
Published in Transactions on Machine Learning Research (10/2022)

Towards Accurate Subgraph Similarity Computation via
Neural Graph Pruning

Linfeng Liu ∗ linfengliu@meta.com
Meta, Boston

Xu Han Xu.Han@tufts.edu
Department of Computer Science
Tufts University

Dawei Zhou zhoud@vt.edu
Department of Computer Science
Virginia Tech

Li-Ping Liu liping.liu@tufts.edu
Department of Computer Science
Tufts University

Reviewed on OpenReview: https: // openreview. net/ forum? id= CfzIsWWBlo

Abstract

Subgraph similarity search, one of the core problems in graph search, concerns whether a
target graph approximately contains a query graph. The problem is recently touched by
neural methods. However, current neural methods do not consider pruning the target graph,
though pruning is critically important in traditional calculations of subgraph similarities.
One obstacle to applying pruning in neural methods is the discrete property of pruning. In
this work, we convert graph pruning to a problem of node relabeling and then relax it to
a differentiable problem. Based on this idea, we further design a novel neural network to
approximate a type of subgraph distance: the subgraph edit distance (SED). In particular,
we construct the pruning component using a neural structure, and the entire model can be
optimized end-to-end. In the design of the model, we propose an attention mechanism to
leverage the information about the query graph and guide the pruning of the target graph.
Moreover, we develop a multi-head pruning strategy such that the model can better explore
multiple ways of pruning the target graph. The proposed model establishes new state-of-
the-art results across seven benchmark datasets. Extensive analysis of the model indicates
that the proposed model can reasonably prune the target graph for SED computation. The
implementation of our algorithm is released at our Github repo: https://github.com/
tufts-ml/Prune4SED.

1 Introduction

Graphs are important tools for describing structured and relational data (Wu et al., 2020b) from small
molecules and large social networks. Among fundamental operations in graph analysis, the calculation of
subgraph similarity is one important problem (Yan et al., 2005). Subgraph similarity search concerns whether
a target graph approximately contains a query graph (Samanvi & Sivadasan, 2015; Shang et al., 2010; Peng
et al., 2014; Zhu et al., 2012; Yuan et al., 2012). Subgraph similarity search has a wide range of applications,
which span over various fields, including drug discovery (Ranu et al., 2011), computer vision (Petrakis &
Faloutsos, 1997), social networks (Samanvi & Sivadasan, 2015), and software engineering (Wu et al., 2020a).

∗Work done while at Tufts University.

1

https://openreview.net/forum?id=CfzIsWWBlo
https://github.com/tufts-ml/Prune4SED
https://github.com/tufts-ml/Prune4SED

Published in Transactions on Machine Learning Research (10/2022)

There are multiple ways of defining the similarity or distance1 between a query graph and a target graph.
This work focuses on Subgraph Edit Distance (SED) (Riesen, 2015), which is a type of pseudo-distance from
the query graph to the target graph (Bunke, 1997; Bougleux et al., 2017; Zeng et al., 2009; Fankhauser et al.,
2011; Daller et al., 2018; Riesen & Bunke, 2009). Concretely speaking, SED is the minimum number of edits
that transform the query graph to a subgraph of the target graph. Such edits include insertion of nodes
or edges, deletion of nodes or edges, and substitution of nodes or edge labels. When SED is zero, then the
query graph is isomorphic to a subgraph of the target graph.

Exact computation of SED is NP-hard, which is from the fact that SED is a generalization of an NP-
complete problem: the subgraph isomorphism problem. The core problem of SED calculation is to identify
the subgraph in the target graph that best matches the query graph. In this type of problem, pruning plays
an important role. Traditional algorithms often use a pruning procedure to remove from the target graph
those nodes that are unlikely to match any nodes in the query graph. An effective pruning procedure can
greatly reduce the space of the following searching procedure and thus improve both the speed and accuracy
of similarity calculation. Improving the effectiveness of pruning algorithms is not an easy problem and is
still a hot topic in the research of traditional algorithms (Lee et al., 2010b).

In this work, we consider neural methods for graph pruning. The main difficulty here is that graph pruning
usually consists of discrete operations and is not differentiable. We overcome the difficulty by converting
graph pruning to a node relabeling problem and then relaxing it to a continuous problem. This novel
formulation enables the possibility of fitting a pruning model with neural networks.

We further design a new learning model, Neural Graph Pruning for SED (Prune4SED), to learn SEDs of
graph pairs. The model first uses a query-aware learning component to compute node representations for the
target graph such that these representations also contain information about the query graph. Then the model
considers multiple prunings of the target graph using a multi-head structure. Finally the model compute the
SED between the query and the pruned target graph. The entire model can be trained end-to-end.

The empirical study shows that Prune4SED establishes new state-of-the-art results across seven benchmark
datasets. In particular, Prune4SED achieves an average of 23% improvement per dataset over the previous
neural model. We also demonstrate promising results for an application of molecular fragment containment
search in drug discovery: our model can accurately retrieve molecules containing given functional groups.
Finally, extensive analysis of our model confirms that it can effectively prune a significant fraction of nodes
that cannot match the query graph.

2 Related Work

Based on edit distance (Bougleux et al., 2017; Zeng et al., 2009; Fankhauser et al., 2011; Riesen, 2015;
Daller et al., 2018; Riesen & Bunke, 2009), SED is an expressive form to quantify subgraph similarity. Exact
computation of SED is often infeasible because it is NP-hard. Pruning is an effective strategy in the detection
of query graphs from target graphs (Lee et al., 2010b).

Graph Neural Networks (GNNs) (Wu et al., 2020b) apply deep learning models to learn from graph-structured
data. GNNs have been tested powerful to embed a graph structures into vector representations. (Hamilton
et al., 2017; Veličković et al., 2017; Xu et al., 2018; Liu et al., 2020; Chen et al., 2020). Though standard
message-passing GNNs (Chen et al., 2020) has limitations in identifying subgraphs, various remedies (Sato,
2020) help to overcome these problems.

