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Abstract. Obtaining labeled data from medical images is very expen-
sive and labor intensive. We consider the problem of unsupervised do-
main adaptation (UDA) in cross-modality medical image segmentation,
aiming to perform segmentation on the unannotated target domain with
the help of labeled source domain. We present a framework that combines
unsupervised domain adaptation, registration, and pseudo-label learning
to effectively and flexibly adapt to multiple target domains. We introduce
a novel image translation method based on anatomy space and a novel
operation of matching and registration to improve pseudo-labels, which
effectively mitigates the large cross-modality domain gap. Experiments
demonstrate that our method achieves the average Dice Similarity Coef-
ficient of 0.6053 and Normalized Surface Dice of 0.6462 on 13 abdominal
organ segmentation tasks. Moreover, it significantly improves the infer-
ence speed, with an average running time of 20.7 seconds, and uses only
an average of 1107332.6 MB of total GPU memory on final testing set.

Keywords: Unsupervised domain adaptation · Accelerate inference ·
Lightweight network.

1 Introduction

Deep learning has revolutionized the field of medical image segmentation, en-
abling accurate segmentation of various anatomical structures and lesions [21].
However, well-trained deep models usually perform poorly in real scenarios due
to the severe data distribution difference between training and test sets caused by
different imaging modalities, scanning protocols, and/or demographic properties.
Domain adaptation (DA) is a promising solution to address the problem of dra-
matic performance degradation across modalities at inference time. It attempts
to establish a mapping between the source and target domains so that models
trained in the source domain can perform well in the target domain. Among
DA, unsupervised domain adaptation (UDA) is more attractive and feasible,



2 Y. Zhu et al.

where the ground truth in the target domain is not required. Various methods
have been proposed to deal with this problem by aligning the source and target
domains in terms of image appearance, feature distribution, or output struc-
ture. CycleGAN [30] and Contrastive Unpaired Translation (CUT) [20], focus
on aligning image appearance between the source and target domains. However,
these methods may introduce distortions to the anatomical structure of the im-
ages, which can hinder accurate segmentation [26]. Long et al. [11] focused on
alignment at the feature level. FPL+ [25] aim to align the domains at both the
image and feature levels by using pseudo labels. However, an overly simplified
assumption for style transfer, which is a commonly used strategy of image align-
ment, is adopted in most previous work, where they model this process as a
deterministic one-to-one mapping with a mean style of each domain. In fact,
image styles in a single domain may are quite different [28].

In this work, we propose a multiple target domain adaptation framework
for UDA in 3D medical image segmentation. First, an Anatomy Space Image
Translation (ASIT) using CycleGAN enables the alignment of CT and MRI
images, which builds a bi-directionality mapping between CT and MRI. In this
way, we can eliminate the impact of the domain shift on networks. Second, we can
train a segmentation network using the fake MRI generated by CT and ground
truth. Then, The trained network infers real MRI to gain pseudo-labels. Since
the MRI data have multiple sequences, e.g. T1, T2, DWI, some sequences show
better pseudo-label quality than others. We conduct a mixed operation (multi-
domain matching, MDM) of matching and registration to improve pseudo-labels.
Third, after we own an MRI dataset with high-quality pseudo-labels, we do self-
training to enhance network performance by filtering some bad cases. Finally,
we use the selected MRI dataset to train a small network and do a fast inference
process, that can speed the inference and reduce computational resources.

The contributions of this work are summarized in three aspects:

– We propose a novel UDA framework 3D medical image segmentation based
on generating high-quality pseudo labels in the multiple target domains.

– We introduce a novel image translation method (ASIT) based on Anatomy
Space and a novel operation (MDM), which effectively mitigates the large
cross-modality domain gap.

– The experiment shows that our method improves the ability of segmenta-
tion networks for the unsupervised domains adaptation. This outperforms
the single target domain adaptation by 23 percentage points for the Dice
Similarity Coefficient (DSC).

