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Abstract

Data has been recognized as a vital factor for001
Large Language Models (LLMs), prompting002
the development of various data selection meth-003
ods to optimize pretraining data. Among these,004
the loss-based filtering method has gained pop-005
ularity due to its straightforwardness. How-006
ever, our empirical findings suggest that this007
approach may lead to performance degrada-008
tion on knowledge-intensive benchmarks, such009
as the MMLU. To address this issue, we pro-010
pose filtering out low-information text, particu-011
larly advertisements, which constitute a signifi-012
cant portion of internet content. We employed013
a 100M parameter proxy model to compare014
these two methods. Despite its smaller size,015
the proxy model’s results accurately predict the016
downstream metrics when scaled to 3B models.017
This study demonstrates that a 100M param-018
eter proxy model is sufficient for comparing019
different data selection strategies, and our ex-020
periments across various benchmarks confirm021
the effectiveness of eliminating advertisements022
from pretraining data.023

1 Introduction024

Pre-training on extensive unlabeled and uncrated025

corpus sourced from internet snapshots (Gao et al.,026

2020; Penedo et al., 2023; Computer, 2023; Sol-027

daini et al., 2024), empowers large language mod-028

els (LLMs) with unprecedented capabilities across029

various domains. Meanwhile, the performance030

of LLMs scales as a power law with regards as031

to the data quantity (Kaplan et al., 2020). How-032

ever, alongside quantity, the quality of the corpus033

is equally crucial. Recent consensus suggests that034

high-quality corpora have the potential to signif-035

icantly alter scaling laws (Sorscher et al., 2022;036

Hoffmann et al., 2022), enabling performance on037

par with large-scale models while requiring leaner038

training costs (Gunasekar et al., 2023; Eldan and039

Li, 2023)040

Therefore, many studies have explored LLM 041

pretraining data selection, including rule-based 042

(Rae et al., 2021), metric-based (Coleman et al., 043

2019; Marion et al., 2023; Tirumala et al., 2023), 044

gradient-based (Xia et al., 2024) and semantics- 045

based (Brown et al., 2020), each employing differ- 046

ent criteria for data quality. Yet, these methods are 047

commonly evaluated by overall metrics, overlook- 048

ing the detailed influence on different downstream 049

task performances. 050

Motivated by this gap, we investigate the impact 051

of these strategies on downstream tasks. Surpris- 052

ingly, our experiments reveal while loss filtering 053

(Marion et al., 2023) enhances text fluency, it can 054

also diminish performance on knowledge-intensive 055

benchmarks like MMLU (Hendrycks et al., 2020). 056

This decline is linked to two main issues: first, the 057

tendency of loss filtering to preferentially preserve 058

fluency-centric marketing content, leading to its 059

overrepresentation; second, the potential exclusion 060

of knowledge-dense texts that incur higher losses 061

when they elude the capturing capabilities of the 062

underlying LLM. Moreover, domain-specific filter- 063

ing(e.g., Wikipedia classifier (Brown et al., 2020)), 064

although intended to curate domain-relevant data, 065

risks losing valuable cross-domain information. 066

Based on the previous discussion, we pose two 067

questions: 068

1. Is it possible to devise a data selection strat- 069

egy that minimizes the inclusion of low- 070

information content while preserving high- 071

information content? 072

2. How can we quickly assess the effectiveness 073

of data selection strategies in pre-training 074

scenarios? 075

To answer the first question, we focus on identi- 076

fying common traits within web datasets to address 077

the prevalence of low-information content in cor- 078

pora. Our investigation reveals that advertisements 079

significantly contribute to this issue. In response, 080
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we develop an ad classifier, a step beyond the initial081

mentions in prior work (Wu et al., 2021), providing082

a detailed approach and thorough analysis of its083

positive impact on LLM benchmarks, especially084

knowledge-intensive benchmarks.085

To answer the second question, setting aside086

the costly approach of directly training an LLM087

end-to-end, D4 (Tirumala et al., 2023) has taken a088

step forward by exploring the use of proxy metrics089

from smaller models to validate the quality of pre-090

training data filtering. However, there are several091

limitations to these approaches. Firstly, insufficient092

training (e.g., 1.3B-parameter models on 40B to-093

kens and 6.7B-parameter models on 100B tokens)094

obscures the manifestation of higher-order abilities,095

such as knowledge comprehension, as measured by096

tasks like the MMLU. Secondly, proxy indicators,097

including perplexity (PPL) from pre-training and098

various NLP task validation sets, lack sufficient cor-099

relation with downstream task performance, lim-100

iting domain-specific insights. To address these101

issues, on the one hand, we evaluate base models102

after supervised fine-tuning (SFT), which reveals103

higher-order skills like knowledge comprehension104

even with limited training. On the other hand, we105

enhance the proxy indicators for small models by106

including PPL based on validation sets converted107

from downstream tasks, enabling early downstream108

performance predictions and quantifying the corre-109

lation between small model proxies and post-SFT110

large-model downstream metrics. Specifically, we111

find that the performance of a larger-scale SFT112

model can be well characterized through the PPL113

of a 100M proxy LLM on the validation sets.114

Using a 100M-parameter proxy model for rapid115

pre-training iterations (pretraining budget analy-116

sis see Section A.5.3), we comprehensively assess117

popular LLM data selection methods, comparing118

them against our ad classifier’s performance. As119

depicted in Figure 1, our analysis pipeline high-120

lights the impact of various strategies on model121

efficacy. Our findings suggest that eliminating ad-122

vertisement content not only improves performance123

on knowledge-intensive benchmarks but also yields124

commendable results across various other capabil-125

ity dimensions within benchmark (see Figure 2).126

In summary, our contributions are as follows:127

1. We demonstrate that employing a 100M-128

parameter LLM can reliably predict the utility129

of pretraining corpora for larger models. We130

comprehensively establish the correlation be-131

Figure 1: Ad Filtering Outperforms Other Methods
Across Three Pre-training Data Selection Techniques

tween the proxy indicators of the small model 132

and the downstream task metrics of the large 133

SFT model. 134

2. We emphasize that by using the small surro- 135

gate model evaluation mechanism with 100M 136

parameters, we can dramatically reduce the 137

iteration cycles of pre-training data selection 138

strategies, resulting in a substantial budgetary 139

saving of 92.7% (More Cost Analysis see Sec- 140

tion A.5.3). 141

3. We highlight that eliminating advertisement 142

content substantially not only enhances the ef- 143

ficacy of knowledge-intensive benchmarks but 144

also yields commendable results across vari- 145

ous other capability dimensions within bench- 146

marks. Additionally, the extent of these perfor- 147

mance enhancements varies depending on the 148

data filtering applied, indicating differential 149

downstream effects. 150

2 Related Work 151

2.1 Data Selection 152

As previously emphasized, the importance of high- 153

quality data for training LLMs cannot be overstated. 154

Research on data selection extends across various 155

fields, sharing fundamental principles despite di- 156

verse applications. We identify four primary data 157

selection methodologies and provide a systematic 158

analysis of each in the following sections. 159

Metric-Based Data Selection This line of work 160

primarily focuses on filtering data based on auto- 161

mated metrics generated through dynamic model 162

training. One part of these works explores data 163

filtering on computer vision (CV), with filtering 164
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Figure 2: The relative score of performance between different data selection methods with Non-pruning method. In
this Figure, each of the models is pre-trained with 300B tokens. See Table 7 for absolute performance of downstream
tasks.

