying match probabilities. Moreover, for certain
allocations, we find that a = 0, which implies the equation is linear, and the match probability is 1.
This observation raises the question of whether this phenomenon, where maximal allocations exist
even though the equations are non-linear, also occurs in larger models and how to identify such
allocations.

To gain a clearer understanding, we simplify the high-degree equations. The following lemma reduces
the problem to a system of linear and quadratic equations:

Lemma 3.3 Given samples X and labels Y created by the teacher, the student matches them using
allocation A if and only if the following set of equations is solvable:

WgB(F ) = F (3.4)

DFX = Y (3.5)

with W ∈ RA, F ∈ Rn×Tb and gB is an operator that depends on B, formally defined in the appendix.
Note that these equations are essentially Equation (3.3) (see appendix), where Equation (3.4) is
just a step of the dynamics. The key insight is that by treating the dynamic steps themselves as
variables, we alter the problem’s structure, making it more tractable. Introducing the nTb new
auxiliary variables, denoted as F , in addition to the variables in W , reduces the polynomial degree
of T in Equation (3.3) to a system of linear and quadratic equations in W and F .

6
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Generally, the equations in Equation (3.4) are quadratic, while those in Equation (3.5) are linear.
However, if a full row in W has no learnable weights, the Tb equations corresponding to that row
become linear, involving only the variables from F . As shown in Appendix B.1, a similar observation
applies to columns. This means that if an allocation uses fewer rows or columns for its learnable
weights, the resulting system will contain more linear equations and fewer quadratic ones.

This observation leads to three key conclusions. First, if an allocation uses too few rows or columns,
the match probability will be zero. This occurs because when there are too many equations involving
only the variables from F , we end up with a situation where there are more variables than equations,
resulting in a ”waste” of variables. This idea is formalized in the following theorem:

Theorem 3.4 Any allocation A learning the recurrent connections W ∈ Rn×n that follows at least
one of the following conditions is minimal:

1. A row in W has more than Tb learnable weights

2. A column in W has more than Td learnable weights

Another important observation is that when an allocation utilizes a certain number of rows, the
problem can simplify into a linear system, which will be solvable with probability 1. In this case, the
allocation becomes maximal. This concept is formalized in the following theorem:

Theorem 3.5 Any allocation A learning the recurrent connections W ∈ Rn×n, that follows one of
the following conditions is maximal:

1. Each row has Tb or 0 learnable weights

2. Each column has Td or 0 learnable weights

Namely, allocation that uniformly distribute the learnable weights in r
Tb rows or r

Td columns is
always maximal. Notice that this is the least number of rows and columns that allocation should use,
as less rows or columns can’t satisfy the conditions in Theorem 3.4. Recall that we assumed Tb and
Td to be smaller than n, ensuring that the number of learnable weights does not exceed the length
of any row or column.

In other cases, we still need to solve a system of quadratic equations to determine whether the
student matches the teacher. Finding the number of solutions for a set of polynomial equations
is well studied in mathematics. For example, Smale’s well-known 17th problem (Smale, 1998) on
complex polynomial was an algorithmic question about root-finding. In case of polynomials with
real coefficients much less is known. Recently, Subag (2024) investigated the number of solutions for
a system of n polynomials with n variables and Gaussian coefficients. The study showed that the
probability of finding at least one solution increases with the number of polynomials (and variables),
eventually converging to 1. As a result, we expect that the match probability will increase as an
allocation uses more rows. Furthermore, as the model size grows, we anticipate that the match
probability for all allocations will approach 1.

To test this hypothesis, we used numerical simulations to estimate the match probability while
restricting the allocation of learning synapses to a subset of the rows. Figure 2a shows that across
different network sizes the match probability increases as more rows are utilized in the allocation.
Additionally, for the same percentage of rows, the match probability increases with the network size.
This is consistent with the intuition that increasing the total number of polynomials (by increasing
the network size) increases the probability to find a solution to the set of polynomials. Figure 2b
depicts the match probability for models with constant r/n, which signifies the sharp transition at
the r

Tb th row (see Theorems 3.4 and 3.5).

To conclude, we expect that in large models, where the number of polynomials is very large, all
non-minimal allocations are approximately maximal, which means that allocation strategies in the
recurrent weights of LRNNs follow a sharp transition from minimal (zero expressivity) to maximal
(maximal expressivity).

7
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Figure 2: a. Estimation of MP for allocations in the recurrent weights of LRNN with d = 4 for
different sizes of the hidden state, n. Note that MP increases with n. b. Same as (a), but with fixed
d/n = 1

4 . In this case, r
Tb = n

4 , which means that allocations using 1
4 of the rows for every n follow

Theorem 3.5, and are thus maximal. Allocations using less rows are minimal due to Theorem 3.4.
Note that MP approaches 1 as n increases. All experiments ran with second order optimization
methods. See Appendix E for full details.

4 Linear multi-layer feed-forward model

The findings for linear RNNs provide insights into the expressive power of subset learning in linear
multi-layer feedforward networks (LFFNs). In these models, the input is multiplied by several
matrices. Formally:

Y = WLWL−1 · · ·W2W1X

where Wl ∈ Rnl×nl−1 , 2 ≤ l ≤ L − 1, and WL ∈ Rd×nL−1 ,W1 ∈ Rn1×q. Additionally, we require
nl ≥ q, d for every 1 ≤ l ≤ L. This ensures that the network dimension never decreases below q and
d.

As the last layer acts as the decoder, it has indeed the same attributes as learning the decoder in the
LRNN model as we saw in Section 3.1. Allocations of learnable synapses in one of the intermediate
hidden layers, or the encoding layer, is reminiscent of allocations in the encoder of the LRNNs. This
is formalized in the next theorem:

Theorem 4.1 For any allocation A learning an intermediate or encoder layer Wl ∈ Rnl×nl−1 is
maximal if and only if it follows one of the following:

1. There is no rows that has more then m learnable weights

2. There is no columns that has more then d learnable weights

Otherwise, the allocation is minimal.

Allocating learnable synapses across multiple matrices is analogous to learning the recurrent con-
nections in LRNNs. This type of allocation results in r polynomials with r variables, where the
degree of the polynomials corresponds to the number of learnable layers. Similarly, as we showed for
allocations of the recurrent connections, certain allocations can reduce the number of polynomials
involved.