Recent advancements in GNNs open the possibility of neural combinatorial optimization (Cappart et al.,
2021). For example, GNNs have been used to count isomorphic subgraphs (Liu et al., 2020), graph matching
(Liu et al., 2021), and subgraph matching (Lou et al., 2020). Recently GNNs are applied to compute edit
distance (Li et al., 2019; Bai et al., 2019; 2020; Zhang et al., 2021). The most relevant work is NeuroSED
(Ranjan et al., 2021), which learns to predict SED via GNNs. While the method shows promising results
for SED calculations, it faces difficulties when the target graph is much larger than the query: it becomes

1Here “distance” is a loose term and but not a “metric” that has a strict definition in math.

2

Published in Transactions on Machine Learning Research (10/2022)

"" "! Step 1 Step 2 Step 3

!#

×

×

×

!1Top k

$2Top k

1
||#1||

1
||#2||

1
||#3||

!3Top k

Soft cut Predictor

Soft cut Predictor

Soft cut Predictor

SED1

SED2

SED3

#1

#2

#3

#"#1

*"&2

""&3

"" "!

"" "! Step 1 Step 2 Step 3

Figure 1: An example of computing SED between a query graph Gq and a target graph Gt. The first step
is to find an optimal subgraph in Gt. The last two steps are substituting a node label and deleting an edge
in Gq, ending up SED as 2.

harder for the model to identify the subgraph that is most similar to the query. This issue motivates us to
explicitly consider pruning in a neural model.

For applications such as graph matching where the input is a graph pair, it is beneficial to use cross-graph
information in GNNs. The main idea is to allow information flow during GNN’s propagation (Li et al., 2019;
Ling et al., 2020; 2021; Wang et al., 2019). For example, after a GNN propagation, node representation in
one graph will be further updated by using node representation from the other graph (Li et al., 2019).

3 Preliminaries

A graph G = (V, E, X) consists of a node set V and an edge set E. X(i) represents the label of a node i ∈ V ;
let xi = ONEHOT(X(i)) be the one-hot encoding of i’s node label; and let X = (xi)i∈V denote the node
label matrix, whose rows are one-hot encodings of node labels. Let Σ be the universe of all node labels. We
do not consider graphs with edge labels for now but will discuss extensions to include such cases.

Subgraph Edit Distance (SED). Given a query graph Gq = (Vq, Eq, Xq) and a target graph Gt =
(Vt, Et, Xt), SED represents the minimum cost of edits on Gq such that the edited query is isomorphic to
a subgraph in Gt. An edit operation can be inserting a node or an edge, deleting a node or an edge, or
modifying a node or edge label (Zeng et al., 2009). Alternatively, the computation of SED seeks to identify
a subgraph Gs in the target graph Gt such that Gs and Gq have the minimum graph edit distance (GED),
which is the minimum number of edits that convert Gq to be isomorphic G′

t.

SED(Gt, Gq) = min
Gs⊆Gt

GED(Gs, Gq). (1)

Here we only consider connected graphs Gt and Gq. Figure 1 illustrates an example of SED computation.
In a geneal version of SED, each type of edit operation has a cost, which is application-dependent. Here we
consider the basic version and set 1 as cost for all types of edits (e.g. (Zheng et al., 2013; Bai et al., 2019)).

Graph Neural Networks (GNNs). GNNs learn node representations by iteratively updating node
representations and sending messages to neighbors.

h′
i = UPDATE (hi, AGGREGATE ({hj : (i, j) ∈ E})) . (2)

Here UPDATE denotes an update function and AGGREGATE denotes an aggregation function. For exam-
ple, AGGREGATE sums up all input vectors, and UPDATE is a dense layer that applies to the concatenation
of its two arguments. hi denotes the current representation of i, and h′

i denotes updated representation.
GNNs capture node features and topological features of a graph simultaneously (Wu et al., 2020b). GNN
variants use different UPDATE and AGGREGATE functions. This work uses GATv2Conv (Brody et al.,
2021), but other GNN alternatives such as Papp et al. (2021); Zhang & Li (2021) can also be considered.
The choice of GNN architectures is a model selection problem , and we leave such exploration to the future.

A pooling function is often applied to aggregate all node vectors into a single graph vector.

z = POOL ({hi : i ∈ V }) (3)

3

Published in Transactions on Machine Learning Research (10/2022)

The POOL function is invariant to the order of elements in its input and has several implementations. For
example, the POOL function can be an average function followed by a dense layer (Hamilton et al., 2017).

NeuroSED. NeuroSED (Ranjan et al., 2021) is a neural network designed to mimic the calculation of SEDs
from graph pairs. It uses Graph Isomorphism Network (GIN) (Xu et al., 2018) to encode both Gt and Gq

into vectors and then predicts SED using a simple fixed function. Formally, NeuroSED writes as:

Ht = GIN(Gt), Hq = GIN(Gq), (4)
SED = ∥ReLU (POOL(Hq) − POOL(Ht))∥2 . (5)

Here ∥·∥2 is the L2 norm.

4 Neural Graph Pruning for SED Calculation

4.1 Graph Pruning as a Node Relabeling Problem

Graph pruning aims to remove nodes in the target graph without affecting the SED between the target graph
and the query graph. Suppose graph pruning keeps a node subset V ′

t ⊂ Vt of the target graph and get the
induced subgraph G′

t = (V ′
t , E′

t, Xt(V ′
t)). The purpose of pruning is to maintain that

SED(Gt, Gq) ≈ SED(G′
t, Gq) (6)

while maximizing the number |Vt| − |V ′
t | of pruned nodes. Graph pruning is a discrete operation, and the

solution V ′
t exists in a large searching space.

Here we formulate graph pruning as a node relabeling problem, which is more convenient for learning models.

We use a new node label ϕ /∈ Σ to indicate that a node is pruned. Specifically, we relabel the target graph
by X ′′

t such that

X ′′
t (i) =

{
Xt(i) if i ∈ V ′

t

ϕ otherwise (7)

"" "!