strategies including prioritizing hard sample sam-165

pling(Coleman et al., 2019), moderate sample sam-166

pling(Xia et al., 2023), uncertainty sampling, and167

filtering based on dynamic changes in statistical168

values across different epochs(Paul et al., 2021).169

Another part of the work explores data filtering170

in the context of NLP and LLM scenarios. The171

filtering approaches include using perplexity scor-172

ing(Marion et al., 2023; Wang et al., 2023), cus-173

tom IFD(Li et al., 2023a), and multi-metric loss174

fitting(Cao et al., 2023). In summary, these efforts175

primarily rely on statistical patterns in the data to176

obtain valuable samples for model training. How-177

ever, they struggle to perceive the semantic infor-178

mation in the samples and have difficulty under-179

standing the diversity distribution of the samples.180

Semantics-based Data Selection This line of181

work primarily involves scoring data based on the182

Wikipedia & Web classifier(Brown et al., 2020;183

Touvron et al., 2023), reward model(Du et al.,184

2023), and LLM(Eldan and Li, 2023; Chen et al.,185

2023; Li et al., 2023b; Sachdeva et al., 2024; Wettig186

et al., 2024). Intuitively, a semantics-based scor-187

ing strategy should have the ability to recognize188

semantics. However, special attention must be paid189

to whether the filtering is biased(Gao, 2021).190

Geometry-based Data Selection This line of191

work primarily involves conducting diversity-192

prioritized sampling based on clustering situations193

in the feature space and combines with metric-194

based or semantic-based strategies(Maharana et al.,195

2023; Du et al., 2023; Tirumala et al., 2023).196

Gradient-based Data Selection This line of re-197

search leverages Influence Functions(Xia et al.,198

2024; Engstrom et al., 2024; Yu et al., 2024; Koh199

and Liang, 2017; Ling, 1984; Grosse et al., 2023;200

Schioppa et al., 2022) to identify training data 201

points that exert the most significant impact on the 202

validation points. Concurrent studies like LESS, 203

DsDM, and MATES have investigated high-cost 204

influence data selection in LLMs from multiple 205

angles, such as the Adam optimizer, data models, 206

and evolving data influences. These methods, how- 207

ever, depend on a validation set to assess the impact 208

of training data. Thus, constructing a robust val- 209

idation set and preventing overfitting during the 210

selection process for downstream tasks are critical 211

considerations. 212

2.2 Evaluation of Pre-training Data Selection 213

In addition to D4 (Tirumala et al., 2023) as men- 214

tioned in section 1, (Marion et al., 2023) exhibits 215

pre-trained models of 124M and 1.5B parameters 216

with validation set perplexity and downstream SFT 217

task evaluation. However, it is limited by the use 218

of a validation set whose domain is aligned with 219

the training dataset’s distribution. Perplexity rank- 220

ings within in-domain validation sets can be in- 221

consistent across different data selection strategies, 222

potentially misrepresenting a model’s true capabili- 223

ties. Furthermore, it only reports classification task 224

performance on GLUE after SFT, offering a partial 225

view of LLM’s overall abilities. We not only extend 226

beyond those mentioned in comparison with D4 227

but also include our choice of validation sets. We 228

select three types of validation sets, which are all 229

out of training set domains, to reflect the model’s 230

generalization on smaller scales. 231

3 Method 232

As previously outlined, the data selection pipeline 233

is depicted in Figure 1. Within this pipeline, a 234

small proxy model evaluation mechanism is em- 235
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ployed to predict the downstream performance of236

the larger SFT models. Our investigation com-237

mences with an analysis of prevalent LLM data238

selection techniques, including the loss filter and239

the Wikipedia Classifier, with a focus on their in-240

fluence on downstream tasks. Subsequently, we241

delve into the development and efficacy of the ad-242

vertisement classifier. The critical components of243

this process are elucidated below.244

3.1 Small Surrogate Model Evaluation245

Mechanism246

The quintessence of our proposed Small Surrogate247

Model Evaluation Mechanism is to establish a cor-248

relation between the performance of small models249

and the downstream task metrics of larger models.250

This allows the performance of smaller models to251

predict the downstream task performance of larger252

models, thereby significantly reducing the itera-253

tive costs associated with pretraining data selection254

methods. To rigorously analyze the efficacy of our255

proposed Evaluation Mechanism, please refer to256

Figure 3(b) for an illustrative depiction of the over-257

all process. detailed terms definitions and process258

descriptions see the Appendix A.1.1.259

After substantiating the effectiveness of the over-260

all framework, the process can be streamlined for261

practical application, as shown in Figure 3(a). For262

any two data selection schemes, it is sufficient to263

compare the Surrogate Indicators on the Surrogate264

Model to determine the superior data selection strat-265

egy. This approach can significantly lower the itera-266

tive costs associated with pretraining data selection267

methods.268

Our intuitive understanding of the proposed269

mechanism is derived from the theoretical anal-270

ysis presented in (Hoffmann et al., 2022), which271

suggests that even with identical training computa-272

tion, different combinations of model size and data273

size can lead to varying pretraining losses. Con-274

sequently, a logical approach is to control for the275

pretraining model size and hyperparameters and276

then observe the validation set losses (equivalent277

to PPL) of models pre-trained with different data278

combinations on a high-quality, diverse validation279

set that is strongly relevant to downstream tasks.280

This allows for the assessment of the pretraining281

efficacy of LLMs. Building on this theory, it is282

also intuitive to use the pretraining performance283

of smaller models (indicated by PPL) as a surro-284

gate to predict the pretraining capabilities of larger285

models under the same data conditions, with the286

downstream task performance as the metric of eval- 287

uation. Our proposed mechanism significantly dif- 288

fers from the deep learning core-set data selection 289

via proxy as described in (Coleman et al., 2019). 290

Detailed analysis can be seen in Appendix A.5.1 291

We summarize contributions of Small Surrogate 292

Model Evaluation Mechanism in Appendix A.5.2. 293

3.2 Advertisement Classifier 294

In our examination of the English Common Crawl 295

corpus, we observe a significant prevalence of mar- 296

keting content and product placements. Notably, 297

product placements frequently exhibit redundancy 298

and lack of fluency, whereas marketing content is 299

typically distinguished by its high fluency. Given 300

this background, we aim to sift through the data, 301

removing ads to potentially enhance the corpus 302

with knowledge-intensive material of higher quality 303

for LLM pretraining. We filter out advertisements 304

through a well-designed ad classification process, 305

involving data sampling from RefinedWeb, human 306

annotation, and a binary BERT model to distin- 307

guish non-ads from ads. The process was iterative, 308

with continuous manual review and re-labeling of 309

misclassified samples until achieving a desired low 310

ad misclassification rate. The development of this 311

ad classifier, aligned with human judgment, is de- 312

picted in Figure 4 and detailed ad classifier con- 313

struction process can be seen in Appendix A.1.3 314

Unlike Yuan1.0, which uses a ternary classifier 315

to filter a Chinese corpus into low-quality, advertis- 316

ing, or high-quality texts based on repetition rates 317

(Wu et al., 2021), we categorize texts as advertising 318

or non-advertising by focusing on promotional con- 319

tent and product placement. Yuan1.0’s methodol- 320

ogy, which targets coherent but redundant texts like 321

website descriptions, differs from our content and 322

style-based approach. Furthermore, while Yuan 323

1.0 has not disclosed their pre-training experiment 324

results, we have detailed ours in A.4.3. 325

3.3 Baselines 326

We compare advertisement classifier with several 327

baselines. The comparative experiments are con- 328

ducted under the same sequence of data points. 329

None-Filter: This means using all data points 330

during the training process. 331

Wikipedia and Web Classifier: This method uti- 332

lizes a binary classifier to distinguish between high- 333

quality, knowledge-rich content from Wikipedia 334
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Figure 4: Pipeline of Data Labeling BERT Classifier Training

and lower-quality text extracted from the Com-335

mon Crawl dataset (Brown et al., 2020; Chowdhery336

et al., 2023; Touvron et al., 2023). We provide337

more details in Appendix A.1.5338

Loss Filter: This filtering technique employs pre-339

trained models to compute the perplexity of texts340

across the dataset and then uses perplexity to filter341

data (Marion et al., 2023; Xia et al., 2023). We342

provide more details in Appendix A.1.4343

LESS: LESS (Xia et al., 2024) selects training344

samples that have a significant impact on valida-345

tion data points. Due to the high computational cost346

associated with LESS, the size of the pretraining347

dataset and the scale of the pretraining model are re-348

duced to manage expenses. Essential comparative349

experiments are conducted to compare LESS and350

advertisement classifier. We provide more details351

in Appendix A.1.6352

4 Experiments353

4.1 Training Details354

Our pretrain experiments are conducted with the355

RefinedWeb dataset (Penedo et al., 2023), which356

uses advanced rule-based filtering and deduplica-357

tion methods, without any secondary classifier-358

based filtering. In this way, we are able to im-359

plement detailed ablation studies, comparing the360

impacts of various filtering methods. and SFT ex-361

periments are with Flan Collection (Longpre et al.,362

2023). In our experiment, we train decoder-only363

Transformer from scratch only once for each ex-364

periment due to constraints of training costs. We365

provide full details of pre-training and SFT hyper- 366

parameters in Appendix A.2.1 and A.2.2. Mean- 367

while, we estimate computational costs in A.2.3. 368

4.2 Evaluation Metrics 369

We consider two key metrics for evaluation: val- 370

idation set PPL and downstream benchmark met- 371

rics, with a detailed correlation analysis in Section 372

A.3.1. 373

Validation Set Perplexity To evaluate the 374

model’s impact on downstream tasks, we utilize 375

three distinct validation datasets, with each catering 376

to different domains, to offer an early performance 377

assessment for models with 100M parameters. De- 378

tailed descriptions are available in Section A.2.4. 379

Downstream Benchmark Metrics We select 10 380

tasks across five categories to gauge our model’s 381

effectiveness on downstream tasks: text completion 382

(Mostafazadeh et al., 2017), reading comprehen- 383

sion (Lai et al., 2017), common-sense question 384

answering (Zellers et al., 2019; Bisk et al., 2020; 385

ai2, 2019; Mihaylov et al., 2018), factual question 386

answering (Kwiatkowski et al., 2019; Joshi et al., 387

2017), and examination(Hendrycks et al., 2020). 388

An overview of these tasks is presented in A.2.5. 389

5 Result 390

100M LLM can reliably predict the utility of 391

pretraining corpora for larger models. We quan- 392

titatively assess the correlation between the proxy 393

metric (validation set PPL) of the 100M model and 394

the downstream task metrics of the 3B SFT model 395

with a three-phase correlation analysis. 396
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Phase 1: Figure 5 shows a high correlation in397

