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Abstract

Data has been recognized as a vital factor for
Large Language Models (LLMs), prompting
the development of various data selection meth-
ods to optimize pretraining data. Among these,
the loss-based filtering method has gained pop-
ularity due to its straightforwardness. How-
ever, our empirical findings suggest that this
approach may lead to performance degrada-
tion on knowledge-intensive benchmarks, such
as the MMLU. To address this issue, we pro-
pose filtering out low-information text, particu-
larly advertisements, which constitute a signifi-
cant portion of internet content. We employed
a 100M parameter proxy model to compare
these two methods. Despite its smaller size,
the proxy model’s results accurately predict the
downstream metrics when scaled to 3B models.
This study demonstrates that a 100M param-
eter proxy model is sufficient for comparing
different data selection strategies, and our ex-
periments across various benchmarks confirm
the effectiveness of eliminating advertisements
from pretraining data.

1 Introduction

Pre-training on extensive unlabeled and uncrated
corpus sourced from internet snapshots (Gao et al.,
2020; Penedo et al., 2023; Computer, 2023; Sol-
daini et al., 2024), empowers large language mod-
els (LLMs) with unprecedented capabilities across
various domains. Meanwhile, the performance
of LLMs scales as a power law with regards as
to the data quantity (Kaplan et al., 2020). How-
ever, alongside quantity, the quality of the corpus
is equally crucial. Recent consensus suggests that
high-quality corpora have the potential to signif-
icantly alter scaling laws (Sorscher et al., 2022;
Hoffmann et al., 2022), enabling performance on
par with large-scale models while requiring leaner
training costs (Gunasekar et al., 2023; Eldan and
Li, 2023)

Therefore, many studies have explored LLM
pretraining data selection, including rule-based
(Rae et al., 2021), metric-based (Coleman et al.,
2019; Marion et al., 2023; Tirumala et al., 2023),
gradient-based (Xia et al., 2024) and semantics-
based (Brown et al., 2020), each employing differ-
ent criteria for data quality. Yet, these methods are
commonly evaluated by overall metrics, overlook-
ing the detailed influence on different downstream
task performances.

Motivated by this gap, we investigate the impact
of these strategies on downstream tasks. Surpris-
ingly, our experiments reveal while loss filtering
(Marion et al., 2023) enhances text fluency, it can
also diminish performance on knowledge-intensive
benchmarks like MMLU (Hendrycks et al., 2020).
This decline is linked to two main issues: first, the
tendency of loss filtering to preferentially preserve
fluency-centric marketing content, leading to its
overrepresentation; second, the potential exclusion
of knowledge-dense texts that incur higher losses
when they elude the capturing capabilities of the
underlying LLM. Moreover, domain-specific filter-
ing(e.g., Wikipedia classifier (Brown et al., 2020)),
although intended to curate domain-relevant data,
risks losing valuable cross-domain information.

Based on the previous discussion, we pose two
questions:

1. Is it possible to devise a data selection strat-
egy that minimizes the inclusion of low-
information content while preserving high-
information content?

2. How can we quickly assess the effectiveness
of data selection strategies in pre-training
scenarios?

To answer the first question, we focus on identi-
fying common traits within web datasets to address
the prevalence of low-information content in cor-
pora. Our investigation reveals that advertisements
significantly contribute to this issue. In response,



we develop an ad classifier, a step beyond the initial
mentions in prior work (Wu et al., 2021), providing
a detailed approach and thorough analysis of its
positive impact on LLM benchmarks, especially
knowledge-intensive benchmarks.

To answer the second question, setting aside
the costly approach of directly training an LLM
end-to-end, D4 (Tirumala et al., 2023) has taken a
step forward by exploring the use of proxy metrics
from smaller models to validate the quality of pre-
training data filtering. However, there are several
limitations to these approaches. Firstly, insufficient
training (e.g., 1.3B-parameter models on 40B to-
kens and 6.7B-parameter models on 100B tokens)
obscures the manifestation of higher-order abilities,
such as knowledge comprehension, as measured by
tasks like the MMLU. Secondly, proxy indicators,
including perplexity (PPL) from pre-training and
various NLP task validation sets, lack sufficient cor-
relation with downstream task performance, lim-
iting domain-specific insights. To address these
issues, on the one hand, we evaluate base models
after supervised fine-tuning (SFT), which reveals
higher-order skills like knowledge comprehension
even with limited training. On the other hand, we
enhance the proxy indicators for small models by
including PPL based on validation sets converted
from downstream tasks, enabling early downstream
performance predictions and quantifying the corre-
lation between small model proxies and post-SFT
large-model downstream metrics. Specifically, we
find that the performance of a larger-scale SFT
model can be well characterized through the PPL
of a 100M proxy LLM on the validation sets.

Using a 100M-parameter proxy model for rapid
pre-training iterations (pretraining budget analy-
sis see Section A.5.3), we comprehensively assess
popular LLM data selection methods, comparing
them against our ad classifier’s performance. As
depicted in Figure 1, our analysis pipeline high-
lights the impact of various strategies on model
efficacy. Our findings suggest that eliminating ad-
vertisement content not only improves performance
on knowledge-intensive benchmarks but also yields
commendable results across various other capabil-
ity dimensions within benchmark (see Figure 2).

In summary, our contributions are as follows:

1. We demonstrate that employing a 100M-
parameter LLM can reliably predict the utility
of pretraining corpora for larger models. We
comprehensively establish the correlation be-
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tween the proxy indicators of the small model
and the downstream task metrics of the large
SFT model.

2. We emphasize that by using the small surro-
gate model evaluation mechanism with 100M
parameters, we can dramatically reduce the
iteration cycles of pre-training data selection
strategies, resulting in a substantial budgetary
saving of 92.7% (More Cost Analysis see Sec-
tion A.5.3).

3. We highlight that eliminating advertisement
content substantially not only enhances the ef-
ficacy of knowledge-intensive benchmarks but
also yields commendable results across vari-
ous other capability dimensions within bench-
marks. Additionally, the extent of these perfor-
mance enhancements varies depending on the
data filtering applied, indicating differential
downstream effects.

2 Related Work

2.1 Data Selection

As previously emphasized, the importance of high-
quality data for training LL.Ms cannot be overstated.
Research on data selection extends across various
fields, sharing fundamental principles despite di-
verse applications. We identify four primary data
selection methodologies and provide a systematic
analysis of each in the following sections.

Metric-Based Data Selection This line of work
primarily focuses on filtering data based on auto-
mated metrics generated through dynamic model
training. One part of these works explores data
filtering on computer vision (CV), with filtering
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Figure 2: The relative score of performance between different data selection methods with Non-pruning method. In
this Figure, each of the models is pre-trained with 300B tokens. See Table 7 for absolute performance of downstream

tasks.

strategies including prioritizing hard sample sam-
pling(Coleman et al., 2019), moderate sample sam-
pling(Xia et al., 2023), uncertainty sampling, and
filtering based on dynamic changes in statistical
values across different epochs(Paul et al., 2021).
Another part of the work explores data filtering
in the context of NLP and LLM scenarios. The
filtering approaches include using perplexity scor-
ing(Marion et al., 2023; Wang et al., 2023), cus-
tom IFD(Li et al., 2023a), and multi-metric loss
fitting(Cao et al., 2023). In summary, these efforts
primarily rely on statistical patterns in the data to
obtain valuable samples for model training. How-
ever, they struggle to perceive the semantic infor-
mation in the samples and have difficulty under-
standing the diversity distribution of the samples.

Semantics-based Data Selection This line of
work primarily involves scoring data based on the
Wikipedia & Web classifier(Brown et al., 2020;
Touvron et al., 2023), reward model(Du et al.,
2023), and LLM(Eldan and Li, 2023; Chen et al.,
2023; Li et al., 2023b; Sachdeva et al., 2024; Wettig
et al., 2024). Intuitively, a semantics-based scor-
ing strategy should have the ability to recognize
semantics. However, special attention must be paid
to whether the filtering is biased(Gao, 2021).