1:
2:

!:

Figure 2: Graph pruning in SED as a node
relabeling problem. Gray nodes, which take
the special label ϕ, are treated as pruned.

We further assign a large cost (e.g. the size of Gt) to the edit
operation that switches an actual label with ϕ. Since the cost
exceeds the edit distance from Gq to any subgraph of Gt, the
new graph G′′

t = (Vt, Et, X ′′
t) with relabeling is equivalent to

the pruned graph G′ in terms of SED calculation:

SED(G′
t, Gq) = SED(G′′

t , Gq). (8)

This is because the latter calculation will not match any node
outside of V ′

t to a node in Gq; otherwise, a node outside of
V ′

t will incur a large edit distance due to its new label ϕ. A
target graph with relabeling is shown in Figure 2.

To incorporate graph pruning in a neural network, we further formulate node relabeling to a continuous prob-
lem. In a neural network, the label of a node i is usually expressed by a one-hot vector xi = ONEHOT(Xt(i)),
then we relabel each node i by

x′
i = αixi. (9)

Here αi is binary. If αi = 0, which indicates the pruning of node i, then x′
i is a zero vector, which is different

from any one-hot representation of original labels in Σ. The vector α = (αi : i ∈ Vt) is a binary vector
indicating which nodes are kept.

Then we relax the indicator vector to be continuous, α ∈ [0, 1]|Vt|. We call the continuous vector as keep
probability: nodes with small probabilities are considered to be “pruned” from the graph. Now a neural
network can compute α from Gt and Gq as a learnable pruning component for neural SED calculation.

4

Published in Transactions on Machine Learning Research (10/2022)

$$

% Top k

⊙

% '$(

…

GNN
'$,*(

'$,+(

',
()+

… …
()*

()

EMB

EMB

QAL block

Stage 1',

'$

GAT

GAT

QAL block

Stage 2

GAT

GAT

QAL block

Stage L

Linear Linear Linear

*$$!!

+ , -
Multi-Head Attention

Layer Normalization

Fully-Connected Layer

Sigmoid

$$

'(! .

/$

Query-aware representation learning QAL Block

Hard pruning Soft pruning Prediction

h hop

$$*

$,*

$$-

$,-

Figure 3: The overall framework of Prune4SED, including query-aware representation learning, hard/soft
pruning, and multi-head SED prediction. The query-aware learning (QAL) block is implemented by a
multi-head attention layer.

In the neural model, there is no need to specify the editing cost between a zero vector and a one-hot vector
because the model can automatically decide it when fitting the training data. If α reflexes accurate pruning,
then a flexible learning model would avoid using nodes with zero vectors to predict accurate SED values.

4.2 Graph Pruning for SED Calculation

With the formulation above, we design an end-to-end neural model for computing SED. An overview of the
model is depicted in Figure 3 (left). Specifically, Prune4SED has three components, i.e., (1) query-aware
representation learning, (2) hard/soft pruning, and (3) multi-head SED predicting. The first component
learns node representation for Gt conditioned on Gq. The second component learns to keep probability α
and also does the pruning. The third component predicts the final SED value.

Query-aware representation learning. The representation learning component takes in the target Gt

and the query Gq and outputs node representations of Gt. We design a neural architecture as the component
to effectively use the information about Gq when calculating node representations for Gt.

The core part of the component is the query-aware learning (QAL) block, which allows the information of
Gq to flow into node representations of Gt. Figure 3 (right) shows the structure of QAL. The inputs to the
block are node representations Hq of Gq and node representations H̃t of Gt. These representations are either
from node features or learned by GNNs, which we will elaborate on later. Then the QAL block updates H̃t

to new representations Ht using attention mechanism (Vaswani et al., 2017).

Ht = QAL
(

H̃t, Hq

)
. (10)

The function of the QAL is specified as below:

Ht = diag(s) H̃t, s = sigmoid (MLP(R)) , R = MHA
(

Q = H̃t, K = V = Hq

)
. (11)

Here MHA is a multi-head attention layer (Vaswani et al., 2017) described in A.1. An intuitive understanding
here is that representations of the target graph queries information from the query graph. Then we compute
a weight vector s ∈ [0, 1]|Vt|×1 that measures node importance in Gt. Then we scale H̃t according to s,
yielding the updated node representation Ht for Gt.

Now we are ready to compose the entire representation learning component with QAL blocks and GNN
layers. We first use an embedding layer (the function EMB(·)) to encode node labels of both Gt and Gq into

5

Published in Transactions on Machine Learning Research (10/2022)

vector representations H̃1
t and H1

q. Then we alternately apply QAL blocks and GNN layers to compute Gt

and Gq’s representations Hl
t and Hl

q.

H1
t = QAL

(
H̃1

t , H1
q

)
, H̃1

t = EMB (Xt) , H1
q = EMB (Xq) , (12)

Hl
t = QAL

(
H̃l

t, Hl
q

)
, H̃l

t = GNN
(
Hl−1

t , Et

)
, Hl

q = GNN
(
Hl−1

q , Eq

)
, l = 2, . . . , L (13)

Here GNN is a 1-layer graph attention convolution (Brody et al., 2021) (see A.2). The embedding layer and
GAT layers are shared by Gq and Gt.

We compute the final node representations Ht for Gt using node representations after each QAL block.

Ht = MLP
(
CONCAT

(
H1

t . . . , HL
t

))
(14)

Here CONCAT concatenates node representations of Gt at all stages to capture multi-granular views at
various granularity levels. The MLP then encodes the concatenated node representations, further distilling
essential information for pruning.

The query-aware learning component learns node representations of Gt in the context of Gq. Each QAL
block checks whether a node in Gt can be matched to nodes in Gq by considering their respective surrounding
structures. Since GAT layers encode structural information at different levels of granularity, QAL blocks
consider neighborhoods also at different levels. Therefore, it is beneficial to concatenate representations
learned from all QAL blocks to capture information at different levels.

Hard/soft pruning. Then we compute the keep probability α for Gt using Ht.

We calculate α from Gt’s node representations after each QAL block.