PPL between the 100M and 1B models across most398

validation sets with exceptions noted in specific399

datasets such as RACE-middle and TrivialQA.400

Phase 2: From Figure 6, the PPL of the 1B and401

3B models show a significant correlation across402

most validation datasets with exceptions noted in403

specific datasets such as RACE-middle and Triv-404

ialQA.405

Phase 3: From Figure 7, lower PPL in different406

3B models on the validation sets correlates with407

higher downstream task metrics.408

More detailed analysis and more figures can be409

seen in Section A.3.410
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Using 100M small surrogate model evaluation411

mechanism, we can dramatically reduce the iter-412

ation cycles of determining optimal thresholds413

and retention for different data filtering strate-414

gies.415

Table 1 shows the partial order ranking of val- 416

idation sets at 100M model and 100B token bud- 417

get with different loss thresholds. Synthesizing 418

these results, we discern a notable decrease in PPL 419

(indicating improved performance) on HellaSwag 420

for PPL@loss middle 50%, a marked increase (in- 421

dicating decreased performance) on MMLU and 422

Wikipedia-en, and a relatively lower PPL (indi- 423

cating better performance) on Tiny Story. After 424

comprehensive consideration, we selected the loss 425

middle 50% threshold, which corresponds to a data 426

remaining ratio of 53.9%. More detailed analysis 427

can be seen in Appendix A.4.1. 428

Table 2 shows the partial order ranking of these 429

validation sets at 100M model and 100B token bud- 430

get with different Wikipedia classifier thresholds. 431

Synthesizing these findings, we note a significant 432

reduction in PPL (indicating performance improve- 433

ment) at PPL@thresh0.075 for MMLU and Pile- 434

Wikipedia. For HellaSwag, there is an increase 435

in PPL (indicating worse performance, likely due 436

to the loss of relevant data). In the case of Tiny 437

Story, a PPL@thresh0.25 increases perplexity com- 438

pared to no filtering, but PPL@thresh0.075 and 439

PPL@thresh0.0255 initially reduce PPL, aligning 440

with unfiltered data. This pattern underscores the 441

nuanced effect of data filtering on text generation 442

fluency. After comprehensive consideration, we se- 443

lected a threshold of 0.075, with a data remaining 444

ratio of 63.4%. More detailed analysis can be seen 445

in Appendix A.4.2. 446

Table 3 shows the partial order ranking of 447

these validation sets at 100M model and 100B 448

token budget with different ad classifier thresh- 449

olds. PPL@threshold 0.95 experiences a signif- 450

icant increase on HellaSwag, indicating a decline 451

in performance. Conversely, PPL@threshold 0.9 452

maintains a relatively lower score on MMLU, Tiny 453

Story, and Pile-wikipedia-en, which suggests bet- 454

ter performance. Moreover, the performance of 455

PPL@threshold 0.9 on HellaSwag shows negligi- 456

ble differences when compared to other thresholds. 457

Consequently, we have selected a threshold of 0.9, 458

with the data retention rate being 64.1%. More 459

detailed analysis can be seen in Appendix A.4.3. 460

Ad Classifier yields superior performance on 461

most tasks when compared to other methods, 462

especially in knowledge-intensive benchmark 463

MMLU. In other benchmarks, this method also 464

shows commendable results.. 465

We evaluate the performance of these filtering 466

methods, including none filter, loss filter, wikipedia 467
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None-filtered loss middle 50% loss middle 30%

MMLU 0 1 2
HellaSwag 2 0 1
Tiny Story 2 1 0

Pile-wikipedia 0 1 2

Table 1: Validation Perplexities Partial Order Ranking
of Different Loss Thresholds at 100B token.(0 means
lowerest ppl and 2 means largeest ppl.)

None-filtered Threshold 0.025 Threshold 0.075 Threshold 0.25

MMLU 3 1 0 2
HellaSwag 0 1 2 3
Tiny Story 0 0 0 3

Pile-wikipedia 3 2 1 0

Table 2: Validation Perplexities Partial Order Ranking
of Different Wikipedia and Web Thresholds at 100B
token. (0 means lowerest ppl and 2 means largeest ppl.
Same order will show lower order rank)

classifier, and ad filter, across different model sizes468

(100M, 1B, and 3B models), with a particular focus469

on their impact on downstream tasks. The results470

(validation perplexities partial order ranking of Ta-471

ble 4 and Table 5, downstream benchmark metrcis472

of Table 7 indicate that ad filter consistently im-473

proves performance across most tasks, especially474

in knowledge-intensive tasks such as the MMLU475

benchmark. In contrast, loss filter shows moderate476

performance in knowledge tasks, while wikipedia477

classifier exhibited negative impacts in benchmarks478

focused on common sense benchmarks. More de-479

tailed analysis and more figures can be seen in480

Appendix A.4.4 and Appendix A.4.5.481

Limited by computational costs, we conduct a fo-482

cused comparison on RefinedWeb 200B token new483

shuffle subset, comparing none-filter, ad classifier,484

and LESS in terms of perplexity rankings at 100M485

and 1B model scales. From perplexity curves (Fig-486

ure 8), ad filter is generally lower than LESS across487

most validation sets, except on the Hellaswag val-488

idation set. From Figure 17, Although ad filter489

exhibits a higher PPL on Hellaswag compared to490

other methods, the impact on downstream task per-491

formance (Table 7) is minimal. Since LESS re-492

quires pre-prepared validation sets for calculating493

influence scores, it may introduce the risk of over-494

fitting downstream tasks. In contrast, the adver-495

None-filtered Threshold 0.4 Threshold 0.6 Threshold 0.8 Threshold 0.9 Threshold 0.95

MMLU 5 4 2 2 1 0
HellaSwag 1 1 0 3 3 5
Tiny Story 5 3 3 2 0 0

Pile-wikipedia 5 3 3 1 1 0

Table 3: Validation Perplexities Partial Order Ranking
of Different Ad Thresholds at 100B token.(0 means
lowerest ppl and 2 means largeest ppl. same order will
show lower order rank)

None-filtered Ad 0.9 Wikipedia 0.075 Loss 50%
100M/1B 100M/1B 100M/1B 100M/1B

MMLU 2/2 0/1 0/0 3/3
HellaSwag 1/1 2/2 3/3 0/0

RACE-High 3/2 0/0 2/2 1/0
RACE-middle 3/3 0/0 2/1 1/1

TivialQA 2/3 0/0 1/1 3/2
StoryCloze 2/3 1/1 3/1 0/0
Tiny Story 2/3 0/0 3/1 1/2

Pile-Wikipedia 2/2 1/0 0/0 3/3

Table 4: Validation Perplexities Partial Order Ranking
of Different Data Selection Methods with 100M/1B
model. (0 means the lowest ppl, and 2 means the largest
ppl. The same order will show a lower order rank)

None-filtered Ad 0.9 Wikipedia 0.075 Loss 50%

MMLU 3 0 1 2
HellaSwag 1 2 3 0

RACE-High 3 0 0 2
RACE-middle 3 0 0 2

TivialQA 3 0 1 2
StoryCloze 3 0 2 1

Table 5: Downstream Metric Partial Order Ranking
of Different Data Selection Methods with 3B model
(0 means highest metric and 2 means lowerest metric.
Same order will show lower order rank)

tisement classifier is constructed without using any 496

validation set information, making it a more univer- 497

sally pre-training data filtering approach. 498

5.1 Analysis of Data Remaining Ratios for 499

Different Data Filtering Methods 500

We evaluate the data retention ratios of various fil- 501

tering strategies on validation sets as an indirect 502

measure of their influence on downstream tasks. 503

Despite the validation set partly originating from 504

downstream instruction tasks, which diverge in for- 505

mat from our pre-training corpus, we consider these 506

tasks as domain-specific corpus material. Conse- 507

quently, we propose that the varying data remaining 508

ratios across domains within our validation set can 509

provide insights into the impacts of data filtering 510

strategies on these domains. Furthermore, com- 511

paring data retention ratios for different strategies 512

within the same validation set domain can yield 513

relative effectiveness insights. 514

As shown in Table (6), the loss filtering method 515

results in a reduced data remaining ratio on the 516

MMLU, indicating potential negative impacts on 517

the MMLU benchmark. This observation aligns 518

with the finding that loss filtering falls short of 519

Wiki threshold loss middle Ad threshold
0.075 50% 0.9

Pile-Wikipedia 68.8% 17.5% 98.3%
StoryCloze 0.1% 63.2% 98.9%
RACE-High 67.6% 75.9% 74.5%

RACE-Middle 45.5% 70.8% 88.4%
HellaSwag 0.3% 52.2% 95.2%
TriviaQA 0.1% 7.2% 99.5%
MMLU 82.7% 11.1% 94.4%

Tiny Story 33.0% 5.0% 99.6%

Table 6: Data Remaining Rates for Different Data Fil-
tering Schemes on Downstream Validation Sets of Dif-
ferent Domains
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Data Remaining
Reading Comprehension Exam Factual QA Text Completion Common-Sense QA