2 Method

As shown in Figure 1, our method has four stages: 1) Image translation using
CycleGAN enables the alignment of CT and MRI images, which builds a bi-
directionality mapping between CT and MRI. In this way, we can eliminate
the impact of the domain shift on networks. 2) We can train a segmentation
network using the fake MRI generated by CT and ground truth. Then, The
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Fig. 1: The proposed method framework.

trained network infers real MRI to gain pseudo-labels. Since the MRI data have
multiple sequences, e.g. T1, T2, DWI, some sequences show better pseudo-label
quality than others. We conduct a mixed operation of match and registration
to improve pseudo-labels. 3) After we own an MRI dataset with high-quality
pseudo-labels, we do self-training to enhance network performance by filtering
some bad cases. 4) Finally, we use the selected MRI dataset to train a small
network and do a fast inference process, that can speed the inference and reduce
computational resources. In addition, we used the pseudo labels generated by the
FLARE22 winning algorithm [8] and the best-accuracy-algorithm [23] as labels
of CT.

2.1 Anatomy space image translation

To achieve UDA for 3D medical image segmentation, our idea first obtains high-
quality pseudo labels for training images in the target domain and then trains
a segmentation model in that domain by learning from pseudo labels. We find
an interesting fact that CT and MRI have consistent anatomic structures in
the body. Undoubtedly, an organ’s shape, such as the liver, kidneys, etc, does
not change with the modal changing, it is an invariant feature. Utilizing this
feature, we can build a network to transfer segmentation ability between various
modalities.

Let Ds and Dt denote a set of labeled source-domain images and a set of
unlabeled target-domain images, respectively. Let X s

i and X t
j denote the i-th

image from Ds and the j-th image from Dt, respectively, where the label of X s
i

is Y s
i . Note that the source domain and target domain are from different patient
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groups, i.e., X s
i and X t

j are unpaired. Due to the domain shift between Ds and
Dt, training a model with Ds to generate pseudo labels for Dt will lead to a
poor performance. To improve the quality of pseudo labels for Dt, we propose
Anatomy Space Image Translation (ASIT) to augment Ds before training the
pseudo label generator.

Specifically, we utilize an image style translator Tt to translate a labeled
source-domain image Xs

i into a pseudo target-domain image Xs→t
i = Tt(X

s
i ),

and use another image style translator Ts to translate Xs→t
i back to the source

domain, leading to a pseudo source-domain image Xs′

i = Ts(X
s→t
i ). Note that Tt

and Ts are often trained jointly for learning from unpaired training sets, as used
in CycleGAN [30]. As the training sets are unpaired, it is difficult to make Xs→t

i

and Xs′

t exactly match the ground truth target-modality and source-modality
images, respectively. However, we employ the Sobel filter on CT and MRI first to
obtain Sobel-CT and Sobel-MRI, the modality difference achieves a large degree
of reduction. As illustrated in Figure 2, the Anatomy Space Image Translation
shows a good performance.

In this work, the image translators Ts and Tt are implemented based on Cycle-
GAN [30] with two discriminators Ds and Dt for the two domains, respectively.
The training involves two adversarial losses Lt

gan, Ls
gan, a cycle consistency loss

Lcyc and an identity mapping loss Lidentity. The target-domain adversarial loss
Lt
gan is:

Lt
gan(Tt, Dt) =EXt

j∼Dt
[logDt(X

t
j)]

+EXs
i ∼Ds

[log(1−Dt(X
s→t
i ))].

(1)

The source-domain adversarial loss Ls
gan is defined similarly based on Ts, Ds

and Xs′

i , and the consistency loss is:

Lcyc(Ts, Tt) =EXs
i ∼Ds [∥Ts(Tt(X

s
i ))−Xs

i ∥1]
+EXt

j∼Dt
[∥Tt(Ts(X

t
j))−Xt

j∥1].
(2)

Following in the footsteps of CycleGAN, we utilize the identity mapping loss,
which is:

Lidentity(Ts, Tt) = EXs
i ∼Ds

[∥Tt(X
s
i )−Xs

i ∥1] + EXt
j∼Dt

[∥Ts(X
t
j)−Xt

j∥1]. (3)

Our full objective function is:

Lfull(Ts, Tt, Ds, Dt) =Ls
gan(Ts, Ds) + Lt

gan(Tt, Dt)

+ λ1Lcyc(Ts, Tt) + λ2Lidentity(Ts, Tt),
(4)

where λ1 and λ2 are weighting parameters.

