
Transformers as Algorithms:
Generalization and Stability in In-context Learning

Yingcong Li 1 M. Emrullah Ildiz 1 Dimitris Papailiopoulos 2 Samet Oymak 1 3

Abstract
In-context learning (ICL) is a type of prompting
where a transformer model operates on a sequence
of (input, output) examples and performs infer-
ence on-the-fly. In this work, we formalize in-
context learning as an algorithm learning problem
where a transformer model implicitly constructs
a hypothesis function at inference-time. We first
explore the statistical aspects of this abstraction
through the lens of multitask learning: We ob-
tain generalization bounds for ICL when the input
prompt is (1) a sequence of i.i.d. (input, label)
pairs or (2) a trajectory arising from a dynamical
system. The crux of our analysis is relating the
excess risk to the stability of the algorithm im-
plemented by the transformer. We characterize
when transformer/attention architecture provably
obeys the stability condition and also provide em-
pirical verification. For generalization on unseen
tasks, we identify an inductive bias phenomenon
in which the transfer learning risk is governed by
the task complexity and the number of MTL tasks
in a highly predictable manner. Finally, we pro-
vide numerical evaluations that (1) demonstrate
transformers can indeed implement near-optimal
algorithms on classical regression problems with
i.i.d. and dynamic data, (2) provide insights on
stability, and (3) verify our theoretical predictions.

1. Introduction
Transformer (TF) models were originally developed for
NLP problems to address long-range dependencies through
the attention mechanism. In recent years, language models
have become increasingly large, with some boasting billions

1{yli692,mildi001}ucr.edu, University of California,
Riverside. 2dimitris@papail.io, University of Wisconsin,
Madison. 3University of Michigan, Ann Arbor. Correspondence
to: Samet Oymak <oymak@umich.edu>.

Proceedings of the 40𝑡ℎ International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Desired
OutputIn-context learning Input prompt

Natural language
processing

berry, baya, apple, manzana, banana plátano
Japan, mochi, France, croissant, Greece baklava

Supervised learning
𝑦! = 𝑓 𝑥! + noise 𝑥+, 𝑦+, 𝑥,, … , 𝑥-.+, 𝑦-.+, 𝑥/ 𝑓(𝑥!)

Dynamical systems
𝑥!"# = 𝑓 𝑥! + noise 𝑥+, 𝑥,, 𝑥0, … , 𝑥/.,, 𝑥/.+, 𝑥/ 𝑓(𝑥!)

Supervised learning with TF

𝑥!
…

…

𝑦!

𝑦#!

𝑥" 𝑦" 𝑥#

𝑦#" 𝑦##

𝑦#$!

…

…
Learning dynamics with TF

𝑥!
…

…

𝑥"

𝑥#"

𝑥% 𝑥#

𝑥#& 𝑥##'!

𝑥#$!

…

…

𝑥#% 𝑥##

Figure 1: Examples of in-context learning. We focus on the lower
two settings in the table where a transformer admits a supervised
dataset or dynamical system trajectory as a prompt. Then, it auto-
regressively predicts the output following an input example x𝑖
based on the prompt (x1, . . . ,x𝑖).

of parameters (e.g., GPT-3 has 175B, and PaLM has 540B
parameters (Brown et al., 2020; Chowdhery et al., 2022)).
It is perhaps not surprising that these large language models
(LLMs) have achieved state-of-the-art performance on a
wide range of natural language processing tasks. What is
surprising is the ability of some of these LLMs to perform in-
context learning (ICL), i.e., to adapt and perform a specific
task given a short prompt, in the form of instructions, and
a small number of examples (Brown et al., 2020). These
models’ ability to learn in-context without explicit training
allows them to efficiently perform new tasks without a need
for updating model weights.

Figure 1 illustrates examples of ICL where a transformer
makes a prediction on an example based on a few (input,
output) examples provided within its prompt. For NLP, the
examples may correspond to pairs of (question, answer)’s
or translations. Recent works (Garg et al., 2022; Laskin
et al., 2022) demonstrate that ICL can also be used to infer
general functional relationships. For instance, (Hollmann
et al., 2022; Garg et al., 2022) aims to solve certain super-
vised learning problems where they feed an entire training
dataset (x𝑖 , 𝑓 (x𝑖))𝑛−1

𝑖=1 as the input prompt, expecting that
conditioning the TF model on this prompt would allow it
to make an accurate prediction on a new input point x𝑛.
As discussed in (Akyürek et al., 2022; Garg et al., 2022),
this provides an implicit optimization flavor to ICL, where

1

Generalization and Stability in In-context Learning

the model implicitly trains on the data provided within the
prompt, and performs inference on test points.

Our work formalizes in-context learning from a statistical
lens, abstracting the transformer as a learning algorithm
where the goal is inferring the correct (input, ouput) func-
tional relationship from prompts. We focus on a meta-
learning setting where the model is trained on many tasks,
allowing ICL to generalize to both new and previously-seen
tasks. Our main contributions are:

• Generalization bounds (Sec 3 & 5): Suppose the model
is trained on 𝑇 tasks each with a data-sequence contain-
ing 𝑛 examples. During training, each sequence is fed to
the model auto-regressively as depicted in Figure 1. By
abstracting ICL as an algorithm learning problem, we
establish a multitask (MTL) generalization rate of 1/

√
𝑛𝑇

for i.i.d. as well as dynamic data. In order to achieve the
proper dependence on the sequence length (1/

√
𝑛 factor),

we overcome temporal dependencies by relating gener-
alization to algorithmic stability (Bousquet & Elisseeff,
2000). Experiments demonstrate that (1) ICL can select
near-optimal algorithms for flagship regression problems
as illustrated in Figure 2 and (2) ICL indeed benefits from
learning across the full task sequence in line with theory.

• Stability of transformer architectures (Sec 3.1&7): We
verify our stability assumptions that facilitate favorable
generalization rates. Theoretically we identify when self-
attention enjoys favorable stability properties through a
tight analysis that quantify the influence of one token
on another. Empirically, we show that ICL predictions
become more stable to input perturbations as the prompt
length increases. We also find that training with noisy
data helps promote stability.

• From multitask to meta-learning (Sec 4): We provide
insights into how our MTL bounds can inform generaliza-
tion ability of ICL on previously unseen tasks (i.e. trans-
fer learning). Our experiments also reveal an intriguing
inductive bias phenomenon: The transfer risk is governed
by the task complexity (i.e. functions 𝑓 in Fig 1) and the
number of MTL tasks 𝑇 in a highly predictable fashion
and exhibits little dependence on the complexity of the
TF architecture.

The remainder of the paper is organized as follows. The
next section discusses connections to prior art and Section 2
introduces the problem setup. Section 3 provides our main
theoretical guarantees for ICL and stability of transformers.
Section 4 extends our arguments and experiments to the
transfer learning setting. Section 5 extends our results to
learning stable dynamical systems where each prompt corre-
sponds to a system trajectory. In Section 6, we explain how
ICL can be interpreted as an implicit model selection proce-
dure building on the algorithm learning viewpoint. Finally,
Section 7 provides numerical evaluations.

1.1. Related work

With the success of large language models, prompting meth-
ods have witnessed immense interest (Lester et al., 2021).
ICL (Brown et al., 2020; Olsson et al., 2022) is a prompt-
ing strategy where a transformer serves as an on-the-fly
predictive model through conditioning on a sequence of
input/output examples (x1, 𝑓 (x1), . . .x𝑛−1, 𝑓 (x𝑛−1),x𝑛).
Our work is inspired by (Garg et al., 2022) which studies
ICL in synthetic settings and demonstrates transformers
can serve as complex classifiers through ICL. In parallel,
(Hollmann et al., 2022) uses ICL as an AutoML (i.e. model-
selection, hyperparameter tuning) framework where they
plug in a dataset to transformer and use it as a classifier
for new test points. Our formalism on algorithm learning
provides a justification on how transformers can accomplish
this with proper meta-training. (Xie et al., 2021) interprets
ICL as implicit Bayesian inference and develops guarantees
when the training distribution is a mixture of HMMs. Re-
cent works (von Oswald et al., 2022; Akyürek et al., 2022;
Dai et al., 2022) relate ICL to running gradient descent al-
gorithm over the input prompt. (Akyürek et al., 2022) also
provides related observations regarding the optimal decision
making ability of ICL for linear models. Unlike prior ICL
works, we provide finite sample generalization guarantees
and our theory extends to temporally-dependent prompts
(e.g. when prompts are trajectories of dynamical systems).
Dynamical systems in turn relate to a recent work by (Laskin
et al., 2022) who use ICL for reinforcement learning.

This work also relates to the literature on the statistical as-
pects of time-series prediction (Kuznetsov & Mohri, 2014;
2016; Simchowitz et al., 2018; Mohri & Rostamizadeh,
2008) and learning (non)linear dynamics (Foster et al., 2020;
Ziemann et al., 2022; Ziemann & Tu, 2022; Tsiamis et al.,
2022; Sarkar & Rakhlin, 2019; Dean et al., 2020; Sun et al.,
2022; Mania et al., 2020; Matni & Tu, 2019; Oymak &
Ozay, 2021; Block et al., 2023). Most of these focus on
autoregressive models of order 1, whereas in ICL, we infer
from arbitrarily long memory/prompt for predictions. Closer
works by (McDonald et al., 2017; Mohri & Rostamizadeh,
2010) identify conditions for time-series learning which
still require finite memory as well as 𝛽/𝜙-mixing assump-
tions, and (Basu et al., 2022) study generalization behavior
of retrieval-based models. Compared to these: (1) Our
guarantees are established for the causal setting where the
model predicts new examples by learning on past ones and
(2) our algorithm learning formulation allows for learning
multiple tasks simultaneously and leads to new challenges
and insights when verifying the conditions for Azuma-type
inequalities. Our results are also facilitated through connec-
tions to algorithmic stability (Bousquet & Elisseeff, 2002)
and we propose their dynamical system counterparts based
on control literature (Angeli, 2002). We also provide experi-
ments and theory that justify our stability conditions.

2

Generalization and Stability in In-context Learning

0 10 20 30 40
in-context samples

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 ri

sk

In-context learning
Least squares
Optimally-weighted ridge

(a) Noisy linear regression

0 10 20 30 40
in-context samples

0.0

0.2

0.4

0.6

0.8

1.0 In-context learning
Least squares
Optimally-weighted ridge

(b) Linear tasks with covariance prior

0 10 20 30 40
in-context samples

0.2

0.4

0.6

0.8

1.0

In-context learning
Least squares (H=1)
Least squares (H=2)
Least squares (H=3)
Least squares (H=4)

(c) Partially-observed LDS

Figure 2: Examples of algorithm learning in three ICL settings: (a) Noisy linear regression: 𝑦𝑖 ∼ N(x⊤
𝑖
β, 𝜎2) with x𝑖 ,β ∼ N(0, I).

(b) Linear data with covariance prior: 𝑦𝑖 = x⊤
𝑖
β with β ∼ N(0,𝚺) with non-isotropic 𝚺. (c) Partially observed linear dynamics:

x𝑡 = Cs𝑡 and s𝑡+1 ∼ N(As𝑡 , 𝜎
2I) with randomly sampled C,A. Each setting trains a transformer with large number of random

regression tasks and evaluates on a new task from the same distribution. In (a) and (b), ICL performances match Bayes-optimal decision
(weighted linear ridge regression) that adapt to noise level 𝜎 and covariance prior 𝚺 on the tasks. (c) shows that ICL outperforms
auto-regressive least-squares estimators with varying memory 𝐻. ICL is able to implement competitive ML algorithms by leveraging the
task prior learned during training. See Sec 7 for experimental details.

2. Problem Setup
Notation. Let X be the input feature space, and Y be the
output/label space. We use boldface for vector variables.
[𝑛] denotes the set {1, 2, . . . , 𝑛}. 𝑐, 𝐶 > 0 denote absolute
constants and ∥ · ∥ℓ𝑝 denotes the ℓ𝑝-norm.

In-context learning setting: We denote a length-𝑚 prompt
containing 𝑚 − 1 in-context examples and the 𝑚’th input
by x(𝑚)

prompt = (z1, z2, . . . , z𝑚−1,x𝑚). Here x𝑚 ∈ X is the
input to predict and z𝑖 ∈ Z is the 𝑖’th in-context example
provided within prompt. Let TF denote a transformer (more
generally an auto-regressive model) that admits x(𝑚)

prompt as

its input and outputs a label ŷ𝑚 = TF(x(𝑚)
prompt) in Y.

• Independent (x, y) pairs. Similar to (Garg et al., 2022),
we draw i.i.d. samples (x𝑖 , y𝑖)𝑛𝑖=1 ∈ Z = X×Y from a data
distribution. Then a length-𝑚 prompt is written as x(𝑚)

prompt =

(x1, y1, . . .x𝑚−1, y𝑚−1,x𝑚), and the model predicts ŷ𝑚 =

TF(x(𝑚)
prompt) ∈ Y for 1 ≤ 𝑚 ≤ 𝑛.

• Dynamical systems. In this setting, the prompt is simply
the trajectory generated by a dynamical system, namely,
x(𝑚)

prompt = (x0,x1, . . .x𝑚−1,x𝑚) and therefore, Z = X =

Y. Specifically, we investigate the state observed setting that
is governed by dynamics 𝑓 (·) via x𝑚+1 = 𝑓 (x𝑚) + noise.
Here, y𝑚 := x𝑚+1 is the label associated to x𝑚, and the
model admits x(𝑚)

prompt as input and predicts the next state

ŷ𝑚 := x̂𝑚+1 = TF(x(𝑚)
prompt) ∈ X.

We first consider the training phase of ICL where we wish
to learn a good TF model through MTL. Suppose we have
𝑇 tasks associated with data distributions {D𝑡 }𝑇𝑡=1. Each
task independently samples a training dataset/sequence
S𝑡 = (z𝑡𝑖)𝑛𝑖=1 according to its distribution. Sall = {S𝑡 }𝑇𝑡=1
denote the set of all training sequences. We use S𝑚𝑡 =

(z𝑡1, . . . , z𝑡𝑚) to denote a subsequence of S𝑡 := S𝑛𝑡 for
𝑚 ≤ 𝑛 and S0 denotes an empty subsequence.

ICL can be interpreted as an implicit optimization on the
subsequence S𝑚 = (z1, z2, . . . , z𝑚) to make prediction on
x𝑚+1. To model this, we abstract the transformer model
as a learning algorithm that maps a sequence of data to a
prediction function (e.g. gradient descent, empirical risk
minimization). Concretely, let A be a set of algorithm
hypotheses such that algorithm/transformer TF ∈ A maps a
sequence of form S𝑚 into a prediction function TF(S𝑚, ·) :
X → Y. Without losing generality, we can represent TF
via

TF(x(𝑚+1)
prompt) = TF(S𝑚,x𝑚+1).

Given training sequences, Sall and a loss function ℓ(y, ŷ),
the ICL training can be interpreted as searching for the opti-
mal algorithm TF ∈ A, and the training objective becomes

T̂F = arg min
TF∈A

L̂Sall (TF) :=
1
𝑇

𝑇∑︁
𝑡=1

L̂𝑡 (TF) (ERM)

where L̂𝑡 (TF) =
1
𝑛

𝑛∑︁
𝑖=1

ℓ(y𝑡𝑖 ,TF(S𝑖−1
𝑡 ,x𝑡𝑖)).

Here, L̂Sall (TF) is the task-averaged MTL loss and L̂𝑡 (TF)
is the training loss of task 𝑡 obtained by averaging 𝑛

terms, one for each prompt x(𝑖)
prompt := (S𝑖−1,x𝑖). Let

L𝑡 (TF) = ES𝑡 [L̂𝑡 (TF)] and LMTL (TF) = E[L̂Sall (TF)] =
1
𝑇

∑𝑇
𝑡=1 L𝑡 (TF) be the corresponding population risks.