RACE-High | RACE-middle MMLU Natural Question | TriviaQA StoryCloze HellaSwag | PIQA | WinoGrande | OpenBookQA

No Pruning 100% 29.33 | 32.38 29.71 11.19 | 30.61 75.15 64.75 | 77.15 | 57.93 | 22
Loss middle 50% 53.9% 31.13 | 36.84 30.63 9.56 | 31.65 75.73 66.3 | 77.31 | 59.67 | 29
Wikipedia threshold 0.075 63.4% 37.62 | 41.57 33.41 12.35 | 33.41 75.36 62.17 | 75.19 | 58.41 | 30
Ad threshold 0.9 64.1% 40.08 | 45.82 35.35 12.08 | 33.8 76.06 64.2 | 76.71 | 59.35 | 27.8

Table 7: The downstream metric of each data selection method, including Reading Comprehension, Exam, and
Factual QA, with 3B models pretrained with 300 billion tokens. Underlined results surpass the baseline performance
with no pruning. The best results for each task are marked in bold.

other strategies in the 3B SFT-enhanced MMLU520

context. Similarly, the Wikipedia filtering strategy,521

with its lower data retention ratio on HellaSwag,522

suggests a detrimental effect on the common sense523

benchmark, corroborating its underperformance in524

post-3B SFT HellaSwag evaluations. Interestingly,525

the ad filtering strategy consistently exhibits high526

data remaining ratios across the validation set, an527

outcome achieved without incorporating any infor-528

mation from the validation set.529
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Figure 8: Validation Perplexities Comparison Between
100M & 1B Models between ad filter and LESS

5.2 Analysis about Potential Confounding530

Factors531

We provide data metric visualizations to further532

analyze potential confounding factors:533

1. Does the removal of advertisements af-534

fect the distribution of data retention lengths,535

thereby influencing model performance?536

We visualized the length distribution (in bytes537

per sample) of data retained with ad filter threshold538

of 0.9 compared to the distribution with none-filter539

in Figure 18. It is evident that there is no significant540

change in the distribution of data lengths before and541

after filtering. This observation effectively rules542

out the possibility that the length distribution of the543

data serves as a confounding factor. 544

2. Does ad removal impact the distribution of 545

data across different thematic domains, thereby 546

influencing model performance? 547

We perform k-means clustering on the whole 548

dataset, thereby generating 15,000 clusters. All 549

data are assigned to the nearest cluster based on the 550

nearest neighbor distance. We then randomly se- 551

lect 100 samples from each centroid and subjected 552

them to ad classification scoring by LLAMA2-chat, 553

yielding an average ad score for each cluster. Sub- 554

sequently, we calculated the proportion of data re- 555

duction after applying the ad filter threshold of 0.9 556

for each cluster. We then assessed the consistency 557

between the average ad scores of all clusters and 558

the proportion of data reduction post-filtering. 559

The results revealed a Pearson Correlation Coef- 560

ficient of 0.878 and a Spearman Correlation Coeffi- 561

cient of 0.876, indicating that advertisement filter- 562

ing indeed affects the distribution of data across dif- 563

ferent thematic domains. Clusters more closely re- 564

lated to advertisement themes experienced greater 565

data reduction. This finding intuitively validates 566

our proposed advertisement data filtering approach, 567

confirming that it effectively employs the factor of 568

advertisement content to refine the dataset, thereby 569

enhancing model performance. 570

6 Conclusion 571

Our research demonstrates that using loss metrics 572

for selecting pretraining data can negatively impact 573

performance on complex, knowledge-intensive 574

tasks like MMLU. We improve data quality for 575

LLM pre-training by implementing a specialized ad 576

classifier to eliminate low-information content, en- 577

hancing model performance across various bench- 578

marks. Additionally, we introduced a cost-effective 579

and efficient evaluation method by using a smaller 580

LLM as a proxy to forecast the success of larger 581

models. This approach has significantly reduced 582

resource costs by 92.7%, enabling rapid iterations 583

in data selection strategies and offering a scalable, 584

practical solution for future LLM development. 585
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Limitations586

Small models to predict the reasoning ability of587

large models: The reasoning ability of existing588

LLMs emerges under certain conditions, such as589

model size, high-quality mixed data, and a certain590

computational budget. We do not have the time to591

explore whether it is possible to use smaller mod-592

els on web datasets with appropriate proxy indica-593

tors to reflect the reasoning ability of a medium-594

sized model. There is no consensus yet on the595

origins of the reasoning mechanism produced by596

LLMs. If the changes in reasoning ability could597

be reflected through proxy indicators on smaller598

models, it would greatly aid in understanding the599

origins of reasoning abilities.600

Ad filtering in conjunction with other filtering601

solutions: Ad filtering is about removing corpora602

with advertising content. Although loss filtering603

may discard knowledgeable content, it can still604

eliminate a lot of incoherent corpora. What kind605

of integrated scheme could complement the advan-606

tages of multiple filtering solutions? Limited by607

time and cost, we have not explored the integration608

of multiple existing filtering solutions in this work.609

7 Ethics Statement610

7.1 Data Collection611

All the datasets we use in our work are from pub-612

licly available resources (RefinedWeb). And we613

will open part of quality scores of this dataset. The614

data License will follow RefineWeb.615

7.2 Human Labeling616

For the BERT advertisement classifier, we curate a617

dataset of 40,000 samples from RefinedWeb, which618

are then labeled as either advertisement (ad) or non-619

advertisement (non-ad) by annotators. Because the620

annotators are formal employees of the company621

and are subject to confidentiality requirements re-622

garding their remuneration, it is not possible to623

provide information on average salaries to the out-624

side. The form and instructions presented to human625

evaluators are shown in Figure 14.626
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A Appendix 850

A.1 Method Details 851

A.1.1 Small Surrogate Model Evaluation 852

Mechanism Details 853

Here, we show the terms involved in Figure 3. 854

Data Selection Model: The term refers to a 855

model used to filter pre-trained data, which will 856

produce data selection metrics used to filter the 857

data. The ordering of these metric values can filter 858

out the required subset of data. 859

Surrogate Model: This term refers to a surro- 860

gate model utilized to validate the effects of pre- 861

training on larger-scale models. The expectation is 862

that the pretraining outcomes on the proxy model 863

will provide early insights into the performance of 864

larger models, thereby significantly reducing the 865

computational cost associated with hyperparameter 866

experiments for data selection strategies. In this 867

study, the proxy model is a 100M model. 868

Surrogate Indicator (Surrogate Metric): This is 869

a surrogate metric for assessing the pretraining per- 870

formance on the proxy model. The proxy indicator 871

on the proxy model can predict the target model’s 872

performance in downstream tasks. The proxy indi- 873

cator used in this study is PPL. 874

Target Model: This term refers to the pretrain- 875

ing model that is the focus of our evaluation. No- 876

tably, even when considering smaller-scale mod- 877

els, the application of SFT can significantly re- 878

veal the impact of data selection strategies and the 879

model’s higher-order capabilities in downstream 880

tasks. Meanwhile, due to computational resource 881

constraints, the target model in this study is speci- 882

fied as a 3B model post-SFT. 883

Downstream Metrics: These metrics assess the 884

target model’s capabilities across various down- 885

stream tasks. The tasks encompass 10 different 886

types, with specific descriptions provided in A.2.5. 887

Bridge Model: This is an intermediary model 888

introduced to enhance the robustness of the tran- 889

sition from the proxy model’s proxy indicator to 890

the target model’s downstrea metrics. The rationale 891

for introducing a bridge model is the prohibitively 892

high experimental cost of the target model, which 893

precludes exhaustive ablation studies. Hence, the 894

bridge model is employed to conduct as many hy- 895

perparameter experiments as computationally fea- 896

sible to increase the robustness of the correlation 897

analysis. In this study, the bridge model is a 1B 898

model. 899
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Figure 9: Small Surrogate Model Evaluation Mechanism vs Deep learning Core-set selection

A.1.2 Ad Classifier900

When evaluating the effectiveness of our BERT901

classifier, we employ a bootstrap method, sampling902

1000 times, with each time randomly selecting 50%903

of the data to calculate precision and recall values904

at different thresholds. The Precision-Recall curve905

for BERT training, complete with confidence in-906

tervals, is shown in Figure 15, demonstrating our907

classifier’s effectiveness in identifying ads, closely908

mirroring human judgment.909

Furthermore, we try different thresholds(0.4, 0.6,910

0.8, 0.9 and 0.95) for our BERT advertising clas-911

sifier, which outputs a probability of a text being912

non-ad data. Not only do we include data remain-913

ing ratios under these thresholds in Table (8), but914

we also take the precisions and recalls of ad and915

non-ad prediction into account so that we can make916

the best choice for the threshold of ad classifica-917

tion. Detailed experiment result can be found in918

Appendix A.4.3919

A.1.3 Ad classifier Construction Process920

In this section we will explain in detail the process921

of building the advertisement classifier in Figure 4.922

1. Data Sampling923

The core challenge in the data sampling924

phase is how to select a representative set of 925

advertisement/non-advertisement datasets. With- 926

out broad sampling, it’s easy to fall into the pit- 927

fall of out-of-distribution. There are many the- 928

matic sampling schemes available, ranging from 929

traditional NLP techniques like LDA ((Blei et al., 930

2003)) for unsupervised topic analysis to unsuper- 931

vised clustering techniques. After completing the 932

theme mining of the pre-training dataset, sampling 933

a batch of samples for each theme can accomplish 934

representative sample sampling. 935

2. Human Labeling 936

The human labeling operation is divided into 937

two steps: manual labeling (by annotators) and 938

secondary audit detection. 939

2.1. Manual Labeling 940

Firstly, we establish the categories of adver- 941

tisements and preliminary identification standards 942

through experts, specifically divided into insert ad- 943

vertisements, full-text marketing advertisements, 944

and soft advertisements. Secondly, to align anno- 945

tators’ perception of advertisements, we deliver a 946

small amount of advertisement data for trial annota- 947

tion. After reviewing the results, we find significant 948

differences in annotators’ perception of soft adver- 949

tisements, whose definition is indeed vague. There- 950
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Threshold Non-ad Precision Non-ad Recall Ad Precision Ad Recall Data Remaining
0 71.4% 100.0% – 0.0% 100%