Using the same framework and arguments as Lemma 3.3, one can show that the student matches the
teacher iff the following equations are solvable:

W1X = F1 (4.1)

WlFl−1 = Fl 2 ≤ l ≤ L− 1 (4.2)

WlFL−1 = Y (4.3)
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Figure 3: Estimation of MP for FFNs. MP increases when distributing the weights. a. Estimation
of MP for allocations in 3-layer linear FFNs network, for different sizes of the intermediate layer
denoted as n. b. Allocation for shallow ReLU network for different sizes of the hidden layer size. All
experiments ran with second order optimization methods. c. Allocations in a shallow ReLU network
with n=1000 on structured data (MNIST). The MP when the allocation uses more then 40 rows was
constant 1. See Appendix E for full details.

with Wl ∈ Rnl×nl−1 , 2 ≤ l ≤ L − 1, Wl ∈ Rd×nL−1 , W1 ∈ Rn1×q, Fl ∈ Rnl+1×nl−1 , 2 ≤ l ≤
L− 1, F1 ∈ Rn2×q. We introduce many new variables, denoted as F . However, if an allocation is
restricted to only a small subset of rows, many of the resulting equations become linear. By solving
these linear equations, we can reduce the number of polynomials to fewer than r.

As mentioned earlier, the probability of a set of polynomials having a solution tends to increase with
the number of polynomials. Therefore, we expect that allocations restricted to a small subset of rows
across different layers will have a lower match probability. This expectation is confirmed empirically,
as shown in Figure 3a.

Therefore, in FFNs, similar to learning the recurrent weights in LRNNs, the multiplication of multiple
matrices (due to the layers) leads to non-linear equations, which motivates distributing the learnable
weights to increase the match probability.

5 Shallow ReLU model

We saw that generally, it is better to distribute the learnable weights throughout the network
(Figures 2 and 3a). We conclude with an intuition, backed by empirical evidence, that this is also
true in a shallow network of ReLU units.

Consider a 2-layer feedforward ReLU network:

yi = W2 ϕ(W1xi)

with W1 ∈ Rn×q, W2 ∈ Rd×n, and where xi and yi is the i’th sample and label respectively for
1 ≤ i ≤ m. We consider allocations learning W1. For the linear model, as long as some conditions
hold (Theorem 4.1), all allocations are maximal. We now want to examine if the ReLU changes these
results and whether it adds another incentive for distributing the learnable weights of an allocation.

For a given allocation A, let k ≤ n be the number of rows that has learnable weights. Assume w.l.o.g
that they are the upper rows, and denote W 1

1 to be the first k rows and W 2
1 to be the other n− k.

Denote W 1
2 and W 2

2 to be the corresponding columns in W2. Thus we can write:

W 1
2 ϕ(W 1

1 xi) = yi −W 2
2 ϕ(W 2

1 xi)

Notice that the r.h.s is constant. For ϕ(x) being the ReLU function, this equation can be rewritten
as:

W 1
2PiW

1
1 xi = yi −W 2

2 ϕ(W 2
1 xi) (5.1)

Here, Pi ∈ Rk×k is a diagonal matrix with 1s on rows where W 1
1 xi > 0 and 0s where it is negative,

namely (2Pi − I)W 1
1 xi > 0. For a fixed P = {Pi}mi=1 we get a linear equation in the r learning

9
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weights of W 1
1 . Thus, for the allocation to match, two conditions must hold: 1) the linear equation

must be solvable, and 2) the solution of W 1
1 must satisfy (2Pi − I)W 1

1 xi > 0 for every xi.

The first observation is that if the allocation does not satisfy the conditions in Theorem 4.1, the linear
equations will be unsolvable. Another key point is that we need to ”guess” P , which could, in theory,
take one of 2km possible configurations, solve for W , and verify if it satisfies the inequalities. However,
the actual number of feasible configurations is lower—Lemmas D.3 and D.4 demonstrate that some
configurations are inherently invalid due to the linear equations being unsolvable. Importantly, the
fraction of feasible configurations increases as the allocation becomes more distributed—Lemma D.3
shows that the number of valid configurations for P decreases when smaller values of k are used, and
Lemma D.4 reveals that allocations with rows containing many learnable weights similarly face a
reduction in the number of possible configurations for P .

This suggests that allocations using more rows are more likely to increase the match probability. As
shown in Figure 3b, this empirical trend aligns with the intuition. These results suggest that the
ReLU non-linearity introduces an added benefit for allocations that distribute their learnable weights
more uniformly across the network.

6 Discussion

In this paper, we explored different strategies for learning under resource constraints, focusing on how
to allocate a subset of learnable model weights from a standpoint of expressivity. Our main focus
was on linear RNNs and FFNs. Linear models have been fundamental across fields such as linear
circuits and control theory, despite being oversimplifications of real-world systems. Their strength
lies in simplifying complex ideas, providing a necessary foundation for understanding more intricate
nonlinear behaviors (Saxe et al., 2014). Although the linearity of these models, we showed that the
problem of how to allocate the resources when examining subset learning becomes highly non-linear,
with linearity emerging only in specific cases (Theorems 3.4 and 3.5).

We conjectured that the number of non-linear equations arising from subset learning in linear models
improves model expressivity, and that distributing the learnable weights increases the number of
non-linear equations, thus generally improves the expressive power of the model. This conjecture was
backed-up with numerical simulations (Figures 2 and 3). Interestingly, and perhaps unexpectedly,
our results suggests that in large models, allocations can consistently achieve maximum expressivity.

While our work provides theoretical insights into the impact of allocation strategies on expressivity,
several limitations should be acknowledged. First, our paper should be viewed as a first step in
exploring how allocation strategies affect the network performance. As such, our analysis primarily
focuses on expressivity, which does not encompass other important aspects of network performance,
such as generalization or optimization, and these should be explored in future work. Additionally,
our theoretical framework relies on assumptions like i.i.d. inputs and linear independence of certain
matrices, which may not fully capture the complexities of practical neural networks. Another
limitation is that many results were derived for simplified architectures, necessary to develop insights
beyond numerical investigations. We took a step toward generalizing the results by extending our
framework to study expressivity in a non-linear shallow ReLU model, where we found that non-
linearity itself motivates distributed allocations. Future work should extend these results numerically
and theoretically to more complex architectures and structured datasets.