2.2 Pseudo label by multi-domain matching

We train a segmentation network using pseudo target-domain training set Dst =
{(Xs→t

i , Y s
i ))}. Then we generate pseudo-label Ȳ t

i by inference on Sobel-MRI
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sample Xt
i . Due to an observed fact, the pseudo-label quality of the MRI T1

sequence is generally better than other MRI sequences. The MRI dataset should
be divided into several sub-datasets, i.e. there are multi-target domains. For
simplicity, we split MRI dataset Dt into two sub-datasets Dt1,Dt2, where Dt1

have better pseudo-label than Dt2. Now, we hope to build a registration problem
to adapt the label of Dt1 to Dt2. A simple way to match a moving image Xt1

j

and a fixed image Xt2
i is to select the minimum value of two sample’s volume

differences.
min
u∈Dt1

∥vol(Xt2
i )− vol(u)∥1 (5)

A common way to model the deformable registration problem is to consider
the minimization of an energy functional (6) over the set of plausible deforma-
tions ϕ,

J (ϕ; qS , qT ) = D(ϕ, qS , qT )︸ ︷︷ ︸
Data term

+ R(ϕ)︸ ︷︷ ︸
Regularizer

(6)

where D(., .) is the data term that measures the discrepancy between the de-
formed shape ϕ.qS and the target shape qT . The term R(.) plays the role of a
regularizer and thus controls the plausibility of the solution ϕ∗. In this work, the
deformations ϕ is an affine transform, D(A,B) = ∥A− B∥2, and R(.) = 0. The
solution ϕ∗ can transfer the pseudo-label of qS to qT . The updated dataset still
denotes Dt.

2.3 Self-training

We use nnU-Net to train a segmentation model. As the trained nnU-Net may
not perform well in all the images of Dt by using pseudo-labels, some unreliable
pseudo labels may harm the training of small nnU-Net. We employ a simple
method from [8] to filter the unreliable pseudo labels based on the stability
during different training iterations. The method assumes that the generated
pseudo labels should be stable during iterative training. If some pseudo labels
vary greatly in different iterations, it indicates that the model is very uncertain
about these pseudo labels. We should not use them for training. We calculate
the uncertainty of pseudo labels using the following equation:

u =
1

K − 1

K∑
i=2

SUM(yi ̸= yi−1)

SUM(yi > 0)
(7)

where u is the uncertainty and K is the total number of iterations, yi is the
pseudo label generated in iteration i. Further, we ensemble the pseudo-label of
selected cases by doing a union operation.

2.4 Speeding inference

In order to improve inference speed and reduce resource consumption, we use a
small-size network structure in reference [8]. And we change the default resam-
pling function and order, which effectively speeds up the inference. The setup of
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Table 1: Network architecture and inference process.
Channels in the first stage 16
Convolution number per stage 2
Patch size 40×224×192
Downsampling times 4
inference process (Sigmoid, Threshold, Resample)
Deep supervision True

network architecture and inference process are presented in Table 1. Comparison
of different strategy settings in Table 2.

Table 2: Comparison of different strategy settings. The order of axes of input
patch size and spacing is (z,y,x).

Settings Default Small
Channels in the first stage 32 16
Convolution number per stage 2 2
Patch size 40×224×192 40×224×192
Downsampling times 5 4
Input spacing (2.5, 0.81, 0.81) (2.5, 0.81, 0.81)

2.5 Data processing

Preprocessing For image prepossessing, all of our settings follow the default
nnU-NetV2.

– Statistical analysis is conducted on data pertaining to volume spacing and
foreground intensity.

– Images are clipped at the 0.5 and 99.5 percentiles of foreground voxels.
– All images are normalized through the subtraction of the mean and division

by the standard deviation.
– The volume is then resampled to a target spacing of (2.5, 0.81, 0.81).

Post-processing We do not perform any post-processing, such as connected
component analysis or testing time augmentation, during our inference.

3 Experiments

3.1 Dataset and evaluation measures

The training dataset is curated from more than 30 medical centers under the
license permission, including TCIA [2], LiTS [1], MSD [22], KiTS [6,7], au-
toPET [5,4], AMOS [10], LLD-MMRI [12], TotalSegmentator [24], and AbdomenCT-
1K [19], and past FLARE Challenges [16,17,18]. The training set includes 2050
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abdomen CT scans and over 4000 MRI scans. The validation and testing sets in-
clude 110 and 300 MRI scans, respectively, which cover various MRI sequences,
such as T1, T2, DWI, and so on. The organ annotation process used ITK-
SNAP [29], nnU-Net [9], MedSAM [14], and Slicer Plugins [3,15].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 3.