To develop generalization bounds, our primary interest is
controlling the gap between empirical and population risks.
For problem (ERM), we wish to bound the excess MTL risk

𝑅MTL (T̂F) = LMTL (T̂F) − min
TF∈A

LMTL (TF). (1)

3

Generalization and Stability in In-context Learning

Following the MTL training (ERM), we also evaluate the
model on previously-unseen tasks; this can be thought of
as the transfer learning problem. Concretely, let Dtask be
a distribution over tasks and draw a target task T ∼ Dtask
with data distribution DT and a sequence ST = {z𝑖}𝑛𝑖=1 ∼
DT . Define the empirical and population risks on T
as L̂T (TF) = 1

𝑛

∑𝑛
𝑖=1 ℓ(y𝑖 ,TF(S𝑖−1

T ,x𝑖)) and LT (TF) =

EST [L̂T (TF)]. Then the transfer risk of an algorithm TF is
defined as LTFR (TF) = ET [LT (TF)]. With this setup, we
are ready to state our main contributions.

3. Generalization in In-context Learning
In this section, we study ICL under the i.i.d. data setting with
training sequences S𝑡 = (x𝑡𝑖 , y𝑡𝑖)𝑛𝑖=1

i.i.d.∼ D𝑡 . Section 5
extends our results to dynamical systems.

3.1. Algorithmic Stability

In ICL a training example (x𝑖 , y𝑖) in the prompt impacts all
future decisions of the algorithm from predictions 𝑖 + 1 to 𝑛.
This necessitates us to control the stability to input perturba-
tion of the learning algorithm emulated by the transformer.
Our stability condition is borrowed from the algorithmic
stability literature. As stated in (Bousquet & Elisseeff, 2000;
2002), the stability level of an algorithm is typically in the
order of 1/𝑚 (for realistic generalization guarantees) where
𝑚 is the training sample size (in our setting prompt length).
This is formalized in the following assumption that captures
the variability of the transformer output.

Assumption 3.1 (Error stability (Bousquet & Elisseeff,
2002)). Let S = (x𝑖 , y𝑖)𝑚𝑖=1 be a sequence in X × Y with
𝑚 ≥ 1 and S′ be the sequence where the 𝑗’th sample of S
is replaced by (x′

𝑗
, y′

𝑗
). Error stability holds for a distribu-

tion (x, y) ∼ D if there exists a 𝐾 > 0 such that for any
S, (x′

𝑗
, y′

𝑗
) ∈ (X × Y), 𝑗 ≤ 𝑚, and TF ∈ A, we have���E(x,y) [
ℓ(y,TF(S ,x))) − ℓ(y,TF(S′,x))

] ��� ≤ 𝐾

𝑚
. (2)

Let 𝜌 be a distance metric on A. Pairwise error stability
holds if for all TF,TF′ ∈ A we have���E(x,y) [

ℓ(y,TF(S ,x)) − ℓ(y,TF′ (S ,x))

− ℓ(y,TF(S′,x)) + ℓ(y,TF′ (S′,x))
] ��� ≤ 𝐾𝜌(TF,TF′)

𝑚
.

Here (2) is our primary stability condition borrowed from
(Bousquet & Elisseeff, 2002) and ensures that all algorithms
TF ∈ A are 𝐾-stable. We will also use the stronger pairwise
stability condition to develop tighter generalization bounds.
The following theorem shows that, under mild assumptions,
a multilayer transformer obeys the stability condition (2).
The proof is deferred to Appendix B.1 and Theorem B.4.

Theorem 3.2. Let x(𝑚)
prompt,x

′(𝑚)
prompt be two prompts that only

differ at the inputs z 𝑗 = (x 𝑗 , y 𝑗) and z′
𝑗
= (x′

𝑗
, y′

𝑗
) where

𝑗 < 𝑚. Assume inputs and labels lie within the unit Eu-
clidean ball in R𝑑 1. Shape these prompts into matrices
Xprompt,X

′
prompt ∈ R(2𝑚−1)×𝑑 respectively. Let TF(·) be a

𝐷-layer transformer as follows: Setting X(0) := Xprompt,
the 𝑖’th layer applies MLPs and self-attention2 and outputs

X(𝑖) =Parallel_MLPs(ATTN(X(𝑖−1)))
where ATTN(X) := softmax(XW𝑖X

⊤)XV𝑖 .

Assume TF is normalized as ∥V ∥ ≤ 1, ∥W ∥ ≤ Γ/2 and
MLPs obey MLP(x) = ReLU(Mx) with ∥M ∥ ≤ 1. Let TF
output the last token of the final layer X(𝐷) that correspond
to the query x𝑚. Then,

|TF(x(𝑚)
prompt) − TF(x

′(𝑚)
prompt) | ≤

2
2𝑚 − 1

((1 + Γ)𝑒Γ)𝐷 .

Thus, assuming loss ℓ(y, ·) is 𝐿-Lipschitz, the algorithm
induced by TF(·) obeys (2) with 𝐾 = 2𝐿 ((1 + Γ)𝑒Γ)𝐷 .

A few remarks are in place. First, the dependence on depth
is exponential. However, this is not as prohibitive for typical
transformer architectures which tend to not be very deep.
For example, the different variants of GPT-2 and BERT
have between 12-48 layers (HuggingFace). In our theorem,
the upper bound on Γ helps ensure that one token cannot
have substantial influence on another one. In Appendix
B, we provide a more general version of this result which
also covers our stronger stability assumption for dynamical
systems (see Theorem B.4). Importantly, we also show that
our theorem is rather tight (see Sec B.2): (1) Stability can
fail if Γ is allowed to be logarithmic in 𝑚 indicating the
tightness of our 𝑒Γ/𝑚 bound. (2) It is also critical that the
modified token is not the last one (i.e. 𝑗 < 𝑚 condition),
otherwise stability can again fail. The key technicality in
our result is establishing the stability of the self-attention
layer which is the central component of a transformer, see
Lemma B.2. Finally, Figure 6 provides numerical evidence
for multiple ICL problems and demonstrate that stability
of GPT-2 architecture’s predictions with respect to inputs
indeed improves with longer prompts in line with theory.

3.2. Generalization Bounds

We are ready to establish generalization bounds by lever-
aging our stability conditions. We use covering numbers
(i.e. metric entropy) to control model complexity.

Definition 3.3 (Covering number). Let Q be any hypothesis
set and 𝑑 (𝑞, 𝑞′) ≥ 0 be a distance metric over 𝑞, 𝑞′ ∈ Q.
Then, Q̄ = {𝑞1, . . . , 𝑞𝑁 } is an 𝜀-cover of Q with respect

1Here, we assume X,Y ⊂ R𝑑 , otherwise, inputs and labels are
both embedded into 𝑑-dimensional vectors of proper size.

2In self-attention the softmax function is applied to each row.

4

Generalization and Stability in In-context Learning

0 5 10 15 20 25 30 35 400.0
0.2
0.4
0.6
0.8
1.0
1.2

Te
st

 ri
sk

Trained over [1,10] interval

0 5 10 15 20 25 30 35 400.0
0.2
0.4
0.6
0.8
1.0
1.2 [11,20] interval

0 5 10 15 20 25 30 35 40
in-context samples

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Te
st

 ri
sk

[21,30] interval

0 5 10 15 20 25 30 35 40
in-context samples

0.0
0.2
0.4
0.6
0.8
1.0
1.2 [31,40] interval

(a) ICL trained with 10 prompts over a range

0 5 10 15 20 25 30 35 40
in-context samples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Te
st

 ri
sk

Trained over full sequence

(b) ICL with all 𝑛 = 40 prompts

Figure 3: The benefit of learning across the full task sequence: Right side: Standard ERM where each task trains with all 𝑛 = 40 prompts.
Left side: ERM focuses on different parts of the trajectory by fitting 𝑛/4 = 10 prompts per task over 𝑖 ∈ [1, 10] to [31, 40] (highlighted
as the orange ranges). We train with 𝑇 = 6.4 million random linear regression tasks and display the performance on new tasks (i.e. transfer
risk). Right side learns to solve linear regression via ICL whereas left side fails to do so even when restricted to their target ranges.

to 𝑑 (·, ·) if for any 𝑞 ∈ Q, there exists 𝑞𝑖 ∈ Q̄ such that
𝑑 (𝑞, 𝑞𝑖) ≤ 𝜀. The 𝜀-covering number N(Q, 𝑑, 𝜀) is the
cardinality of the minimal 𝜀-cover.

To cover the algorithm space A, we need to introduce a
distance metric. We formalize this in terms of the prediction
difference between the two algorithms on the worst-case
data-sequence.
Definition 3.4 (Algorithm distance). Let A be an algo-
rithm hypothesis set and S = (x𝑖 , y𝑖)𝑛𝑖=1 be a sequence
that is admissible for some task 𝑡 ∈ [𝑇]. For any pair
TF,TF′ ∈ A, define the distance metric 𝜌(TF,TF′) :=
supS

1
𝑛

∑𝑛
𝑖=1 ∥TF(S𝑖−1,x𝑖) − TF′ (S𝑖−1,x𝑖)∥ℓ2 .

We note that the distance 𝜌 is controlled by the Lipschitz
constant of the transformer architecture (i.e. the largest gra-
dient norm with respect to the model weights). Following
Definitions 3.3&3.4, the 𝜀-covering number of the hypothe-
sis set A is N(A, 𝜌, 𝜀). This brings us to our main result
on the MTL risk of (ERM).
Theorem 3.5. Suppose A is 𝐾-stable per Assumption 3.1
for all 𝑇 tasks and the loss function ℓ(y, ·) is 𝐿-Lipschitz
taking values over [0, 1]. Let T̂F be the empirical solution
of (ERM). Then, with probability at least 1 − 2𝛿, the excess
MTL test risk obeys, 𝑅MTL (T̂F) ≤

inf
𝜀>0

{
4𝐿𝜀 + 2(1 + 𝐾 log 𝑛)

√︂
log(N (A, 𝜌, 𝜀)/𝛿)

𝑐𝑛𝑇

}
. (3)

Additionally suppose A is 𝐾-pairwise-stable and set diam-
eter 𝐷 := supTF,TF′∈A 𝜌(TF,TF′). Using the convention
𝑥+ = max(𝑥, 1), with probability at least 1 − 4𝛿,

𝑅MTL (T̂F) ≲ inf
𝜀>0

{
𝐿𝜀 + 𝐿+ + 𝐾 log 𝑛

√
𝑛𝑇

·

(∫ 𝐷/2

𝜀

√︁
logN(A, 𝜌, 𝑢)𝑑𝑢 + 𝐷+

√︂
log

1
𝛿

)}
.

(4)

The first bound (3) achieves 1/
√
𝑛𝑇 rate by covering the al-

gorithm space with resolution 𝜀. For Lipschitz architectures
with dim(A) trainable weights we have logN(A, 𝜌, 𝜀) ∼
dim(A) log(1/𝜀). Thus, up to logarithmic factors, the

excess risk is bounded by
√︃

dim(A)
𝑛𝑇

and will vanish as
𝑛, 𝑇 → ∞. Note that our bound is also task-dependent
through 𝜌 in Def. 3.4. For instance, suppose tasks are real-
izable with labels y = 𝑓 (x) and admissible task sequences
have the form S = (x𝑖 , 𝑓 (x𝑖))𝑛𝑖=1. Then, 𝜌 will depend on
the function class of 𝑓 (e.g. whether 𝑓 is a linear model,
neural net, etc), specifically, as the function class becomes
richer, both 𝜌 and the covering number becomes larger.

Under the stronger pairwise-stability, we can obtain a bound
in terms of Dudley’s entropy integral which arises from a
chaining argument. This bound is typically in the same
order as the Rademacher complexity of the function class
with 𝑇 × 𝑛 samples (Wainwright, 2019). Note that achieving
1/
√
𝑇 dependence is rather straightforward as tasks are sam-

pled independently. Thus, the main feature of Theorem 3.5
is obtaining the multiplicative 1/

√
𝑛 term by overcoming

temporal dependencies. Figure 3 shows that training with
full sequence is indeed critical for ICL accuracy.

Furthermore, note that the only condition on the algorithm
set A is to satisfy Assumption 3.1. Theorem 3.2 shows that
transformers satisfy Assumption 3.1 under mild conditions.
Therefore, this generalization bound is valid not only for
transformers but also for all the algorithm sets satisfying
Assumption 3.1.

Multiple sequences per task. Finally consider a setting
where each task is associated with 𝑀 independent sequences
with size 𝑛. This typically arises in reinforcement learning
problems (e.g. dynamical systems in Sec. 5) where we
collect data through multiple rollouts each leading to inde-
pendent sequences. In this setting, the statistical error rate

5

Generalization and Stability in In-context Learning

improves to 1/
√
𝑛𝑀𝑇 as discussed in Appendix C.1. In the

next section, we will contrast MTL vs transfer learning by
letting 𝑀 → ∞. This way, even if 𝑛 and 𝑇 are fixed, the
model will fully learn the 𝑇 source tasks during the MTL
phase as the excess risk vanishes with 𝑀 → ∞.

4. Generalization and Inductive Bias on
Unseen Tasks

In this section, we explore transfer learning to assess the
performance of ICL on new tasks: The MTL phase gener-
ates a model T̂F trained on 𝑇 source tasks and we use T̂F
to predict a target task T . Consider a meta-learning set-
ting where 𝑇 sources are drawn from the distribution Dtask
and we evaluate the transfer risk on a new T ∼ Dtask. We
aim to control the transfer risk LTFR (T̂F) = E[LT (T̂F)] in
terms of the MTL risk LMTL (T̂F). When the source tasks
are i.i.d, one can use a standard generalization analysis to
bound the transfer risk as follows LTFR (T̂F)−LMTL (T̂F) ≲√︁

log(N (A, 𝜌, 𝜀)/𝑇 (see Thm C.3).

Here, an important distinction with MTL is that transfer
risk decays as 1/poly(𝑇) because the unseen tasks induce a
distribution shift, which, typically, cannot be mitigated with
more samples 𝑛 or more sequences-per-task 𝑀 .

• Inductive Bias in Transfer Risk. Before investigating
distribution shift, let us consider the following question:
While 1/poly(𝑇) behavior may be unavoidable, is it possi-
ble that dependence on architectural complexity dim(A)
is avoidable? Perhaps surprisingly, we answer this ques-
tion affirmatively through experiments on linear regression.
In what follows, during MTL pretraining, we train with
𝑀 → ∞ independent sequences per task to minimize pop-
ulation MTL risk LMTL (·). We then evaluate resulting T̂F
on different dimensions 𝑑 and numbers of MTL tasks 𝑇 .
Figures 4(a,b,c) display the MTL and transfer risks for di-
mensions 𝑑 = 5, 10, 20. In each figure, we evaluate the
results on 𝑇 = {1, 2, 5} × 𝑑2 and the 𝑥-axis moves from 0
to 𝑛 = 2𝑑. Each task has isotropic features, noiseless labels
and task vectors β ∼ N(0, I𝑑). Here, our first observation
is that, the Figures 4(a,b,c) seem (almost perfectly) aligned
with each other, that is, each figure exhibits identical MTL
and transfer risk curves. To further elucidate this, Figure
4(d) integrates the transfer risk curves from 𝑑 = 5, 10, 20
and overlays them together. This alignment indicates that,
for a fixed point 𝛼 = 𝑛/𝑑 and 𝛽 = 𝑇/𝑑2, the transfer risks re-
main unchanged. Here, 𝑛 proportional to 𝑑 can be attributed
to linearity, thus, the more surprising aspect is the depen-
dence on 𝑇 : This is because rather than dim(A)/𝑇 (where
A is fixed to a GPT-2 architecture), the generalization risk
behaves like 𝑑2/𝑇 . Thus, rather than model complexity,
what matters seems to be the task complexity 𝑑. In support
of this hypothesis, Figure 7 trains ICL on GPT-2 architec-
tures with up to 64 times different parameter counts and

reveals that transfer risk indeed exhibits little dependence
on the model complexity dim(A).

Inductive bias is a natural explanation of this behavior: In-
tuitively, the MTL pretraining process identifies a favor-
able algorithm that lies in the span of the source tasks
𝚯MTL = (β𝑡)𝑇𝑡=1. Specifically, while the transformer model
can potentially fit MTL tasks through a variety of algorithms,
we speculate that the optimization process is implicitly bi-
ased to an algorithm TF(𝚯MTL) (akin to (Soudry et al.,
2018; Neyshabur et al., 2017)). Such bias would explain
the lack of dim(A) dependence since TF(𝚯MTL) solely de-
pends on the source tasks. While we leave the theoretical
exploration of the empirical 𝑑2/𝑇 behavior to a future work,
below we explain that 𝑑2/𝑇 dependence is rather surprising.