Despite these limitations, our paper presents a general framework for studying expressivity in
neural networks. Match probability (MP) is a versatile and applicable measurement that captures
the reduction in expressivity due to specific allocation strategies. While we use a student-teacher
framework for clarity, our analysis does not rely on the teacher model itself, and MP can be naturally
defined for general data distribution (see Appendix F). In fact, we tested our approach on structured,
real-world data by estimating the MP of a shallow ReLU network on the MNIST dataset (Figure 3c).
These results suggest that our insights regarding distributing the learnable weights throughout the
network may pertain to practical applications.
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A Linear Algebra Preliminaries: Kronecker Product and
Vectorization

We use In as the identity matrix of size n× n. When the size is clear from context we write I.

Definition A.1 The Kronecker product of two matrices A and B is denoted by A⊗B and is defined
as follows:

Let A be an m× n matrix and B be a p× q matrix:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


m×n

, B =


b11 b12 · · · b1q
b21 b22 · · · b2q
...

...
. . .

...
bp1 bp2 · · · bpq


p×q

The Kronecker product A⊗B is an (mp)× (nq) matrix defined by:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB


Definition A.2 Let A be an m×n matrix. The vectorization of A, denoted by vec(A), is the mn×1
column vector obtained by stacking the columns of A on top of one another. For example:
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A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 vec(A) =



a11
a21
...

am1

a12
a22
...

am2

...
a1n
a2n
...

amn


We will use two well known attributes of Kronecker product (see Horn and Johnson (1991)):

Lemma A.3 For every A ∈ Rd1×d2 , B ∈ Rd2×d3 , C ∈ Rd3×d4 :

vec(ABC) = (CT ⊗A)vec(B)

Lemma A.4 For every A ∈ Rd1×d2 , B ∈ Rd3×d4 :

rank(A⊗B) = rank(A)rank(B)

B Linear RNN

We start with a key feature of LRNNs: although the total number of weights is p = (d+ b+ n)n,
only p = (d+ b)n of these are necessary to represent the network’s output. This result is formalized
in the following theorem:

Theorem B.1 For every T , the output of the network can be expressed using n(d+ b) variables.

Proof: From Equation (3.3) we get that if the value of DWT+1−tB for two networks is the same for
all T , their output will always be equal.

The measure of real matrices that are not diagonalizable over the complex equals 0, so the prob-
ability for a random matrix with a continuous probability distribution to be non-diagonalizable
vanishes. Since W is such matrix, we can safely assume it diagonizable. Let UλU−1 be the spectral
decomposition of W .

For every diagonal matrix S, we can write:

W = USλS−1U−1 = (US)λ(US)
−1

Now fix S such that D1V S =
−→
1 , where

−→
1 ∈ Rn is a vector of all 1’s and D1 is the first row of

D. Denote V = US, we have W = V λV −1 such that D1V =
−→
1 . In other words, we picked the

eigenvectors V of W to be such that D1V =
−→
1 .

Notice that DWT+1−tB = DV
(
λT+1−t

)
V −1B. Thus, two networks that will have the same DV ,

V −1B and λ will always output the same system. There are bn variables in V −1B , and n variables

in λ. DV has dn entries but we know that the first row is
−→
1 so it has only dn − n. Thus, this

n(d+ b) variables express the output of the network for every T .

From solving the recursion it becomes clear that LRNN is a linear transformation, receiving Tb inputs
and producing d outputs, effectively acting as a Tb× d matrix. From the proof, we observed that this
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function (expressed as DWT+1−tB for each 1 ≤ t ≤ T ) can be represented using n(d+ b) variables.
This implies that the the function that the network represents becomes degenerate if Tbd > n(d+ b).

To prevent degeneration, we require T ≤ n(d+b)
db . Given the assumption that n ≫ b, d, this simplifies

to approximately Tb ≤ n and Td ≤ n.

B.1 Learning the recurrent connections

In this section, we provide proofs for Theorem 3.4 and Theorem 3.5, and demonstrate their application
through a small network example.

Definition B.2 (Shift Operator) Given n1, n2, n3 ∈ N, B ∈ Rn1×n2 and F ∈ Rn1×n2n3 . Denote
F = ( F1 F2 · · · Fm−1 Fm ) such that for every 1 ≤ i ≤ n3, Fi ∈ Rn1×n2 . Then:

gB(F ) = ( F2 F3 · · · Fm−1 Fm B )

Lemma B.3 Given samples X ∈ RTb×m and labels Y ∈ Rd×m created by the teacher, the student
can express them using allocation A if and only if the following set of equations is solvable:

WgB(F ) = F (B.1)

DFX = Y (B.2)

W ∈ RA, F ∈ Rn×Tb

Proof: We will start by showing that if the system is solvable, then the student can express the given
labels. Assume the equations are solvable using W ∗ ∈ RA and F ∗ ∈ Rn×Tb, F ∗

t ∈ Rn×b. Notice that
W ∗ and F ∗ are assumed to be solutions to the above equations and are unrelated to the teacher.

From the definition of the operator gB , Equation (B.1) becomes:

W ∗F ∗
t = F ∗

t−1 2 ≤ t ≤ T

W ∗B = F ∗
T

Solving the recursion we get F ∗
t = (W ∗)T−t+1B.

Since FX =
∑T

t=1 FtXt, Equation (B.2) is equivalent to:

Y = D

T∑
t=1

FtXt = D

T∑
t=1

(W ∗)T−t+1BXt

Since W ∗ is a valid realization of A and it outputs the correct labels, the student can match the
teacher.

Now, on the other hand, assume that the student can express Y . We choose W to be the recurrent

connections of that student, which implies Y = D
∑T

t=1 W
T−t+1BXt. By selecting Ft = WT−t+1B,

it is easy to verify that the equations hold.

Lemma B.4 For any allocation A, if |A| < dm then MP (A) = 0.

Proof: From Equation (3.3), the student can match with allocation A if a set of dm polynomials
is solvable with |A| variables. Thus, if the student can match with A, a set of dm polynomials is
solvable with less than dm variables. From Theorem 6.8 of Azas and Wschebor (2009) this happens
w.p 0. Therefore, the match probability of A is 0.

Theorem B.5 (First part of Theorem 3.4) Given an allocation A, if there is a row with more
than Tb learnable weights the allocation is minimal.

Proof: We will prove that if the student can match with an allocation with more than Tb learnable
weights in some row, it can match with an allocation with less than dm weights, which means from
Lemma B.4 that the match probability is 0.
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Given an allocation A with |A| = r = dm that has ri > Tb learnable weights in the ith row and
solves Lemma B.3. Notice that the rows of Wi in Lemma B.3 participate in exactly Tb equations in
Equation (B.1) - the ith row only need to suffice:

WigB(F ) = Fi

Where Fi is the ith row of F .