Table 3: Development environments and requirements.
System Ubuntu 20.04.5 LTS
CPU Intel(R) Xeon(R) Gold 6354 CPU @ 3.00GHz
RAM 16×4GB; 1600MT/s
GPU (number and type) 1 × NVIDIA A100 40G
CUDA version 11.7
Programming language Python 3.10.11
Deep learning framework Pytorch 2.0.0, torchvision 0.2.2
Specific dependencies nnU-Net 2.0

Table 4: Training protocols.
Network initialization “He” normal initialization
Batch size 2
Patch size 40×224×192
Total epochs 1000
Optimizer SGD with nesterov momentum (µ =0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy: (1− epoch/1000)0.9

Training time 10 hours
Loss function Cross entropy loss and dice loss

Training protocols The training protocols of the small nnU-Net are listed in
Table 4. For the training set, We select 300 cases from the unlabeled MRI images
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and 100 cases from labeled CT images. We use the summation between Dice loss
and cross-entropy loss because compound loss functions have been proven to be
robust in various medical image segmentation tasks [13]. We used the pseudo
labels generated by the FLARE22 winning algorithm [8] and the best-accuracy-
algorithm [23] as labels of CT. We employ the same data augmentation as the
default setting of nnU-Net, which includes additive brightness, gamma, rotation,
scaling, and elastic deformation on the fly during training. During inference, the
model does not perform test time augmentation (TTA) of flipping. The patch
sampling strategy is foreground over-sampling. Finally, we choose the model that
obtains the fast and best accuracy on the validation set.

4 Results and discussion

Table 5: Quantitative evaluation results in terms of DSC(%) and NSD(%).

Target Validation
DSC(%) NSD(%)

Liver 86.97 ± 6.480 78.74 ± 10.44
Right kidney 84.79 ± 11.42 83.32 ± 13.45
Spleen 82.62 ± 18.05 79.54 ± 20.46
Pancreas 44.28 ± 20.63 56.44 ± 24.83
Aorta 79.77 ± 12.10 83.17 ± 14.91
Inferior vena cava 57.49 ± 15.87 56.16 ± 15.19
Right adrenal gland 38.16 ± 17.54 53.63 ± 23.91
Left adrenal gland 47.13 ± 18.12 61.88 ± 21.67
Gallbladder 46.71 ± 29.53 35.55 ± 28.70
Esophagus 35.33 ± 18.51 46.90 ± 23.22
Stomach 60.08 ± 17.51 58.93 ± 18.67
Duodenum 38.68 ± 17.29 61.24 ± 21.90
Left kidney 84.89 ± 16.62 84.55 ± 17.00
Average 60.53 ± 16.90 64.62 ± 19.57

4.1 Quantitative results on validation set

In Table 5, we report the DSC and NSD of the final docker commit results.
The average of the 110 public validation achieve a DSC of about 0.6053 and
an NSD of 0.6462. In general, large organs such as the liver, spleen, kidney and
stomach have high accuracy. However, the accurate identification of small and
complex objects, such as the pancreas, the adrenal glands, and the duodenum,
poses a huge challenge. It requires more attention, especially when dealing with
extremely small and blurred boundaries.

In Table 7, we have done a careful ablation analysis of each module and can
see that training the model using only CT data is the least effective. After using
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Table 6: Ablation studies of online validation quantitative evaluation results in
terms of DSC(%) and NSD(%). DA is the results of using fake MRI generated by
ASIT, and MDM represent to refine pseudo-labels by multi-domain matching.

Target w/o DA w/ DA w/ DA + MDM
DSC(%) NSD(%) DSC(%) NSD (%) DSC(%) NSD (%)