To this end, let us first introduce the optimal estimator (in
terms of Bayes risk) for linear regression with Gaussian
task prior β ∼ N(0,𝚺). This estimator can be described
explicitly (Richards et al., 2021; Lindley & Smith, 1972)
and is given by the weighted ridge regression solution

β̂ = (X⊤X + 𝜎2𝚺−1)−1X⊤y. (5)

Here X = [x1, . . . ,x𝑛]⊤ ∈ R𝑛×𝑑 , y = [y1, . . . , y𝑛]⊤ ∈
R𝑛 are the concatenated features and labels obtained from
the task sequence and 𝜎2 is the label noise variance. With
this in mind, what is the ideal algorithm TF(𝚯MTL) based
on the (perfect) knowledge of source tasks? Eqn. (5) cru-
cially requires the knowledge of the task covariance 𝚺 and
variance 𝜎2. Thus, even with the hindsight knowledge that
our problem is linear, we have to estimate the task covari-
ance from source tasks. This can be done via the empirical
covariance �̂� = 1

𝑇

∑𝑇
𝑖=1 β𝑖β

⊤
𝑖

. To ensure �̂�-weighted LS
performs O(1)-close to 𝚺-weighted LS, we need a spectral
norm control, namely, ∥𝚺 − �̂�∥/𝜆min (𝚺) ≤ O(1). When
𝚺 = I𝑑 (as in our experiments) and tasks are isotropic, the
latter condition holds with high probability when 𝑇 = Ω(𝑑).
This is also numerically demonstrated in Figure 8 in the ap-
pendix. This behavior is in contrast to the stronger 𝑇 ∝ 𝑑2

requirement we observe for ICL and indicates that ICL train-
ing may not be sample-optimal in terms of 𝑇 . For instance,
𝑇 ∝ 𝑑2 is sufficient to ensure the stronger entrywise control
∥𝚺 − �̂�∥ℓ∞ ≤ 𝑂 (1) rather than spectral norm.

• Exploring transfer risk via source-target distance. Be-
sides drawing source and target tasks from the same Dtask,
we also investigate transfer risk in an instance specific fash-
ion. Specifically, the population risk of a new task T can
be bounded as LT (TF) ≤ LMTL (TF) + dist(T , (D𝑡)𝑇𝑡=1).
Here, dist(·) assesses the (distributional) distance of task T
to the source tasks (D𝑡)𝑇𝑡=1 (e.g. (Ben-David et al., 2010;
Hanneke & Kpotufe, 2019)). In case of linear tasks, we
can simply use the Euclidean distance between task vectors,
specifically, the distance of target weights βT to the nearest
source task dist(T) = min𝑡∈[𝑇] ∥βT − β𝑡 ∥ℓ2 . In Fig. 5 we

6

Generalization and Stability in In-context Learning

0 1 2 3 4 5 6 7 8 9 10
in-context samples

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 ri

sk
T=25
T=50
T=125
MTL

(a) 𝑑 = 5

0 2 4 6 8 10 12 14 16 18 20
in-context samples

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 ri
sk

T=100
T=200
T=500
MTL

(b) 𝑑 = 10

0 4 8 12 16 20 24 28 32 36 40
in-context samples

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 ri
sk

T=400
T=800
T=2000
MTL

(c) 𝑑 = 20

0.0 0.4 0.8 1.2 1.6 2.0
Oversampling n/d

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 ri
sk

d = 5
d = 10
d = 20

T/d2 = 1
T/d2 = 2
T/d2 = 5

(d) 𝑑 = 5, 10, 20 overlayed

Figure 4: In Figures (a,b,c,), we plot the 𝑑 ∈ {5, 10, 20}-dimensional results for transfer and MTL risk curves with the same GPT-2
architecture. Figure (d) overlays (a,b,c) to reveal that transfer risks are aligned for fixed (𝑛/𝑑, 𝑇/𝑑2) choice.

0 2 4 6 8 10
in-context samples

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 ri
sk Transfer (Avg)

MTL (Avg)

<0.2
[0.2,0.6]
[0.6,1.0]
>1.0

Figure 5: Transfer risk as a function of the distance to the
source (MTL) tasks. Distant tasks (with smaller cosine
similarity) generalize worse.

investigate the distance of specific target tasks from source
tasks and how the distance affects the transfer performance.
Here, all source and target tasks have unit Euclidean norms
so that closer distance is equivalent to larger cosine similar-
ity. We again train each MTL task with multiple sequences
𝑀 → ∞ (as in Fig. 4) and use 𝑇 = 20 source tasks with
𝑑 = 5 dimensional regression problems. In a nutshell, Fig-
ure 5 shows that Euclidean task similarity is indeed highly
predictive of transfer performance across different distance
slices (namely [0, 0.2], [0.2, 0.6], [0.6, 1], [1, 2]).

5. Extension to Stable Dynamical Systems
Until now, we have studied ICL with sequences of i.i.d.
(input, label) pairs. In this section, we investigate the sce-
nario where prompts are obtained from the trajectories of
stable dynamical systems, thus, they consist of dependent
data. Let X ⊂ R𝑑 and F : X → X be a hypothesis class
elements of which are dynamical systems. During MTL
phase, suppose that we are given 𝑇 tasks associated with
(𝑓𝑡)𝑇𝑡=1 where 𝑓𝑡 ∈ F , and each contains 𝑛 in-context sam-
ples. Then, the data-sequence of 𝑡’th task is denoted by
S𝑡 = (x𝑡𝑖)𝑛𝑖=0 where x𝑡𝑖 = 𝑓𝑡 (x𝑡 ,𝑖−1) +w𝑡𝑖 , x𝑡0 is the initial
state, and w𝑡𝑖 ∈ W ⊂ R𝑑 are bounded i.i.d. random noise
following some distribution. Then, prompts are given by
x(𝑖)

prompt := (x0,x1, . . .x𝑖). Let S𝑖 = x(𝑖)
prompt, and we can

make prediction x̂𝑖+1 = TF(S𝑖−1,x𝑖) . We consider the
similar optimization problem as (ERM).

For generalization analysis, we require the system to be
stable (which differs from algorithmic stability!). In this
work, we use an exponential stability condition (Foster et al.,
2020; Sattar & Oymak, 2022) that controls the distance
between two trajectories initialized from different points.
Definition 5.1 ((𝐶𝜌, 𝜌)-stability). Denote the 𝑚’th state re-
sulting from the initial state x𝑡0 and (w𝑡𝑖)𝑚𝑖=1 by 𝑓

(𝑚)
𝑡 (x𝑡0).

Let 𝐶𝜌 ≥ 1 and 𝜌 ∈ (0, 1) be system related constants. We
say that the dynamical system for the task 𝑡 is (𝐶𝜌, 𝜌)-stable
if, for all x𝑡0,x′

𝑡0 ∈ X, 𝑚 ≥ 1, and (w𝑡𝑖)𝑖≥1 ∈ W, we have

 𝑓 (𝑚)
𝑡 (x𝑡0) − 𝑓

(𝑚)
𝑡 (x′

𝑡0)

ℓ2
≤ 𝐶𝜌𝜌𝑚

x𝑡0 − x′
𝑡0

ℓ2

(6)

Assumption 5.2. There exist �̄�𝜌 and �̄� < 1 such that all
dynamical systems 𝑓 ∈ F are (�̄�𝜌, �̄�)-stable.

In addition to the stability of the hypothesis set F , we also
leverage the algorithmic-stability of the set A similar to
Assumption 3.1. Different from Assumption 3.1, we restrict
the variability of algorithms with respect to ℓ2 metric. Our
approach is a variation of classical incremental input-to-state
stability definition (Sontag & Wang, 1995; Angeli, 2002).
Assumption 5.3 (Algorithmic-stability for dynamics). Let
S = (x0,x1, . . . ,x𝑚+1) be a realizable dynamical system
trajectory and S′ be the trajectory obtained by swapping w 𝑗

with w′
𝑗

(𝑗 = 0 implies that x0 is swapped with x′
0). As a re-

sult, starting with the 𝑗’th index, the sequence S′ has differ-
ent samples (x′

𝑗
, . . . ,x′

𝑚+1). Let 𝑋 := ℓ(x𝑚+1,TF(S ,x𝑚))
and 𝑋 ′ := ℓ(x′

𝑚+1,TF(S
′,x′

𝑚)). There exists 𝐾 > 0 such
that for any S, x′

0 ∈ X, w′
𝑗
∈ W, 𝑗 ∈ [𝑚], we have

| Ew𝑚+1 [𝑋 − 𝑋 ′] | ≤ 𝐾

𝑚− 𝑗 + 1

𝑚∑︁
𝑖= 𝑗

x𝑖 − x′
𝑖

ℓ2
.

Lemma B.5 fully justifies this assumption for multilayer
transformers. To proceed, we state the main result of this
section. The proof is provided in Appendix D.
Theorem 5.4. Suppose ℓ(x, x̂) = ℓ(x − x̂) : X × X →
[0, 1] is 𝐿-Lipschitz and Assumptions 5.2&5.3 hold. Assume
X,W are bounded by 𝑥, �̄�, respectively. Then, with the
same probability, the identical bound as in Theorem 3.5
Eq. (3) holds after updating 𝐾 to be �̄� = 2𝐾 �̄�𝜌

1−�̄� (�̄� +𝑥/
√
𝑛).

7

Generalization and Stability in In-context Learning

6. Interpreting In-context Learning as a Model
Selection Procedure

In Section 3, we study the generalization error of ICL, which
can be eliminated by increasing sample size 𝑛 or number of
sequences 𝑀 per task. In this section, we will discuss how
ICL can be interpreted as an implicit model selection proce-
dure building on the formalism that transformer is a learning
algorithm. Following Figure 2 and prior works (Garg et al.,
2022; Laskin et al., 2022; Hollmann et al., 2022), a plausible
assumption is that, transformer can implement ERM algo-
rithms up to a certain accuracy. Then, model selection can
be formalized by the selection of the right hypothesis class
so that running ERM on that hypothesis class can strike a
good bias-variance tradeoff during ICL.

To proceed with our discussion, let us consider the following
hypothesis which states that transformer can implement an
algorithm competitive with ERM.

Hypothesis 6.1. Let F = (Fℎ)𝐻ℎ=1 be a family of 𝐻 hypoth-
esis classes. Let S = (x𝑖 , y𝑖)𝑛𝑖=1 be a data-sequence with 𝑛
examples sampled i.i.d. from D and let S𝑚 = (x𝑖 , y𝑖)𝑚𝑖=1 be
the first 𝑚 examples. Consider the risk3 associated to ERM
with 𝑚 samples over Fℎ ∈ F:

risk(ℎ, 𝑚) =E(x,y,S𝑚) [ℓ(y, 𝑓 (ℎ)S𝑚 (x))]

where 𝑓
(ℎ)
S𝑚 = arg min

𝑓 ∈Fℎ

1
𝑚

𝑚∑︁
𝑖=1

ℓ(y𝑖 , 𝑓 (x𝑖)),

Let (𝜀ℎ,𝑚TF) > 0 be approximation errors associated with
(Fℎ)𝐻ℎ=1. There exists TF ∈ A such that, for any 𝑚 ∈
[𝑛], ℎ ∈ [𝐻], TF(S𝑚, ·) can approximate ERM in terms of
population risk, i.e.

E(x,y,S𝑚) [ℓ(y,TF(S𝑚,x))] ≤ risk(ℎ, 𝑚) + 𝜀ℎ,𝑚TF .

For model selection purposes, these hypothesis classes
can be entirely different ML models, for instance, F1 =

{convolutional-nets}, F2 = {fully-connected-nets}, and
F3 = {decision-trees}. Alternatively, they can be a nested
family useful for capacity control purposes. For instance,
Figures 2(a,b) are learning covariance/noise priors to imple-
ment a constrained-ridge regression. Here F can be indexed
by positive-definite matrices 𝚺 with linear classes of the
form F𝚺 = { 𝑓 (x) = x⊤β where β⊤𝚺−1β ≤ 1}.

Under Hypothesis 6.1, ICL selects the most suitable class
that minimizes the excess risk for each 𝑚 ∈ [𝑛].
Observation 6.2. Suppose Hypothesis 6.1 holds for a target
distribution DT . Let L★T := minTF∈A LT (TF) be the risk
of the optimal algorithm. We have that

3Since the loss ℓ is bounded by 1, 0 ≤ risk(ℎ, 𝑚) ≤ 1 for all 𝑚
including the scenario 𝑚 = 0 and ERM is vacuous.

L★T ≤ 1
𝑛

𝑛−1∑︁
𝑚=0

min
ℎ∈[𝐻]

{risk(ℎ, 𝑚) + 𝜀ℎ,𝑚TF }.

Additionally, denote Rademacher complexity of a class F
by R𝑚 (F). Define the minimum achievable risk over func-
tion set Fℎ as L★

ℎ
:= min 𝑓 ∈Fℎ EDT [ℓ(y, 𝑓 (x))]. Since

risk(ℎ, 𝑚) is controlled by R𝑚 (Fℎ) (Mohri et al., 2018), we
have that

L★T ≤ 1
𝑛

𝑛−1∑︁
𝑚=0

min
ℎ∈[𝐻]

{L★ℎ + 𝜀
ℎ,𝑚
TF + O(R𝑚 (Fℎ))}.

Here, ICL adaptively selects the classes arg minℎ∈[𝐻]{L★ℎ +
R𝑚 (Fℎ) + 𝜀

ℎ,𝑚
TF } to achieve small risk. This is in

contrast to training over a single large class F =⋃𝐻
𝑖=1 F𝑖 , which would result in a less favorable bound

≈ minℎ∈[𝐻] L★ℎ +
1
𝑛

∑𝑛−1
𝑚=0 R𝑚 (F). A formal version of this

statement is provided in Appendix E. Hypothesis 6.1 as-
sumes a discrete family for simpler exposition (|F| = 𝐻 <

∞), however, our theory in Section 3 allows for the continu-
ous setting.

We emphasize that, in practice, we need to adapt the hypoth-
esis classes for different sample sizes 𝑚 (typically, more
complex classes for larger 𝑚). With this in mind, while we
have 𝐻 classes in F, in total we have 𝐻𝑛 different ERM algo-
rithms to compete against. This means that VC-dimension
of the algorithm class is as large as 𝑛 log𝐻. This highlights
an insightful benefit of our main result: Theorem 3.5 would

result in an excess risk ∝
√︃
𝑛 log𝐻
𝑛𝑇

=

√︃
log𝐻
𝑇

. In other words,
the additional ×𝑛 factor achieved through Theorem 3.5 fa-
cilitates the adaptive selection of hypothesis classes for each
sample size and avoids requiring unreasonably large 𝑇 .

7. Numerical Evaluations
Our experimental setup follows (Garg et al., 2022): All
ICL experiments are trained and evaluated using the same
GPT-2 architecture with 12 layers, 8 attention heads, and
256 dimensional embeddings. We first explain the details of
Fig. 2 and then provide stability experiments.4

• Linear regression (Figures 2(a,b)). We consider a 𝑑-
dimensional linear regression tasks with in-context exam-
ples of the form z = (x, 𝑦) ∈ R𝑑 × R. Given 𝑡’th task β𝑡 ,
we generate 𝑛 i.i.d. samples via 𝑦 = β⊤

𝑡 x + 𝜉, where x ∼
N(0, I), 𝜉 ∼ N(0, 𝜎2) and 𝜎 is the noise level. Tasks are
sampled i.i.d. via β𝑡 ∼ N(0,𝚺), 𝑡 ∈ [𝑇]. Results are dis-
played in Figures 2(a)&(b). We set 𝑑 = 20, 𝑛 = 40 and sig-
nificantly larger 𝑇 to make sure model is sufficiently trained
and we display meta learning results (i.e. on unseen tasks)
for both experiments. In Fig. 2(a), 𝜎 = 1 and 𝚺 = I . We

4Our code is available at https://github.com/
yingcong-li/transformers-as-algorithms.