Denote the solution as F = F ∗ and W = W ∗. Consider another allocation, A2, in which we replace
ri−Tb > 0 of the learnable weights of A in the i’th row with constants, which means that |A2| < dm.

Define W̃i as the learnable part of Wi, g̃B(F
∗) as the corresponding columns in gB(F

∗), Ŵi as the
remaining part of Wi, and ĝB(F

∗) as the remaining part of gB(F
∗). Then:

W̃ig̃B(F
∗) + ŴiĝB(F

∗) = F ∗
i

W̃ig̃B(F
∗) = F ∗

i − ŴiĝB(F
∗)

W̃i =
(
F ∗
i − ŴiĝB(F

∗)
)
(g̃B(F

∗))
−1

Which means that there is a solution to Lemma B.3 with A2. In other words, every time Lemma B.3
is solvable with A, it is also solvable with A2. Recall that |A2| < dm, therefore, from Lemma B.4,
the match probability of A2 is 0, which means that the match probability of A is also 0.

Theorem B.6 (First part of Theorem 3.5) Given an allocation A, if every row that has learn-
able weights has exactly Tb learnable weights in it, the allocation is maximal.

Proof: The rank of the linear equation in Equation (B.2) is dm, which follows immediately from
Lemma A.3 and Lemma A.4 (recall that m ≤ Tb and d ≤ n).

With r learnable weights in the model, the allocation consists of exactly r
Tb = dm

Tb rows, each
containing Tb learnable weights, while the remaining rows are fully constant. Without loss of
generality, assume that these constant rows are positioned at the bottom of W . We can express the
first equation of Lemma B.3 as:

WTOP · gB(F ) = FTOP (B.3)

WBOT · gB(F ) = FBOT (B.4)

Where the TOP rows of W are the rows with learnable weights and the BOT are the ones without.

Using Lemma A.3, Equation (B.2) becomes:

(X ⊗D)vec(F ) = Y (B.5)

And Equation (B.4) becomes:

(ITb ⊗WBOT )vec(gb(F )) = FBOT (B.6)

From Lemma A.4 the rank of Equation (B.5) is dm and the rank of Equation (B.6) is Tb
(
n− dm

Tb

)
=

nTb − dm. These equations involve only the nTb variables of F , without including any learnable
weights from W .

This implies that we have nTb linear independent equations with nTb variables, leading to a unique
solution for F . Once we obtain a solution for F , we can substitute it into Equation (B.3), transforming
it into a linear equation as well—each row of WTOP contains Tb linear equations corresponding to
the size of F . Since every row of WTOP contains precisely Tb variables, the equation is solvable.

The proof of the second condition in both Theorem 3.4 and Theorem 3.5 has the same structure as
the first condition. It uses the shift operator, while introducing the auxiliary variables F , but now
with the decoder matrix, D, instead of the encoder matrix, B.
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Lemma B.7 Given samples X ∈ RTb×m and labels Y ∈ Rd×m created by the teacher, the student
can express them using allocation A if and only if the following set of equations is solvable:

gD(F )W = F (B.7)

F (IT ⊗B)X = Y (B.8)

W ∈ RA, F ∈ Rd×nT

Proof: We will start by showing that if the system is solvable, then the student can express the given
labels. Assume the equations are solvable using W ∗ ∈ RA and F ∗ ∈ Rd×nT , F ∗

t ∈ Rd×n. Notice that
W ∗ and F ∗ are assumed to be solutions to the above equations and are unrelated to the teacher.

From the definition of the operator gD, Equation (B.7) becomes:

F ∗
t W

∗ = F ∗
t−1 2 ≤ t ≤ T

DW ∗ = F ∗
T

Solving the recursion we get F ∗
t = D(W ∗)T−t+1.

Notice that:

(IT ⊗B)X =


BX1

BX2

...
BXm−1

BXm


Y = F ∗(B ⊗ IT )X =

T∑
t=1

D(W ∗)T−t+1BXt

Since W ∗ is a valid realization of A and it outputs the correct labels, the student can match the
teacher.

Now, on the other hand, assume that the student can express Y . We choose W to be the recurrent

connections of that student, which implies Y = D
∑T

t=1 W
T−t+1BXt. By selecting Ft = DWT−t+1,

it is easy to verify that the equations hold.

Theorem B.8 (Second part of Theorem 3.4) Given an allocation A, if there is a column with
more than Td learnable weights the allocation is minimal.

Proof: We will prove that if the student can match with an allocation with more than Td learnable
weights in some column, it can match with an allocation with less than dm weights, which means
from Lemma B.4 that the match probability is 0.

Given an allocation A with |A| = r = dm that has ri > Td learnable weights in the ith column
and solves Lemma B.7. Notice that the column vector Wi in Lemma B.7 participate in exactly Td
equations in Equation (B.7) - the ith row only need to suffice:

gD(F )Wi = Fi

Where Fi is the ith row of F .

Denote the solution as F = F ∗ and W = W ∗. Consider another allocation, A2, in which we replace
ri − Td > 0 of the learnable weights of A in the i’th column with constants, which means that

|A2| < dm. Define W̃i as the learnable part of Wi, g̃D(F ∗) as the corresponding rows in gD(F ∗), Ŵi

as the remaining part of Wi, and ĝD(F ∗) as the remaining part of gD(F ∗). Then:

g̃D(F ∗)W̃i + ĝD(F ∗)Ŵi = F ∗
i

g̃D(F ∗)W̃i = F ∗
i − ĝD(F ∗)Ŵi

W̃i = (g̃D(F ∗))
−1

(
F ∗
i − ĝD(F ∗)Ŵi

)
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Which means that there is a solution to Lemma B.7 with A2. In other words, every time Lemma B.7
is solvable with A, it is also solvable with A2. Recall that |A2| < dm, therefore, from Lemma B.4,
the match probability of A2 is 0, which means that the match probability of A is also 0.

Theorem B.9 (Second part of Theorem 3.5) Given an allocation A, if every column that has
learnable weights has exactly Td learnable weights in it, the allocation is maximal.