Liver 17.56 13.79 53.68 42.37 86.63 78.08
Right kidney 13.44 12.12 29.96 29.96 66.05 62.38
Spleen 5.990 4.290 46.40 39.70 79.41 73.01
Pancreas 11.13 11.39 12.13 17.02 38.64 48.73
Aorta 37.52 37.27 58.94 61.97 80.91 84.84
Inferior vena cava 16.05 15.43 28.28 26.99 54.29 54.00
Right adrenal gland 4.590 5.590 11.75 17.94 24.55 37.36
Left adrenal gland 10.26 11.39 10.91 16.56 24.45 33.98
Gallbladder 16.52 11.66 30.38 25.55 34.79 30.91
Esophagus 17.22 21.53 27.92 44.14 49.61 71.56
Stomach 13.21 8.810 34.61 35.92 59.55 60.62
Duodenum 15.83 20.06 10.45 18.34 23.78 40.18
Left kidney 19.85 17.66 28.46 28.65 65.52 61.75
Average 15.32 14.69 29.53 31.16 52.93 56.72

Table 7: Each module’s quantitative evaluation results in terms of DSC(%) and
NSD(%). ASIT is the result of using fake MRI for training on Sobel filter images,
and MDM represent to refine pseudo-labels by multi-domain matching. PLF
indicates that pseudo-label filtering was used.

Module Validation
DSC(%) NSD(%)

Only CT 15.32 14.69
CycleGAN 20.01 16.40
ASIT 29.53 31.16
ASIT + MDM 52.93 56.72
ASIT + MDM + PLF 60.53 64.62
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the fake MR data generated by CycleGAN, the effect is improved. However, the
generation in the anatomical space after the application of Sobel filtering gives
better results. We report the validation results of the model without DA, with
ASIT, and with ASIT + MDM in Table 6. The model using ASIT resulted in an
increase of the DSC from 0.1532 to 0.2953. Additionally, MDM alone increased
the DSC by approximately 0.23. Finally, pseudo-label filtering (PLF) further
increased the DSC to 60.53. These results illustrate that it is difficult to achieve
high performance for multiple target domains using only image translation.

(a) CT (b) Sobel CT (c) Fake Sobel MRI

(d) MRI (e) Sobel MRI (f) Fake Sobel CT

Fig. 2: 3D visualization of ASIT on CT and MRI scans.

4.2 Qualitative results on validation set

Figure 3 presents easy and difficult validation set examples for segmentation.
Promising results were observed for Case #amos_8179 and Case #amos_0546,
but the segmentation of Case #amos_7324 and Case#amos_0530 was poor.
Some lesions, such as tumors, cause network segmentation errors. More impor-
tantly, the pseudo-labels generated by image translation are of poorer quality for
small organs, which results in a much lower average segmentation performance.
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Case #amos_8179

Case #amos_0546

Case #amos_7324

Case #amos_0530

Image Label w/ DA Our

Fig. 3: 3D visualization on two easy cases (Case #amos_8179 with DSC of
0.64 and Case #amos_0546 with DSC of 0.60) and two hard cases (Case
#amos_7324 with DSC of 0.45 and Case #amos_0530 with DSC of 0.48).

Table 8: Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption on final testing set. Total GPU
denotes the area under GPU Memory-Time curve. Evaluation GPU platform:
NVIDIA QUADRO RTX5000 (16G).

Type of statistics Running Time (s) Total GPU (MB)
25th percentile value 18.3 967283.7
50th percentile value 19.5 1035840.0
75th percentile value 21.8 967283.7

Average value 20.7 ± 5.4 1107332.6 ± 316456.3
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Figure 2 shows the picture generated using ASIT, which is effective in shrink-
ing the inter-domain gap.

4.3 Segmentation efficiency results on final testing set

In Table 8, we report the results of the quantitative evaluation of the running
efficiency on the final testing set. The average inference time and GPU occupied
memory are 20.7 seconds and 1107332.6 MB.

4.4 Results on final testing set

Table 9: Quantitative evaluation results in terms of DSC(%) and NSD(%).

Target Testing
DSC(%) NSD(%)

25th percentile value 19.8 17.0
50th percentile value 40.0 36.0
75th percentile value 53.6 53.8
Average value 37.4 ± 19.5 36.3 ± 21.3

In Table 9, we report the DSC and NSD of the final docker commit results
on testing set. The average of the final testing set achieve a DSC of about 37.4%
and an NSD of 36.3%. The metric values on the testing set have a large decrease
than on the validation set, which indicates that there is a gap between the data
distribution of the testing and validation sets, and it is a challenging task to
build a model with excellent generalizability.