Geometry-based Data Selection This line of
work primarily involves conducting diversity-
prioritized sampling based on clustering situations
in the feature space and combines with metric-
based or semantic-based strategies(Maharana et al.,
2023; Du et al., 2023; Tirumala et al., 2023).

Gradient-based Data Selection This line of re-
search leverages Influence Functions(Xia et al.,
2024; Engstrom et al., 2024; Yu et al., 2024; Koh
and Liang, 2017; Ling, 1984; Grosse et al., 2023;

Schioppa et al., 2022) to identify training data
points that exert the most significant impact on the
validation points. Concurrent studies like LESS,
DsDM, and MATES have investigated high-cost
influence data selection in LLMs from multiple
angles, such as the Adam optimizer, data models,
and evolving data influences. These methods, how-
ever, depend on a validation set to assess the impact
of training data. Thus, constructing a robust val-
idation set and preventing overfitting during the
selection process for downstream tasks are critical
considerations.

2.2 Evaluation of Pre-training Data Selection

In addition to D4 (Tirumala et al., 2023) as men-
tioned in section 1, (Marion et al., 2023) exhibits
pre-trained models of 124M and 1.5B parameters
with validation set perplexity and downstream SFT
task evaluation. However, it is limited by the use
of a validation set whose domain is aligned with
the training dataset’s distribution. Perplexity rank-
ings within in-domain validation sets can be in-
consistent across different data selection strategies,
potentially misrepresenting a model’s true capabili-
ties. Furthermore, it only reports classification task
performance on GLUE after SFT, offering a partial
view of LLM’s overall abilities. We not only extend
beyond those mentioned in comparison with D4
but also include our choice of validation sets. We
select three types of validation sets, which are all
out of training set domains, to reflect the model’s
generalization on smaller scales.

3 Method

As previously outlined, the data selection pipeline
is depicted in Figure 1. Within this pipeline, a
small proxy model evaluation mechanism is em-



ployed to predict the downstream performance of
the larger SFT models. Our investigation com-
mences with an analysis of prevalent LLM data
selection techniques, including the loss filter and
the Wikipedia Classifier, with a focus on their in-
fluence on downstream tasks. Subsequently, we
delve into the development and efficacy of the ad-
vertisement classifier. The critical components of
this process are elucidated below.

3.1 Small Surrogate Model Evaluation
Mechanism

The quintessence of our proposed Small Surrogate
Model Evaluation Mechanism is to establish a cor-
relation between the performance of small models
and the downstream task metrics of larger models.
This allows the performance of smaller models to
predict the downstream task performance of larger
models, thereby significantly reducing the itera-
tive costs associated with pretraining data selection
methods. To rigorously analyze the efficacy of our
proposed Evaluation Mechanism, please refer to
Figure 3(b) for an illustrative depiction of the over-
all process. detailed terms definitions and process
descriptions see the Appendix A.1.1.

After substantiating the effectiveness of the over-
all framework, the process can be streamlined for
practical application, as shown in Figure 3(a). For
any two data selection schemes, it is sufficient to
compare the Surrogate Indicators on the Surrogate
Model to determine the superior data selection strat-
egy. This approach can significantly lower the itera-
tive costs associated with pretraining data selection
methods.

Our intuitive understanding of the proposed
mechanism is derived from the theoretical anal-
ysis presented in (Hoffmann et al., 2022), which
suggests that even with identical training computa-
tion, different combinations of model size and data
size can lead to varying pretraining losses. Con-
sequently, a logical approach is to control for the
pretraining model size and hyperparameters and
then observe the validation set losses (equivalent
to PPL) of models pre-trained with different data
combinations on a high-quality, diverse validation
set that is strongly relevant to downstream tasks.
This allows for the assessment of the pretraining
efficacy of LLMs. Building on this theory, it is
also intuitive to use the pretraining performance
of smaller models (indicated by PPL) as a surro-
gate to predict the pretraining capabilities of larger
models under the same data conditions, with the

downstream task performance as the metric of eval-
uation. Our proposed mechanism significantly dif-
fers from the deep learning core-set data selection
via proxy as described in (Coleman et al., 2019).
Detailed analysis can be seen in Appendix A.5.1
We summarize contributions of Small Surrogate
Model Evaluation Mechanism in Appendix A.5.2.

3.2 Advertisement Classifier

In our examination of the English Common Crawl
corpus, we observe a significant prevalence of mar-
keting content and product placements. Notably,
product placements frequently exhibit redundancy
and lack of fluency, whereas marketing content is
typically distinguished by its high fluency. Given
this background, we aim to sift through the data,
removing ads to potentially enhance the corpus
with knowledge-intensive material of higher quality
for LLM pretraining. We filter out advertisements
through a well-designed ad classification process,
involving data sampling from RefinedWeb, human
annotation, and a binary BERT model to distin-
guish non-ads from ads. The process was iterative,
with continuous manual review and re-labeling of
misclassified samples until achieving a desired low
ad misclassification rate. The development of this
ad classifier, aligned with human judgment, is de-
picted in Figure 4 and detailed ad classifier con-
struction process can be seen in Appendix A.1.3

Unlike Yuanl1.0, which uses a ternary classifier
to filter a Chinese corpus into low-quality, advertis-
ing, or high-quality texts based on repetition rates
(Wu et al., 2021), we categorize texts as advertising
or non-advertising by focusing on promotional con-
tent and product placement. Yuanl.0’s methodol-
ogy, which targets coherent but redundant texts like
website descriptions, differs from our content and
style-based approach. Furthermore, while Yuan
1.0 has not disclosed their pre-training experiment
results, we have detailed ours in A.4.3.

3.3 Baselines

We compare advertisement classifier with several
baselines. The comparative experiments are con-
ducted under the same sequence of data points.

None-Filter: This means using all data points
during the training process.

Wikipedia and Web Classifier: This method uti-
lizes a binary classifier to distinguish between high-
quality, knowledge-rich content from Wikipedia
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and lower-quality text extracted from the Com-
mon Crawl] dataset (Brown et al., 2020; Chowdhery
et al., 2023; Touvron et al., 2023). We provide
more details in Appendix A.1.5

Loss Filter: This filtering technique employs pre-
trained models to compute the perplexity of texts
across the dataset and then uses perplexity to filter
data (Marion et al., 2023; Xia et al., 2023). We
provide more details in Appendix A.1.4

LESS: LESS (Xia et al., 2024) selects training
samples that have a significant impact on valida-
tion data points. Due to the high computational cost
associated with LESS, the size of the pretraining
dataset and the scale of the pretraining model are re-
duced to manage expenses. Essential comparative
experiments are conducted to compare LESS and
advertisement classifier. We provide more details
in Appendix A.1.6

4 Experiments

4.1 Training Details

Our pretrain experiments are conducted with the
RefinedWeb dataset (Penedo et al., 2023), which
uses advanced rule-based filtering and deduplica-
tion methods, without any secondary classifier-
based filtering. In this way, we are able to im-
plement detailed ablation studies, comparing the
impacts of various filtering methods. and SFT ex-
periments are with Flan Collection (Longpre et al.,
2023). In our experiment, we train decoder-only
Transformer from scratch only once for each ex-
periment due to constraints of training costs. We

406) (0.6-0.8) Review

Step 3: Quality Review Step 4: Scoring & Classification

ng BERT Classifier Training

provide full details of pre-training and SFT hyper-
parameters in Appendix A.2.1 and A.2.2. Mean-
while, we estimate computational costs in A.2.3.

4.2 Evaluation Metrics

We consider two key metrics for evaluation: val-
idation set PPL and downstream benchmark met-
rics, with a detailed correlation analysis in Section
A3.1.

Validation Set Perplexity To evaluate the
model’s impact on downstream tasks, we utilize
three distinct validation datasets, with each catering
to different domains, to offer an early performance
assessment for models with 100M parameters. De-
tailed descriptions are available in Section A.2.4.