α = Sigmoid
(

Htp
||p||

)
. (15)

Here α is computed by a scalar projection along rows of Ht on a learnable vector p, then it is scaled to (0, 1)
by the sigmoid function. The projection is inspired by previous works in graph pooling (Gao & Ji, 2019;
Cangea et al., 2018; Knyazev et al., 2019).

Next we use α to prune Gt. Before we apply the type of pruning we discussed in equation 9, we first
apply hard pruning to remove some nodes from Gt. We first keep a set S of k nodes corresponding to the
largest value in α. We also keep all h hop neighbors of each node in S to increase connectivity and balance
computation and information loss. Then we get a set V ′

t of nodes as the result of hard pruning from α.
Thus, we define hard pruning as follows:

S = top_k(α), (16)
V ′

t = h_hop(S, Gt), (17)

Here top_k(α) selects top k nodes corresponding to the k largest values in α; and h_hop(S, Gt) extracts h
hop neighbors surrounding nodes in S.

The hard pruning is useful when Gt has a much larger diameter than Gq. In this case, it removes a decent
fraction of nodes in Gt, which is beneficial to both accuracy and speed. Later we show the effectiveness of
hard pruning in real examples in Figure 5, . Hard pruning shares the same principle as Graph U-Net (Gao
& Ji, 2019), which shows that the discrete operation does not pose issues to loss minimization.

Then we apply α to these nodes in V ′
t to do soft pruning as introduced in Section 4.1.

X ′
t(i) = αiXt(i), i ∈ V ′

t (18)

The pruned graph is G′
t = (V ′

t , E′
t, X ′

t). Here E′
t keeps all Gt’s edges that are incident with nodes in V ′

t .

We put the entire pruning procedure into a single function G′
t = PRUNE(Ht, Gt), which computes α from

Ht and then executes hard and soft pruning on Gt to get G′
t. Note that soft pruning is differentiable and

6

Published in Transactions on Machine Learning Research (10/2022)

Algorithm 1 Prune4SED
Input: Gq, Gt

1: ▷ Query-aware representation learning
2: for l = 1 to L do

3: H̃l
t, Hl

q =
{

EMB (Xt) , EMB (Xq) , if l = 1
GAT

(
Hl−1

t , Et

)
, GAT

(
Hl−1

q , Eq

)
, o.w.

4: Hl
t = QAL(H̃l

t, Hl
q) ▷ QAL block from equation 10

5: end for
6: Ht = MLP

(
CONCAT

(
H1

t . . . , HL
t

))
7: for m = 1 to M do ▷ Multi-head pruning
8: G′

t,m = PRUNEm (Ht, Gt)
9: ŷm = PRED(G′

t,m, Gq)
10: end for
11: ŷ = MEAN (ŷ1, . . . , ŷM)
12: Return ŷ

helps to learn the keep probability α. The model learns to use small keep probabilities to indicate that their
corresponding nodes cannot be matched to nodes in the query graph. Hard pruning is not differentiable,
but it is still meaningful to remove nodes with small keep probabilities.

Multi-head prediction of SEDs. Once we have the pruned graph G′
t, we use a neural module to “predict”

the SED between G′
t and Gq. For example, we can use the NeuralSED network as the predictive module.

However, given the combinatorial nature of graph pruning, there might be many locally optimal solutions of
α, and it is hard for the model to identify good α values in one-shot. Inspired by multi-head attention, we
propose a multi-head predicting module.

We use M separate pruning functions, (PRUNE1, . . . , PRUNEM), each of which optimizes its own parameter
pm in equation 15, to obtain M different pruned graphs G′

t,1, . . . , G′
t,M . Then we use the same predictive

module PRED to compute SED values from these pruned graphs.

G′
t,m = PRUNEm (Ht, Gt) , ŷm = PRED(G′

t,m, Gq), m = 1, . . . , M. (19)

Then we take the average to get the final prediction.

ŷ = MEAN (ŷ1, . . . , ŷM) . (20)

Here we use NeuroSED in equation 5 as the PRED function.

With multi-head pruning our model is able to explore multiple ways of pruning Gt and thus has chances to
capture good ones. At the same time, we only compute multiple prunings from different projections of the
same set of node representations, so we only slightly increase the number of parameters.

4.3 Optimization

Prune4SED is summarized in Algorithm 1. First, query-aware representation learning encodes target graph
Gt (Line 1-5). Then multi-head pruning is used to prune Gt from multiple views to predict SED (Line
6-9). Each head contains a sequence of operations, including α computation, hard/soft pruning, and SED
prediction. Finally, predictions from multi-head pruning are combined as the final prediction (Line 10).

For model training, model predictions are compared against SED values computed by a MIP-F2 solver
(Lerouge et al., 2017). Given a pair of graphs (Gt, Gq), the model makes a prediction ŷ. For the same pair
the solver returns a lower bound yL and an upper bound yU of the true solution. In most cases yL = yU ,
which means that the solver find the true solution. For the same pair. To handle the general case, we penalize

7

Published in Transactions on Machine Learning Research (10/2022)

the prediction with a squared error when it is outside of [yL, yU]. We minimize the following training loss
computed from a dataset D to train the model.

min L =
∑

(Gq,Gt)∈D

([yL − ŷ]+)2 + ([ŷ − yU]+)2 (21)

Here [·]+ truncate negative values to zero. The loss is equivalent to squared loss when yL = yU .

Next we analyze time complexity of Prune4SED. We first consider graph sizes. The attention layer in the
QAL block needs to consider every node in Gt against every node in Gq, so its running time is O(|Vt| · |Vq|).
GAT layers runs in linear time about O(|Et| + |Eq|). Processing node vectors need time O(|Vt| + |Vq|), so
the overall running time is O(|Et| + |Eq| + |Vt| · |Vq|).

The running time is in linear time with network hyperparameters, including the width of the network, the
number of layers, the number of attention heads, or the number of pruning heads.