Proof: With r learnable weights in the model, the allocation consists of exactly r
Td = dm

Td = m
T

columns, each containing Td learnable weights, while the remaining columns are fully constant.
Without loss of generality, assume that these constant columns are positioned at the right side of W .
We can express the first equation of Lemma B.7 as:

gD(F ) ·WLEFT = FLEFT (B.9)

gD(F ) ·WRIGHT = FRIGHT (B.10)

Where the LEFT columns of W are the columns with learnable weights and the RIGHT are the
ones without.

The matrix WRIGHT is of size
(
n− m

T

)
× n, meaning that Equation (B.10) represents a linear

equation (in F ) with a rank of n− m
T for each row of gD(F ). Given that there are Td such rows, we

obtain a total of nTd − dm linear independent equations (in the same way obtained in the proof
of Theorem B.6). When we include Equation (B.8), which is a linear equation of rank dm, the
cumulative total becomes nTd linear equations. These equations involve only the nTd variables of F ,
without including any learnable weights from W .

This implies that we have nTd linear equations with nTd variables, leading to a unique solution for
F . Once we obtain a solution for F , we can substitute it into Equation (B.9), transforming it into a
linear equation as well—each column of WLEFT contains Td linear equations corresponding to the
size of F . Since every column of WLEFT contains precisely Td variables, the equation is solvable.

B.1.1 Example small model

Here, we present a small model as an example that illustrates the different phenomena arising in
subset learning of the recurrent connections of LRNN. For this example, we use the following weights:
b = 1, d = 1, n = 2, T = 2, and m = 2.

Since m = Tb, this implies that the matrix X is a square matrix, making it invertible. From
Equation (3.3), we know that the LRNN model can eventually be reduced to a linear function. Let
the matrix representing the linear function of the teacher be denoted by A∗ and for the student by
A. If the student successfully matches the teacher, this implies:

AX = A∗X

Given that X is invertible, this leads to A = A∗. Thus, we can disregard X, as the student will
match the teacher if and only if A = A∗. The matrix A∗ ∈ Rd×Tb is a 1× 2 matrix, meaning that
A∗ is a vector with two entries, denoted as {A∗

1, A
∗
2}. Therefore, the student matches the teacher if:

DWB = A∗
1 (B.11)

DW 2B = A∗
2 (B.12)

For each possible allocation, solving Equation (B.11) eliminates one variable, and Equation (B.12)
becomes a quadratic equation in one variable. We denote this equation as ax2 + bx+ c = 0, where a,
b, and c are random variables that are derived from expressions involving all other random variables
(i.e., D, B, A∗, and the constant part of W ). The equation is solvable if and only if b2 ≥ 4ac. Thus,
the match probability is precisely the probability that b2 ≥ 4ac.

There are
(
4
2

)
= 6 possible allocations for the r = 2 weights in W . Interestingly, in four of these

allocations, when manually calculating the expression for a, all coefficients reduce to yield a = 0. This
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simplifies the equation to a linear one, making it always solvable. These allocations are, therefore,
maximal. As expected, these are the four allocations that satisfy the conditions of Theorem 3.5.

The two allocations that do not meet the conditions of Theorem 3.5 occur when the diagonal or
off-diagonal entries are allocated. Specifically, if:

W =

(
W1 W2

W3 W4

)
The two suboptimal allocations are {W1,W4} (the diagonal allocation) and {W2,W3} (the off-diagonal
allocation).

We evaluated the match probability for these allocations, drawing all weights from a normal distribu-
tion with variance as described in Appendix E.3. The match probability, MP (A), was 0.83 for the off-
diagonal allocation and 0.74 for the diagonal allocation. The code for this analysis is included in the at-
tached zip file under the scripts example model diagonal.py and example model off diagonal.py.

This example reveals two key phenomena. First, unlike allocations involving the decoder and encoder,
when learning the recurrent connections, there exist sub-optimal, non-minimal allocations due to
the non-linearity of the equations. Second, even with non-linear equations, maximal allocations still
exist.

B.2 Learning the encoder

In this section, we assume that X is i.i.d. and not drawn from some underlying sample distribution X .
This assumption is unnecessary in other sections because when B is constant and uncorrelated with
X, we can treat the input as BXt, effectively eliminating any row-wise correlations (Corollary B.11).
However, since B is learned in this context, the correlations within X will significantly impact the
maximality conditions of A. Therefore, to avoid these complications, we assume no correlation in X
for this section.

We start with a few useful lemmas before proving the main theorem in Theorem B.13. A simpler but
conceptually similar proof can be found in Theorem C.1. Therefore, the proof of Theorem C.1 can
be considered as a proof sketch for this theorem.

Lemma B.10 Let v1, v2, v3 ∈ Rn be uncorrelated vectors with mean 0. Then, ⟨v1, v2⟩ is uncorrelated
to ⟨v1, v3⟩

Proof:

E

 n∑
ij

v1i v
2
i v

1
j v

3
j

 = E

[
n∑
i

(v1i )
2v2i v

3
i

]
=

n∑
i

E
[
(v1i )

2v2i v
3
i

]
=

n∑
i

E
[
(v1i )

2
]
E
[
v2i
]
E
[
v3i
]
= 0

Corollary B.11 Let A be matrices such that there are no correlations between its rows. Then there
are no correlation between the rows of AB.

Lemma B.12 Let V = {Vi ∈ Rm×k} and U = {Ui ∈ Rk×d} be two sets of matrices such that any

two entries of the matrices are uncorrelated. Let Ṽ = {Ṽi ∈ V }dmi=1 be a sequence of size dm containing

matrices from V , and similarly, Ũ = {Ũi ∈ U}dmi=1 be a sequence containing matrices from U . Denote

S = {ṼiŨi}dmi=1 as a sequence of matrices in Rm×d such that |S| = dm (i.e., there is no i, j such that

ṼiŨi = ṼjŨj).

S is almost surely a basis if every entry of V appears in Ṽ no more than kd times and every entry
of U appears in Ũ no more than md times. Otherwise, it is not a basis.

Proof:
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First direction Assume there exists v ∈ V such that v appears in Ṽ kd+1 times. Without loss of
generality, assume it is the first kd+ 1 entries of Ṽ (i.e., v = Ṽ1 = Ṽ2 = · · · = Ṽkd+1). We will show
that S is not a basis.