Downstream Benchmark Metrics We select 10
tasks across five categories to gauge our model’s
effectiveness on downstream tasks: text completion
(Mostafazadeh et al., 2017), reading comprehen-
sion (Lai et al., 2017), common-sense question
answering (Zellers et al., 2019; Bisk et al., 2020;
ai2, 2019; Mihaylov et al., 2018), factual question
answering (Kwiatkowski et al., 2019; Joshi et al.,
2017), and examination(Hendrycks et al., 2020).
An overview of these tasks is presented in A.2.5.

5 Result

100M LLM can reliably predict the utility of
pretraining corpora for larger models. We quan-
titatively assess the correlation between the proxy
metric (validation set PPL) of the 100M model and
the downstream task metrics of the 3B SFT model
with a three-phase correlation analysis.



Phase 1: Figure 5 shows a high correlation in
PPL between the 100M and 1B models across most
validation sets with exceptions noted in specific
datasets such as RACE-middle and TrivialQA.

Phase 2: From Figure 6, the PPL of the 1B and
3B models show a significant correlation across
most validation datasets with exceptions noted in
specific datasets such as RACE-middle and Triv-
ialQA.

Phase 3: From Figure 7, lower PPL in different
3B models on the validation sets correlates with
higher downstream task metrics.

More detailed analysis and more figures can be
seen in Section A.3.
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Using 100M small surrogate model evaluation
mechanism, we can dramatically reduce the iter-
ation cycles of determining optimal thresholds
and retention for different data filtering strate-
gies.

Table 1 shows the partial order ranking of val-
idation sets at 100M model and 100B token bud-
get with different loss thresholds. Synthesizing
these results, we discern a notable decrease in PPL
(indicating improved performance) on HellaSwag
for PPL @loss middle 50%, a marked increase (in-
dicating decreased performance) on MMLU and
Wikipedia-en, and a relatively lower PPL (indi-
cating better performance) on Tiny Story. After
comprehensive consideration, we selected the loss
middle 50% threshold, which corresponds to a data
remaining ratio of 53.9%. More detailed analysis
can be seen in Appendix A.4.1.

Table 2 shows the partial order ranking of these
validation sets at 100M model and 100B token bud-
get with different Wikipedia classifier thresholds.
Synthesizing these findings, we note a significant
reduction in PPL (indicating performance improve-
ment) at PPL@thresh0.075 for MMLU and Pile-
Wikipedia. For HellaSwag, there is an increase
in PPL (indicating worse performance, likely due
to the loss of relevant data). In the case of Tiny
Story, a PPL @thresh0.25 increases perplexity com-
pared to no filtering, but PPL@thresh0.075 and
PPL @thresh0.0255 initially reduce PPL, aligning
with unfiltered data. This pattern underscores the
nuanced effect of data filtering on text generation
fluency. After comprehensive consideration, we se-
lected a threshold of 0.075, with a data remaining
ratio of 63.4%. More detailed analysis can be seen
in Appendix A.4.2.

Table 3 shows the partial order ranking of
these validation sets at 100M model and 100B
token budget with different ad classifier thresh-
olds. PPL@threshold 0.95 experiences a signif-
icant increase on HellaSwag, indicating a decline
in performance. Conversely, PPL @threshold 0.9
maintains a relatively lower score on MMLU, Tiny
Story, and Pile-wikipedia-en, which suggests bet-
ter performance. Moreover, the performance of
PPL @threshold 0.9 on HellaSwag shows negligi-
ble differences when compared to other thresholds.
Consequently, we have selected a threshold of 0.9,
with the data retention rate being 64.1%. More
detailed analysis can be seen in Appendix A.4.3.

Ad Classifier yields superior performance on
most tasks when compared to other methods,
especially in knowledge-intensive benchmark
MMLU. In other benchmarks, this method also
shows commendable results..

We evaluate the performance of these filtering
methods, including none filter, loss filter, wikipedia



None-filtered loss middle 50% loss middle 30%

MMLU 0 1 2
HellaSwag 2 1
Tiny Story 2 1 0

Pile-wikipedia 0 1 2

Table 1: Validation Perplexities Partial Order Ranking
of Different Loss Thresholds at 100B token.(0 means
lowerest ppl and 2 means largeest ppl.)

None-filtered ~ Threshold 0.025  Threshold 0.075  Threshold 0.25

MMLU 3 1 0 2
HellaSwag 0 1 2 3
Tiny Story 0 0 0 3

Pile-wikipedia 3 2 1 0

Table 2: Validation Perplexities Partial Order Ranking
of Different Wikipedia and Web Thresholds at 100B
token. (0 means lowerest ppl and 2 means largeest ppl.
Same order will show lower order rank)

classifier, and ad filter, across different model sizes
(100M, 1B, and 3B models), with a particular focus
on their impact on downstream tasks. The results
(validation perplexities partial order ranking of Ta-
ble 4 and Table 5, downstream benchmark metrcis
of Table 7 indicate that ad filter consistently im-
proves performance across most tasks, especially
in knowledge-intensive tasks such as the MMLU
benchmark. In contrast, loss filter shows moderate
performance in knowledge tasks, while wikipedia
classifier exhibited negative impacts in benchmarks
focused on common sense benchmarks. More de-
tailed analysis and more figures can be seen in
Appendix A.4.4 and Appendix A.4.5.

Limited by computational costs, we conduct a fo-
cused comparison on RefinedWeb 200B token new
shuffle subset, comparing none-filter, ad classifier,
and LESS in terms of perplexity rankings at 100M
and 1B model scales. From perplexity curves (Fig-
ure 8), ad filter is generally lower than LESS across
most validation sets, except on the Hellaswag val-
idation set. From Figure 17, Although ad filter
exhibits a higher PPL on Hellaswag compared to
other methods, the impact on downstream task per-
formance (Table 7) is minimal. Since LESS re-
quires pre-prepared validation sets for calculating
influence scores, it may introduce the risk of over-
fitting downstream tasks. In contrast, the adver-

None-filtered Threshold 0.4 Threshold 0.6 Threshold 0.8 Threshold 0.9  Threshold 0.95

MMLU 5 4 2 1 0
HellaSwag 1 1
Tiny Story 5 3
Pile-wikipedia 5 3

wwon

3 3 5
2 0 0
1 1 0

Table 3: Validation Perplexities Partial Order Ranking
of Different Ad Thresholds at 100B token.(0 means
lowerest ppl and 2 means largeest ppl. same order will
show lower order rank)

None-filtered ~ Ad0.9  Wikipedia 0.075 Loss 50%
100M/1B 100M/1B 100M/1B 100M/1B

MMLU 212 o0n 0/0 33
HellaSwag 171 212 33 0/0
RACE-High 32 0/0 212 10
RACE-middle 33 0/0 21 1/1
TivialQA 273 0/0 11 312

StoryCloze 2/3 171 3n 0/0
Tiny Story 213 00 3n 12
Pile-Wikipedia 22 10 0/0 33

Table 4: Validation Perplexities Partial Order Ranking
of Different Data Selection Methods with 100M/1B
model. (0 means the lowest ppl, and 2 means the largest
ppl. The same order will show a lower order rank)

None-filtered Ad 0.9 Wikipedia 0.075  Loss 50%

MMLU 3 1
HellaSwag
RACE-High
RACE-middle
TivialQA
StoryCloze

coocowmo
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3
0
0
1
2

Table 5: Downstream Metric Partial Order Ranking
of Different Data Selection Methods with 3B model
(0 means highest metric and 2 means lowerest metric.
Same order will show lower order rank)

tisement classifier is constructed without using any
validation set information, making it a more univer-
sally pre-training data filtering approach.

5.1 Analysis of Data Remaining Ratios for
Different Data Filtering Methods

We evaluate the data retention ratios of various fil-
tering strategies on validation sets as an indirect
measure of their influence on downstream tasks.
Despite the validation set partly originating from
downstream instruction tasks, which diverge in for-
mat from our pre-training corpus, we consider these
tasks as domain-specific corpus material. Conse-
quently, we propose that the varying data remaining
ratios across domains within our validation set can
provide insights into the impacts of data filtering
strategies on these domains. Furthermore, com-
paring data retention ratios for different strategies
within the same validation set domain can yield
relative effectiveness insights.