5 Experiments

In this section, we aim to validate the effectiveness of Prune4SED through experiments and also examine
the model to understand how it works. We have the following sub-aims: 1) benchmarking the performance
of Prune4SED against existing SED solvers/predicting models; 2) understanding the usefulness of our model
designs through ablation studies; 3) examining pruned graphs to check whether neural graph pruning aligns
with SED calculation; and 4) applying the model to a real-world applications.

Experiment settings. By default, we use L = 5 stages for Prune4SED. In hard pruning, we take top k
(k = 5) important nodes and their h (h = L − 1 = 4) hop neighbors. The SED predictor contains an 8-layer
GIN with 64 hidden units at every layer. We use M = 5 heads to produce the final prediction. More details
about model hyperparameters and platforms are given in B.2.

Datasets. We use seven datasets (AIDS, CiteSeer, Cora_ML, Amazon, DBLP, PubMed, and Protein) to
evaluate our model for SED approximation. B.1 provides more descriptions about these datasets.

Table 1: Dataset Statistics.

Dataset |Vq| |Vt| |Σ|
AIDS 9 14 38
CiteSeer 12 73 6
Cora_ML 11 98 7
Amazon 12 43 1
DBLP 14 240 8
PubMed 12 60 3
Protein 9 38 3

We extract query-target pairs from each dataset to train, validate, and
test models. For datasets with a single network (CiteSeer, Cora_ML,
Amazon, DBLP, and PubMed), the target graph Gt is a ego-net (up
to 5-hop) of a random node sampled from large network. For datasets
with multiple graphs (AIDS and Protein), the target graph is a graph
in the dataset. Except the AIDS datset, the query graph is a subgraph
from a random target graph (sampled from all target graphs). The
subgraph is randomly sampled by starting from the center node of the
target Gt, progressively selecting unseen neighbors with a probability
0.5 of the current nodes, and stopping at a depth up to 5. Query graphs
of the AIDS dataset are known functional groups from Ranu & Singh
(2009). To compute the SED between Gq and Gt, we use a mixed-
integer-programming solver, MIP-F2 (Lerouge et al., 2017). The solver runs on a 64 core machine with
maximum of 60 seconds to compute lower and upper bounds the true SED. From each dataset, we randomly
pair target and query graphs to get 100K pairs for training, 10K for validation, and another 10K for testing.
Table 1 shows average sizes (rounded to 1) of target and query graphs and the number of node labels in the
data extracted from each dataset.

Baselines. We compare Prune4SED with five other approaches. The first three are neural models: H2MN
(Zhang et al., 2021), SIMGNN (Bai et al., 2019), and NeuroSED (Ranjan et al., 2021). For H2MN and
SIMGNN, we use their modified versions from Ranjan et al. (2021) that better suit SED prediction. For
H2MN, we include its two versions of random walks (H2MN-RW) and the k-hop version (H2MN-NE). The
second comparison contains two non-neural methods MIP-F2 (Lee et al., 2010a) and BRANCH (Blumenthal,
2019), both of which are implemented by an efficient C++ library GEDLIB (Blumenthal et al., 2019; 2020).
As competing methods, both are given 0.1 second to compute the upper bound yU and lower bounds yL of

8

Published in Transactions on Machine Learning Research (10/2022)

Table 2: RMSE on seven datasets.

AIDS CiteSeer Cora_ML Amazon Dblp PubMed Protein
Branch 1.379 3.161 3.102 4.513 2.917 2.613 2.391
MIP-F2 1.537 4.474 3.871 5.595 3.427 3.399 2.249
H2MN-RW 0.749 1.502 1.446 1.294 1.47 1.213 0.941
H2MN-NE 0.657 1.827 1.229 0.971 1.552 1.326 0.755
SIMGNN 0.696 1.781 1.289 2.81 1.482 1.322 1.223
NeuroSED 0.512 0.519 0.635 0.495 0.964 0.728 0.524
Prune4SED 0.480 0.365 0.437 0.322 0.859 0.447 0.485
Improv. over best baseline 6.3% 29.7% 31.2% 34.9% 10.9% 38.6% 7.4%
Prune4SED w/o. QAL 0.496 0.439 0.575 0.359 0.953 0.585 0.505
Prune4SED w. 1 head 0.497 0.383 0.458 0.324 0.915 0.469 0.495
Prune4SED w. 10 heads 0.482 0.373 0.449 0.321 0.817 0.488 0.488

the true SED, then ŷ = (yU + yL)/2 is used as the prediction. Note that 0.1 second is already much longer
than our model’s predicting time.

The predictive performance of these models is evaluated by root-mean-square error (RMSE), which is the
square root of the mean squared error defined in equation 21.

5.1 Benchmark Predictive Performances

Table 2 summarizes performances of different models. The results of baselines are taken from Ranjan et al.
(2021). The results show that neural methods outperform non-neural methods (Branch and MIP-F2). This
is consistent with findings in previous work. H2MN and SIMGNN are designed for Graph Edit Distance.
They compare the entire target graph to the query to compute the target value. This calculation is not
appropriate for SED because many nodes in the target graph are irrelevant to the true SED.

Prune4SED outperforms all baselines and establishes new state-of-the-art performances across all seven
datasets in terms of RMSE, as shown in Table 2. Specifically, Prune4SED substantially improves the best
neural solver, NeuroSED, with an average of 23% improvement. Our analysis later shows that our model
gains an advantage by removing some irrelevant nodes from the target graph before predicting SED values.

small medium large
0.4

0.5

0.6

0.7

0.8

0.9 CiteSeer-Prune4SED
Cora-Prune4SED
CiteSeer-NeuroSED
Cora-NeuroSED

Figure 4: RMSE versus node number

We further study the performance of our model with graph sizes.
By controlling the random sampling procedure, we get graph
pairs with different sizes and form three sets (small, medium,
and large) of graph pairs. Each set has 2000 query-target pairs.
We separately extract such sets from Cora_ML and Citeseer
datasets. In the three sets (small/medium/large), the target
graphs extracted from CiteSeer have average sizes 16/62/122,
and those extracted from Cora have average sizes 17/64/118.
The average sizes of queries are about 12 across all sets extracted
from the two datasets. Each set are split into training (80%) ,
validation (10%), and testing (10%). We run our model on each
set to get an RMSE, then we can plot RMSEs from three sets
against their sizes. We also run NeuroSED as a baseline here
for a comparison.