8

https://github.com/yingcong-li/transformers-as-algorithms
https://github.com/yingcong-li/transformers-as-algorithms

Generalization and Stability in In-context Learning

0 20 40 60 80 1000.0

0.1

0.2

Ri
sk

 c
ha

ng
e Decision trees

0 20 40 60 80 1000.0
0.2
0.4
0.6

2-layer neural nets

0 5 10 15 20 25 30 35 40
in-context samples

0.0

0.2

0.4

Ri
sk

 c
ha

ng
e Noisy linear functions

0 5 10 15 20 25 30 35 40
in-context samples

0.0

0.4

0.8
Sparse linear functions

Figure 6: Experiments to assess the algorithmic stability Assump-
tion 3.1. Each figure shows the increase in the risk for varying ICL
sample sizes after an example in the prompt is modified. We swap
an input example in the prompt and assign a flipped label to this
new input, e.g., we move from (x, 𝑓 (x)) to (x′,− 𝑓 (x′)).

also solve ridge-regularized linear regression (with sample
size from 1 to 𝑛) over the grid 𝜆 = [0.01, 0.05, 0.1, 0.5, 1]
and display the results of the best 𝜆 selection as the optimal
ridge curve (Black dotted). Recall from (5) that ridge regres-
sion is optimal for isotropic task covariance. In Fig. 2(b),
we set 𝜎 = 0 and 𝚺 = diag(

[
1, 1

22 ,
1
32 , . . . ,

1
202

]
). Be-

sides ordinary least squares (Green curve), we also display
the optimally-weighted regression according to (5) (dotted
curve) as 𝜎 → 0. In both figures, ICL (Red) outperforms
the least squares solutions (Green) and are perfectly aligned
with optimal ridge/weighted solutions (Black dotted). This
in turn provides evidence for the automated model selection
ability of transformers by learning task priors.

• Partially-observed dynamical systems (Figures 2(c) &
11). We generate in-context examples z𝑖 = x𝑖 ∈ R𝑟 , 𝑖 ∈ [𝑛]
via the partially-observed linear dynamics x𝑖 = Cs𝑖 ,
s𝑖 = As𝑖−1 + ξ𝑖 with noise ξ𝑖 ∼ N(0, 𝜎2I𝑑) and initial
state s0 = 0. Each task is parameterized by C ∈ R𝑟×𝑑 and
A ∈ R𝑑×𝑑 which are drawn with i.i.d. N(0, 1) entries and
A is normalized to have spectral radius 0.9. In Fig. 2(c),
we set 𝑑 = 10, 𝑟 = 4, 𝜎 = 0, 𝑛 = 20 and use sufficiently
large 𝑇 to train the transformer. For comparison, we solve
least-squares regression to predict new observations x𝑖 via
the most recent 𝐻 observations for varying window sizes
𝐻. Results show that in-context learning outperforms the
least-squares results of all orders 𝐻 = 1, 2, 3, 4. In Figure
11, we also solve the dynamical problem using optimal ridge
regression for different window sizes. This reveals that ICL
can also outperform auto-regressive models with optimal
ridge tuning, albeit the performance gap is much narrower.
It would be interesting to compare ICL performance to a
broader class of system identification algorithms (e.g. Han-
kel nuclear norm, kernel-based, atomic norm (Ljung, 1998;
Pillonetto et al., 2016)) and understand the extent ICL can
inform practical algorithm design.

• Stability analysis (Figure 6). In Assumption 3.1, we
require that transformer-induced algorithms are stable to
input perturbations, specifically, we require predictions to
vary by at most O(1/𝑚) where 𝑚 is the sample size. This
was justified in part by Theorem 3.2. To understand em-

pirical stability, we run additional experiments where the
results are displayed in Fig. 6. We study stability of four
function classes: linear models, 3-sparse linear models, de-
cision trees with depth 4, and 2-layer ReLU networks with
100 hidden units, all with input dimension of 20. For each
class F , a GPT-2 architecture is trained with large number
of random tasks 𝑓 ∈ F and evaluate on new tasks. With
the exception of Fig. 2(a), we use the pretrained models
provided by (Garg et al., 2022) and the task sequences are
noiseless i.e. sequences obey 𝑦𝑖 = 𝑓 (x𝑖). As a coarse ap-
proximation of the worst-case perturbation, we perturb a
prompt x(𝑚)

prompt = (x1, 𝑦1, · · · ,x𝑚−1, 𝑦𝑚−1,x𝑚) as follows.
Draw a random point (x′

1, 𝑦
′
1) ∼ (x1, 𝑦1) and flip its label

to obtain (x′
1,−𝑦

′
1). We obtain the adversarial prompt via

x̄(𝑚)
prompt = (x′

1,−𝑦
′
1, · · · ,x𝑚−1, 𝑦𝑚−1,x𝑚)5. In Fig. 6, we

plot the test risk change between the adversarial and stan-
dard prompts. All figures corroborate that, after a certain
sample size, the risk change noticeably decreases as the in-
context sample size increases. This behavior is in line with
Assumption 3.1; however, further investigation and longer
context window are required to accurately characterize the
stability profile (e.g. to verify whether stability is O(1/𝑚)
or not). Finally, in Figure 12 of the appendix, we show that
adding label noise to regression tasks during MTL training
can help improve stability.

8. Discussion
In this work, we approached in-context learning as an algo-
rithm learning problem with a statistical perspective. We
presented generalization bounds for MTL where the model
is trained with𝑇 tasks each mapped to a sequence containing
𝑛 examples. Our results build on connections to algorithmic
stability which we have verified for transformer architec-
tures empirically as well as theoretically. Our generalization
and stability guarantees are also developed for dynamical
systems capturing autoregressive nature of transformers.
There are multiple interesting directions building on these
(1) Can we extend the results on dynamical systems to more
general dynamic settings such as reinforcement/imitation
learning or system identification with partial state observa-
tions? (2) How can we control generalization capability
on individual tasks or prompts with specific lengths (rather
than average MTL risk)? (3) A deeper exploration of ICL’s
model selection capability is warranted, for instance, to
demystify the inductive biases observed in Section 4.

Acknowledgements
This work was supported in part by the NSF grants CCF-
2046816 and CCF-2212426, Google Research Scholar
award, and Army Research Office grant W911NF2110312.

5To fully verify Assumption 3.1 one should adversarially opti-
mize x′

1,y
′
1 and also swap the other indices 𝑚 > 𝑖 > 1.

9

Generalization and Stability in In-context Learning

References
Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and

Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

Angeli, D. A lyapunov approach to incremental stability
properties. IEEE Transactions on Automatic Control, 47
(3):410–421, 2002.

Basu, S., Rawat, A. S., and Zaheer, M. Generalization
properties of retrieval-based models. arXiv preprint
arXiv:2210.02617, 2022.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. A theory of learning
from different domains. Machine learning, 79(1):151–
175, 2010.

Block, A., Simchowitz, M., and Tedrake, R. Smoothed
online learning for prediction in piecewise affine systems.
arXiv preprint arXiv:2301.11187, 2023.

Bousquet, O. and Elisseeff, A. Algorithmic stability and
generalization performance. Advances in Neural Infor-
mation Processing Systems, 13, 2000.

Bousquet, O. and Elisseeff, A. Stability and generalization.
The Journal of Machine Learning Research, 2:499–526,
2002.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, L., Lu, S., and Chen, T. Understanding benign over-
fitting in gradient-based meta learning. In Advances in
Neural Information Processing Systems, 2022.

Cheng, Y., Feng, S., Yang, J., Zhang, H., and Liang, Y.
Provable benefit of multitask representation learning in
reinforcement learning. arXiv preprint arXiv:2206.05900,
2022.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Collins, L., Mokhtari, A., Oh, S., and Shakkottai, S. Maml
and anil provably learn representations. arXiv preprint
arXiv:2202.03483, 2022.

Dai, D., Sun, Y., Dong, L., Hao, Y., Sui, Z., and Wei, F. Why
can gpt learn in-context? language models secretly per-
form gradient descent as meta optimizers. arXiv preprint
arXiv:2212.10559, 2022.

Dean, S., Mania, H., Matni, N., Recht, B., and Tu, S. On
the sample complexity of the linear quadratic regulator.
Foundations of Computational Mathematics, 20(4):633–
679, 2020.

Du, S. S., Hu, W., Kakade, S. M., Lee, J. D., and Lei,
Q. Few-shot learning via learning the representation,
provably. arXiv preprint arXiv:2002.09434, 2020.

Faradonbeh, M. K. S. and Modi, A. Joint learning-based
stabilization of multiple unknown linear systems. arXiv
preprint arXiv:2201.01387, 2022.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pp. 1126–1135.
PMLR, 2017.

Foster, D., Sarkar, T., and Rakhlin, A. Learning nonlinear
dynamical systems from a single trajectory. In Learning
for Dynamics and Control, pp. 851–861. PMLR, 2020.

Garg, S., Tsipras, D., Liang, P., and Valiant, G. What can
transformers learn in-context? a case study of simple
function classes. Neural Information Processing Systems,
2022.

Hanneke, S. and Kpotufe, S. On the value of target data
in transfer learning. Advances in Neural Information
Processing Systems, 32, 2019.

Hollmann, N., Müller, S., Eggensperger, K., and Hut-
ter, F. Tabpfn: A transformer that solves small tabu-
lar classification problems in a second. arXiv preprint
arXiv:2207.01848, 2022.

HuggingFace. Huggingface pretrained models. URL
https://huggingface.co/transformers/
v2.2.0/pretrained_models.html.

Kirsch, L. and Schmidhuber, J. Meta learning backpropaga-
tion and improving it. Advances in Neural Information
Processing Systems, 34:14122–14134, 2021.

Kirsch, L., Harrison, J., Sohl-Dickstein, J., and Metz, L.
General-purpose in-context learning by meta-learning
transformers. arXiv preprint arXiv:2212.04458, 2022.

Kong, W., Somani, R., Song, Z., Kakade, S., and Oh, S.
Meta-learning for mixed linear regression. In Interna-
tional Conference on Machine Learning, pp. 5394–5404.
PMLR, 2020.

Kuznetsov, V. and Mohri, M. Generalization bounds for
time series prediction with non-stationary processes. In
International conference on algorithmic learning theory.
Springer, 2014.

10

https://huggingface.co/transformers/v2.2.0/pretrained_models.html
https://huggingface.co/transformers/v2.2.0/pretrained_models.html

Generalization and Stability in In-context Learning

Kuznetsov, V. and Mohri, M. Time series prediction and
online learning. In Conference on Learning Theory, pp.
1190–1213. PMLR, 2016.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S.,
Steigerwald, R., Strouse, D., Hansen, S., Filos, A.,
Brooks, E., et al. In-context reinforcement learning with
algorithm distillation. arXiv preprint arXiv:2210.14215,
2022.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

Li, Y., Li, M., Asif, M. S., and Oymak, S. Provable and
efficient continual representation learning. arXiv preprint
arXiv:2203.02026, 2022.

Lindley, D. V. and Smith, A. F. Bayes estimates for the
linear model. Journal of the Royal Statistical Society:
Series B (Methodological), 34(1):1–18, 1972.

Ljung, L. System identification. In Signal analysis and
prediction, pp. 163–173. Springer, 1998.

Mania, H., Jordan, M. I., and Recht, B. Active learning for
nonlinear system identification with guarantees. arXiv
preprint arXiv:2006.10277, 2020.

Matni, N. and Tu, S. A tutorial on concentration bounds
for system identification. In 2019 IEEE 58th Conference
on Decision and Control (CDC), pp. 3741–3749. IEEE,
2019.

Maurer, A. A vector-contraction inequality for rademacher
complexities. In International Conference on Algorithmic
Learning Theory, pp. 3–17. Springer, 2016.

Maurer, A., Pontil, M., and Romera-Paredes, B. The benefit
of multitask representation learning. Journal of Machine
Learning Research, 17(81):1–32, 2016.

McDonald, D. J., Shalizi, C. R., and Schervish, M. Non-
parametric risk bounds for time-series forecasting. The
Journal of Machine Learning Research, 18(1):1044–1083,
2017.

Modi, A., Faradonbeh, M. K. S., Tewari, A., and Michai-
lidis, G. Joint learning of linear time-invariant dynamical
systems. arXiv preprint arXiv:2112.10955, 2021.

Mohri, M. and Rostamizadeh, A. Rademacher complex-
ity bounds for non-iid processes. Advances in Neural
Information Processing Systems, 21, 2008.

Mohri, M. and Rostamizadeh, A. Stability bounds for sta-
tionary 𝜑-mixing and 𝛽-mixing processes. Journal of
Machine Learning Research, 11(2), 2010.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of machine learning. MIT press, 2018.

Neyshabur, B., Tomioka, R., Salakhutdinov, R., and Srebro,
N. Geometry of optimization and implicit regularization
in deep learning. arXiv preprint arXiv:1705.03071, 2017.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Oymak, S. and Ozay, N. Revisiting ho–kalman-based sys-
tem identification: Robustness and finite-sample analysis.
IEEE Transactions on Automatic Control, 67(4):1914–
1928, 2021.

Pillonetto, G., Chen, T., Chiuso, A., De Nicolao, G., and
Ljung, L. Regularized linear system identification using
atomic, nuclear and kernel-based norms: The role of the
stability constraint. Automatica, 69:137–149, 2016.

Qin, Y., Menara, T., Oymak, S., Ching, S., and Pasqualetti,
F. Non-stationary representation learning in sequential
linear bandits. IEEE Open Journal of Control Systems,
2022.

Richards, D., Mourtada, J., and Rosasco, L. Asymptotics
of ridge (less) regression under general source condition.
In International Conference on Artificial Intelligence and
Statistics, pp. 3889–3897. PMLR, 2021.

Sarkar, T. and Rakhlin, A. Near optimal finite time identifi-
cation of arbitrary linear dynamical systems. In Interna-
tional Conference on Machine Learning, pp. 5610–5618.
PMLR, 2019.

Sattar, Y. and Oymak, S. Non-asymptotic and accurate
learning of nonlinear dynamical systems. Journal of
Machine Learning Research, 23(140):1–49, 2022.

Simchowitz, M., Mania, H., Tu, S., Jordan, M. I., and Recht,
B. Learning without mixing: Towards a sharp analysis of
linear system identification. In Conference On Learning
Theory, pp. 439–473. PMLR, 2018.

Sontag, E. D. and Wang, Y. On characterizations of the
input-to-state stability property. Systems & Control Let-
ters, 24(5):351–359, 1995.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and
Srebro, N. The implicit bias of gradient descent on sepa-
rable data. The Journal of Machine Learning Research,
19(1):2822–2878, 2018.

Sun, Y., Narang, A., Gulluk, I., Oymak, S., and Fazel, M. To-
wards sample-efficient overparameterized meta-learning.
Advances in Neural Information Processing Systems, 34:
28156–28168, 2021.

11

Generalization and Stability in In-context Learning

Sun, Y., Oymak, S., and Fazel, M. Finite sample identifica-
tion of low-order lti systems via nuclear norm regulariza-
tion. IEEE Open Journal of Control Systems, 1:237–254,
2022.

Tripuraneni, N., Jordan, M., and Jin, C. On the theory
of transfer learning: The importance of task diversity.
Advances in Neural Information Processing Systems, 33:
7852–7862, 2020.

Tripuraneni, N., Jin, C., and Jordan, M. Provable meta-
learning of linear representations. In International Con-
ference on Machine Learning, pp. 10434–10443. PMLR,
2021.

Tsiamis, A., Ziemann, I., Matni, N., and Pappas, G. J. Sta-
tistical learning theory for control: A finite sample per-
spective. arXiv preprint arXiv:2209.05423, 2022.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov, M.
Transformers learn in-context by gradient descent. arXiv
preprint arXiv:2212.07677, 2022.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge University
Press, 2019.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. arXiv preprint arXiv:2111.02080, 2021.

Zhang, T. T., Kang, K., Lee, B. D., Tomlin, C., Levine, S.,
Tu, S., and Matni, N. Multi-task imitation learning for
linear dynamical systems. arXiv:2212.00186, 2022.

Ziemann, I. and Tu, S. Learning with little mixing. In Ad-
vances in Neural Information Processing Systems, 2022.

Ziemann, I. M., Sandberg, H., and Matni, N. Single trajec-
tory nonparametric learning of nonlinear dynamics. In
conference on Learning Theory, pp. 3333–3364. PMLR,
2022.