As shown in Table (6), the loss filtering method
results in a reduced data remaining ratio on the
MMLU, indicating potential negative impacts on
the MMLU benchmark. This observation aligns
with the finding that loss filtering falls short of

‘Wiki threshold  loss middle ~ Ad threshold
0.075 50%

Pile-Wikipedia 68.8% 17.5% 98.3%
StoryCloze 0.1% 63.2% 98.9%
RACE-High 67.6% 75.9% 74.5%

RACE-Middle 45.5% 70.8% 88.4%
HellaSwag 0.3% 52.2% 95.2%

TriviaQA 0.1% 7.2% 99.5%
MMLU 82.7% 11.1% 94.4%
Tiny Story 33.0% 5.0% 99.6%

Table 6: Data Remaining Rates for Different Data Fil-
tering Schemes on Downstream Validation Sets of Dif-
ferent Domains



Data R Reading Comprehension Exam

Factual QA Text Completion Common-Sense QA

RACE-High | RACE-middle MMLU Natural Question | TriviaQA StoryCloze HellaSwag | PIQA | WinoGrande | OpenBookQA
No Pruning 100% 29.33132.38 29.71 11.19130.61 75.15 64.75177.15157.93122
Loss middle 50% 53.9% 31.13136.84 30.63 9.56131.65 75.73 66.3177.31159.67 129
Wikipedia threshold 0.075 63.4% 37.62141.57 33.41 12.35133.41 75.36 62.17175.19158.41 130
Ad threshold 0.9 64.1% 40.08 145.82 35.35 12.08133.8 76.06 64.2176.71159.35127.8

Table 7: The downstream metric of each data selection method, including Reading Comprehension, Exam, and
Factual QA, with 3B models pretrained with 300 billion tokens. Underlined results surpass the baseline performance
with no pruning. The best results for each task are marked in bold.

other strategies in the 3B SFT-enhanced MMLU
context. Similarly, the Wikipedia filtering strategy,
with its lower data retention ratio on HellaSwag,
suggests a detrimental effect on the common sense
benchmark, corroborating its underperformance in
post-3B SFT HellaSwag evaluations. Interestingly,
the ad filtering strategy consistently exhibits high
data remaining ratios across the validation set, an
outcome achieved without incorporating any infor-
mation from the validation set.

nnnnnnnnnnnnnnnnnnn

1B Perplexity
4/

yyyyyy

182009 —— 1BLESS
e - 100Mad09 -+ 100MLESS
tokens for pre-training (Billion)

Figure 8: Validation Perplexities Comparison Between
100M & 1B Models between ad filter and LESS

5.2 Analysis about Potential Confounding
Factors

We provide data metric visualizations to further
analyze potential confounding factors:

1. Does the removal of advertisements af-
fect the distribution of data retention lengths,
thereby influencing model performance?

We visualized the length distribution (in bytes
per sample) of data retained with ad filter threshold
of 0.9 compared to the distribution with none-filter
in Figure 18. It is evident that there is no significant
change in the distribution of data lengths before and
after filtering. This observation effectively rules
out the possibility that the length distribution of the

data serves as a confounding factor.

2. Does ad removal impact the distribution of
data across different thematic domains, thereby
influencing model performance?

We perform k-means clustering on the whole
dataset, thereby generating 15,000 clusters. All
data are assigned to the nearest cluster based on the
nearest neighbor distance. We then randomly se-
lect 100 samples from each centroid and subjected
them to ad classification scoring by LLAMA?2-chat,
yielding an average ad score for each cluster. Sub-
sequently, we calculated the proportion of data re-
duction after applying the ad filter threshold of 0.9
for each cluster. We then assessed the consistency
between the average ad scores of all clusters and
the proportion of data reduction post-filtering.

The results revealed a Pearson Correlation Coef-
ficient of 0.878 and a Spearman Correlation Coeffi-
cient of 0.876, indicating that advertisement filter-
ing indeed affects the distribution of data across dif-
ferent thematic domains. Clusters more closely re-
lated to advertisement themes experienced greater
data reduction. This finding intuitively validates
our proposed advertisement data filtering approach,
confirming that it effectively employs the factor of
advertisement content to refine the dataset, thereby
enhancing model performance.

6 Conclusion

Our research demonstrates that using loss metrics
for selecting pretraining data can negatively impact
performance on complex, knowledge-intensive
tasks like MMLU. We improve data quality for
LLM pre-training by implementing a specialized ad
classifier to eliminate low-information content, en-
hancing model performance across various bench-
marks. Additionally, we introduced a cost-effective
and efficient evaluation method by using a smaller
LLM as a proxy to forecast the success of larger
models. This approach has significantly reduced
resource costs by 92.7%, enabling rapid iterations
in data selection strategies and offering a scalable,
practical solution for future LLM development.



Limitations

Small models to predict the reasoning ability of
large models: The reasoning ability of existing
LLMs emerges under certain conditions, such as
model size, high-quality mixed data, and a certain
computational budget. We do not have the time to
explore whether it is possible to use smaller mod-
els on web datasets with appropriate proxy indica-
tors to reflect the reasoning ability of a medium-
sized model. There is no consensus yet on the
origins of the reasoning mechanism produced by
LLMs. If the changes in reasoning ability could
be reflected through proxy indicators on smaller
models, it would greatly aid in understanding the
origins of reasoning abilities.

Ad filtering in conjunction with other filtering
solutions:  Ad filtering is about removing corpora
with advertising content. Although loss filtering
may discard knowledgeable content, it can still
eliminate a lot of incoherent corpora. What kind
of integrated scheme could complement the advan-
tages of multiple filtering solutions? Limited by
time and cost, we have not explored the integration
of multiple existing filtering solutions in this work.

7 Ethics Statement
7.1 Data Collection

All the datasets we use in our work are from pub-
licly available resources (RefinedWeb). And we
will open part of quality scores of this dataset. The
data License will follow RefineWeb.

7.2 Human Labeling

For the BERT advertisement classifier, we curate a
dataset of 40,000 samples from RefinedWeb, which
are then labeled as either advertisement (ad) or non-
advertisement (non-ad) by annotators. Because the
annotators are formal employees of the company
and are subject to confidentiality requirements re-
garding their remuneration, it is not possible to
provide information on average salaries to the out-
side. The form and instructions presented to human
evaluators are shown in Figure 14.
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A Appendix

A.1 Method Details

A.1.1 Small Surrogate Model Evaluation
Mechanism Details

Here, we show the terms involved in Figure 3.

Data Selection Model: The term refers to a
model used to filter pre-trained data, which will
produce data selection metrics used to filter the
data. The ordering of these metric values can filter
out the required subset of data.

Surrogate Model: This term refers to a surro-
gate model utilized to validate the effects of pre-
training on larger-scale models. The expectation is
that the pretraining outcomes on the proxy model
will provide early insights into the performance of
larger models, thereby significantly reducing the
computational cost associated with hyperparameter
experiments for data selection strategies. In this
study, the proxy model is a 100M model.

Surrogate Indicator (Surrogate Metric): This is
a surrogate metric for assessing the pretraining per-
formance on the proxy model. The proxy indicator
on the proxy model can predict the target model’s
performance in downstream tasks. The proxy indi-
cator used in this study is PPL.

Target Model: This term refers to the pretrain-
ing model that is the focus of our evaluation. No-
tably, even when considering smaller-scale mod-
els, the application of SFT can significantly re-
veal the impact of data selection strategies and the
model’s higher-order capabilities in downstream
tasks. Meanwhile, due to computational resource
constraints, the target model in this study is speci-
fied as a 3B model post-SFT.

Downstream Metrics: These metrics assess the
target model’s capabilities across various down-
stream tasks. The tasks encompass 10 different
types, with specific descriptions provided in A.2.5.