Table 3: Inference time (seconds).

Dataset Cora_ML CiteSeer
MIP-F2 1.0 × 10−1 1.0 × 10−1

NeuroSED 1.5 × 10−4 1.5 × 10−4

Prune4SED 1.9 × 10−3 1.7 × 10−3

Figure 4 shows the results. We see that both models have worse
performances on larger graphs, which indicates that SED prob-
lems on larger graphs are more challenging for neural models.
Nevertheless, the RMSE of our model is less than 1, which is still
fairly accurate, considering that query graphs often have dozens
of edges. Our model is still significantly better than NeuroSED.

We also test the predicting time of all models and report the
comparison in Table 3. The optimization-based approach for

9

Published in Transactions on Machine Learning Research (10/2022)

SED calculation can take very long time to get the true answer. Here we give a time limit of 0.1 second to
MIP-F2, and the time is already much longer than the prediction time of neural methods, but its performance
is worse than neural methods as we have shown above. Prune4SED is slower than NeuroSED because it uses
more neural layers. But considering the performance improvement, our model still has advantages in many
applications. Furthermore, the computation time is not relevant to graph sizes and thus can be sped up by
improving network architectures. We leave such work to the future.

5.2 Examine pruned graphs

To understand the good performance of the proposed model, we examine how the model prunes target
graphs. We visualize a few examples of hard and soft pruning over the graph in Figure 5. Here node colors
represent node labels. Nodes removed by hard pruning are not shown in the figure, and node sizes are
proportional to keep probabilities.

Gq Gt hard soft Gq Gt hard soft Gq Gt hard soft

AIDS CiteSeer Protein

Figure 5: Visualization of pruned graphs on AIDS, CiteSeer, and Proteins datasets. Every four graphs is a
group, representing query graph Gq, target graph Gt, target graph after hard pruning and after soft pruning.
Node colors represent node labels. In soft pruning, nodes are resized according to their keep probabilities.
Nodes with red circles mark the optimal subgraph.

These examples show that the pruning component removes a significant amount of unrelated nodes in the
target graph. Hard and soft prunings obtained from α are reasonable for matching the query. In the first
example, it removes the long-chain, which obviously cannot match the query graph. We also observe that
the pruning of the same target graph is different for different query graphs. In the AIDS example, nodes at
the top part of the target graph are pruned differently; In the CiteSeer example, the nodes on the right side
are pruned differently. It is a strong indication that the model does consider the query graph when it prunes
the target graph.

We further check the effect of graph pruning over SED calculations. Ideally graph pruning should not affect
SED calculation, that is, SEDs computed from pruned graphs should still be the same as SEDs computed
from original target graphs. We truncate keep probabilities with a threshold and then prune all nodes with
probabilities below the threshold, then we run an exact SED solver to check how much this hard way of

10

Published in Transactions on Machine Learning Research (10/2022)

0 10 20
SED after pruning

0

10

20
G

ro
un

d
tru

th
 S

ED

AIDS with pruning ratio 0.1

0 10 20
SED after pruning

0

10

20

G
ro

un
d

tru
th

 S
ED

AIDS with pruning ratio 0.3

0 10 20
SED after pruning

0

10

20

G
ro

un
d

tru
th

 S
ED

AIDS with pruning ratio 0.5

Figure 6: Correlation between SEDs computed from pruned graphs and SEDs computed from the original
graphs. The size of dots indicates the number of SED pairs occurring at that location.

Table 4: Pearson correlation coefficient ρ and mean absolute error (MAE) computed between ground truth
SED and SED computed from pruned graph using an exact solver. The pruning ratio r indicates the average
node ratio impacted by hard pruning and soft pruning per graph. Larger results are better for ρ and smaller
results are better for MAE.

Dataset r = 0.1 r = 0.3 r = 0.5
ρ ↑ MAE ↓ ρ ↑ MAE ↓ ρ ↑ MAE ↓

AIDS 0.999 0.026 0.998 0.036 0.983 0.144
CiteSeer 1.000 0.022 1.000 0.026 1.000 0.032
Protein 0.996 0.092 0.995 0.110 0.980 0.237

pruning affects the SED. If the SED does not change much, then it means that node probabilities do indicate
a good pruning of the target graph.

We conduct this experiment with 500 randomly selected graphs from the AIDS, CiteSeer, and Protein
datasets. We adjust the threshold to prune r = 0.1, 0.3, and 0.5 of all graph nodes. Then we compare the
calculated SEDs against SEDs computed from the original graphs (ground truth). The solver cannot get the
true SED for a small number of cases, then we use (yU + yL)/2 as the true SED. We use MAE to measure
the difference and also compute the correlation coefficient between the two groups of SEDs.

Table 4 summarizes the results of MAE and correlation coefficient. We see that the difference is fairly small
when the ratio is small. When the pruning ratio is low (0.1 and 0.3), SEDs computed from pruned graphs
only have slight differences with SEDs computed from the original graph. The average difference is less
than 0.04 on the first two datasets and only 0.11 on the third dataset; the Pearson correlation coefficient
is above 0.99. When the pruning ratio is as aggressive as 0.5, the difference is still at an acceptable level.
Figure 6 further visualizes the correlation between SEDs computed from original graphs and pruned graphs
respectively. The size of dots in the figure indicate the number of graph pairs occurring at that location in
the plot. We again see that pruning does not affect SED computation on most graphs. These results confirm
that our pruning weights correctly recognize and retain important nodes in Gt.

5.3 Ablation Studies

We conduct two ablation studies to investigate the effectiveness of the QAL block and multi-head pruning,
and we report results in the bottom three rows 2.

Query-aware representation learning. Recall that query-aware learning aims to leverage query graph
to learn representations for the target graph so that neural graph pruning is adaptive to the query graph.