Let α ̸= 0 ∈ Rkd+1 be a vector such that:

kd+1∑
i=1

αiŨi = 0

Such a vector α exists because U consists of Rk×d matrices, so any kd + 1 matrices are linearly
dependent. Thus:

kd+1∑
i=1

αiSi =

kd+1∑
i=1

αiṼiŨi = Ṽi

kd+1∑
i=1

αiŨi = 0

This implies that there are linearly dependent vectors in S, meaning S is not a basis. The proof is
exactly the same for the case where there exists u ∈ U such that u appears in Ũ md+ 1 times.

Second direction Assume that every v ∈ V appears in Ṽ no more than dk times, and every u ∈ U
appears in Ũ no more than dm times. We aim to show that, almost surely, S is a basis, meaning the
only α ∈ Rdm satisfying:

dm∑
i=1

αiSi = 0 (B.13)

is α = 0.

We will prove this by induction on the number of different entries from V and U used in S.

Base case: The minimal number of different V ’s is m
k . We will show that S forms a basis in this

case; the same proof applies for a minimal number of U ’s. Assume, without loss of generality, that
the first dk entries of Ṽ are the same, followed by the next dk, and so on. Then:

dm∑
i=1

αiSi =

dm∑
i=1

αiṼiŨi =

m
k∑

i=1

Vi

kd∑
j=1

αikd+jŨikd+j

Since for every i, the set {Ũikd+j}kdj=1 is linearly independent, we have αikd+j = 0 for every i, j,
implying that α = 0.

Inductive step: Assume the statement holds for n different v ∈ V and u ∈ U in S, and prove it
for n+ 1. Assume by contradiction that α ≠ 0. Let v ∈ V such that there exists 1 ≤ i ≤ dm where
Ṽi = v and αi ̸= 0, meaning v is part of the linear combination in (B.13).

Denote Uv = {u ∈ U | ∃s ∈ S such that s = uv}, i.e., the subset of U corresponding to entries paired
with v. Define Sv = {uv | ∀u ∈ Uv}, the subset of S containing v. The probability that only elements
in Sv have non-zero coefficients in (B.13) is 0 because Uv is linearly independent (since |Uv| ≤ kd
and the vectors in Uv are uncorrelated).

Denote LUv as the set of all linear subspaces in Rm×d formed by every subset of the entries of Uv. If
S \ Sv spans one of the linear spaces in LUv

, this contradicts the induction assumption, as this would
imply a linear dependence with n different matrices in S.

If S \ Sv does not span LUv , the set of linear subspaces of dimension |Sv| in LUv that contain vectors
in span(S \Sv) is a null set. Since span(Sv) is such a subspace, and is uncorrelated with span(S \Sv),
the probability of having some v′ ∈ span(Sv) such that v′ ∈ span(S \ Sv) is 0. Therefore, the
probability of this scenario occurring is indeed 0.

Theorem B.13 (Theorem 3.2) Any allocation A learning the encoder B ∈ Rn×b that follows both
of the following conditions is maximal:
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1. No row of B has more than Tm learnable weights

2. No columns of B has more than Td learnable weights

Every other allocation is minimal.

Proof: To avoid confusions with number of steps, T , we use † to denote transpose matrix, e.g, A†.

From Lemma A.3, Equation (3.3) is equivalent to:

T∑
t=1

(
X†

t ⊗DWT−t+1
)
vec(B) = vec(Y )

For shortness, we denote Dt = DWT−t+1 and Di
t its ith columns, and Xi

t the ith row of Xt (which

is the ith column of X†
t ).

We separate the columns of
∑T

t=1

(
X† ⊗DWT−t+1

)
to two parts - the first part, denoted by C̃ is the

columns that is multiplied by the learned entries of B, denoted by B̃. The other columns, denoted

by Ĉ, are multiplied by the constant part of B, denoted by B̂. Thus:

C̃B̃ = vec(Y )− ĈB̂

That means that the allocations matches iff C̃ is invertible. Since r = dm, C̃ ∈ Rdm×dm, we can say
the allocation matches iff the columns of C̃ are linear independent.

Every columns of kronecker product is a vectorization of outer product of two vectors. In our case, it

means that the columns of X†
t ⊗Dt are Xi

t ⊗Dj
t for some i, j. Denote:

Vi =
(
Xi

1 Xi
2 · · · Xi

t−1 Xi
T

)

Ui =


Di

1

Di
2
...

Di
T−1

Di
T


The means that the the columns of C̃ is vec(ViUj) for some i, j. Specifically, if the (j, i) entry of B

is in the allocation A, it means that ViUj will be in C̃.

Thus, the allocation matches iff {ViUj}(i, j∈A) is linear independent, namely a basis for Rm×d. Since

Vi and Ui has no internal correlations, from Lemma B.12 (with k = T ) we get that {ViUj}(i, j∈A) is

if Vi is a basis iff the set doesn’t contain the same Ui more then m times or the same Vi more then d
times. Since the set contains the if the (j, i) entry of B is in the allocation A, it means that ViUj

will be in the set, it will be a basis iff A follows exactly the conditions in the theorem.

C Linear feed forward

Theorem C.1 For any allocation A learning an intermediate layer Wl ∈ Rnl×nl−1 is maximal if
and only if it follows one of the following:

1. There is no rows that has more then m learnable weights

2. There is no columns that has more then d learnable weights

Otherwise, the allocation is minimal.
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Proof: For any 1 ≤ i ≤ j ≤ L, denote WjWj−1 · · ·Wi+1Wi as Wj:i.

Assume that the learned matrix is the l-th layer, namely Wl. We can express the network as:

Y = WL:l+1WlWl−1:1X

For brevity, denote A = WL:l+1, W = Wl, and B = Wl−1:1X. Here, A ∈ Rd×nl+1 and B ∈ Rnl×m.
From Lemma A.3, we have:

(BT ⊗A)vec(W ) = vec(Y )

Notice that every entry in vec(W ) corresponds to a column in (BT ⊗A). Denote W̃ as the learnable

part of W and Ŵ as the constant part. Respectively, denote C̃ as the matrix created from the

columns of (BT ⊗A) corresponding to W̃ , and Ĉ as the matrix from the columns corresponding to

Ŵ . We can write:
C̃W̃ = vec(Y )− ĈŴ

Since r = dm, we have C̃ ∈ Rdm×dm. The equation is solvable if and only if C̃ is invertible.

Each different allocation corresponds to a distinct choice of dm columns out of the nlnl+1 columns
of (BT ⊗A). Every column of a Kronecker product is a vectorization of the outer product of two
vectors. In our case, denote Ai as the i-th column of A and BT

i as the i-th column of BT (which is
the i-th row of B). If the (i, j)-th entry of W is included in the allocation, then the column created

from the outer product of Ai and BT
j will be part of C̃.