12

Generalization and Stability in In-context Learning

0 2 4 6 8 10
in-context samples

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 ri
sk

Standard GPT-2
Small GPT-2
Tiny GPT-2

T=25
T=50
T=125

Figure 7: Following Figure 4, instead
we train 𝑑 = 5 dimensional linear re-
gression problem with three different
GPT-2 architectures and overlay the
transfer results.

0 5 10 15 20 25 30 35 40
In-context sample size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Te
st

 R
isk

T=d
T=2d
T=3d

Greedy MTL risk
Transfer risk (MTL-ridge)
Transfer risk (Opt-ridge)

Greedy MTL risk
Transfer risk (MTL-ridge)
Transfer risk (Opt-ridge)

Figure 8: We display the performance
of the idealized transfer and MTL algo-
rithms described in Section 4. Unlike
ICL experiments, these require 𝑇 ≲ 𝑑
tasks.

0.0 0.4 0.8 1.2 1.6 2.0
Oversampling n/d

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 ri
sk

d = 5
d = 10
d = 20

T/d2 = 1
T/d2 = 2
T/d2 = 5

Figure 9: The difference form Fig. 4(d)
is that we overlay the MTL results of
dimensions 𝑑 ∈ {5, 10, 20} (dashed
curves in Fig. 4 (a,b,c)).

Organization of the Appendix
• Supporting experiments and details are provided under Section A.
• In Section B, we prove and discuss our stability results.
• Section C provides proofs of MTL (Section 3) and transfer learning (Section 4) generalization bounds.
• Section D proves our dynamical generalization bound (Theorem 5.4).
• In Section E, we discuss the model selection aspect of ICL.
• We introduce more related work in Section F.

A. Additional Experiments
Our linear regression experiments are based on the code released by (Garg et al., 2022), however without curriculum learning.
All the inputs and noise are i.i.d. Gaussian vectors and tasks are i.i.d. sampled from some distribution. The meta learning
results Fig. 2(a,b) are trained with 𝑇 = 32 million random linear tasks and Fig. 2(c) and Fig. 11 are trained with 𝑇 = 6.4
million dynamical trajectories (here, we fix the batch size to 64 and train with 500k/100k iterations). All experiments use
learning rate 0.0001 and Adam optimizer.

A.1. Supporting Experiments for Section 4

Architecture dependence of transfer risk: In Figure 7, we verify that the transfer risk is (mostly) independent of the
model complexity dim(A) (in contrast to the dependence on task complexity 𝑑). Following the same setting as in Figure 4,
during the MTL phase, we consider 5-dimensional linear regression problem and train with 𝑇 = 25/50/125 tasks over three
different models: tiny/small/standard GPT-2. The standard GPT-2 has the same architecture as used in Fig. 4 and Section 7,
with 12 layers, 8 attention heads and 256 dimensional embeddings. While, small GPT-2 has 6 layers, 4 attention heads and
128 dimensional embeddings, and tiny GPT-2 has only 3 layers, 2 attention heads and 64 dimensional embeddings. They
contain 9.5M, 1.2M and 0.15M parameters respectively, which shows that small GPT-2 has around 8× less parameters than
standard GPT-2 and tiny GPT-2 has around 64× less. Overlayed results are displayed in Figure 7, which demonstrate that
although the architectures are substantially different in terms of complexity and expressive power, the performances under
the same data setting (same color with different line styles) are approximately aligned.

Contrasting ICL to Idealized Algorithms. In Section 4, we discussed how transfer risk seems to require 𝑇 ∝ 𝑑2 source
tasks. In contrast, constructing the empirical covariance �̂� = 1

𝑇

∑𝑇
𝑖=1 β𝑖β

⊤
𝑖

can make sure that �̂�-weighted LS performs
O(1)-close to 𝚺-weighted LS whenever ∥𝚺 − �̂�∥/𝜆min (𝚺) ≤ O(1). In Figure 8, MTL-ridge curves with circle markers are
referring to the �̂�-weighted ridge regression. As suspected, 𝑇 = 3𝑑 is already sufficient to get very close performance to the
optimal weighting with true 𝚺 (black curve). We remark that in Figure 8, we set 𝑑 = 20, noise variance obeys 𝜎2 = 0.1, and
linear task vectors β are uniformly sampled over the sphere.

13

Generalization and Stability in In-context Learning

Multitask risk
Transfer risk

Figure 10: Comparing MTL and trans-
fer risks when each task has single tra-
jectory (𝑀 = 1).

0 10 20 30 40
in-context samples

0.2

0.4

0.6

0.8

1.0

Te
st

 ri
sk

In-context learning
Optimal ridge (H=1)
Optimal ridge (H=2)
Optimal ridge (H=3)
Optimal ridge (H=4)

Figure 11: Dynamical system experi-
ments. The difference from Fig. 2(c) is
that we compare ICL to the optimally-
tuned ridge regression with different
history windows 𝐻.

0 5 10 15 20 25 30 35 40
in-context samples

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Ri
sk

 c
ha

ng
e

= 0
= 0.1
= 0.5
= 1

Figure 12: Stability experiments on
noisy/noiseless linear settings, where
𝜎 is the label noise level and data is
generated by 𝑦 ∼ N(x⊤β, 𝜎2) where
x, 𝛽 ∼ N(0, I). Blue curve is noise-
less regression.

For MTL, Section 4 introduces the following simple greedy algorithm to predict a prompt that belong to one of the 𝑇
source tasks (aka MTL risk): Evaluate each source task parameter (β𝑡)𝑇𝑡=1 on the prompt and select the parameter with the
minimum risk. Since there are 𝑇 choices, this greedy algorithm will determine the optimal task in 𝑛 ≲ log(𝑇) samples6.
The experiments of this algorithm is provided under Greedy MTL legend (square markers). It can be seen that as 𝑇 varies
(𝑑, 2𝑑, 3𝑑), there is almost no difference in the MTL risk, likely due to the log(𝑇) dependence. Figure 9 gathers the MTL
risk curves from Fig. 4 (a,b,c) and overlays them together. Same as transfer risks shown in Fig. 4(d), the test risks stay
approximately unchanged for fixed point 𝛼 = 𝑛/𝑑 and 𝛽 = 𝑇/𝑑2. It is also aligned with Fig. 8, greedy MTL risk curves,
where larger 𝑇 requires more samples (although their 𝑑-dependence is very different). In short, these experiments highlight
the contrast between ideal/greedy algorithms and ICL algorithm implemented within the transformer model.

In Section 4, we also exclusively focused on the setting 𝑀 → ∞ i.e. MTL tasks are thoroughly trained. In Figure 10 we
consider the other extreme where each task is trained with a single trajectory 𝑀 = 1, which is closer to the spirit of Theorem
3.5. We set 𝑑 = 5, 𝑛 = 10 and 𝑀 = 1, and vary the number of linear regression tasks 𝑇 from 2000 to 50000. Not surprisingly,
the results show that increasing 𝑇 helps in reducing the MTL risk. The more interesting observation is that transfer risk and
MTL risk are almost perfectly aligned. We believe that this is due to the small 𝑀, 𝑛 choices which would make it difficult to
overfit to the MTL tasks. Thus, when 𝑀 = 1, the gap between transfer and MTL risk seems to vanish and Theorem 3.5
becomes directly informative for the transfer risk. In contrast, as 𝑀 grows, training process can overfit to the MTL tasks
which leads to the split between MTL and transfer risks as in Figure 4.

A.2. Additional Stability Experiments

In Section 7 and Figure 6, we run adversarial experiments demonstrating that our stability assumption (Assumption 3.1) is
indeed realistic. In addition, we find that adding noise to the labels can help improve stability. As depicted in Figure 12,
Red curve is much more stable compared to the Blue curve which is trained with noiseless linear regression tasks. One
interpretation is that solving noiseless problems might result in an overfitted algorithm (towards noiseless tasks) and a
small perturbation/distribution-shift leads to significant error. The peaks in Figure 12 occurs around 𝑛 = 𝑑 and (most
likely) arise from the double-descent phenomena: When there is no label noise, an interpolating linear model (without
ridge regularization) is optimal (recall (5)). However such an interpolating model is susceptible to adversarial perturbations
especially when the condition number is poor (which occurs at 𝑛 = 𝑑). Here, the key takeaway is that noise has a stabilitizing
effect, because under label-noise, optimal model learned by TF is the solution of a weighted ridge regression thus regularizes
the transformer’s algorithm.

6Note that, this dependence can be even better if the problem is noiseless, in fact, that is why we added label noise in these experiments.

14

Generalization and Stability in In-context Learning

B. Stability of Transformer-based ICL
Lemma B.1. Let x, ε ∈ R𝑛 be vectors obeying ∥x∥ℓ∞ , ∥x + ε∥ℓ∞ ≤ 𝑐. Then, there exists a constant 𝐶 = 𝐶 (𝑐), such that

∥softmax(x)∥ℓ∞ ≤ 𝑒2𝑐/𝑛 and ∥softmax(x) − softmax(x + ε)∥ℓ1 ≤ 𝑒2𝑐 ∥ε∥ℓ1/𝑛.

Proof. Without losing generality, assume the first coordinate is the largest. Using monotonicity of softmax, we obtain
∥softmax(x)∥ℓ∞ ≤ 𝑒𝑐

𝑒𝑐+∑𝑛𝑖=2 𝑒
−𝑐 ≤ 𝑒2𝑐

𝑛
. For vectors ε and x, infitesimal softmax perturbation is bounded via

lim
𝛿→0

[softmax(x + 𝛿ε) − softmax(x)]/𝛿 = [diag(softmax(x)) − softmax(x)softmax(x)⊤]ε.

We use ∥ [diag(softmax(x)) − softmax(x)softmax(x)⊤]ε∥ℓ1 ≤ 𝑒2𝑐 ∥ε∥ℓ1/𝑛. Integrating the derivative along 𝛿 = 0 to 1, we
obtain the result. □

For a matrix A, let ∥A∥2, 𝑝 denote the ℓ𝑝 norm of the vector obtained by the ℓ2 norms of its rows.

Lemma B.2. Let X = [x1 . . . x𝑛]⊤ and E = [ε1 . . . ε𝑛]⊤ be the input and perturbation matrices respectively. Assume
that the tokens (x𝑖 ,x𝑖 + ε𝑖) lie in unit ball i.e. ∥X ∥2,∞, ∥X + E∥2,∞ ≤ 1. Let V ,W ∈ R𝑑×𝑑 be the weights of the
self-attention layer obeying ∥V ∥ ≤ 1 and ∥W ∥ ≤ Γ. Define the attention outputs A = softmax(XWX⊤)XV and
Ā = softmax(X̄WX̄⊤)X̄V . Define Ē = Ā −A := [ε̄1 . . . ε̄𝑛]⊤. Let 𝐶0 be an upper bound on ∥E∥2,1. We have that

∥A∥2,∞, ∥Ā∥2,∞ ≤ 1, ∥Ē∥2,1 ≤ (2Γ + 1)𝑒2Γ𝐶0.

Additionally, for any 𝑖 ∈ [𝑛] such that ∥ε𝑖 ∥ℓ2 ≤ 𝐶0/𝑛, we have ∥ε̄𝑖 ∥ℓ2 ≤ 1
𝑛
(2Γ + 1)𝑒2Γ𝐶0.

Proof. First observe that V preserves norms i.e. XV obeys ∥XV ∥2,∞ ≤ ∥X ∥2,∞ ≤ 1 and ∥EV ∥2,1 ≤ ∥E∥2,1.

Next, set X̄ = X +E and define attention outputs A = softmax(XWX⊤)XV , Ā = softmax(X̄WX̄⊤)X̄V . Observe
that, since softmax applies row-wise to the similarities (e.g. XWX), we preserve the feature norms i.e. ∥A∥2,∞, ∥Ā∥2,∞ ≤ 1
as advertised.

Now, consider the attention output difference P = Ā −A

P = [softmax(X̄WX̄⊤) − softmax(XWX⊤)]XV︸ ︷︷ ︸
P1

+ softmax(X̄WX̄⊤)EV︸ ︷︷ ︸
P2

. (7)

For any pairs of tokens, we have |x⊤
𝑖
Wx 𝑗 | ≤ Γ. Using Lemma B.1

∥P2∥2,1 = ∥softmax(X̄WX̄⊤)EV ∥2,1 ≤ 𝑛∥softmax(X̄WX̄⊤)∥∞∥E∥2,1 ≤ 𝑒2Γ∥E∥2,1. (8)

Secondly, set P1 = [softmax(X̄WX̄⊤) − softmax(XWX⊤)]XV . We have that

∥P1∥2,1 ≤ ∥softmax(X̄WX̄⊤) − softmax(XWX⊤)∥ℓ1 ∥XV ∥2,∞

≤ ∥softmax(X̄WX̄⊤) − softmax(XWX⊤)∥ℓ1 .

To proceed, define the 𝛿-scaled perturbation E′ = 𝛿E = X̄ ′ −X for some 0 ≤ 𝛿 ≤ 1. We will bound the derivative via
𝛿 → 0 and then integrate this derivative bound along E (i.e. from 𝛿 = 0 to 𝛿 = 1). Clearly, as 𝛿 → 0, the quadratic-terms
involving 𝛿2E disappear and ∥softmax(X̄ ′WX̄ ′⊤) − softmax(XWX⊤)∥ℓ1

≤ ∥softmax(X̄ ′WX⊤) − softmax(XWX⊤)∥ℓ1 + ∥softmax(XWX̄ ′⊤) − softmax(XWX⊤)∥ℓ1 .

To bound the latter, consider each row individually, namely pick a row from X ,X +E′ each denoted by the pair (x,x + ε′).
Note that for any cross-product, we are guaranteed to have | (x + ε′)⊤Wx𝑖 |, |x⊤Wx𝑖 | ≤ Γ, ∥ε′⊤WX ∥ℓ1 ≤ Γ𝑛∥ε′∥ℓ2 ,
∥x⊤WE′⊤∥ℓ1 ≤ Γ∥E′∥2,1. Applying perturbation bound of Lemma B.1, we get

∥softmax((x + ε′)⊤WX⊤) − softmax(x⊤WX⊤)∥ℓ1 ≤ Γ𝑒2Γ∥ε′∥ℓ2 (9)

∥softmax(x⊤W (X +E′)⊤) − softmax(x⊤WX⊤)∥ℓ1 ≤ Γ𝑒2Γ∥E′∥2,1/𝑛. (10)

15

Generalization and Stability in In-context Learning

Adding up all 𝑛 rows, we obtain

lim
𝛿→0

∥softmax((X + 𝛿E)WX̄⊤) − softmax(XWX⊤)∥ℓ1/𝛿 ≤ 2Γ𝑒2Γ∥E∥2,1.

Integrating the derivative along 𝛿 = 0 to 𝛿 = 1, we obtain ∥P1∥2,1 ≤ 2Γ𝑒2Γ∥E∥2,1. Together with (8), we obtain the main
claim ∥P ∥2,1 ≤ (2Γ + 1)𝑒2Γ∥E∥2,1 ≤ (2Γ + 1)𝑒2Γ𝐶0. To proceed, we control the individual output 𝑖 for which the input
perturbation is small i.e. ∥ε𝑖 ∥ℓ2 ≤ 𝐶0/𝑛. To this end, let us repeat the identical argument focusing on 𝑖th token. Suppose
𝑖’th token inputs are (dropping subscripts 𝑖) x, x̄, ε = x̄ − x and outputs are a, ā, ε̄ = ā − a. Similar to (7), we write (after
transposing)

ε̄ = V ⊤X⊤ [softmax(X̄W ⊤x̄) − softmax(XW ⊤x)]︸ ︷︷ ︸
p1

+V ⊤E⊤softmax(X̄W ⊤x̄)︸ ︷︷ ︸
p2

.

Using |x⊤
𝑖
Wx 𝑗 | ≤ Γ for all 𝑖, 𝑗 and using Lemma B.1, similar to (8), we bound

∥p2∥ℓ2 ≤ ∥E⊤softmax(X̄W ⊤x̄)∥ℓ2 ≤ 𝑒2Γ

𝑛
∥E∥2,1.