0.4 80.0% 96.6% 82.1% 39.7% 88.7%
0.6 86.2% 94.5% 81.8% 62.1% 82.9%
0.8 89.7% 89.7% 74.1% 74.1% 73%
0.9 91.9% 86.2% 70.2% 81.0% 64.1%
0.95 95.1% 80.0% 64.2% 89.7% 55.2%

Table 8: Data Remaining Ratio, Precision and Recall Under Different Non-ad Probability Thresholds

fore, although we require the annotation of soft ad-951

vertisements, in actual training, soft advertisements952

are classified as normal samples to avoid classifier953

confusion due to unclear standards. Thirdly, to im-954

prove annotators’ efficiency, we also provide an955

auxiliary labeling feature based on the open-source956

large model LLAMA2-chat to help annotators bet-957

ter understand the standards of advertisements and958

enhance the annotation effect. Finally, after align-959

ing the annotators’ perception of advertisements,960

the annotators begin bulk manual annotation.961

2.2. Secondary Audit962

Auditors are responsible for batch sampling qual-963

ity audits of manually labeled data, sending back964

batches that do not meet standards and re-labeling,965

at the meanwhile increasing the frequency of data966

review for that annotator. The audit continues until967

the rejection rate drops below a certain threshold.968

3. BERT Fine-tuning969

At this step, we obtain a certain amount of pos-970

itive and negative sample data (each about 10w);971

we divide it into a training set and a validation set972

(same distribution); the test set is specially selected973

during the labeling process, consisting of represen-974

tative advertisement and non-advertisement data975

(each about 1k); Then We train a BERT classifier976

using manually annotated data with non-ad text to977

be labeled 1 and ad text to be labeled 0.978

4. Data quality review979

In this step, we apply the high-quality classi-980

fier obtained from training to the large-scale pre-981

training data, obtaining large-scale scoring data982

through BERT scoring. Furthermore, we conduct983

quality checks on the data obtained from the large-984

scale data. The specific operations are as follows:985

We sample data within different scoring intervals,986

specifically dividing the classification into 5 buck-987

ets, each interval of 0.2 as one bucket, a total of988

5 buckets, and perform bucket inspection. During989

bucket inspection, we prioritize providing diverse990

samples based on thematic information for audi-991

tors to review. When the volume of data that does992

not meet the audit standards reaches a certain level 993

within a bucket under a certain theme, we will redi- 994

rect the relevant data in this bucket back to the 995

annotators for labeling, add it to the classifier’s 996

training after completing the labeling process, and 997

repeat this process until the inspection is qualified, 998

finally obtaining a high-quality advertisement clas- 999

sifier for the final bulk scoring. This data review 1000

process can also be further optimized based on the 1001

idea of active learning. 1002

5. Bert model evaluation 1003

we apply the trained BERT on another batch 1004

of manually annotated data for ad classification to 1005

validate the effectiveness of our classifier, where we 1006

reach the average precision of 96.63% for non-ad 1007

classification and 80.66% for ad classification. The 1008

resulting Precision-Recall curve with confidence 1009

intervals and data remaining ratios under different 1010

thresholds are shown in A.1.2. 1011

6. Scoring Classification 1012

After the manual review is completed, the final 1013

version of the advertisement classifier is applied to 1014

the RefinedWeb dataset to obtain the advertisement 1015

score for each sample, which is used for subsequent 1016

steps. 1017

A.1.4 Loss Filter 1018

This method leverages pre-trained models to com- 1019

pute perplexity for the entire dataset. It is indicated 1020

that employing moderate perplexity thresholds for 1021

data filtering can enhance training efficiency (Mar- 1022

ion et al., 2023; Xia et al., 2023), a hypothesis we 1023

will explore in depth. 1024

We utilize LLaMA2-7B for dataset scoring and 1025

adopted a strategy of remaining mid-range data for 1026

comparative experiments (Marion et al., 2023). We 1027

evaluate the effects of no filtering, remaining the 1028

middle 50% of all data based on loss ranking, and 1029

retaining the middle 30% of all data based on loss 1030

ranking. The respective data remaining ratios for 1031

no pruning, loss middle 50%, and loss middle 30% 1032

are 100%, 53.9%, and 32%. Detailed experiment 1033
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result can be found in Appendix A.4.11034

A.1.5 Wikipedia and Web Classifier1035

Contrasting with the ad filter, this strategy em-1036

ploys a binary classifier to separate high-quality,1037

knowledge-rich text (e.g., Wikipedia) from low-1038

quality Common Crawl data (Brown et al., 2020;1039

Chowdhery et al., 2023; Touvron et al., 2023). De-1040

spite superficial similarities to the ad filter, this1041

method focuses on the automatic segregation of1042

text corpora, aiming to enhance data quality for1043

pre-training. However, defining clear-cut divisions1044

between these text types presents significant chal-1045

lenges and may inadvertently introduce biases.1046

We employ a quality classifier trained with Red-1047

Pajama1. Although a threshold of 0.25 is recom-1048

mended to filter out low-quality data, we compare1049

the experimental effects of four sets of thresholds1050

(0, 0.025, 0.075, 0.25). The data remaining rates1051

of no pruning, threshold 0.025, threshold 0.075,1052

and threshold 0.25 are 100%, 78.6%, 63.4%, and1053

42%. We will delve into a detailed analysis of these1054

biases in subsequent Section A.4.2.1055

A.1.6 LESS Details1056

We utilize the open-source code from LESS2 to1057

filter our pretraining data. Although LESS is orig-1058

inally designed for filtering data for instruction1059

tuning, its methodology can be straightforwardly1060

adapted for pretraining data selection without sig-1061

nificant modifications.1062

We adhere to the training hyperparameters estab-1063

lished by LESS, with the only modification being1064

the substitution of the training data with the pre-1065

training data from RefinedWeb. We follow the1066

LESS framework, conducting training on 8 GPUs1067

for 4 epochs, processing a total of 1 billion tokens1068

of pre-train data and producing a LORA LLAMA-1069

7B model. Due to the high cost associated with1070

gradient computation, we restrict our use of the1071

influence score calculation to the checkpoint from1072

the final epoch only.1073

On the pre-training dataset side, we choose a1074

subset of 200 billion tokens from RefinedWeb. We1075

set a retention rate of 49.3%, thus filtering out 1001076

billion tokens of pretraining data for experimental1077

comparison. This retention rate is notably close1078

to that used in an advertising filtering scenario,1079

where a retention rate of 60% is typical under a1080

1https://github.com/togethercomputer/
RedPajama-Data

2https://github.com/princeton-nlp/LESS

0.9 filtering threshold, ensuring that the volumes of 1081

data retained in both cases are comparably similar. 1082

For validation, we select development sets from 1083

various benchmarks, including HellaSwag, MMLU, 1084

Pile-Wikipedia, RACE-High, StoryCloze, and Tiny 1085

Story. It is important to note that these develop- 1086

ment sets are distinct from the test sets used in 1087

downstream benchmarks. From each validation 1088

set, we independently select the top 12% of data 1089

that had the highest impact on classification, which 1090

collectively accounted for 49.3% of the data. 1091

A.2 Experimental Setup Details 1092

A.2.1 Hyperparameters for Pre-training 1093

All models in our experiments use the SwiGLU 1094

activation function, similar to LLaMA. We use the 1095

Adam optimizer [26] with hyperparameters set to 1096

β1 = 0.9, β2 = 0.95, ε = 10−8, and weight decay 1097

fixed at 0.01. Additionally, we implement gradient 1098

norm clipping with a threshold of 1.0. A cosine 1099

learning rate schedule is employed, ensuring that 1100

the final learning rate equals 10% of the maximal 1101

learning rate (3e-4). We maintain a global batch 1102

size of 4M and vary warm-up steps based on dif- 1103

ferent model sizes. To avoid the complications of 1104

insufficient training and the need for secondary ad- 1105

justments, the preset steps for all pre-training pro- 1106

cesses are configured to be sufficiently long. For 1107

all training parameters see Table (9). We conduct 1108

model training based on the InternEvo framework 1109

(Team, 2023). 1110

A.2.2 Hyperparameters for SFT 1111

During the SFT phase, we use a cosine learning 1112

rate schedule, such that the final learning rate (1e- 1113

5) is equal to 33.3% of the maximal learning rate 1114

(3e-5). Meanwhile, no warmup is used, and the 1115

number of training steps is set to 328 (1 epoch). 1116

Other training parameters remain consistent with 1117

pre-training. 1118

A.2.3 Computation Cost Estimation 1119

In a series of pretraining experiments, models with 1120

varying parameter counts are evaluated for com- 1121

putational efficiency. For a model with 100M pa- 1122

rameters, processing 100B tokens necessitates ap- 1123

proximately 253 GPU hours. When the model 1124

size increased to 1B parameters, the same number 1125

of tokens required about 1388 GPU hours. Fur- 1126

ther scaling the model to 3B parameters, the to- 1127

ken processing demands roughly 3472 GPU hours. 1128
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params dimension n heads n layers sequence length warmup steps maximal learning rate preset maximal training tokens
100M 768 12 12 2048 2000 6e-4 377B