Since C̃ is a square matrix, it is invertible if and only if its columns are linearly independent. As the
columns are vectorizations of matrices, they are linearly independent if the matrices form a basis for
Rd×m. From Corollary B.11, both A and B are uncorrelated, allowing us to use Lemma B.12 (with
k = 1) to determine if these matrices indeed form a basis. One can observe that the matrices will
form a basis if and only if the conditions in this theorem hold.

D Shallow ReLU

Lemma D.1 Let v ∈ Rn and P ∈ diag({0, 1}n). Then, (2P − I)v ≥ 0 if and only if ϕ(v) = Pv,
where ϕ is the ReLU function.

Proof: Let Pi represent the i-th diagonal entry of P .

1. First direction: Assume (2P − I)v ≥ 0. This implies that for every 1 ≤ i ≤ n, (2Pi − 1)vi ≥ 0.
When Pi = 1, it follows that vi ≥ 0, and when Pi = 0, we have vi < 0. Therefore, ϕ(vi) = Pivi holds
for each i, and in general, ϕ(v) = Pv.

2. Second direction: Now, assume ϕ(v) = Pv. This means that Pi = 1 when vi ≥ 0, and Pi = 0
when vi < 0. Hence, (2Pi − 1)vi ≥ 0 holds for all i, which implies (2P − I)v ≥ 0.

Lemma D.2 Let A be an allocation scheme that assigns learnable weights to k rows. Without loss
of generality, assume it is the first k rows.

Denote by W 1
2 the first k columns of W2 and by W 2

2 the remaining columns. Similarly, let W 1
1 be the

first k rows of W1 and W 2
1 the remaining rows.

For a set of samples X and labels Y generated by a teacher model, a student model matches the
teacher if, for each 1 ≤ i ≤ m, the following system of equations and inequalities is solvable:

W 1
2PiW

1
1 xi = yi −W 1

2 ϕ(W
2
1 xi) (D.1)

(2Pi − I)Wxi ≥ 0 (D.2)

Pi ∈ diag({0, 1}k), W1 ∈ RA
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Proof: Notice that the label yi is given by:

yi = W2ϕ(W1xi) = W 1
2 ϕ(W

1
1 xi) +W 1

2 ϕ(W
2
1 xi)

From Lemma D.1, this leads to the system of equations and inequalities described above, completing
the proof.

Lemma D.3 For any allocation scheme, the probability that a given Pi has fewer than d ones and
still satisfies Lemma D.2 is zero.

Proof: Write P = Pi for brevity. Suppose P has fewer than d ones. Then the rank of W2P is less
than d. If the equations from Lemma D.2 are solvable, we can write:

(xT
i ⊗W 1

2P ) vec(W 1
1 ) = yi −W 1

2 ϕ(W
2
1 xi)

Since (xT
i ⊗W 1

2P ) ∈ Rd×qn, and by Lemma A.4, the rank is less than d, any matrix formed from a
subset of d columns will be invertible with probability zero. Therefore, the equation is solvable with
probability zero.

This means that for every Pi, there are
∑d−1

i=0

(
k
i

)
configurations for Pi that are not usable. Notice

that 2k = (1 + 1)k =
∑k

i=0

(
k
i

)
, which shows that as k grows larger, the fraction of configurations

with zero probability decreases. For example, when k = d, there is only one valid configuration for P ,

as 2d −
∑d−1

i=0

(
d
i

)
= 1.

Lemma D.4 Let A be an allocation scheme that allocates ri learnable weights in the i-th row. Let
Pji represent the value in the i-th entry on the diagonal of Pj. If the number of ones in {Pli}ml=1 is
less than ri, then the probability that the system satisfies Lemma D.2 is zero.

Proof: For brevity, let the column vectors of W 1
2 be {ai ∈ Rd}ki=1. If the equations in Lemma D.2

are solvable, we can write:

(xT
i ⊗W 1

2Pi) vec(W
1
1 ) = yi −W 1

2 ϕ(W
2
1 xi)

for 1 ≤ i ≤ m. These represent dm linear equations.

Denote vij ∈ Rm as {XljPli}ml=1, where Xlj is the j-th entry of the l-th sample and Pli is the i-th
diagonal element of Pl. In the matrix of this linear equation, the columns corresponding to index i, j
in vec

(
W 1

1

)
are the vectorizations of the outer products vij ⊗ ai. Since we have dm equations with

r = dm variables, those columns must be linear independent for the equations to be solvable.

If ri columns corresponding to index i are selected, linear independence must hold between the
matrices vij ⊗ ai for ri choices of j. However, if the number of ones in {Pli}ml=1 is less than ri, it
means that each vector vij has more than m− ri zero entries, which means that any set of ri options
for j, the vectors vij will be linear dependent. Therefore, the matrices vij ⊗ ai will also be linear
dependent, which means that the equation is not solvable.

Notice that out of the 2km possible configurations for P , only
∏k

i=1

∑m
j=ri

(
m
j

)
are feasible. This

shows that allocations using more rows (i.e., larger k) and stacking fewer learnable weights per row
(since the sum starts from ri) have significantly more possible configurations.

E Experiments

E.1 Methods

As we have seen multiple times in this paper, the match probability often boils down to the
likelihood of a set of polynomials having an exact solution. Standard gradient descent failed to find a
solution in this case. Typically, gradient descent can overfit a dataset because the model is often
overparameterized relative to the data. However, in our case, the model isn’t overparameterized (as
we use r = dm), so second-order optimization methods were necessary.
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Instead of gradient descent methods, we used Python’s scipy.optimize.fsolve. For each experi-
ment, we ran the solver 1,000 times, and the match probability was calculated based on the number
of solutions found. Since we used second order optimization, we were limited to use only small
network sizes. However, the used networks sizes was enough to show the expected phenomenons.

Each run of fsolve begins with an initialization point x0 for the algorithm. Empirically, we observed
that fsolve frequently fails to find a solution initially, but with multiple initializations, it eventually
succeeds. Across all experiments, we identified a threshold of initializations that, after being surpassed,
rarely leads to the discovery of additional solutions. We manually evaluated this threshold for each
experiment and then doubled that number. For instance, in the LRNN experiments, we observed
that no new solutions were found after 200 initializations, so we set the number of initializations to
400 to ensure thoroughness.