4.5 Limitation and future work

This work have several limitations as follows. First, there are many ways to
further improve the network inference process, such as a more efficient sliding
window. Second, the challenge provided more than 3000 MRI cases, but we only
utilized 300 cases and did not adequately utilize the data. Third, we perform
image style translation to obtain pseudo-labeling in the decomposed space, but
the quality is poor for organs with complex shapes and smaller sizes. How to
effectively maintain the morphology of these organs deserves further exploration.

5 Conclusion

In this paper, we present a framework that combines unsupervised domain adap-
tation, registration and pseudo-labeling learning, which is effective and flexible
for a variety of situations. In addition, we use a small nnU-Net and improve
the inference process, effectively reducing its required computational resources
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and inference time. Because the amount of data used in training is small, perfor-
mance on the full data will be explored in the future. The approach in this paper
will be a good baseline result for exploring unsupervised domain adaptation.

Acknowledgements The authors of this paper declare that the segmentation
method they implemented for participation in the FLARE 2024 challenge has
not used any pre-trained models nor additional datasets other than those pro-
vided by the organizers. The proposed solution is fully automatic without any
manual intervention. We thank all data owners for making the CT scans publicly
available and CodaLab [27] for hosting the challenge platform.

Disclosure of Interests

The authors declare no competing interests.

References

1. Bilic, P., Christ, P., Li, H.B., Vorontsov, E., Ben-Cohen, A., Kaissis, G., Szeskin, A.,
Jacobs, C., Mamani, G.E.H., Chartrand, G., Lohöfer, F., Holch, J.W., Sommer, W.,
Hofmann, F., Hostettler, A., Lev-Cohain, N., Drozdzal, M., Amitai, M.M., Vivanti,
R., Sosna, J., Ezhov, I., Sekuboyina, A., Navarro, F., Kofler, F., Paetzold, J.C.,
Shit, S., Hu, X., Lipková, J., Rempfler, M., Piraud, M., Kirschke, J., Wiestler, B.,
Zhang, Z., Hülsemeyer, C., Beetz, M., Ettlinger, F., Antonelli, M., Bae, W., Bellver,
M., Bi, L., Chen, H., Chlebus, G., Dam, E.B., Dou, Q., Fu, C.W., Georgescu, B.,
i Nieto, X.G., Gruen, F., Han, X., Heng, P.A., Hesser, J., Moltz, J.H., Igel, C.,
Isensee, F., Jäger, P., Jia, F., Kaluva, K.C., Khened, M., Kim, I., Kim, J.H., Kim,
S., Kohl, S., Konopczynski, T., Kori, A., Krishnamurthi, G., Li, F., Li, H., Li, J.,
Li, X., Lowengrub, J., Ma, J., Maier-Hein, K., Maninis, K.K., Meine, H., Merhof,
D., Pai, A., Perslev, M., Petersen, J., Pont-Tuset, J., Qi, J., Qi, X., Rippel, O.,
Roth, K., Sarasua, I., Schenk, A., Shen, Z., Torres, J., Wachinger, C., Wang, C.,
Weninger, L., Wu, J., Xu, D., Yang, X., Yu, S.C.H., Yuan, Y., Yue, M., Zhang,
L., Cardoso, J., Bakas, S., Braren, R., Heinemann, V., Pal, C., Tang, A., Kadoury,
S., Soler, L., van Ginneken, B., Greenspan, H., Joskowicz, L., Menze, B.: The liver
tumor segmentation benchmark (lits). Medical Image Analysis 84, 102680 (2023)
6

2. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S.,
Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., Prior, F.: The cancer imaging
archive (tcia): maintaining and operating a public information repository. Journal
of Digital Imaging 26(6), 1045–1057 (2013) 6

3. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C., Pujol,
S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., et al.: 3d slicer as an image
computing platform for the quantitative imaging network. Magnetic Resonance
Imaging 30(9), 1323–1341 (2012) 7

4. Gatidis, S., Früh, M., Fabritius, M., Gu, S., Nikolaou, K., La Fougère, C., Ye, J., He,
J., Peng, Y., Bi, L., et al.: The autopet challenge: Towards fully automated lesion
segmentation in oncologic pet/ct imaging. preprint at Research Square (Nature
Portfolio ) (2023). https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1 6

https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1
https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1