1B 2048 16 20 2048 2000 3e-4 377B
3B 3200 32 26 2048 2500 3e-4 1.1T

Table 9: Hyperparameters Setting for Pre-training Models of Different Sizes

Additionally, a 3B SFT model over 328 steps is1129

completed within an estimated 47 GPU hours1130

A.2.4 Validation Sets Details1131

To thoroughly assess the potential impact on down-1132

stream tasks, we have meticulously chosen three1133

unique validation datasets (pile validation sets,1134

downstream task validation sets, and synthetic vali-1135

dation set), each tailored to a specific domain.1136

• Pile validation sets (Gao et al., 2020),1137

including Pile-arXiv, Pile-books, Pile-1138

OpenWebText2, and Pile-Wikipedia. These1139

subsets are used to test the model’s language1140

modeling capabilities across a variety of1141

knowledge-intensive tasks:1142

• Downstream task validation sets, which sim-1143

ply join prompt with a right answer from1144

downstream benchmarks (see 4.2). These val-1145

idation sets are designed to evaluate the lan-1146

guage modeling capabilities across a variety1147

of downstream benchmarks.1148

• Synthetic data validation set, including the1149

Tiny-Story dataset (Eldan and Li, 2023). This1150

type of validation set is primarily designed to1151

assess a model’s language modeling capabil-1152

ities on synthetic texts characterized by high1153

fluidity.1154

A.2.5 Downstream Tasks Details1155

Here, we provide a detailed description of 10 dif-1156

ferent downstream tasks in Table (10), providing1157

insights into our model’s performance in diverse1158

linguistic contexts. We use OpenCompass (Con-1159

tributors, 2023) framework to evaluate downstream1160

tasks.1161

Categories Datasets Metric

Text Completion StoryCloze Acc.

Reading Comprehension RACE-high Acc.
RACE-middle

Common-Sense QA HellaSwag Acc.
PIQA

WinoGrande
OpenBookQA

Factual QA NaturalQuestion EM
TriviaQA

Examination MMLU Acc.

Table 10: Downstream Benchmarks

A.3 Proxy Metric Ranking Correlation on All 1162

Validation Sets 1163

Here we present the ranking correlations of proxy 1164

metrics on all validation sets, including 100M pre- 1165

trained model vs. 1B pre-trained model and also 1166

1B pre-trained model vs. 3B pre-trained model. 1167

A.3.1 Correlation Analysis of Proxy and 1168

Downstream Metrics 1169

This study quantitatively assesses the correlation 1170

between the proxy metric (validation set PPL) of 1171

the 100M model and the downstream task metrics 1172

of the 3B SFT model. The evaluation employs a 1173

three-stage correlation analysis, using a 1B model 1174

as a bridge to handle the significant increase in 1175

training costs and improve the correlation calcula- 1176

tion’s reliability (detailed analysis see Appendix 1177

A.3.2). The ranking correlation is quantified us- 1178

ing Pearson and Spearman Correlation coefficients, 1179

with each of them corresponding to "P" and "S" in 1180

the figures respectively. Correlation values closer 1181

to 1 indicate a higher-ranking correlation. 1182

In the first phase, our study commences with 1183

the analysis of 14 sets of experiments, focusing 1184

on proxy metrics for models with 100M and 1B 1185

parameters, resulting in 91 paired experiments over 1186

11 validation sets. To counter early training insta- 1187

bility, we utilize PPL values from models trained 1188

with 100B tokens as the proxy metric. As demon- 1189

strated in Figure 5, there’s a high correlation in 1190

PPL between the 100M and 1B models across most 1191

validation sets, with exceptions noted in specific 1192
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datasets such as RACE-middle and TrivialQA. Gen-1193

erally, smaller models can predict the PPL of larger1194

models accurately, although discrepancies in cor-1195

relation coefficients are observed. Nonetheless,1196

a clear trend is evident: an increase in PPL dif-1197

ferences among smaller models tends to predict1198

similar trends in larger models. Further correla-1199

tion details across validation sets are presented in1200

section A.3.1201

In the second phase, we conduct experiments1202

with 7 sets of data filtering hyperparameters, each1203

comprising proxy indicators for both 1B and 3B1204

models. We calculate the PPL difference between1205

each paired hyperparameter set, resulting in 21 ex-1206

perimental pairings on each of the seven validation1207

sets. Considering potential early training instability,1208

we use PPL values at the 100-billion token training1209

mark as our metric. As illustrated in Figure 6, the1210

PPL of the 1B and 3B models show a significant1211

correlation across most validation datasets, with a1212

lower correlation on RACE-middle and TrivialQA1213

datasets, consistent with the first phase, More fig-1214

ures depicting the correlation on different valida-1215

tion sets can be seen in section A.3.1216

The final phase involves experiments with 7 sets1217

of data filtering hyperparameters, each contain-1218

ing 3B proxy indicators and corresponding down-1219

stream evaluation metrics. As depicted in Figure1220

7, A Correlation value approaching -1 indicates a1221

strong negative correlation, suggesting that lower1222

PPL in different 3B models on the validation sets1223

correlates with higher downstream task metrics.1224

For most tasks, PPL can effectively predict the per-1225

formance of larger models on downstream tasks.1226

Some tasks exhibit greater variance in downstream1227

performance, resulting in a lower correlation coeffi-1228

cient. Nonetheless, the graph still reveals a distinct1229

trend: as the PPL decreases, there is a gradual im-1230

provement in the performance of downstream tasks.1231

Detailed analysis can be seen in Appendix A.3.5.1232

Summarizing the previous analysis, using a1233

100M parameter LLM can serve as a reliable indi-1234

cator for the effectiveness of pretraining corpora1235

when applied to larger models.1236

A.3.2 Reason for using 1B bridge model1237

In an ideal scenario where computational costs1238

are not a constraint, our target model could the-1239

oretically be as large as 7B, 10B, or even larger.1240

However, taking into account both the computa-1241

tional resource limitations and the ability to mani-1242

fest the model’s higher-order capabilities, we have1243

set the target model size at 3B parameters. We 1244

could directly analyze the correlation of metrics 1245

from models ranging from 100M to 3B parameters, 1246

but considering that training a single 3B model on 1247

100B tokens requires approximately 3,472 GPU 1248

hours, which translates to a cost of about $6,944 to 1249

$17,360 based on current market GPU rates (Cur- 1250

rent market rates for A100 80GB GPUs vary be- 1251

tween $ 2-5 / hour per gpu), the number of data 1252

points available for correlation analysis would be 1253

significantly reduced due to these computational 1254

cost constraints. 1255

To ensure the robustness of our correlation met- 1256

ric analysis, we have selected a bridge model of 1257

1B parameters that can be trained on 100B tokens 1258

at the cost of 1,388 GPU hours as a more feasible 1259

option. This allows us to increase the number of 1260

data point sets from 100M to 1B parameters to 14 1261

sets of comparative experiments, thereby enhanc- 1262

ing the reliability of our correlation analysis. Con- 1263

currently, the number of data point sets from 1B 1264

to 3B parameters is reduced to 7 sets of compara- 1265

tive experiments. However, to ensure the reliability 1266

of the metrics, we have added more checkpoint 1267

evaluations for these larger models. 1268

We believe that under the same computational 1269

budget, conducting a greater number of experi- 1270

ments with varying hyperparameters on smaller 1271

models contributes more to the robustness of the 1272

correlation analysis than conducting fewer experi- 1273

ments on larger models. 1274

A.3.3 100M Pre-trained vs. 1B Pre-trained 1275

The data presented in Figure 10 show a general 1276

trend where a lower PPL in the 100M model on the 1277

validation set leads to lower PPL in the correspond- 1278

ing 1B model. 1279

A.3.4 1B Pre-trained vs. 3B Pre-trained 1280

The data presented in Figure 11 show a general 1281

trend where a lower PPL in the 1B model on the 1282

validation set leads to lower PPL in the correspond- 1283

ing 3B model. 1284

A.3.5 3B Pre-trained PPL vs. 3B SFT Metric 1285

Specifically, to address the significant variance in 1286

downstream task performance, we enhance robust- 1287

ness by evaluating multiple checkpoints for the 1288

same experiment, with training steps ranging from 1289

200 to 300 billion tokens, across 25 groups. So 1290

these hyperparameters are paired to compare the 1291

PPL differences in the 3B model against the dif- 1292

ferences in downstream metrics, resulting in 300 1293
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Figure 10: Validation Perplexity Difference Compari-
son Between 100M and 1B Model With "P" for Pearson
Correlation Coefficients and "S" for Spearman Correla-
tion Coeficients