In the ReLU experiment, we did not use fsolve as it failed to find any solutions in all cases. Instead,
we employed Ada Hessian (Yao et al., 2021), and considered a solution valid if the mean squared
error (MSE) was below a threshold of 10−2. Moreover, the ReLU experiment tracked the number of
solutions found out of 400 attempts.

The experiment on MNIST data was the only one where we employed first-order optimization,
specifically using the Adam algorithm (Kingma and Ba, 2017). This approach allowed us to utilize a
larger network with n = 1000 parameters. We conjecture that first-order optimization performed
better in this case due to two factors: (1) random data is inherently more challenging to learn as
it lacks any underlying correlations, and (2) in the MNIST experiment, the task was to classify
images (where the network predicts a label between 1-10) rather than reproducing a full vector,
which simplifies the learning objective.

E.2 Environment

Figure 1 Figure 2 was created with T = n
2 , b = 1, d = 4, and m = n

2 . All random variables were
drawn from a normal distribution with normalized variance (see Appendix E.3). Let the number of
used rows be denoted as k. For every possible k, we ran 1,000 trials and averaged the number of
matches to estimate the match probability.

For each trial with a given k, an allocation was randomized in the first k rows, subject to the
conditions in Theorem 3.4. Note that Theorem 3.4 identifies the minimal number of rows for which
below it there is no solution for any allocations (k < d; minimal allocations). This is why the graph
doesn’t start at k = 0.

In Figure 2b, d = n
4 . In this scenario, when k = d (0.25 on the x-axis), the only allocations that

satisfy Theorem 3.4 are those that also satisfy Theorem 3.5. As expected, these allocations have
a match probability of 1. Since the proof of Theorem 3.5 provides an algorithm to find a solution
in this case, we used that algorithm instead of scipy.solve. The algorithm is included in the
maximality lrnn.py file in the attached zip.

Figure 2 The feedforward network in Figure 3a was created with three layers, with q = 4, d = 6,
and m = 4. The two hidden layer has the same size, denoted by n in the graph. This means that
there were r = md = 24 learnable weights, distributed as 8 per layer. Just like in the LRNN, the
allocation was randomized across the rows, adhering to the conditions specified in Theorem 4.1.
Notably, for the first layer, the number of rows does not impact the number of linear equations in
Equation (4.2). Therefore, we set k as a limit for the number of columns utilized.

The ReLU network in Figure 3b was created with q = 6, d = 4, and m = 6. The size of the hidden
layer, denoted by n, is provided in the graph.

The experiment on MNIST data shown in Figure 3c was conducted using a network with n = 1000
and m = 1000, while the input and output sizes were set to q = 784 and d = 10, respectively,
reflecting the dimensions of the MNIST dataset.
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E.3 Variance in the experiments

Let v ∈ Rn and h ∈ Rn be two random vectors, where v ∈ Rn drawn i.i.d from N
(
0, g2

)
and

h ∈ Rn = Θ(1). Since they are uncorrelated, E[⟨v, h⟩] = 0. However, the variance of their inner
product is:

E
[
⟨v, h⟩2

]
= E

[
n∑

i=1

v2i h
2
i

]
=

n∑
i=1

E
[
v2i h

2
i

]
=

n∑
i=1

E
[
v2i
]
E
[
h2
i

]
∝ ng2 = Θ(n)

Therefore, networks that multiply matrices repeatedly this way (e.g., Wht, Dht) will cause the
variance of the random variables to explode.

The solution is to sample all matrices with row size n with variance g2

n , with g = Θ(1). This ensures
that the variance of the hidden state remains Θ(1) throughout the process.

F Supplementary Discussion

A natural point of comparison for our work is the Lottery Ticket Hypothesis (LTH) framework,
which focuses on identifying sparse subnetworks within over-parameterized models that, when trained
independently, achieve comparable performance to the full network. A key distinction between
our work and LTH lies in the nature of the problem addressed and the context of sparsity. LTH
focuses on identifying ”winning tickets” — sparse subnetworks within an already over-parameterized
model—that achieve comparable performance to the full network when trained independently. In
contrast, our work examines how to strategically allocate a fixed, limited number of learnable weights
across a network to maximize its expressivity. This difference is critical: while LTH emphasizes
discovering useful sparsity post hoc, our approach is about designing useful sparsity under strict
resource constraints from the outset.

The student-teacher setup is a well-established framework for studying machine learning problems in
controlled settings. It has been widely used in the literature to analyze generalization, expressivity, and
optimization (e.g., see (Saglietti et al., 2022), which also includes a comprehensive set of references).
The choice of a student-teacher setup in our work is deliberate and is done for clarity, as it isolates
the reduction in expressive power arising solely from the allocation of learnable weights, rather
than confounding factors such as differences in architecture or neuron nonlinearities. Specifically,
when the teacher and student share the same architecture, any decrease in the student’s expressive
power is attributable solely to the restriction in learned weights and their allocation. This allows
us to rigorously estimate the approximation error stemming from allocation strategies, independent
of other factors that might limit the student’s ability to fit the labeled data. While we used the
student-teacher setup for clarity, the framework is not inherently limited to this context. In fact, the
teacher and student could differ in architecture, and the analysis could extend to general labeled
data (the proofs in this paper remain valid under these conditions).

With respect to applications in neuroscience, little is known about the scale of learning (i.e., changes
in synaptic weights) in the brain. Technological constraints have made it notoriously difficult to
track synaptic weight changes in real-time as animals learn new tasks (Tsutsumi and Hayashi-Takagi,
2021). However, it is well established that learning induces changes in neural activity that are often
highly distributed both within and across brain regions (Chen et al., 2017; Steinmetz et al., 2019;
Allen et al., 2019). Notably, a recent study demonstrated that even when learning is localized to a
subset of neurons and synaptic weights, the resulting activity can propagate through fixed-weight
connections, leading to widespread changes in neural activity Kim et al. (2023). This observation
highlights the challenge of relating widespread neural activity to the specific extent of synaptic weight
changes in the brain.

Recent technological advances now enable neuroscientists to monitor changes in synaptic weights
during learning, offering unprecedented insights into large-scale connectivity dynamics Daie et al.
(2021); Humphreys et al. (2022); Finkelstein et al. (2023). If the findings from our theoretical study
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extend to more complex network architectures and neuron nonlinearities, these innovations could
make our predictions and insights testable in the near future. This possibility served as one of the
motivations for conducting this research.
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