To this end, we compare Prune4SED with and without query-aware learning. In the setup of Prune4SED
without query-aware learning, we remove all QAL blocks in representation learning (i.e., Hl

t = H̃l
t in equa-

tion 12 and equation 13). Therefore, representation learning solely depends on the target graph.

11

Published in Transactions on Machine Learning Research (10/2022)

Gq Gt Head 1 Head 2 Head 3 Head 4 Head 5

Figure 7: Multiple heads have learned different pruning strategies. By average, the final prediction obtained
from multiple heads is close to ground truth (4.1 v.s. 4).

Query

SED/Prune4SED 0/0.4 1/0.4 0/0.5 0/0.5 0/0.5

SED/NeuroSED 0/0.6 1/0.6 1/0.6 1/0.6 1/0.7

Figure 8: Retrieving chemical compounds given a query graph, which is a functional group. The retrieved
compounds are ranked according to their predicted SED. Two values under each compound are ground truth
SED and predicted SED.

We see that removing QAL blocks consistently increases RMSE values across seven datasets. The results
verify the effectiveness of query-aware learning in terms of extracting information from query graphs.

Multi-head pruning. We use M = 1, M = 5 (default), and M = 10 heads to Prune4SED and compare
their performances. Prune4SED with multiple heads (M = 5 and M = 10) clearly improves the performance
compared with Prune4SED with a single predictive head, confirming the contribution of multiple heads. The
results also suggest that M = 5 is a reasonable choice in practice.

Figure 7 further show an example where five predictive heads prune the target Gt in different ways. Multiple
predictive heads allow the model to discover more structures that are similar to the query graph and smooth
out some predictive errors. The final prediction (averaged over 5 heads) is close to the ground truth (ground
truth SED is 4, and the predicted SED is 4.1).

5.4 Application: Molecular Fragment Containment Search

Molecular fragment containment searching is a fundamental problem in drug discovery (Ranu et al., 2011;
Ranjan et al., 2021). The problem can be formulated as a standard problem of subgraph similarity search:
given a query graph representing some functional group, the task is to retrieve from a database chemical
compounds that contain the functional group.

12

Published in Transactions on Machine Learning Research (10/2022)

We apply Prune4SED to solve this task. We evaluate on AIDS dataset, where target graphs are antivirus
screen chemical compounds collected from NCI 2 and query graphs are known functional groups. The dataset
does not include Hydrogen atoms.

Figure 8 visualizes one set of retrieval results. The five molecules with the smallest predicted SEDs are
shown in the Figure. Four out of these five molecules actually contain the function group. Prune4SED has
better retrieval results than NeuroSED. More examples can be found in Figure 12 of B.4.

We also observe that Prune4SED can find molecules that contain the query but is much larger than the query.
We hypothesize that our model is able to prune unnecessary nodes and identify the subgraph corresponding
to the query, while NeuroSED either tries to find target graphs that are similar to the query graph or bet
its luck on very large molecules. It is another evidence that pruning is necessary for SED calculation.

6 Conclusion

In this work, we study the problem of using a learning model to predict the SED between a target graph and
a query graph. We present Prune4SED, an end-to-end model to address the problem. Notably, Prune4SED
learns to prune the target graph to reduce interference from irrelevant nodes. It converts graph pruning to a
node relabeling problem and enables pruning in a differentiable neural model. Our new model Prune4SED
combines two novel techniques, query-aware representation learning and multi-head pruning to improve the
model’s ability of learning good prunings. Extensive experiments validate the superiority of Prune4SED.

Acknowledgments

We thank all reviewers and editors for their insightful comments. Linfeng Liu and Li-Ping Liu were supported
by NSF 1908617. Xu Han was supported by Tufts RA support. Part of the computation resource is provided
by Amazon AWS.

References
Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neural network ap-

proach to fast graph similarity computation. In Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining, pp. 384–392, 2019.

Yunsheng Bai, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. Learning-based efficient graph similar-
ity computation via multi-scale convolutional set matching. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 3219–3226, 2020.

David B Blumenthal. New techniques for graph edit distance computation. arXiv preprint arXiv:1908.00265,
2019.

David B Blumenthal, Sébastien Bougleux, Johann Gamper, and Luc Brun. Gedlib: a c++ library for
graph edit distance computation. In International Workshop on Graph-Based Representations in Pattern
Recognition, pp. 14–24. Springer, 2019.

David B Blumenthal, Nicolas Boria, Johann Gamper, Sébastien Bougleux, and Luc Brun. Comparing
heuristics for graph edit distance computation. The VLDB Journal, 29(1):419–458, 2020.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised induc-
tive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

Sebastien Bougleux, Luc Brun, Vincenzo Carletti, Pasquale Foggia, Benoit Gaüzère, and Mario Vento. Graph
edit distance as a quadratic assignment problem. Pattern Recognition Letters, 87:38–46, 2017.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv preprint
arXiv:2105.14491, 2021.
2https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data

13

https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data

Published in Transactions on Machine Learning Research (10/2022)

Horst Bunke. On a relation between graph edit distance and maximum common subgraph. Pattern Recog-
nition Letters, 18(8):689–694, 1997.

Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò. Towards sparse hierar-
chical graph classifiers. arXiv preprint arXiv:1811.01287, 2018.

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar Veličković.
Combinatorial optimization and reasoning with graph neural networks. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4348–4355. International Joint
Conferences on Artificial Intelligence Organization, 2021.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count substructures?
Advances in neural information processing systems, 33:10383–10395, 2020.

Évariste Daller, Sébastien Bougleux, Benoit Gaüzère, and Luc Brun. Approximate graph edit distance by
several local searches in parallel. In 7th International Conference on Pattern Recognition Applications and
Methods, 2018.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without alignments.
Journal of molecular biology, 330(4):771–783, 2003.