Bridge Model: This is an intermediary model
introduced to enhance the robustness of the tran-
sition from the proxy model’s proxy indicator to
the target model’s downstrea metrics. The rationale
for introducing a bridge model is the prohibitively
high experimental cost of the target model, which
precludes exhaustive ablation studies. Hence, the
bridge model is employed to conduct as many hy-
perparameter experiments as computationally fea-
sible to increase the robustness of the correlation
analysis. In this study, the bridge model is a 1B
model.
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A.1.2 Ad Classifier

When evaluating the effectiveness of our BERT
classifier, we employ a bootstrap method, sampling
1000 times, with each time randomly selecting 50%
of the data to calculate precision and recall values
at different thresholds. The Precision-Recall curve
for BERT training, complete with confidence in-
tervals, is shown in Figure 15, demonstrating our
classifier’s effectiveness in identifying ads, closely
mirroring human judgment.

Furthermore, we try different thresholds(0.4, 0.6,
0.8, 0.9 and 0.95) for our BERT advertising clas-
sifier, which outputs a probability of a text being
non-ad data. Not only do we include data remain-
ing ratios under these thresholds in Table (8), but
we also take the precisions and recalls of ad and
non-ad prediction into account so that we can make
the best choice for the threshold of ad classifica-
tion. Detailed experiment result can be found in
Appendix A.4.3

A.1.3 Ad classifier Construction Process

In this section we will explain in detail the process
of building the advertisement classifier in Figure 4.
1. Data Sampling
The core challenge in the data sampling
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phase is how to select a representative set of
advertisement/non-advertisement datasets. With-
out broad sampling, it’s easy to fall into the pit-
fall of out-of-distribution. There are many the-
matic sampling schemes available, ranging from
traditional NLP techniques like LDA ((Blei et al.,
2003)) for unsupervised topic analysis to unsuper-
vised clustering techniques. After completing the
theme mining of the pre-training dataset, sampling
a batch of samples for each theme can accomplish
representative sample sampling.

2. Human Labeling

The human labeling operation is divided into
two steps: manual labeling (by annotators) and
secondary audit detection.

2.1. Manual Labeling

Firstly, we establish the categories of adver-
tisements and preliminary identification standards
through experts, specifically divided into insert ad-
vertisements, full-text marketing advertisements,
and soft advertisements. Secondly, to align anno-
tators’ perception of advertisements, we deliver a
small amount of advertisement data for trial annota-
tion. After reviewing the results, we find significant
differences in annotators’ perception of soft adver-
tisements, whose definition is indeed vague. There-



Threshold Non-ad Precision Non-ad Recall Ad Precision Ad Recall Data Remaining
0 71.4% 100.0% - 0.0% 100%
0.4 80.0% 96.6% 82.1% 39.7% 88.7%
0.6 86.2% 94.5% 81.8% 62.1% 82.9%
0.8 89.7% 89.7% 74.1% 74.1% 73%
0.9 91.9% 86.2% 70.2% 81.0% 64.1%
0.95 95.1% 80.0% 64.2% 89.7% 55.2%

Table 8: Data Remaining Ratio, Precision and Recall Under Different Non-ad Probability Thresholds

fore, although we require the annotation of soft ad-
vertisements, in actual training, soft advertisements
are classified as normal samples to avoid classifier
confusion due to unclear standards. Thirdly, to im-
prove annotators’ efficiency, we also provide an
auxiliary labeling feature based on the open-source
large model LLAMAZ2-chat to help annotators bet-
ter understand the standards of advertisements and
enhance the annotation effect. Finally, after align-
ing the annotators’ perception of advertisements,
the annotators begin bulk manual annotation.

2.2. Secondary Audit

Auditors are responsible for batch sampling qual-
ity audits of manually labeled data, sending back
batches that do not meet standards and re-labeling,
at the meanwhile increasing the frequency of data
review for that annotator. The audit continues until
the rejection rate drops below a certain threshold.

3. BERT Fine-tuning

At this step, we obtain a certain amount of pos-
itive and negative sample data (each about 10w);
we divide it into a training set and a validation set
(same distribution); the test set is specially selected
during the labeling process, consisting of represen-
tative advertisement and non-advertisement data
(each about 1k); Then We train a BERT classifier
using manually annotated data with non-ad text to
be labeled 1 and ad text to be labeled 0.

4. Data quality review

In this step, we apply the high-quality classi-
fier obtained from training to the large-scale pre-
training data, obtaining large-scale scoring data
through BERT scoring. Furthermore, we conduct
quality checks on the data obtained from the large-
scale data. The specific operations are as follows:
We sample data within different scoring intervals,
specifically dividing the classification into 5 buck-
ets, each interval of 0.2 as one bucket, a total of
5 buckets, and perform bucket inspection. During
bucket inspection, we prioritize providing diverse
samples based on thematic information for audi-
tors to review. When the volume of data that does
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not meet the audit standards reaches a certain level
within a bucket under a certain theme, we will redi-
rect the relevant data in this bucket back to the
annotators for labeling, add it to the classifier’s
training after completing the labeling process, and
repeat this process until the inspection is qualified,
finally obtaining a high-quality advertisement clas-
sifier for the final bulk scoring. This data review
process can also be further optimized based on the
idea of active learning.

5. Bert model evaluation

we apply the trained BERT on another batch
of manually annotated data for ad classification to
validate the effectiveness of our classifier, where we
reach the average precision of 96.63% for non-ad
classification and 80.66% for ad classification. The
resulting Precision-Recall curve with confidence
intervals and data remaining ratios under different
thresholds are shown in A.1.2.

6. Scoring Classification

After the manual review is completed, the final
version of the advertisement classifier is applied to
the RefinedWeb dataset to obtain the advertisement
score for each sample, which is used for subsequent
steps.

A.1.4 Loss Filter

This method leverages pre-trained models to com-
pute perplexity for the entire dataset. It is indicated
that employing moderate perplexity thresholds for
data filtering can enhance training efficiency (Mar-
ion et al., 2023; Xia et al., 2023), a hypothesis we
will explore in depth.

We utilize LLaMA2-7B for dataset scoring and
adopted a strategy of remaining mid-range data for
comparative experiments (Marion et al., 2023). We
evaluate the effects of no filtering, remaining the
middle 50% of all data based on loss ranking, and
retaining the middle 30% of all data based on loss
ranking. The respective data remaining ratios for
no pruning, loss middle 50%, and loss middle 30%
are 100%, 53.9%, and 32%. Detailed experiment



result can be found in Appendix A.4.1

A.1.5 Wikipedia and Web Classifier

Contrasting with the ad filter, this strategy em-
ploys a binary classifier to separate high-quality,
knowledge-rich text (e.g., Wikipedia) from low-
quality Common Crawl data (Brown et al., 2020;
Chowdhery et al., 2023; Touvron et al., 2023). De-
spite superficial similarities to the ad filter, this
method focuses on the automatic segregation of
text corpora, aiming to enhance data quality for
pre-training. However, defining clear-cut divisions
between these text types presents significant chal-
lenges and may inadvertently introduce biases.

We employ a quality classifier trained with Red-
Pajama'. Although a threshold of 0.25 is recom-
mended to filter out low-quality data, we compare
the experimental effects of four sets of thresholds
(0, 0.025, 0.075, 0.25). The data remaining rates
of no pruning, threshold 0.025, threshold 0.075,
and threshold 0.25 are 100%, 78.6%, 63.4%, and
42%. We will delve into a detailed analysis of these
biases in subsequent Section A.4.2.

A.1.6 LESS Details

We utilize the open-source code from LESS? to
filter our pretraining data. Although LESS is orig-
inally designed for filtering data for instruction
tuning, its methodology can be straightforwardly
adapted for pretraining data selection without sig-
nificant modifications.

We adhere to the training hyperparameters estab-
lished by LESS, with the only modification being
the substitution of the training data with the pre-
training data from RefinedWeb. We follow the
LESS framework, conducting training on 8 GPUs
for 4 epochs, processing a total of 1 billion tokens
of pre-train data and producing a LORA LLAMA-
7B model. Due to the high cost associated with
gradient computation, we restrict our use of the
influence score calculation to the checkpoint from
the final epoch only.