14 Y. Zhu et al.

5. Gatidis, S., Hepp, T., Früh, M., La Fougère, C., Nikolaou, K., Pfannenberg, C.,
Schölkopf, B., Küstner, T., Cyran, C., Rubin, D.: A whole-body fdg-pet/ct dataset
with manually annotated tumor lesions. Scientific Data 9(1), 601 (2022) 6

6. Heller, N., Isensee, F., Maier-Hein, K.H., Hou, X., Xie, C., Li, F., Nan, Y., Mu,
G., Lin, Z., Han, M., Yao, G., Gao, Y., Zhang, Y., Wang, Y., Hou, F., Yang, J.,
Xiong, G., Tian, J., Zhong, C., Ma, J., Rickman, J., Dean, J., Stai, B., Tejpaul,
R., Oestreich, M., Blake, P., Kaluzniak, H., Raza, S., Rosenberg, J., Moore, K.,
Walczak, E., Rengel, Z., Edgerton, Z., Vasdev, R., Peterson, M., McSweeney, S.,
Peterson, S., Kalapara, A., Sathianathen, N., Papanikolopoulos, N., Weight, C.:
The state of the art in kidney and kidney tumor segmentation in contrast-enhanced
ct imaging: Results of the kits19 challenge. Medical Image Analysis 67, 101821
(2021) 6

7. Heller, N., McSweeney, S., Peterson, M.T., Peterson, S., Rickman, J., Stai, B.,
Tejpaul, R., Oestreich, M., Blake, P., Rosenberg, J., et al.: An international chal-
lenge to use artificial intelligence to define the state-of-the-art in kidney and kidney
tumor segmentation in ct imaging. American Society of Clinical Oncology 38(6),
626–626 (2020) 6

8. Huang, Z., Wang, H., Ye, J., Niu, J., Tu, C., Yang, Y., Du, S., Deng, Z., Gu, L.,
He, J.: Revisiting nnu-net for iterative pseudo labeling and efficient sliding win-
dow inference. In: MICCAI Challenge on Fast and Low-Resource Semi-supervised
Abdominal Organ Segmentation. pp. 178–189. Springer (2022) 3, 5, 8

9. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature Methods 18(2), 203–211 (2021) 7

10. Ji, Y., Bai, H., GE, C., Yang, J., Zhu, Y., Zhang, R., Li, Z., Zhanng, L., Ma,
W., Wan, X., Luo, P.: Amos: A large-scale abdominal multi-organ benchmark for
versatile medical image segmentation. Advances in Neural Information Processing
Systems 35, 36722–36732 (2022) 6

11. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with
residual transfer networks. In: NeurIPS. p. 136–144 (2016) 2

12. Lou, M., Ying, H., Liu, X., Zhou, H.Y., Zhang, Y., Yu, Y.: Sdr-former: A siamese
dual-resolution transformer for liver lesion classification using 3d multi-phase imag-
ing. arXiv preprint arXiv:2402.17246 (2024) 6

13. Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., Yang, X., Martel, A.L.: Loss
odyssey in medical image segmentation. Medical Image Analysis 71, 102035 (2021)
8

14. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical
images. Nature Communications 15, 654 (2024) 7

15. Ma, J., Kim, S., Li, F., Baharoon, M., Asakereh, R., Lyu, H., Wang, B.: Segment
anything in medical images and videos: Benchmark and deployment. arXiv preprint
arXiv:2408.03322 (2024) 7

16. Ma, J., Zhang, Y., Gu, S., An, X., Wang, Z., Ge, C., Wang, C., Zhang, F., Wang,
Y., Xu, Y., Gou, S., Thaler, F., Payer, C., Štern, D., Henderson, E.G., McSweeney,
D.M., Green, A., Jackson, P., McIntosh, L., Nguyen, Q.C., Qayyum, A., Conze,
P.H., Huang, Z., Zhou, Z., Fan, D.P., Xiong, H., Dong, G., Zhu, Q., He, J., Yang,
X.: Fast and low-gpu-memory abdomen ct organ segmentation: The flare challenge.
Medical Image Analysis 82, 102616 (2022) 6

17. Ma, J., Zhang, Y., Gu, S., Ge, C., Ma, S., Young, A., Zhu, C., Meng, K., Yang, X.,
Huang, Z., Zhang, F., Liu, W., Pan, Y., Huang, S., Wang, J., Sun, M., Xu, W., Jia,
D., Choi, J.W., Alves, N., de Wilde, B., Koehler, G., Wu, Y., Wiesenfarth, M., Zhu,