0.0 0.5 1.0 1.5
0.0

0.5

1.0

P: 0.9806
S: 0.9545

HellaSwag

0.2 0.4 0.6

0.2

0.4

P: 0.9871
S: 0.9831

MMLU

0 1 2 3
0.0

0.5

1.0

1.5

P: 0.942
S: 0.9039

Pile-arxiv

0.0 0.2 0.4
0.0

0.2

0.4

P: 0.9396
S: 0.926

Pile-books3

0.0 0.2 0.4

0.0

0.1

0.2

0.3

P: 0.9103
S: 0.8649

Pile-openwebtext2

0.00 0.25 0.50 0.75
0.0

0.2

0.4

P: 0.9911
S: 0.9558

Pile-wikipedia-en

0.0 0.1 0.2

0.0

0.1

0.2

P: 0.7662
S: 0.7494

Tniy Story

0.00 0.05 0.10 0.15
0.1

0.0

0.1

0.2

0.3

P: 0.2215
S: 0.2

RACE-high

0.0 0.1 0.2 0.3
0.2

0.0

0.2

P: 0.3517
S: 0.3117

RACE-middle

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

P: 0.9697
S: 0.8429

StoryCloze

0 2
2

0

2

4

P: 0.2647
S: 0.3078

TriviaQA

3B
 M

od
el

 V
al

id
at

io
n 

Pe
rp

le
xi

ty
 D

iff
er

en
ce

1B Model Validation Perplexity Difference

Figure 11: Validation Perplexity Difference Compari-
son Between 1B and 3B Model With "P" for Pearson
Correlation Coefficients and "S" for Spearman Correla-
tion Coeficients

paired experiments on each of the seven validation 1294

sets. A value approaching -1 indicates a strong neg- 1295

ative correlation, suggesting that a smaller PPL in 1296

different 3B models on the validation set correlates 1297

with higher downstream task metrics. To further 1298

mitigate the issue of large variances, we adopt the 1299

DBSCAN method to filter out outliers, obtaining 1300

non-outlier Pearson and Spearman correlation coef- 1301

ficients. As depicted in Figure 7, a lower PPL in the 1302

3B model on the validation set corresponds to su- 1303

perior performance on downstream tasks. For most 1304

tasks, smaller models can effectively predict the 1305

performance of larger models on downstream tasks. 1306

Some tasks exhibit greater variance in downstream 1307

performance, resulting in a lower correlation coeffi- 1308

cient. Nonetheless, the graph still reveals a distinct 1309

trend: as the PPL decreases, the performance of 1310

downstream tasks improves gradually. 1311

A.4 Pretraining Efficacy of Different Data 1312

Filtering Methods 1313

In this section, we first determine the optimal 1314

thresholds and retention for different data filter- 1315

ing strategies based on the PPL performance of the 1316

100M Proxy model on validation sets while also 1317

providing comparison curves for the 1B model. 1318

Then, we will predict the performance of differ- 1319

ent filtering strategies on downstream tasks based 1320

on the PPL performance of the 100M model at the 1321

optimal thresholds. 1322

Finally, we will pre-train the 3B model using 1323

data selected under the optimal threshold and com- 1324

pare downstream performances with the predic- 1325

tions made by the 100M model to determine the 1326

effectiveness of different data filtering strategies. 1327

A.4.1 Loss Filtering Performace 1328

Our analysis of the impact of data selection strate- 1329

gies of loss filtering at 100M and 1B parameter 1330

scale reveals varied outcomes. Strategies include 1331

no filtering and retaining the central 50% and 30% 1332

of data by loss ranking (The efficacy of the ’loss 1333

middle’ data filtration strategy over ’loss bottom’ or 1334

’loss top’ has been corroborated by (Marion et al., 1335

2023), prompting us to exclusively compare the 1336

effects of two ’loss middle’ thresholds against the 1337

unfiltered data). 1338

Figure 12 presents the 100M, 1B model per- 1339

formance across multiple validation sets when 1340

pretraining with different tokens at various loss 1341

thresholds. We pay particular attention to the 1342

performance at the 100B token on tasks such as 1343
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MMLU (a knowledge-intensive task indicative of1344

the model’s higher-order knowledge), HellaSwag1345

(a common-sense task, reflective of the model’s1346

common-sense reasoning), Pile-Wikipedia (a com-1347

mon validation set for reflecting model’s breadth1348

of knowledge) and Tiny Story (a synthetic task,1349

representative of the model’s language modeling1350

capabilities). We summarize the partial order rank-1351

ing of these validation sets in Table 1.1352

Synthesizing these results, we discern a notable1353

decrease in PPL (indicating improved performance)1354

on HellaSwag for PPL@loss middle 50%, a marked1355

increase (indicating decreased performance) on1356

MMLU and Wikipedia-en, and a relatively lower1357

PPL (indicating better performance) on Tiny Story.1358

After comprehensive consideration, we selected the1359

loss middle 50% threshold, which corresponds to a1360

data remaining ratio of 53.9%.1361

A.4.2 Wikipedia Classifier Performace1362

we compare the experimental effects of four sets1363

of thresholds (0, 0.025, 0.075, 0.25). In Appendix1364

A.1.5, we explicated the data remaining ratios un-1365

der different thresholds and the threshold of 0.251366

already in use for other datasets (such as RedPa-1367

jama (Computer, 2023)).1368

Figure 13 presents the 100M & 1B model per-1369

formance across multiple validation sets when pre-1370

training with different tokens at various Wikipedia1371

thresholds. Similar to the analysis in the previous1372

section, we summary the partial order ranking of1373

these validation set in Table 2.1374

Synthesizing these findings, we note a significant1375

reduction in PPL (indicating performance improve-1376

ment) at PPL@thresh0.075 for MMLU and Pile-1377

Wikipedia. For HellaSwag, there is an increase1378

in PPL (indicating worse performance, likely due1379

to the loss of relevant data). In the case of Tiny1380

Story, a PPL@thresh0.25 increases perplexity com-1381

pared to no filtering, but PPL@thresh0.075 and1382

PPL@thresh0.0255 initially reduce PPL, aligning1383

with unfiltered data. This pattern underscores the1384

nuanced effect of data filtering on text generation1385

fluency. After comprehensive consideration, we se-1386

lected a threshold of 0.075, with a data remaining1387

ratio of 63.4%.1388

A.4.3 Ad Classifier Performance1389

Detailed ad bert classifier evaluation result is de-1390

picted in appendix A.1.3. Additionally, we explore1391

varying ad identification thresholds (0, 0.4, 0.6, 0.8,1392

0.9, and 0.95) to refine our model, training across1393

different scales: 100M, 1B, and 3B models, to opti- 1394

mize ad recognition capabilities. 1395

Figure 16 presents the 100M & 1B model per- 1396

formance across multiple validation sets when pre- 1397

training with different tokens at various ad thresh- 1398

olds. Similar to the analysis in the previous section, 1399

we summarize the partial order ranking of these 1400

validation sets in Table 3. 1401

PPL@threshold 0.95 experiences a significant 1402

increase on HellaSwag, indicating a decline in per- 1403

formance. Conversely, PPL@threshold 0.9 main- 1404

tains a relatively lower score on MMLU, Tiny 1405

Story, and Pile-wikipedia-en, which suggests bet- 1406

ter performance. Moreover, the performance of 1407

PPL@threshold 0.9 on HellaSwag shows negligi- 1408

ble differences when compared to other thresholds. 1409

Consequently, we have selected a threshold of 0.9, 1410

with the data retention rate being 53.9%. 1411

A.4.4 100M Model Performace Prediction 1412

This section is dedicated to a comparative analy- 1413

sis of the PPL rankings associated with the 100M 1414

model, employing various filtering strategies. The 1415

objective is to preemptively forecast the efficacy 1416

of distinct selection mechanisms when applied to 1417

downstream tasks in larger-scale models, using the 1418

smaller model as a predictive basis. 1419

We present a ranking of the PPL scores for differ- 1420

ent data filtering strategies at their optimal thresh- 1421

olds for the 100M model. Additionally, we provide 1422

the PPL ranking for the 1B model for comparison. 1423

Corresponding PPL curves can be seen in Figure 1424

17. Here we focus specifically on the results per- 1425

taining to the validation sets that are relevant to 1426

downstream tasks, as well as on the outcomes for 1427

the ’tiny story’ and ’pile-wikipedia’ datasets. 1428

Table 4 is the result of 100M and 1B model with 1429

100B tokens pretraining. 1430

Based on the results observed, the PPL ranking 1431

of the ad filter is significantly superior to both the 1432

Wikipedia classifier and the loss filter. For the high- 1433

order knowledge understanding task MMLU, the 1434

PPL for the ad filter and Wikipedia classifier is 1435

lower than the unfiltered baseline, indicating better 1436

performance, whereas the loss filter’s PPL is higher 1437

than the unfiltered baseline, indicating poorer per- 1438

formance. In the common sense reasoning task 1439

HellaSwag, the PPL for the ad filter is slightly 1440

higher than the unfiltered baseline, suggesting a 1441

marginal decrease in performance. Conversely, the 1442

Wikipedia classifier’s PPL is significantly higher 1443

than the unfiltered baseline, indicating a substantial 1444
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decrease in performance, while the loss filter’s PPL1445