On the pre-training dataset side, we choose a
subset of 200 billion tokens from RefinedWeb. We
set a retention rate of 49.3%, thus filtering out 100
billion tokens of pretraining data for experimental
comparison. This retention rate is notably close
to that used in an advertising filtering scenario,
where a retention rate of 60% is typical under a

lhttps://github.com/togethercomputer/
RedPajama-Data
2https://github.com/princeton-nlp/LESS
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0.9 filtering threshold, ensuring that the volumes of
data retained in both cases are comparably similar.
For validation, we select development sets from
various benchmarks, including HellaSwag, MMLU,
Pile-Wikipedia, RACE-High, StoryCloze, and Tiny
Story. It is important to note that these develop-
ment sets are distinct from the test sets used in
downstream benchmarks. From each validation
set, we independently select the top 12% of data
that had the highest impact on classification, which
collectively accounted for 49.3% of the data.

A.2 Experimental Setup Details

A.2.1 Hyperparameters for Pre-training

All models in our experiments use the SwiGLU
activation function, similar to LLaMA. We use the
Adam optimizer [26] with hyperparameters set to
B =0.9,8; =0.95, ¢ = 1078, and weight decay
fixed at 0.01. Additionally, we implement gradient
norm clipping with a threshold of 1.0. A cosine
learning rate schedule is employed, ensuring that
the final learning rate equals 10% of the maximal
learning rate (3e-4). We maintain a global batch
size of 4M and vary warm-up steps based on dif-
ferent model sizes. To avoid the complications of
insufficient training and the need for secondary ad-
justments, the preset steps for all pre-training pro-
cesses are configured to be sufficiently long. For
all training parameters see Table (9). We conduct
model training based on the InternEvo framework
(Team, 2023).

A.2.2 Hyperparameters for SFT

During the SFT phase, we use a cosine learning
rate schedule, such that the final learning rate (le-
5) is equal to 33.3% of the maximal learning rate
(3e-5). Meanwhile, no warmup is used, and the
number of training steps is set to 328 (1 epoch).
Other training parameters remain consistent with
pre-training.

A.2.3 Computation Cost Estimation

In a series of pretraining experiments, models with
varying parameter counts are evaluated for com-
putational efficiency. For a model with 100M pa-
rameters, processing 100B tokens necessitates ap-
proximately 253 GPU hours. When the model
size increased to 1B parameters, the same number
of tokens required about 1388 GPU hours. Fur-
ther scaling the model to 3B parameters, the to-
ken processing demands roughly 3472 GPU hours.


https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/princeton-nlp/LESS

params dimension n heads n layers sequence length warmup steps maximal learning rate preset maximal training tokens
100M 768 12 12 2048 2000 6e-4 377B
1B 2048 16 20 2048 2000 3e-4 377B
3B 3200 32 26 2048 2500 3e-4 11T
Table 9: Hyperparameters Setting for Pre-training Models of Different Sizes
Additionally, a 3B SFT model over 328 steps is Categories Datasets Metric
completed within an estimated 47 GPU hours Text Completion StoryCloze Acc.
Reading Comprehension RACE-high Acc.
RACE-middle
A.2.4 Validation Sets Details Common-Sense QA HellaSwag Acc.
PIQA
To thoroughly assess the potential impact on down- WinoGrande
. OpenBookQA
stream tasks, we have meticulously chosen three
: : : : : : Factual QA NaturalQuestion ~ EM
unique validation datasets (pile validation sets, TriviaQA
. K K K rivia
downstream task validation sets, and synthetic vali-
Examination MMLU Acc.

dation set), each tailored to a specific domain.

e Pile validation sets (Gao et al., 2020),
including Pile-arXiv, Pile-books, Pile-
OpenWebText2, and Pile-Wikipedia. These
subsets are used to test the model’s language
modeling capabilities across a variety of
knowledge-intensive tasks:

Downstream task validation sets, which sim-
ply join prompt with a right answer from
downstream benchmarks (see 4.2). These val-
idation sets are designed to evaluate the lan-
guage modeling capabilities across a variety
of downstream benchmarks.

Synthetic data validation set, including the
Tiny-Story dataset (Eldan and Li, 2023). This
type of validation set is primarily designed to
assess a model’s language modeling capabil-
ities on synthetic texts characterized by high
fluidity.

A.2.5 Downstream Tasks Details

Here, we provide a detailed description of 10 dif-
ferent downstream tasks in Table (10), providing
insights into our model’s performance in diverse
linguistic contexts. We use OpenCompass (Con-
tributors, 2023) framework to evaluate downstream
tasks.
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Table 10: Downstream Benchmarks

A.3 Proxy Metric Ranking Correlation on All
Validation Sets

Here we present the ranking correlations of proxy
metrics on all validation sets, including 100M pre-
trained model vs. 1B pre-trained model and also
1B pre-trained model vs. 3B pre-trained model.

A.3.1 Correlation Analysis of Proxy and
Downstream Metrics

This study quantitatively assesses the correlation
between the proxy metric (validation set PPL) of
the 100M model and the downstream task metrics
of the 3B SFT model. The evaluation employs a
three-stage correlation analysis, using a 1B model
as a bridge to handle the significant increase in
training costs and improve the correlation calcula-
tion’s reliability (detailed analysis see Appendix
A.3.2). The ranking correlation is quantified us-
ing Pearson and Spearman Correlation coefficients,
with each of them corresponding to "P" and "S" in
the figures respectively. Correlation values closer
to 1 indicate a higher-ranking correlation.

In the first phase, our study commences with
the analysis of 14 sets of experiments, focusing
on proxy metrics for models with 100M and 1B
parameters, resulting in 91 paired experiments over
11 validation sets. To counter early training insta-
bility, we utilize PPL values from models trained
with 100B tokens as the proxy metric. As demon-
strated in Figure 5, there’s a high correlation in
PPL between the 100M and 1B models across most
validation sets, with exceptions noted in specific



datasets such as RACE-middle and TrivialQA. Gen-
erally, smaller models can predict the PPL of larger
models accurately, although discrepancies in cor-
relation coefficients are observed. Nonetheless,
a clear trend is evident: an increase in PPL dif-
ferences among smaller models tends to predict
similar trends in larger models. Further correla-
tion details across validation sets are presented in
section A.3.

In the second phase, we conduct experiments
with 7 sets of data filtering hyperparameters, each
comprising proxy indicators for both 1B and 3B
models. We calculate the PPL difference between
each paired hyperparameter set, resulting in 21 ex-
perimental pairings on each of the seven validation
sets. Considering potential early training instability,
we use PPL values at the 100-billion token training
mark as our metric. As illustrated in Figure 6, the
PPL of the 1B and 3B models show a significant
correlation across most validation datasets, with a
lower correlation on RACE-middle and TrivialQA
datasets, consistent with the first phase, More fig-
ures depicting the correlation on different valida-
tion sets can be seen in section A.3.

The final phase involves experiments with 7 sets
of data filtering hyperparameters, each contain-
ing 3B proxy indicators and corresponding down-
stream evaluation metrics. As depicted in Figure
7, A Correlation value approaching -1 indicates a
strong negative correlation, suggesting that lower
PPL in different 3B models on the validation sets
correlates with higher downstream task metrics.
For most tasks, PPL can effectively predict the per-
formance of larger models on downstream tasks.
Some tasks exhibit greater variance in downstream
performance, resulting in a lower correlation coeffi-
cient. Nonetheless, the graph still reveals a distinct
trend: as the PPL decreases, there is a gradual im-
provement in the performance of downstream tasks.
Detailed analysis can be seen in Appendix A.3.5.

Summarizing the previous analysis, using a
100M parameter LLM can serve as a reliable indi-
cator for the effectiveness of pretraining corpora
when applied to larger models.