Unsupervised Multi-Domain Adaptation 15

Q., Dong, G., He, J., the FLARE Challenge Consortium, Wang, B.: Unleashing
the strengths of unlabeled data in pan-cancer abdominal organ quantification: the
flare22 challenge. Lancet Digital Health (2024) 6

18. Ma, J., Zhang, Y., Gu, S., Ge, C., Wang, E., Zhou, Q., Huang, Z., Lyu, P., He, J.,
Wang, B.: Automatic organ and pan-cancer segmentation in abdomen ct: the flare
2023 challenge. arXiv preprint arXiv:2408.12534 (2024) 6

19. Ma, J., Zhang, Y., Gu, S., Zhu, C., Ge, C., Zhang, Y., An, X., Wang, C., Wang, Q.,
Liu, X., Cao, S., Zhang, Q., Liu, S., Wang, Y., Li, Y., He, J., Yang, X.: Abdomenct-
1k: Is abdominal organ segmentation a solved problem? IEEE Transactions on
Pattern Analysis and Machine Intelligence 44(10), 6695–6714 (2022) 6

20. Park, T., Efros, A.A., Zhang, R., Zhu, J.Y.: Contrastive learning for unpaired
image-to-image translation. In: ECCV. pp. 319–345 (2020) 2

21. Roth, H.R., Shen, C., Oda, H., Oda, M., et al.: Deep learning and its application
to medical image segmentation. Medical Imaging Technology 36(2), 63–71 (2018)
1

22. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., van Ginneken,
B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., Ronneberger, O.,
Summers, R.M., Bilic, P., Christ, P.F., Do, R.K.G., Gollub, M., Golia-Pernicka,
J., Heckers, S.H., Jarnagin, W.R., McHugo, M.K., Napel, S., Vorontsov, E., Maier-
Hein, L., Cardoso, M.J.: A large annotated medical image dataset for the develop-
ment and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063
(2019) 6

23. Wang, E., Zhao, Y., Wu, Y.: Cascade dual-decoders network for abdominal organs
segmentation. In: MICCAI Challenge on Fast and Low-Resource Semi-supervised
Abdominal Organ Segmentation. pp. 202–213. Springer (2022) 3, 8

24. Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W.,
Heye, T., Boll, D.T., Cyriac, J., Yang, S., Bach, M., Segeroth, M.: Totalsegmen-
tator: Robust segmentation of 104 anatomic structures in ct images. Radiology:
Artificial Intelligence 5(5), e230024 (2023) 6

25. Wu, J., Guo, D., Wang, G., Yue, Q., Yu, H., Li, K., Zhang, S.: Fpl+: Filtered
pseudo label-based unsupervised cross-modality adaptation for 3d medical image
segmentation. IEEE Transactions on Medical Imaging pp. 1–1 (2024). https://doi.
org/10.1109/TMI.2024.3387415 2

26. Wu, J., Guo, D., Wang, L., Yang, S., Zheng, Y., Shapey, J., Vercauteren, T., Bisdas,
S., Bradford, R., Saeed, S., et al.: TISS-Net: Brain tumor image synthesis and
segmentation using cascaded dual-task networks and error-prediction consistency.
Neurocomputing p. 126295 (2023) 2

27. Xu, Z., Escalera, S., Pavão, A., Richard, M., Tu, W.W., Yao, Q., Zhao, H., Guyon,
I.: Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform.
Patterns 3(7), 100543 (2022) 13

28. Yao, K., Su, Z., Huang, K., Coenen, F.: A novel 3d unsupervised domain adaptation
framework for cross-modality medical image segmentation. IEEE JOURNAL OF
BIOMEDICAL AND HEALTH INFORMATICS 26(10) (2022) 2

29. Yushkevich, P.A., Gao, Y., Gerig, G.: Itk-snap: An interactive tool for semi-
automatic segmentation of multi-modality biomedical images. In: Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society. pp.
3342–3345 (2016) 7

30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: ICCV. pp. 2223–2232 (2017) 2, 4

https://doi.org/10.1109/TMI.2024.3387415
https://doi.org/10.1109/TMI.2024.3387415
https://doi.org/10.1109/TMI.2024.3387415
https://doi.org/10.1109/TMI.2024.3387415