is significantly lower, indicating improved perfor-1446

mance. These results are largely consistent with1447

the performance of the 3B model on downstream1448

tasks as reported in Table 7. Additionally, in the1449

following section, we will further analyze the con-1450

sistency of the PPL rankings between the 100M1451

and 1B models in conjunction with the 3B model’s1452

downstream task performance.1453

A.4.5 3B SFT Model Performance Evaluation1454

In this section, we employ the best-threshold data1455

filtering strategies to pre-train a 3B model, followed1456

by SFT to obtain performance metrics on down-1457

stream tasks. The outcomes are then compared1458

with the predicted downstream task performance1459

of the 100M model to ascertain the relative efficacy1460

of the different data filtering methods.1461

Based on the results presented in Table 7, we1462

have compiled a ranking of the effects of the vari-1463

ous filtering strategies across several tasks in Table1464

5.1465

Compare 3B performance sorting with the previ-1466

ous 100M/1B PPL sorting in Table 4 we observe1467

the following patterns:1468

- On the HellaSwag dataset, the performance1469

ranking is in perfect inverse correlation with the1470

PPL ranking of the 100M model.1471

- On the MMLU dataset, there is an overall in-1472

verse correlation between performance ranking and1473

the 100M PPL ranking, with the exception of the1474

non-filtered and loss middle 501475

- On the RACE-middle and RACE-high datasets,1476

performance rankings show overall consistency1477

with the inverse PPL rankings of both the 100M1478

and 1B models.1479

- On the TriviaQA dataset, the performance rank-1480

ing is overall consistent with the inverse PPL rank-1481

ing of the 100M model and perfectly consistent1482

with the inverse PPL ranking of the 1B model.1483

- The StoryCloze dataset shows poorer consis-1484

tency between performance ranking and the inverse1485

PPL ranking of the 100M model, yet a overall con-1486

sistency with the inverse PPL ranking of the 1B1487

model. This may be due to the closer downstream1488

performance across different filtering strategies for1489

this task.1490

Overall, the 100M model demonstrates high con-1491

sistency with the downstream performance of the1492

larger 3B model across most tasks, and we also1493

note high consistency between the 1B and 3B mod-1494

els. This supports the viability of using the 100M1495

model to predict downstream performance for the 1496

3B model. 1497
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Figure 12: Validation Perplexities Comparison Between
100M & 1B Models with Moderate Loss

A.5 More Analysis 1498

A.5.1 Comparsion to "Deep Learning 1499

Core-set Data Selection" 1500

Our proposed Evaluation Mechanism significantly 1501

differs from the deep learning core-set data se- 1502

lection via proxy as described in (Coleman et al., 1503

2019). As illustrated in Figure 9(a), the latter lever- 1504

ages a proxy model to generate a data selection 1505

metric, which is then used to rank and filter the 1506

data directly. The underlying assumption is that 1507

the proxy model and the target model have a high 1508

degree of consistency in the feature representation 1509

ranking of the dataset, allowing the proxy model’s 1510

feature representations to substitute for those of 1511

the target model to guide data selection. However, 1512

our proposed Evaluation Mechanism employs an 1513

independent data selection model to guide the data 1514

selection process. This model may share a similar 1515

structure with the target model or be entirely hetero- 1516

geneous. From this perspective, our data selection 1517

model fundamentally incorporates the concept of 1518

a proxy model as understood within the domain 1519

of supervised deep learning. However, due to the 1520

unique characteristics of unsupervised data selec- 1521
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Figure 13: Validation Perplexities Comparison Between
100M & 1B Models with Wikipedia & Web

tion in LLM pretraining, the strategies employed1522

for proxy models and Data Selection Metrics in1523

deep learning may not be directly applicable to1524

LLM pretraining data selection. Furthermore, we1525

introduce a Surrogate Model and Surrogate Indi-1526

cator that act as proxies for the target LLM and1527

downstream metrics, respectively. This concept1528

bears a resemblance to the idea of (Coleman et al.,1529

2019), indicating a parallel in the underlying ratio-1530

nale.1531

A.5.2 Contributions of Small Proxy Model1532

Evaluation Mechanism1533

1. Sufficient training to demonstrate the higher-1534

order capabilities of small models. For instance,1535

models ranging from 100M to 1B parameters show1536

stable PPL at the 100B token, although there may1537

be some instability in PPL in the early stages, A 3B1538

model accumulates a certain amount of knowledge1539

at the 200B token, and after SFT there is a notice-1540

able improvement in higher-order abilities, such as1541

those measured by MMLU. However, previous re-1542

search exploring the effectiveness of data selection1543

strategies under insufficient training conditions has1544

obscured the manifestation of higher-order abilities,1545

such as knowledge comprehension as measured by1546

tasks like the MMLU.1547

2. Proxy indicators from PPL to post-SFT large 1548

model downstream metrics, which reveals higher- 1549

order skills like knowledge comprehension even 1550

with limited training. However prior studies using 1551

PPL from pretraining and various NLP task valida- 1552

tion sets have shown a lack of sufficient correlation 1553

with downstream task performance, thus limiting 1554

domain-specific insights. 1555

3. Diverse validation sets, including validation 1556

sets converted from downstream tasks, enabling 1557

early downstream performance predictions and 1558

quantifying the correlation between small model 1559

proxies and post-SFT large model downstream met- 1560

rics. Total validation sets see Appendix A.2.4. 1561

However, previous research using inappropriate 1562

(in-domain) validation sets and partial downstream 1563

tasks has hindered the understanding of the impact 1564

of data selection methods on downstream tasks (re- 1565

fer to Section 2.2). 1566

A.5.3 Analysis about Practical Implications 1567

and Potential Applications 1568

This paper introduces a Small Proxy Model Evalua- 1569

tion Mechanism that allows the use of pre-training 1570

proxy metrics from a 100M model to predict the 1571

downstream task metrics of larger models after 1572

SFT. This rapid evaluation mechanism can signifi- 1573

cantly reduce the iteration cycles for pre-training 1574

data selection. This is meaningful for exploring the 1575

scaling laws of LLMs under higher data quality. 1576

We provide a rough estimate of the pre-training 1577

costs involved. For a 100M model, pre-training 1578

with 100B tokens may require approximately 253 1579

GPU hours. This means that running a set of ex- 1580

periments with a 100M model could cost between 1581

506 and 1,265 dollars ((Current market rates for 1582

A100 80GB GPUs vary between $ 2-5 / hour per 1583

GPU)). When the model size increases to 3B pa- 1584

rameters, processing these tokens would take about 1585

3,472 GPU hours, which means that running a set 1586

of experiments with a 3B parameter model would 1587

cost between 6,944 and 17,360 dollars. By using a 1588

100M model as a proxy for evaluation, each set of 1589

pre-training experiments could save between 6,430 1590

and 16,095 dollars. Therefore, any team training 1591

large models that refers to our Small Proxy Model 1592

Evaluation Mechanism can save between $6,430 1593

and $16,095 per ablation experiment group in eco- 1594

nomic costs and carbon emissions. 1595

From the perspective of focusing on downstream 1596

task performance, this paper proposes an ad fil- 1597

tering strategy that generally outperforms existing 1598
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LLM pre-training data selection schemes across1599

10 downstream tasks. This reminds the LLM com-1600

munity to be aware of the potential harm of exist-1601

ing data selection schemes to downstream tasks.1602

The validated ad filtering strategy can significantly1603

shorten the cycle for the LLM community to filter1604

high-quality data, thereby significantly reducing1605

energy consumption. Moreover, our work is con-1606

ducted on the open-source dataset RefinedWeb, and1607

part of our work will also be made open-source in1608

the future. In fact, utilizing our ad filtering strategy,1609

we have trained an effective 7B parameter model1610

that outperforms a variety of recent open-source1611

large models.1612

Figure 14: The form and instructions presented to hu-
man evaluators
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Figure 15: Effectiveness of Ad Classifier
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Figure 16: Validation Perplexities Comparison Between
100M & 1B Models with Ad Filtering
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Figure 17: Validation Perplexities Comparison Between
100M & 1B Models with different Filtering Strategies

Figure 18: data length visualization before and after
data filtering
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