A.3.2 Reason for using 1B bridge model

In an ideal scenario where computational costs
are not a constraint, our target model could the-
oretically be as large as 7B, 10B, or even larger.
However, taking into account both the computa-
tional resource limitations and the ability to mani-
fest the model’s higher-order capabilities, we have
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set the target model size at 3B parameters. We
could directly analyze the correlation of metrics
from models ranging from 100M to 3B parameters,
but considering that training a single 3B model on
100B tokens requires approximately 3,472 GPU
hours, which translates to a cost of about $6,944 to
$17,360 based on current market GPU rates (Cur-
rent market rates for A100 80GB GPUs vary be-
tween $ 2-5/ hour per gpu), the number of data
points available for correlation analysis would be
significantly reduced due to these computational
cost constraints.

To ensure the robustness of our correlation met-
ric analysis, we have selected a bridge model of
1B parameters that can be trained on 100B tokens
at the cost of 1,388 GPU hours as a more feasible
option. This allows us to increase the number of
data point sets from 100M to 1B parameters to 14
sets of comparative experiments, thereby enhanc-
ing the reliability of our correlation analysis. Con-
currently, the number of data point sets from 1B
to 3B parameters is reduced to 7 sets of compara-
tive experiments. However, to ensure the reliability
of the metrics, we have added more checkpoint
evaluations for these larger models.

We believe that under the same computational
budget, conducting a greater number of experi-
ments with varying hyperparameters on smaller
models contributes more to the robustness of the
correlation analysis than conducting fewer experi-
ments on larger models.

A.3.3 100M Pre-trained vs. 1B Pre-trained

The data presented in Figure 10 show a general
trend where a lower PPL in the 100M model on the
validation set leads to lower PPL in the correspond-
ing 1B model.

A.3.4 1B Pre-trained vs. 3B Pre-trained

The data presented in Figure 11 show a general
trend where a lower PPL in the 1B model on the
validation set leads to lower PPL in the correspond-
ing 3B model.

A.3.5 3B Pre-trained PPL vs. 3B SFT Metric

Specifically, to address the significant variance in
downstream task performance, we enhance robust-
ness by evaluating multiple checkpoints for the
same experiment, with training steps ranging from
200 to 300 billion tokens, across 25 groups. So
these hyperparameters are paired to compare the
PPL differences in the 3B model against the dif-
ferences in downstream metrics, resulting in 300
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paired experiments on each of the seven validation
sets. A value approaching -1 indicates a strong neg-
ative correlation, suggesting that a smaller PPL in
different 3B models on the validation set correlates
with higher downstream task metrics. To further
mitigate the issue of large variances, we adopt the
DBSCAN method to filter out outliers, obtaining
non-outlier Pearson and Spearman correlation coef-
ficients. As depicted in Figure 7, a lower PPL in the
3B model on the validation set corresponds to su-
perior performance on downstream tasks. For most
tasks, smaller models can effectively predict the
performance of larger models on downstream tasks.
Some tasks exhibit greater variance in downstream
performance, resulting in a lower correlation coeffi-
cient. Nonetheless, the graph still reveals a distinct
trend: as the PPL decreases, the performance of
downstream tasks improves gradually.

A.4 Pretraining Efficacy of Different Data
Filtering Methods

In this section, we first determine the optimal
thresholds and retention for different data filter-
ing strategies based on the PPL performance of the
100M Proxy model on validation sets while also
providing comparison curves for the 1B model.

Then, we will predict the performance of differ-
ent filtering strategies on downstream tasks based
on the PPL performance of the 100M model at the
optimal thresholds.

Finally, we will pre-train the 3B model using
data selected under the optimal threshold and com-
pare downstream performances with the predic-
tions made by the 100M model to determine the
effectiveness of different data filtering strategies.

A.4.1 Loss Filtering Performace

Our analysis of the impact of data selection strate-
gies of loss filtering at 100M and 1B parameter
scale reveals varied outcomes. Strategies include
no filtering and retaining the central 50% and 30%
of data by loss ranking (The efficacy of the ’loss
middle’ data filtration strategy over ’loss bottom’ or
’loss top” has been corroborated by (Marion et al.,
2023), prompting us to exclusively compare the
effects of two ’loss middle’ thresholds against the
unfiltered data).

Figure 12 presents the 100M, 1B model per-
formance across multiple validation sets when
pretraining with different tokens at various loss
thresholds. We pay particular attention to the
performance at the 100B token on tasks such as



MMLU (a knowledge-intensive task indicative of
the model’s higher-order knowledge), HellaSwag
(a common-sense task, reflective of the model’s
common-sense reasoning), Pile-Wikipedia (a com-
mon validation set for reflecting model’s breadth
of knowledge) and Tiny Story (a synthetic task,
representative of the model’s language modeling
capabilities). We summarize the partial order rank-
ing of these validation sets in Table 1.

Synthesizing these results, we discern a notable
decrease in PPL (indicating improved performance)
on HellaSwag for PPL @loss middle 50%, a marked
increase (indicating decreased performance) on
MMLU and Wikipedia-en, and a relatively lower
PPL (indicating better performance) on Tiny Story.
After comprehensive consideration, we selected the
loss middle 50% threshold, which corresponds to a
data remaining ratio of 53.9%.

A.4.2 Wikipedia Classifier Performace

we compare the experimental effects of four sets
of thresholds (0, 0.025, 0.075, 0.25). In Appendix
A.1.5, we explicated the data remaining ratios un-
der different thresholds and the threshold of 0.25
already in use for other datasets (such as RedPa-
jama (Computer, 2023)).

Figure 13 presents the 100M & 1B model per-
formance across multiple validation sets when pre-
training with different tokens at various Wikipedia
thresholds. Similar to the analysis in the previous
section, we summary the partial order ranking of
these validation set in Table 2.

Synthesizing these findings, we note a significant
reduction in PPL (indicating performance improve-
ment) at PPL @thresh0.075 for MMLU and Pile-
Wikipedia. For HellaSwag, there is an increase
in PPL (indicating worse performance, likely due
to the loss of relevant data). In the case of Tiny
Story, a PPL@thresh0.25 increases perplexity com-
pared to no filtering, but PPL @thresh0.075 and
PPL@thresh0.0255 initially reduce PPL, aligning
with unfiltered data. This pattern underscores the
nuanced effect of data filtering on text generation
fluency. After comprehensive consideration, we se-
lected a threshold of 0.075, with a data remaining
ratio of 63.4%.

A.4.3 Ad Classifier Performance

Detailed ad bert classifier evaluation result is de-
picted in appendix A.1.3. Additionally, we explore
varying ad identification thresholds (0, 0.4, 0.6, 0.8,
0.9, and 0.95) to refine our model, training across
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different scales: 100M, 1B, and 3B models, to opti-
mize ad recognition capabilities.

Figure 16 presents the 100M & 1B model per-
formance across multiple validation sets when pre-
training with different tokens at various ad thresh-
olds. Similar to the analysis in the previous section,
we summarize the partial order ranking of these
validation sets in Table 3.

PPL @threshold 0.95 experiences a significant
increase on HellaSwag, indicating a decline in per-
formance. Conversely, PPL @threshold 0.9 main-
tains a relatively lower score on MMLU, Tiny
Story, and Pile-wikipedia-en, which suggests bet-
ter performance. Moreover, the performance of
PPL @threshold 0.9 on HellaSwag shows negligi-
ble differences when compared to other thresholds.
Consequently, we have selected a threshold of 0.9,
with the data retention rate being 53.9%.

A.4.4 100M Model Performace Prediction

This section is dedicated to a comparative analy-
sis of the PPL rankings associated with the 100M
model, employing various filtering strategies. The
objective is to preemptively forecast the efficacy
of distinct selection mechanisms when applied to
downstream tasks in larger-scale models, using the
smaller model as a predictive basis.