To proceed, we will again study the p1

∥p1∥ℓ2 ≤ ∥X⊤ [softmax(X̄W ⊤x̄) − softmax(XW ⊤x)] ∥ℓ2

≤ ∥X ∥2,∞∥softmax(X̄W ⊤x̄) − softmax(XW ⊤x)∥ℓ1

≤ ∥softmax(X̄W ⊤x̄) − softmax(XW ⊤x)∥ℓ1 .

Now, considering perturbation E′ = 𝛿E, letting 𝛿 → 0, and from triangle inequality, we obtain

lim
𝛿→0

𝛿−1∥softmax((X + 𝛿E)W ⊤ (x + 𝛿ε)) − softmax(XW ⊤x)∥ℓ1 ≤

lim
𝛿→0

𝛿−1∥softmax((X + 𝛿E)W ⊤x) − softmax(XW ⊤x)∥ℓ1 + 𝛿−1∥softmax(XW ⊤ (x + 𝛿ε)) − softmax(XW ⊤x)∥ℓ1

≤ Γ𝑒2Γ∥E∥2,1/𝑛 + Γ𝑒2Γ∥ε∥ℓ2 ≤ 2Γ𝑒2Γ𝐶0/𝑛.

For the last line, we re-used (9) and (10). To conclude, combining with p2 bound, we obtained the desired result. □

Lemma B.3 (Single-layer transformer stability). Consider the setup of Lemma B.2. Let 𝜙 be a 1-Lipschitz activation
function with 𝜙(0) = 0 (e.g. ReLU or Identity). Let (M𝑖)𝑛𝑖=1 ∈ R𝑑×𝑑 be weights of the parallel MLPs following self-attention.
Suppose ∥M𝑖 ∥ ≤ 1 and denote the MLP outputs associated to A, Ā by B, B̄. We have that

∥B∥2,∞, ∥B̄∥2,∞ ≤ 1, ∥B − B̄∥2,1 ≤ (2Γ + 1)𝑒2Γ∥E∥2,1.

Additionally, for any 𝑖 ∈ [𝑛] such that ∥ε𝑖 ∥ℓ2 ≤ 𝐶0/𝑛, we have ∥B𝑖 − B̄𝑖 ∥ℓ2 ≤ 1
𝑛
(2Γ + 1)𝑒2Γ𝐶0 where B𝑖 denotes the 𝑖th

row of B.

Proof. First note that each row of B̄ is given by b𝑖 = 𝜙(M𝑖a𝑖) thus ∥b𝑖 ∥ℓ2 ≤ ∥𝜙(M𝑖a𝑖)∥ℓ2 ≤ ∥M𝑖a𝑖 ∥ℓ2 ≤ ∥a𝑖 ∥ℓ2 ≤ 1.
Secondly, we can write ∥b𝑖 − b̄𝑖 ∥ℓ2 ≤ ∥𝜙(M𝑖a𝑖) − 𝜙(M𝑖ā𝑖)∥ℓ2 ≤ ∥M𝑖 (a𝑖 − ā𝑖)∥ℓ2 ≤ ∥a𝑖 − ā𝑖 ∥ℓ2 . Thus, we conclude via
Lemma B.2 because all row perturbations of B are dominated by those of A and ∥B − B̄∥2,1 ≤ ∥A − Ā∥2,1. □

Theorem B.4. Consider an 𝐿-layer transformer TF that maps 𝑛 tokens into 𝑛 tokens with (1) self-attention weights:
combined key-query weights (W𝑖)𝐿𝑖=1 ∈ R𝑑×𝑑 and value weights (V𝑖)𝐿𝑖=1 ∈ R𝑑×𝑑 , (3) MLP weights (M (𝑖)

𝑗
)𝐿,𝑛
𝑖=1, 𝑗=1 ∈ R𝑑×𝑑

with 1-Lipschitz activations 𝜙 (𝑖) obeying 𝜙 (𝑖) (0) = 0. For some Γ > 0, assume ∥V𝑖 ∥ ≤ 1, ∥M (𝑖)
𝑗

∥ ≤ 1, ∥W𝑖 ∥ ≤ Γ/2.
Suppose input space is S = [z1 z2 . . . z𝑛]⊤ with ∥z𝑖 ∥ℓ2 ≤ 1. The model prediction is given as follows

• S(0) = S. Layer 𝑖 outputs S(𝑖) = Parallel_MLPM (𝑖) (AttW𝑖 ,V𝑖 (S(𝑖−1)))). Here the self-attention layer is given by
AttW𝑖 ,V𝑖 (S) = softmax(SW𝑖S⊤)SV and Parallel_MLP applies 𝑓 (x) = 𝜙 (𝑖) (M (𝑖)

𝑗
x) on 𝑗 𝑡ℎ token of the Att

output.

• TF(S) = S(𝐿) and denote the 𝑖’th token output by TF(𝑖) (S).

16

Generalization and Stability in In-context Learning

The following statements hold

1. Assume activations are 𝜙 (𝑖) ∈ {ReLU, Identity} with final layer 𝜙 (𝐿) = Identity. This model is properly normalized in
the sense that TF(𝑖) (S) can output any vector ∥v∥ℓ2 ≤ 1 despite no residual/skip connections.

2. Let S′ be a perturbation on S where all tokens are allowed to change however the change over the last token obeys
∥z𝑛 − z′

𝑛∥ℓ2 ≤ 𝐶0/𝑛 where 𝐶0 is also an upper bound on ∥S − S′∥2,1. This model obeys the stability guarantee

|TF(𝑛) (S) − TF(𝑛) (S′) | ≤ 1
𝑛
((1 + Γ)𝑒Γ)𝐿𝐶0. (11)

Proof. To see the first claim, let us set V𝑖 = M (𝑖)
𝑙

= I (except for M (𝐿)) and set all tokens z𝑖 to be identical i.e. S = 1𝑛z⊤.
Additionally choose a z with ∥z∥ℓ2 = 1 and nonnegative entries. Observe that, thanks to the softmax structure, regardless
of W𝑖 , we have that S = AttW𝑖 ,V𝑖 (S) = softmax(SW𝑖S⊤)S. After attention, MLPs again preserves the tokens
i.e. 𝜙(M𝑖,𝑙z𝑖) = z for 𝜙 ∈ {ReLU, Identity}. Thus, after proceeding 𝐿 layers of this, right before the final MLP, the model
outputs S = 1𝑛z⊤. Then, given a target vector ∥v∥ℓ2 ≤ 1, choose the final MLP to M (𝐿) = vz⊤ to output an all v’s
sequence.

Note that, in general S can be arbitrary (they don’t have to be all same tokens): We can let W → ∞ (by allowing a larger
Γ). This way the attention matrix implements softmax(SWS⊤) → I and we end up with the same argument of S being
(almost perfectly) transmitted across the layers so that we obtain any target sequence in R𝑛×𝑑 .

Main claim (11): To show the stability guarantee, we use Lemmas B.2 and B.3. Set 𝐶0 = ∥S − S′∥2,1 and recall the last
token is not modified. Recall that Lemma B.3 guarantees that

• After each layer we are guaranteed to have ∥S(𝑖) ∥2,∞, ∥S′
(𝑖) ∥2,∞ ≤ 1.

• After each layer we are guaranteed to have ∥S(𝑖) − S′
(𝑖) ∥2,1 ≤ (1 + Γ)𝑒Γ∥S(𝑖−1) − S′

(𝑖−1) ∥2,1.

The latter implies that, for all layers, we have

∥S(𝑖) − S′
(𝑖) ∥2,1 ≤ ((1 + Γ)𝑒Γ)𝑖𝐶0. (12)

What remains is running induction on the last tokens z (𝑖)
𝑛 − z′(𝑖)

𝑛 . We claim that, at all layers ∥z (𝑖)
𝑛 − z′(𝑖)

𝑛 ∥ℓ2 ≤ 1
𝑛
((1 +

Γ)𝑒Γ)𝑖𝐶0. This claim is true at 𝑖 = 0 due to the change over last token being at most ∥S − S′∥2,1/𝑛. Assuming true at 𝑖 and
since (12) holds, for 𝑖+1, we apply Lemma B.3’s last line to obtain ∥z (𝑖+1)

𝑛 − z′(𝑖+1)
𝑛 ∥ℓ2 ≤ 1

𝑛
((1+Γ)𝑒Γ)𝑖+1𝐶0. Consequently,

induction holds and we conclude with the proof by setting 𝑖 = 𝐿. □

B.1. Proof of Theorem 3.2

Proof. We need to specialize Theorem B.4 to obtain the result where the model outputs the last token thus we would
like to apply (11). Observe that when prompts differ only at the inputs z 𝑗 = (x 𝑗 , 𝑦 𝑗) with z′

𝑗
= (x′

𝑗
, 𝑦′
𝑗
), we have that

∥Xprompt −X ′
prompt∥2,1 ≤ 2. This implies that |TF(Xprompt) −TF(X ′

prompt) | ≤ 2
2𝑚−1 ((1+Γ)𝑒

Γ)𝐷 for a depth 𝐷 transformer.
Finally, since the loss function ℓ is 𝐿-Lipschitz, we obtain the result 𝐾 = 2𝐿 ((1 + Γ)𝑒Γ)𝐷 . □

The next lemma verifies our stability Assumption 5.3 for dynamical systems. In this below, we will assume that trajectories
have bounded states almost surely (i.e. 𝑥 ≤ 1) so that Thm B.4 is directly applicable. This can be guaranteed by choosing
noise and initial state upper bounds (respectively ∥w 𝑗 ∥ℓ2 ≤ �̄�, ∥x0∥ℓ2 ≤ 𝑥0) appropriately. We have the relation7

𝑥 ≤ 𝐶𝜌 (𝑥0 + 1
1−𝜌 �̄�).

Lemma B.5 (Transformer stability for dynamical systems). Consider the stable dynamical system setting of Section 5 and
suppose that Assumption 5.3 holds. Let ℓ(x, x̂) = ℓ(x − x̂) be 𝐿-Lipschitz in x − x̂. Let x(𝑛)

prompt = (x0 x1 . . . x𝑛) be

a realizable (𝐶𝜌, 𝜌 < 1)-stable dynamical system trajectory and x′(𝑛)
prompt be the trajectory obtained by swapping w 𝑗 with

w′
𝑗

(𝑗 = 0 implies that x0 is swapped with x′
0). As a result, starting with the 𝑗’th index, the prompt x′(𝑛)

prompt has different

7Observe that each point in the trajectory is trivially bounded as ∥x𝑖 ∥ℓ2 ≤ 𝑥 ≤ 𝐶𝜌 (𝜌𝑖𝑥0 + 1
1−𝜌 �̄�) ≤ 𝐶𝜌 (𝑥0 + 1

1−𝜌 �̄�).

17

Generalization and Stability in In-context Learning

samples (x′
𝑗
, . . . ,x′

𝑛). Assume 𝑥 ≤ 1 i.e. all trajectory (x𝑖 ,x′
𝑖
)𝑖≥0 lie within the unit Euclidean ball in R𝑑 . Shape these

prompts into matrices Xprompt,X
′
prompt ∈ R𝑛×𝑑 respectively. Let TF(·) be a 𝐷-layer transformer as described in Theorem

B.4. Let TF output the last token of the final layer X(𝐷) that correspond to the query x𝑛. Then Assumption 5.3 holds with
𝐾 = ((1 + Γ)𝑒Γ)𝐷𝐶𝜌𝐿.

Proof. We again specialize Theorem B.4 to obtain the result. Observe that when w 𝑗 is modified to w′
𝑗
, then all the

subsequent tokens will change. Also recall that due to unit ball assumption �̄�, 𝑥0, 𝑥 ≤ 1. Set 𝐵0 = ∥w 𝑗 −w′
𝑗
∥ℓ2 if 𝑗 > 0 and

𝐵0 = ∥x0 − x′
0∥ℓ2 otherwise. Either way 𝐵0 ≤ 2. Additionally, set 𝐵𝑖 = ∥x 𝑗+𝑖 − x′

𝑗+𝑖 ∥ℓ2 for 𝑛 − 𝑗 ≥ 𝑖 ≥ 0. From stability,
we know that 𝐵𝑖 ≤ 𝐶𝜌𝜌𝑘𝐵𝑖−𝑘 . This means that

∥x𝑛 − x′
𝑛∥ℓ2 ≤ 1

𝑛 − 𝑗 + 1

𝑛− 𝑗∑︁
𝑖=0

𝐶𝜌𝜌
𝑖 ∥x𝑛−𝑖 − x′

𝑛−𝑖 ∥ℓ2 ≤
𝐶𝜌

𝑛 − 𝑗 + 1
∥Xprompt −X ′

prompt∥2,1. (13)

Set Θ = ∥Xprompt −X ′
prompt∥2,1. To proceed, we choose

max(Θ,
𝐶𝜌𝑛

𝑛 − 𝑗 + 1
Θ) =

𝐶𝜌𝑛

𝑛 − 𝑗 + 1
Θ := 𝐶0,

which satisfies the requirement of Theorem B.4. Now applying Theorem B.4, we find that, 𝑛’th output token perturbation
obeys

∥TF(𝑛) (x(𝑛)
prompt) − TF(𝑛) (x′(𝑛)

prompt)∥ℓ2 ≤ 1
𝑛
((1 + Γ)𝑒Γ)𝐷𝐶0 ≤

𝐶𝜌 ((1 + Γ)𝑒Γ)𝐷

𝑛 − 𝑗 + 1
Θ.

Consequently, for any excitation w𝑛+1 and using 𝐿-Lipschitzness of the loss, we find

|ℓ(x𝑚+1,TF(𝑛) (x(𝑛)
prompt)) − ℓ(x′

𝑚+1,TF(𝑛) (x′(𝑛)
prompt)) | ≤

𝐿𝐶𝜌 ((1 + Γ)𝑒Γ)𝐷

𝑛 − 𝑗 + 1

𝑛∑︁
𝑖= 𝑗

∥x𝑖 − x′
𝑖 ∥ℓ2 .

This means that stability holds with 𝐾 = ((1 + Γ)𝑒Γ)𝐷𝐶𝜌𝐿. □

B.2. Understanding when transformer-based ICL becomes unstable

Instability when attention weights are large. We have the following lemma that complements our stability theorem and
shows that instability can indeed arise when Γ is large.

Lemma B.6. Consider a length-𝑛 input sequence X = [x1 · · · x𝑛]⊤ and a single self-attention layer with W = ΓI ,V = I .
Suppose all tokens are unit norm and the tokens from 2 to 𝑛 − 1 are uncorrelated with the last token. Thus, Y = XX⊤ has
all ones diagonal, Y1,𝑛,Y𝑛,1 = 𝜌, and all remaining entries of the last row are zero. Suppose x1 is changed into x′

1 = 𝛾x1
for some 1 ≥ 𝛾 ≥ −1. Let A = softmax(XWX⊤)XV and a𝑛 denotes the last token. When 𝜌 = 1, we have that

∥a𝑛 − a′
𝑛∥ℓ2 ≥

∥x1 − x′
1∥ℓ2

2 + (𝑛 − 2)𝑒−Γ .

Thus, as soon as Γ ≥ log(𝑛 − 2), instability
∥a𝑛−a′

𝑛 ∥ℓ2
∥x1−x′

1 ∥ℓ2
becomes 𝑂 (1) (specifically ≥ 1/3).

Proof. Let m =
∑𝑛−1
𝑖=2 x𝑖 . Let 𝜌′ = 𝛾𝜌. The self-attention outputs are given by

a𝑛 =
𝑒Γx𝑛 + 𝑒𝜌Γx1 +m

𝑒Γ + 𝑒𝜌Γ + (𝑛 − 2) , a′
𝑛 =

𝑒Γx𝑛 + 𝑒𝜌
′Γx′

1 +m

𝑒Γ + 𝑒𝜌′Γ + (𝑛 − 2) .