Stefan Fankhauser, Kaspar Riesen, and Horst Bunke. Speeding up graph edit distance computation through
fast bipartite matching. In International Workshop on Graph-Based Representations in Pattern Recogni-
tion, pp. 102–111. Springer, 2011.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pp. 2083–
2092. PMLR, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Boris Knyazev, Graham W Taylor, and Mohamed R Amer. Understanding attention and generalization in
graph neural networks. arXiv preprint arXiv:1905.02850, 2019.

Jungmin Lee, Minsu Cho, and Kyoung Mu Lee. A graph matching algorithm using data-driven markov
chain monte carlo sampling. In 2010 20th International Conference on Pattern Recognition, pp. 2816–
2819. IEEE, 2010a.

Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. A survey of algorithms for dense subgraph
discovery. In Managing and mining graph data, pp. 303–336. Springer, 2010b.

Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, and Sébastien Adam. New binary linear
programming formulation to compute the graph edit distance. Pattern Recognition, 72:254–265, 2017.

Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining library. ACM
Transactions on Intelligent Systems and Technology (TIST), 8(1):1–20, 2016.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching networks for
learning the similarity of graph structured objects. arXiv preprint arXiv:1904.12787, 2019.

Xiang Ling, Lingfei Wu, Saizhuo Wang, Tengfei Ma, Fangli Xu, Alex X Liu, Chunming Wu, and Shouling Ji.
Multi-level graph matching networks for deep graph similarity learning. arXiv preprint arXiv:2007.04395,
2020.

Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning Pan, Tengfei Ma, Fangli Xu, Alex X Liu, Chunming Wu,
and Shouling Ji. Deep graph matching and searching for semantic code retrieval. ACM Transactions on
Knowledge Discovery from Data (TKDD), 15(5):1–21, 2021.

14

Published in Transactions on Machine Learning Research (10/2022)

Linfeng Liu, Michael C Hughes, Soha Hassoun, and Liping Liu. Stochastic iterative graph matching. In
International Conference on Machine Learning, pp. 6815–6825. PMLR, 2021.

Xin Liu, Haojie Pan, Mutian He, Yangqiu Song, Xin Jiang, and Lifeng Shang. Neural subgraph isomorphism
counting. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1959–1969, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec, et al. Neural subgraph
matching. arXiv preprint arXiv:2007.03092, 2020.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random dropouts
increase the expressiveness of graph neural networks. Advances in Neural Information Processing Systems,
34, 2021.

Yun Peng, Zhe Fan, Byron Choi, Jianliang Xu, and Sourav S Bhowmick. Authenticated subgraph similarity
searchin outsourced graph databases. IEEE transactions on knowledge and data engineering, 27(7):1838–
1860, 2014.

Euripides G. M. Petrakis and A Faloutsos. Similarity searching in medical image databases. IEEE transac-
tions on knowledge and data engineering, 9(3):435–447, 1997.

Rishabh Ranjan, Siddharth Grover, Sourav Medya, Venkatesan Chakaravarthy, Yogish Sabharwal, and
Sayan Ranu. A neural framework for learning subgraph and graph similarity measures. arXiv preprint
arXiv:2112.13143, 2021.

Sayan Ranu and Ambuj K Singh. Mining statistically significant molecular substructures for efficient molec-
ular classification. Journal of chemical information and modeling, 49(11):2537–2550, 2009.

Sayan Ranu, Bradley T Calhoun, Ambuj K Singh, and S Joshua Swamidass. Probabilistic substructure
mining from small-molecule screens. Molecular Informatics, 30(9):809–815, 2011.

Kaspar Riesen. Structural pattern recognition with graph edit distance. In Advances in computer vision and
pattern recognition. Springer, 2015.

Kaspar Riesen and Horst Bunke. Approximate graph edit distance computation by means of bipartite graph
matching. Image and Vision computing, 27(7):950–959, 2009.

Kanigalpula Samanvi and Naveen Sivadasan. Subgraph similarity search in large graphs. arXiv preprint
arXiv:1512.05256, 2015.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint arXiv:2003.04078,
2020.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collec-
tive classification in network data. AI magazine, 29(3):93–93, 2008.

Haichuan Shang, Xuemin Lin, Ying Zhang, Jeffrey Xu Yu, and Wei Wang. Connected substructure similarity
search. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD, pp. 903–914. Association for Computing Machinery, 2010.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference on
applications of computer vision (WACV), pp. 464–472. IEEE, 2017.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction and mining of
academic social networks. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 990–998, 2008.

15

Published in Transactions on Machine Learning Research (10/2022)

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pp.
5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial embedding networks for deep
graph matching. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
3056–3065, 2019.

Jintao Wu, Xing Guo, Guijun Yang, Shuhui Wu, and Jianguo Wu. Substructure similarity search for
engineering service-based systems. Journal of Systems and Software, 165, 2020a.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEE transactions on neural networks and learning systems, 2020b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure similarity search in graph databases. In Proceedings
of the 2005 ACM SIGMOD International Conference on Management of Data, SIGMOD, pp. 766–777.
Association for Computing Machinery, 2005.

Ye Yuan, Guoren Wang, Lei Chen, and Haixun Wang. Efficient subgraph similarity search on large proba-
bilistic graph databases. arXiv preprint arXiv:1205.6692, 2012.

Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. Comparing stars: On
approximating graph edit distance. Proceedings of the VLDB Endowment, 2(1):25–36, 2009.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Processing
Systems, 34:15734–15747, 2021.

Zhen Zhang, Jiajun Bu, Martin Ester, Zhao Li, Chengwei Yao, Zhi Yu, and Can Wang. H2mn: Graph
similarity learning with hierarchical hypergraph matching networks. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2274–2284, 2021.

Weiguo Zheng, Lei Zou, Xiang Lian, Dong Wang, and Dongyan Zhao. Graph similarity search with edit
distance constraint in large graph databases. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management, pp. 1595–1600, 2013.

Yuanyuan Zhu, Lu Qin, Jeffrey Xu Yu, and Hong Cheng. Finding top-k similar graphs in graph databases.
In Proceedings of the 15th International Conference on Extending Database Technology, pp. 456–467, 2012.

16