We present a ranking of the PPL scores for differ-
ent data filtering strategies at their optimal thresh-
olds for the 100M model. Additionally, we provide
the PPL ranking for the 1B model for comparison.
Corresponding PPL curves can be seen in Figure
17. Here we focus specifically on the results per-
taining to the validation sets that are relevant to
downstream tasks, as well as on the outcomes for
the ’tiny story’ and ’pile-wikipedia’ datasets.

Table 4 is the result of 100M and 1B model with
100B tokens pretraining.

Based on the results observed, the PPL ranking
of the ad filter is significantly superior to both the
Wikipedia classifier and the loss filter. For the high-
order knowledge understanding task MMLU, the
PPL for the ad filter and Wikipedia classifier is
lower than the unfiltered baseline, indicating better
performance, whereas the loss filter’s PPL is higher
than the unfiltered baseline, indicating poorer per-
formance. In the common sense reasoning task
HellaSwag, the PPL for the ad filter is slightly
higher than the unfiltered baseline, suggesting a
marginal decrease in performance. Conversely, the
Wikipedia classifier’s PPL is significantly higher
than the unfiltered baseline, indicating a substantial



decrease in performance, while the loss filter’s PPL
is significantly lower, indicating improved perfor-
mance. These results are largely consistent with
the performance of the 3B model on downstream
tasks as reported in Table 7. Additionally, in the
following section, we will further analyze the con-
sistency of the PPL rankings between the 100M
and 1B models in conjunction with the 3B model’s
downstream task performance.

A.4.5 3B SFT Model Performance Evaluation

In this section, we employ the best-threshold data
filtering strategies to pre-train a 3B model, followed
by SFT to obtain performance metrics on down-
stream tasks. The outcomes are then compared
with the predicted downstream task performance
of the 100M model to ascertain the relative efficacy
of the different data filtering methods.

Based on the results presented in Table 7, we
have compiled a ranking of the effects of the vari-
ous filtering strategies across several tasks in Table
5.

Compare 3B performance sorting with the previ-
ous 100M/1B PPL sorting in Table 4 we observe
the following patterns:

- On the HellaSwag dataset, the performance
ranking is in perfect inverse correlation with the
PPL ranking of the 100M model.

- On the MMLU dataset, there is an overall in-
verse correlation between performance ranking and
the 100M PPL ranking, with the exception of the
non-filtered and loss middle 50

- On the RACE-middle and RACE-high datasets,
performance rankings show overall consistency
with the inverse PPL rankings of both the 100M
and 1B models.

- On the TriviaQA dataset, the performance rank-
ing is overall consistent with the inverse PPL rank-
ing of the 100M model and perfectly consistent
with the inverse PPL ranking of the 1B model.

- The StoryCloze dataset shows poorer consis-
tency between performance ranking and the inverse
PPL ranking of the 100M model, yet a overall con-
sistency with the inverse PPL ranking of the 1B
model. This may be due to the closer downstream
performance across different filtering strategies for
this task.

Overall, the 100M model demonstrates high con-
sistency with the downstream performance of the
larger 3B model across most tasks, and we also
note high consistency between the 1B and 3B mod-
els. This supports the viability of using the 100M
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model to predict downstream performance for the
3B model.
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A.5 More Analysis

A.5.1 Comparsion to '""Deep Learning
Core-set Data Selection''

Our proposed Evaluation Mechanism significantly
differs from the deep learning core-set data se-
lection via proxy as described in (Coleman et al.,
2019). As illustrated in Figure 9(a), the latter lever-
ages a proxy model to generate a data selection
metric, which is then used to rank and filter the
data directly. The underlying assumption is that
the proxy model and the target model have a high
degree of consistency in the feature representation
ranking of the dataset, allowing the proxy model’s
feature representations to substitute for those of
the target model to guide data selection. However,
our proposed Evaluation Mechanism employs an
independent data selection model to guide the data
selection process. This model may share a similar
structure with the target model or be entirely hetero-
geneous. From this perspective, our data selection
model fundamentally incorporates the concept of
a proxy model as understood within the domain
of supervised deep learning. However, due to the
unique characteristics of unsupervised data selec-
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tion in LLLM pretraining, the strategies employed
for proxy models and Data Selection Metrics in
deep learning may not be directly applicable to
LLM pretraining data selection. Furthermore, we
introduce a Surrogate Model and Surrogate Indi-
cator that act as proxies for the target LLM and
downstream metrics, respectively. This concept
bears a resemblance to the idea of (Coleman et al.,
2019), indicating a parallel in the underlying ratio-
nale.

A.5.2 Contributions of Small Proxy Model
Evaluation Mechanism

1. Sufficient training to demonstrate the higher-
order capabilities of small models. For instance,
models ranging from 100M to 1B parameters show
stable PPL at the 100B token, although there may
be some instability in PPL in the early stages, A 3B
model accumulates a certain amount of knowledge
at the 200B token, and after SFT there is a notice-
able improvement in higher-order abilities, such as
those measured by MMLU. However, previous re-
search exploring the effectiveness of data selection
strategies under insufficient training conditions has
obscured the manifestation of higher-order abilities,
such as knowledge comprehension as measured by
tasks like the MMLU.
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2. Proxy indicators from PPL to post-SFT large
model downstream metrics, which reveals higher-
order skills like knowledge comprehension even
with limited training. However prior studies using
PPL from pretraining and various NLP task valida-
tion sets have shown a lack of sufficient correlation
with downstream task performance, thus limiting
domain-specific insights.

3. Diverse validation sets, including validation
sets converted from downstream tasks, enabling
early downstream performance predictions and
quantifying the correlation between small model
proxies and post-SFT large model downstream met-
Total validation sets see Appendix A.2.4.
However, previous research using inappropriate
(in-domain) validation sets and partial downstream
tasks has hindered the understanding of the impact
of data selection methods on downstream tasks (re-
fer to Section 2.2).

rics.

A.5.3 Analysis about Practical Implications
and Potential Applications

This paper introduces a Small Proxy Model Evalua-
tion Mechanism that allows the use of pre-training
proxy metrics from a 100M model to predict the
downstream task metrics of larger models after
SFT. This rapid evaluation mechanism can signifi-
cantly reduce the iteration cycles for pre-training
data selection. This is meaningful for exploring the
scaling laws of LLMs under higher data quality.

We provide a rough estimate of the pre-training
costs involved. For a 100M model, pre-training
with 100B tokens may require approximately 253
GPU hours. This means that running a set of ex-
periments with a 100M model could cost between
506 and 1,265 dollars ((Current market rates for
A100 80GB GPUs vary between $ 2-5 / hour per
GPU)). When the model size increases to 3B pa-
rameters, processing these tokens would take about
3,472 GPU hours, which means that running a set
of experiments with a 3B parameter model would
cost between 6,944 and 17,360 dollars. By using a
100M model as a proxy for evaluation, each set of
pre-training experiments could save between 6,430
and 16,095 dollars. Therefore, any team training
large models that refers to our Small Proxy Model
Evaluation Mechanism can save between $6,430
and $16,095 per ablation experiment group in eco-
nomic costs and carbon emissions.

From the perspective of focusing on downstream
task performance, this paper proposes an ad fil-
tering strategy that generally outperforms existing



LLM pre-training data selection schemes across
10 downstream tasks. This reminds the LLM com-
munity to be aware of the potential harm of exist-
ing data selection schemes to downstream tasks.
The validated ad filtering strategy can significantly
shorten the cycle for the LLM community to filter
high-quality data, thereby significantly reducing
energy consumption. Moreover, our work is con-
ducted on the open-source dataset RefinedWeb, and
part of our work will also be made open-source in
the future. In fact, utilizing our ad filtering strategy,
we have trained an effective 7B parameter model
that outperforms a variety of recent open-source
large models.
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Figure 14: The form and instructions presented to hu-
man evaluators
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Figure 15: Effectiveness of Ad Classifier

Figure 16: Validation Perplexities Comparison Between
100M & 1B Models with Ad Filtering
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Figure 17: Validation Perplexities Comparison Between
100M & 1B Models with different Filtering Strategies
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Figure 18: data length visualization before and after
data filtering
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