Suppose 𝜌 = 1. By construction m⊤x𝑛 = 0, x1 = x𝑛. Also note that ∥x1 − x′
1∥ℓ2 = 1 − 𝛾. With these, by only studying the

18

Generalization and Stability in In-context Learning

change along the x𝑛 direction (thanks to orthogonality) and setting 𝜌 = 1, we find that

∥a𝑛 − a′
𝑛∥ℓ2

∥x𝑛∥ℓ2

≥ 2
2 + (𝑛 − 2)𝑒−Γ − 1 + 𝛾𝑒 (𝛾−1)Γ

1 + 𝑒 (𝛾−1)Γ + (𝑛 − 2)𝑒−Γ

≥ 2
2 + (𝑛 − 2)𝑒−Γ − 1 + 𝛾

2
1 + 𝑒 (𝛾−1)Γ

1 + 𝑒 (𝛾−1)Γ + (𝑛 − 2)𝑒−Γ

≥ 2
2 + (𝑛 − 2)𝑒−Γ − 1 + 𝛾

2
2

2 + (𝑛 − 2)𝑒−Γ

≥
∥x1 − x′

1∥ℓ2

2 + (𝑛 − 2)𝑒−Γ .

The final line is the advertised result. □

Stability fails if we modify the last token (rather than earlier tokens). Consider the setting of Theorem B.4 and the
statement (11). Below we show that, the requirement that last token should not be perturbed too much is indeed tight.
This follows from the fact that, each token has a large say on their respective self-attention output, thus, perturbing them
significantly perturbs their respective output (even if it cannot perturb other outputs too much).

Lemma B.7. Consider a single self-attention layer with W ,V = I so that it outputs A = softmax(XX⊤)X . The last
token outputs a = X⊤softmax(Xx𝑛). Suppose 𝑛 is odd (for simplicity). There exists X with unit tokens/rows such that, for
any perturbation amount 0 ≤ 𝜀 ≤ 1, changing x𝑛 to x′

𝑛 with ∥x𝑛 − x′
𝑛∥ℓ2 = 𝜀 can result in an output perturbation of

∥a − a′∥ℓ2 ≥ ∥x𝑛 − x′
𝑛∥ℓ2/5.

Setting 𝜀 = 1, perturbing x𝑛 results in ≥ 0.2 perturbation regardless of 𝑛.

Proof. If 𝑛 = 1, the model outputs a = x𝑛 thus ∥a − a′∥ℓ2 = 𝜀. Now let 𝑛′ = (𝑛 − 1)/2 and v ∈ R𝑑 with ∥v∥ℓ2 = 1.
Consider a toy setting where x𝑛 = 0, the first 𝑛′ tokens are equal to v and the next 𝑛′ tokens are equal to −v. Original
attention output is a = 0 due to symmetry. Now change the last token to 𝜀v and using ∥v∥ℓ2 = 1 and all tokens being
aligned with v observe that, for all 0 ≤ 𝜀 ≤ 1

∥a′∥ℓ2 =
𝑒𝜀 + (1/𝑛′)𝜀𝑒𝜀2 − 𝑒−𝜀

𝑒𝜀 + 𝑒−𝜀 + (1/𝑛′)𝑒𝜀2 ≥ 𝑛 − 1
2𝑛

𝑒𝜀 − 𝑒−𝜀
𝑒𝜀

=
𝑛 − 1

2𝑛
(1 − 𝑒−2𝜀) ≥ 0.8

𝑛 − 1
2𝑛

𝜀 ≥ 𝜀/5.

□

C. Proofs and Supplementary Results for Sections 3 and 4
C.1. Proof of Theorem 3.5

Theorem C.1 (Theorem 3.5 restated). Suppose Assumption 3.1 holds and assume loss function ℓ(y, ŷ) is 𝐿-Lipschitz for all
y ∈ Y and takes values in [0, 𝐵]. Let T̂F be the empirical solution of (ERM) and N(A, 𝜌, 𝑢) be the covering number of
the algorithm space A following Definition 3.3&3.4. Then with probability at least 1 − 2𝛿, the excess MTL risk in (1) obeys

𝑅MTL (T̂F) ≤ inf
𝜀>0

{
4𝐿𝜀 + 2(𝐵 + 𝐾 log 𝑛)

√︂
log(N (A, 𝜌, 𝜀)/𝛿)

𝑐𝑛𝑇

}
.

Additionally, set 𝐷 := supTF,TF′∈A 𝜌(TF,TF′) and assume 𝐷 < ∞. With probability at least 1 − 4𝛿,

𝑅MTL (T̂F) ≤ inf
𝜀>0

8𝐿𝜀 + 8(2𝐿 + 𝐾 log 𝑛)
∫ 𝐷/2

𝜀

√︄
log

(
log 𝐷

𝜀
· N (A, 𝜌, 𝑢)/𝛿

)
𝑐′𝑛𝑇

𝑑𝑢

 + 2(𝐵 + 𝐾 log 𝑛)
√︂

log(1/𝛿)
𝑐𝑛𝑇

.

Proof. Recall the MTL problem setting of independent (input, label) pairs in Section 2: There are 𝑇 tasks each with 𝑛
in-context training samples denoted by (S𝑡)𝑇𝑡=1

i.i.d.∼ (D𝑡)𝑇𝑡=1 where S𝑡 = {(x𝑡𝑖 , y𝑡𝑖)}𝑛𝑖=1, and let Sall =
⋃𝑇
𝑡=1 S𝑡 . We use A

19

Generalization and Stability in In-context Learning

to denote the algorithm set. For a TF ∈ A, we define the training risk L̂Sall (TF) = 1
𝑛𝑇

∑𝑇
𝑡=1

∑𝑛
𝑖=1 ℓ(y𝑡𝑖 ,TF(S𝑖−1

𝑡 ,x𝑡𝑖)) ,
and the test risk LMTL (TF) = E[L̂Sall (TF)]. Define empirical risk minima T̂F = arg minTF∈A L̂Sall (TF) and population
minima TF★ = arg minTF∈A LMTL (TF). For cleaner exposition, in the following discussion, we drop the subscripts MTL
and Sall. The excess MTL risk is decomposed as follows:

𝑅MTL (T̂F) = L(T̂F) − L(TF★)
= L(T̂F) − L̂(T̂F)︸ ︷︷ ︸

𝑎

+ L̂(T̂F) − L̂(TF★)︸ ︷︷ ︸
𝑏

+ L̂(TF★) − L(TF★)︸ ︷︷ ︸
𝑐

.

Since T̂F is the minimizer of empirical risk, we have 𝑏 ≤ 0. To proceed, we consider the concentration problem of upper
bounding supTF∈A |L(TF) − L̂(TF) |.

Step 1: We start with a concentration bound |L(TF) − L̂(TF) | for a fixed TF ∈ A. Recall that we define the test/train
risks of each task as follows:

L̂𝑡 (TF) :=
1
𝑛

𝑛∑︁
𝑖=1

ℓ(y𝑡𝑖 ,TF(S𝑖−1
𝑡 ,x𝑡𝑖)), and

L𝑡 (TF) := ES𝑡
[
L̂𝑡 (TF)

]
= ES𝑡

[
1
𝑛

𝑛∑︁
𝑖=1

ℓ(y𝑡𝑖 ,TF(S𝑖−1
𝑡 ,x𝑡𝑖))

]
, ∀𝑡 ∈ [𝑇] .

Define the random variables 𝑋𝑡 ,𝑖 = E[L̂𝑡 (TF) |S𝑖𝑡] for 𝑖 ∈ [𝑛] and 𝑡 ∈ [𝑇], that is, 𝑋𝑡 ,𝑖 is the expectation over L̂𝑡 (TF) given
training sequence S𝑖𝑡 = {(x𝑡 𝑗 , y𝑡 𝑗)}𝑖𝑗=1 (which are the filtrations). With this, we have that 𝑋𝑡 ,𝑛 = E[L̂𝑡 (TF) |S𝑛𝑡] = L̂𝑡 (TF)
and 𝑋𝑡 ,0 = E[L̂𝑡 (TF)] = L𝑡 (TF). More generally, (𝑋𝑡 ,0, 𝑋𝑡 ,1, . . . , 𝑋𝑡 ,𝑛) is a martingale sequence since, for every 𝑡 in [𝑇],
we have that E[𝑋𝑡 ,𝑖 |S𝑖−1

𝑡] = 𝑋𝑡 ,𝑖−1.

For notational simplicitly, in the following discussion, we omit the subscript 𝑡 from x, y and S as they will be clear from
left hand-side variable 𝑋𝑡 ,𝑖 . We have that

𝑋𝑡 ,𝑖 = E

[
1
𝑛

𝑛∑︁
𝑗=1
ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗))

����S𝑖]
=

1
𝑛

𝑖∑︁
𝑗=1
ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗)) +

1
𝑛

𝑛∑︁
𝑗=𝑖+1
E

[
ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗))

����S𝑖]
Next, we wish to upper bound the martingale increments i.e. the difference of neighbors. Let S𝑖:𝑖 = S𝑖 − S𝑖−1 denote the
𝑖’th element.

|𝑋𝑡 ,𝑖 − 𝑋𝑡 ,𝑖−1 | =

������E
[

1
𝑛

𝑛∑︁
𝑗=1
ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗))

����S𝑖] − E [
1
𝑛

𝑛∑︁
𝑗=1
ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗))

����S𝑖−1
] ������

≤ 1
𝑛

𝑛∑︁
𝑗=𝑖

����E [
ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗))

����S𝑖] − E [
ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗))

����S𝑖−1
] ����

(𝑎)
≤ 𝐵

𝑛
+ 1
𝑛

𝑛∑︁
𝑗=𝑖+1

����E [
ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗))

����S𝑖] − E [
ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗))

����S𝑖−1
] ����.

Here, (𝑎) follows from the fact that loss function ℓ(·, ·) is bounded by 𝐵. To proceed, call the right side terms 𝐷 𝑗 :=
| E[ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗))

��S𝑖] − E[ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗))
��S𝑖−1] | . Denote z′

ℓ
to be the realized values of the variables zℓ =

(yℓ ,xℓ) given S𝑖 . Let S := (z′
1, . . . , z

′
𝑖
, z𝑖+1, . . . , z 𝑗) and S′ := (z′

1, . . . , z
′
𝑖−1, z𝑖 , . . . , z 𝑗). Observe that, S′ and S differs

in only at 𝑖th index and 𝑖 < 𝑗 , thus, utilizing Assumption 3.1,

𝐷 𝑗 := | E[ℓ(y 𝑗 ,TF(S ,x 𝑗))] − E[ℓ(y 𝑗 ,TF(S′,x 𝑗))] | ≤
𝐾

𝑗
. (14)

20

Generalization and Stability in In-context Learning

Combining above, for any 𝑛 ≥ 𝑖 ≥ 1, we obtain

|𝑋𝑡 ,𝑖 − 𝑋𝑡 ,𝑖−1 | ≤
𝐵

𝑛
+

𝑛∑︁
𝑗=𝑖+1

𝐾

𝑗𝑛
≤ 𝐵 + 𝐾 log 𝑛

𝑛
.

Recall that |L𝑡 (TF) − L̂𝑡 (TF) | = |𝑋𝑡 ,0 − 𝑋𝑡 ,𝑛 | and for every 𝑡 ∈ [𝑇], we have
∑𝑛
𝑖=1 |𝑋𝑡 ,𝑖 − 𝑋𝑡 ,𝑖−1 |2 ≤ (𝐵+𝐾 log 𝑛)2

𝑛
. As a

result, applying Azuma-Hoeffding’s inequality, we obtain

P(|L𝑡 (TF) − L̂𝑡 (TF) | ≥ 𝜏) ≤ 2𝑒−
𝑛𝜏2

2(𝐵+𝐾 log𝑛)2 , ∀𝑡 ∈ [𝑇] . (15)

Let us consider 𝑌𝑡 := L𝑡 (TF) − L̂𝑡 (TF) for 𝑡 ∈ [𝑇]. Then, (𝑌𝑡)𝑇𝑡=1 are i.i.d. zero mean sub-Gaussian random variables.

There exists an absolute constant 𝑐1 > 0 such that, the subgaussian norm, denoted by ∥·∥𝜓2 , obeys ∥𝑌𝑡 ∥2
𝜓2
<
𝑐1 (𝐵+𝐾 log 𝑛)2

𝑛

via Proposition 2.5.2 of (Vershynin, 2018). Applying Hoeffding’s inequality, we derive

P

(���� 1
𝑇

𝑇∑︁
𝑡=1
𝑌𝑡

���� ≥ 𝜏) ≤ 2𝑒−
𝑐𝑛𝑇𝜏2

(𝐵+𝐾 log𝑛)2 =⇒ P(|L̂ (TF) − L(TF) | ≥ 𝜏) ≤ 2𝑒−
𝑐𝑛𝑇𝜏2

(𝐵+𝐾 log𝑛)2 (16)

where 𝑐 > 0 is an absolute constant. Therefore, we have that for any TF ∈ A, with probability at least 1 − 2𝛿,

|L̂ (TF) − L(TF) | ≤ (𝐵 + 𝐾 log 𝑛)
√︂

log(1/𝛿)
𝑐𝑛𝑇

. (17)

Step 2: Next, we turn to bound supTF∈A |L(TF)−L̂(TF) | where A is assumed to be a continuous search space. To start
with, set 𝑔(TF) := L(TF) − L̂(TF) and we aim to bound supTF∈A |𝑔(TF) |. Following Definition 3.4, for 𝜀 > 0, let A𝜀 be
a minimal 𝜀-cover of A in terms of distance metric 𝜌. Therefore, A𝜀 is a discrete set with cardinality |A𝜀 | := N(A, 𝜌, 𝜀).
Then, we have

sup
TF∈A

|L(TF) − L̂(TF) | ≤ sup
TF∈A

min
TF′∈A𝜀

|𝑔(TF) − 𝑔(TF′) | + max
TF∈A𝜀

|𝑔(TF) | .

• We start by bounding supTF∈A minTF′∈A𝜀
|𝑔(TF) − 𝑔(TF′) |. We will utilize that loss function ℓ(·, ·) is 𝐿-Lipschitz. For

any TF ∈ A, let TF′ ∈ A𝜀 be its neighbor following Definition 3.4. We have that���L̂(TF) − L̂(TF′)
��� = ����� 1

𝑛𝑇

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

(
ℓ(y𝑡𝑖 ,TF(S𝑖−1

𝑡 ,x𝑡𝑖)) − ℓ(y𝑡𝑖 ,TF′ (S𝑖−1
𝑡 ,x𝑡𝑖))

)�����
≤ 𝐿

𝑛𝑇

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

TF(S𝑖−1
𝑡 ,x𝑡𝑖) − TF′ (S𝑖−1

𝑡 ,x𝑡𝑖)

ℓ2

≤ 𝐿𝜀.

Since the same bound applies to all data-sequences, we also obtain that for any TF ∈ A,

|L(TF) − L(TF′) | ≤ 𝐿𝜀.

Therefore,

sup
TF∈A

min
TF′∈A𝜀

|𝑔(TF) − 𝑔(TF′) | ≤ sup
TF∈A

min
TF′∈A𝜀

���L̂(TF) − L̂(TF′)
��� + |L(TF) − L(TF′) | ≤ 2𝐿𝜀. (18)

• Next, we turn to bound the second term maxTF∈A𝜀
|𝑔(TF) |. Applying union bound directly on A𝜀 and combining it with

(17), then we will have that with probability at least 1 − 2𝛿,

max
TF∈A𝜀

|𝑔(TF) | ≤ (𝐵 + 𝐾 log 𝑛)
√︂

log(N (A, 𝜌, 𝜀)/𝛿)
𝑐𝑛𝑇

. (19)

21

Generalization and Stability in In-context Learning

Proof of Eq. (3): Combining the upper bound above with the perturbation bound (18), we obtain that

max
TF∈A

|𝑔(TF) | ≤ 2𝐿𝜀 + (𝐵 + 𝐾 log 𝑛)
√︂

log(N (A, 𝜌, 𝜀)/𝛿)
𝑐𝑛𝑇

. (20)

This in turn concludes the proof of (3) since 𝑅MTL (T̂F) ≤ 2 supTF∈A |L(TF) − L̂(TF) |.

Proof of Eq. (4): To conclude, we aim to establish (4). Specifically, the precise statement we will establish is stated below

𝑅MTL (T̂F) ≤ inf
𝜀>0

{
8𝐿𝜀 + 𝐿+ + 𝐾 log 𝑛

√
𝑐𝑛𝑇

(∫ 𝐷/2

𝜀

√︁
logN(A, 𝜌, 𝑢)𝑑𝑢 + 𝐷+

√︁
log(log(𝐷/𝜀)/𝛿)

)}
. (21)

where we use the convention 𝑥+ = max(𝑥, 1). To this end, we will bound maxTF∈A𝜀
|𝑔(TF) | via successive 𝜀-covers which

is the chaining argument. Following Definition 3.4, let 𝐷 := supTF,TF′∈A 𝜌(TF,TF′). Define 𝑀 := min{𝑚 : 2𝑚𝜀 ≥ 𝐷}, and
for any 𝑚 ∈ [𝑀], let U𝑚 denote the minimal 2𝑚𝜀-cover of U𝑚−1, where U0 := A𝜀 . Since U𝑀 ⊆ U𝑀−1 · · · ⊆ U0 ⊂ A,
we have |U𝑚 | = N(U𝑚−1, 𝜌, 2𝑚𝜀) ≤ N (A, 𝜌, 2𝑚𝜀) and |U𝑀 | ≤ N (A, 𝜌, 𝐷) = 1. Let TF𝑀 ∈ U𝑀 denote the unique
algorithm hypothesis in U𝑀 . We have that

max
TF∈A𝜀

|𝑔(TF) | ≤ max
TF∈U0

��𝑔(TF) − 𝑔(TF𝑀)
�� + ��𝑔(TF𝑀)

��
≤
𝑀−1∑︁
𝑚=0

max
TF∈U𝑚

min
TF′∈U𝑚+1

|𝑔(TF) − 𝑔(TF′) | +
��𝑔(TF𝑀)

�� . (22)

In what follows, we will prove that for any TF,TF′ satisfying 𝜌(TF,TF′) ≤ 𝑢 (𝑢 > 0), with high probability,
|𝑔(TF) − 𝑔(TF′) | is bounded by 𝑢√

𝑛𝑇
up to logarithmic terms.

Apply similar martingale sequence analysis as in Step 1. This time, we set 𝑋𝑡 ,𝑖 = E[L̂𝑡 (TF)−L̂𝑡 (TF′) |S𝑖𝑡] where we assume
𝜌(TF,TF′) ≤ 𝑢. Similarly, we have that 𝑋𝑡 ,𝑛 = L̂𝑡 (TF) − L̂𝑡 (TF′), and 𝑋𝑡 ,0 = E[L̂𝑡 (TF) − L̂𝑡 (TF′)] = L𝑡 (TF) −L𝑡 (TF′).
Therefore, the sequences {𝑋𝑡 ,0, . . . , 𝑋𝑡 ,𝑛}, 𝑡 ∈ [𝑇] are Martingale sequences with respect to E[𝑋𝑡 ,𝑖 |S𝑖−1

𝑡] = 𝑋𝑡 ,𝑖−1. We
again omit the subscript 𝑡 for x, y and S in the following and try to bound the difference of neighbors.

|𝑋𝑡 ,𝑖 − 𝑋𝑡 ,𝑖−1 | =
����E [

L̂𝑡 (TF) − L̂𝑡 (TF′)
����S𝑖] − E [

L̂𝑡 (TF) − L̂𝑡 (TF′)
����S𝑖−1

] ����
≤ 1
𝑛

𝑛∑︁
𝑗=𝑖

����E [
ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗)) − ℓ(y 𝑗 ,TF′ (S 𝑗−1,x 𝑗))

����S𝑖] − E [
ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗)) − ℓ(y 𝑗 ,TF′ (S 𝑗−1,x 𝑗))

����S𝑖−1
] ����

(𝑑)
≤ 2𝐿𝑢

𝑛
+ 1
𝑛

𝑛∑︁
𝑗=𝑖+1

����E [
ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗)) − ℓ(y 𝑗 ,TF′ (S 𝑗−1,x 𝑗))

����S𝑖] − E [
ℓ(y 𝑗 ,TF(S 𝑗−1,x 𝑗)) − ℓ(y 𝑗 ,TF′ (S 𝑗−1,x 𝑗))

����S𝑖−1
] ����

(𝑒)
≤ 2𝐿𝑢

𝑛
+ 1
𝑛

𝑛∑︁
𝑗=𝑖+1

𝐾𝑢

𝑗
<

2𝐿𝑢 + 𝐾𝑢 log 𝑛
𝑛

.

for 𝑖 < 𝑛. Here, (𝑑) is from the facts that loss function ℓ(·, ·) is 𝐿-Lipschitzness and 𝜌(TF,TF′) ≤ 𝑢 by following the same
analysis in deriving (18), and (𝑒) follows Assumption 3.1. Then we have

|𝑋𝑡 ,𝑛 − 𝑋𝑡 ,𝑛−1 | ≤
2𝐿𝑢
𝑛

<
2𝐿𝑢 + 𝐾𝑢 log 𝑛

𝑛
.

Note that |L𝑡 (TF) − L𝑡 (TF′) − (L̂𝑡 (TF) − L̂𝑡 (TF′)) | = |𝑋𝑡 ,0 − 𝑋𝑡 ,𝑛 | and for every 𝑡 ∈ [𝑇], we have
∑𝑛
𝑖=1 |𝑋𝑡 ,𝑖 − 𝑋𝑡 ,𝑖−1 |2 ≤

𝑢2 (2𝐿+𝐾 log 𝑛)2

𝑛
. As a result of applying Azuma-Hoeffding’s inequality, we obtain

P(|L𝑡 (TF) − L𝑡 (TF′) − (L̂𝑡 (TF) − L̂𝑡 (TF′)) | ≥ 𝜏) ≤ 2𝑒−
𝑛𝜏2

2𝑢2 (2𝐿+𝐾 log𝑛)2 , ∀𝑡 ∈ [𝑇] .

Now let us instead consider 𝑌𝑡 := 𝑔(TF) − 𝑔(TF′) for 𝑡 ∈ [𝑇]. Then following proof as in Step 1, we derive

P

(���� 1
𝑇

𝑇∑︁
𝑡=1
𝑌𝑡

���� ≥ 𝜏) < 2𝑒−
𝑐′𝑛𝑇𝜏2

𝑢2 (2𝐿+𝐾 log𝑛)2 =⇒ P(|𝑔(TF) − 𝑔(TF′) | ≥ 𝜏) ≤ 2𝑒−
𝑐′𝑛𝑇𝜏2

𝑢2 (2𝐿+𝐾 log𝑛)2

22

Generalization and Stability in In-context Learning

where 𝑐′ > 0 is an absolute constant. Consider the discrete set U𝑚 with cardinality |U𝑚 | = N(U𝑚, 𝜌, 2𝑚𝜀) ≤
N (A, 𝜌, 2𝑚𝜀) and its 2𝑚+1𝜀-cover U𝑚+1. Applying union bound over U𝑚, we have that with probability at least 1 − 2𝛿,

max
TF∈U𝑚

min
TF′∈U𝑚+1

|𝑔(TF) − 𝑔(TF′) | ≤ 2𝑚+1𝜀(2𝐿 + 𝐾 log 𝑛)
√︂

log(N (A, 𝜌, 2𝑚𝜀)/𝛿)
𝑐′𝑛𝑇

.

Now by again applying union bound, with probability at least 1 − 2𝛿, the first term in (22) is bounded by

𝑀−1∑︁
𝑚=0

max
TF∈U𝑚

min
TF′∈U𝑚+1

|𝑔(TF) − 𝑔(TF′) | ≤ (2𝐿 + 𝐾 log 𝑛)
𝑀−1∑︁
𝑚=0

2𝑚+1𝜀

√︂
log(𝑀 · N (A, 𝜌, 2𝑚𝜀)/𝛿)

𝑐′𝑛𝑇

≤ 4(2𝐿 + 𝐾 log 𝑛)
∫ 𝐷/2

𝜀/2

√︂
log(𝑀 · N (A, 𝜌, 𝑢)/𝛿)

𝑐′𝑛𝑇
𝑑𝑢. (23)

Now combining the results of (17), (22) and (23), and following the evidence that TF𝑀 ∈ U𝑀 is unique, we bound
supTF∈A𝜀

|𝑔(TF) | as follows, that with probability at least 1 − 4𝛿

sup
TF∈A𝜀

|𝑔(TF) | ≤ 4(2𝐿 + 𝐾 log 𝑛)
∫ 𝐷/2

𝜀/2

√︂
log(𝑀 · N (A, 𝜌, 𝑢)/𝛿)

𝑐′𝑛𝑇
𝑑𝑢 + (𝐵 + 𝐾 log 𝑛)

√︂
log(1/𝛿)
𝑐𝑛𝑇

. (24)

Here 𝐷 := supTF,TF′∈A 𝜌(TF,TF′) and 𝑀 := min{𝑚 : 2𝑚𝜀 ≥ 𝐷}.

• Combining (18) and (24), we obtain that with probability at least 1 − 4𝛿,

sup
TF∈A

���L(TF) − L̂(TF)
��� ≤ inf

𝜀>0

{
4𝐿𝜀 + 4(2𝐿 + 𝐾 log 𝑛)

∫ 𝐷/2

𝜀

√︂
log(𝑀 · N (A, 𝜌, 𝑢)/𝛿)

𝑐′𝑛𝑇
𝑑𝑢 + (𝐵 + 𝐾 log 𝑛)

√︂
log(1/𝛿)
𝑐𝑛𝑇

}
,

where 𝐷 := supTF,TF′∈A 𝜌(TF,TF′) and 𝑀 := min{𝑚 : 2𝑚+1𝜀 ≥ 𝐷} ≤ log 𝐷
𝜀

.

Applying 𝑅MTL (T̂F) ≤ 2 supTF∈A
���L(TF) − L̂(TF)

��� completes the proof. □

Till now, we consider the setting where each task is trained with only one trajectory. In the following, we also consider the
case where each task contains multiple trajectories. To start with, we define the following objective function as an extension
of (ERM) to the multi-trajectory setting.

T̂F = arg min
TF∈A

L̂Sall (TF) :=
1
𝑇𝑀

𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

L̂𝑡 ,𝑚 (TF) (25)

where L̂𝑡 ,𝑚 (TF) =
1
𝑛

𝑛∑︁
𝑖=1

ℓ(y𝑡𝑚𝑖 ,TF(S𝑖−1
𝑡 ,𝑚 ,x𝑡𝑚𝑖)).

Here, we assume each task 𝑡 ∈ [𝑇] contains 𝑀 trajectories, and Sall = {{S𝑡 ,𝑚}𝑀𝑚=1}
𝑇
𝑡=1 where S𝑡 ,𝑚 = {(x𝑡𝑚𝑖 , y𝑡𝑚𝑖)}𝑛𝑖=1 and

(x𝑡𝑚𝑖 , y𝑡𝑚𝑖) i.i.d.∼ D𝑡 . Then the following theorem states a more general version of Theorem 3.5.

Theorem C.2. Suppose the same assumptions as in Theorem 3.5 hold and let T̂F be the empirical solution of (25). Then,
with the same probability, we obtain identical bounds to Theorem 3.5 by updating 𝑇 with 𝑇𝑀 in Equations (3) and (4).

Choosing 𝑀 = 1 results in the exactly same bound as in Theorem 3.5.

Proof. Following the same proof steps, and then we derive similar result as (15):

P(|L𝑡 ,𝑚 (TF) − L̂𝑡 ,𝑚 (TF) | ≥ 𝜏) ≤ 2𝑒−
𝑛𝜏2

2(𝐵+𝐾 log𝑛)2 , ∀𝑡 ∈ [𝑇], 𝑚 ∈ [𝑀] . (26)

23

Generalization and Stability in In-context Learning

Let 𝑌𝑡 ,𝑚 := L𝑡 ,𝑚 (TF) − L̂𝑡 ,𝑚 (TF). Since in-context samples are independent, ((𝑌𝑡 ,𝑚)𝑀𝑚=1)
𝑇
𝑡=1 are independent zero mean

sub-Gaussian random variables, with norm ∥𝑌𝑡 ,𝑚∥𝜓2 <
𝑐1 (𝐵+𝐾 log 𝑛)2

𝑛
. Applying Hoeffding’s inequality, we derive

P(|L̂ (TF) − L(TF) | ≥ 𝜏) ≤ 2𝑒−
𝑐𝑛𝑀𝑇𝜏2

(𝐵+𝐾 log𝑛)2 (27)

where 𝑐 > 0 is an absolute constant. Therefore, we have that for any TF ∈ A, with probability at least 1 − 2𝛿,

|L̂ (TF) − L(TF) | ≤ (𝐵 + 𝐾 log 𝑛)
√︂

log(1/𝛿)
𝑐𝑛𝑀𝑇

. (28)

The result is simply replacing 𝑇 with 𝑀𝑇 in (17). It is from the fact that trajectories are all independent no matter they are
from the same task or not. By applying the similar analysis, the proof is competed. □

C.2. Transfer Learning Bound with i.i.d. Tasks

Following training with (ERM), suppose source tasks are i.i.d. sampled from a task distribution Dtask, and let T̂F be the
empirical MTL solution. We consider the following transfer learning problem. Concretely, assume a target task T with
a distribution T ∼ Dtask and training sequence ST = (z𝑖)𝑛𝑖=1 ∼ DT . Define the empirical and population risks on T as
L̂T (TF) = 1

𝑛

∑𝑛
𝑖=1 ℓ(y𝑖 ,TF(S𝑖−1

T ,x𝑖)) and LT (TF) = EST [L̂T (TF)]. Then the expected excess transfer risk following
(ERM) is defined as

ET [RT (T̂F)] = ET [LT (T̂F)] − arg min
TF∈A

ET [LT (TF)] . (29)

Theorem C.3. Consider the setting of Theorem 3.5 and assume the source tasks are independently drawn from task
distribution Dtask. Let T̂F be the empirical solution of (ERM) and T ∼ Dtask. Then with probability at least 1 − 2𝛿, the
expected excess transfer learning risk (29) obeys

ET [RT (T̂F)] ≤ min
𝜀≥0

{
4𝐿𝜀 + 𝐵

√︂
2 log(N (A, 𝜌, 𝜀)/𝛿)

𝑇

}
. (30)

Proof. Recap the problem setting in Section 2 and let TF† = arg minTF∈A ET [LT (TF)]. The expected transfer learning
excess test risk of given algorithm T̂F ∈ A is formulated as

ET [RT (T̂F)] = ET [LT (T̂F)] − ET [LT (TF†)] (31)

= ET [LT (T̂F)] − L̂Sall (T̂F)︸ ︷︷ ︸
𝑎

+ L̂Sall (T̂F) − L̂Sall (TF†)︸ ︷︷ ︸
𝑏

+ L̂Sall (TF†) − ET [LT (TF†)]︸ ︷︷ ︸
𝑐

. (32)

Here since T̂F is the minimizer of training risk, 𝑏 < 0. Then we obtain

ET [RT (T̂F)] ≤ 2 sup
TF∈A

�����ET [LT (TF)] −
1
𝑇

𝑇∑︁
𝑡=1

L̂𝑡 (TF)
����� . (33)

For any TF ∈ A, let 𝑋𝑡 = L̂𝑡 (TF) and we observe that

E𝑡∼Dtask [𝑋𝑡] = E𝑡∼Dtask [L̂𝑡 (TF)] = E𝑡∼Dtask [L𝑡 (TF)] = ET [LT (TF)] .

Since 𝑋𝑡 , 𝑡 ∈ [𝑇] are independent, and 0 ≤ 𝑋𝑡 ≤ 𝐵, applying Hoeffding’s inequality obeys

P

(�����ET [LT (TF)] −
1
𝑇

𝑇∑︁
𝑡=1

L̂𝑡 (TF)
����� ≥ 𝜏

)
≤ 2𝑒−

2𝑇𝜏2
𝐵2 . (34)

Then with probability at least 1 − 2𝛿, we have that for any TF ∈ A,�����ET [LT (TF)] −
1
𝑇

𝑇∑︁
𝑡=1

L̂𝑡 (TF)
����� ≤ 𝐵

√︂
log(1/𝛿)

2𝑇
. (35)

24

Generalization and Stability in In-context Learning

Next, let A𝜀 be the minimal 𝜀-cover of A following Definition 3.3, which implies that for any task T ∼ Dtask, and any
TF ∈ A, there exists TF′ ∈ A𝜀

|LT (TF) − LT (TF′) |, |L̂T (TF) − L̂T (TF′) | ≤ 𝐿𝜀.

Since the distance metric following Definition 3.4 is defined by the worst-case datasets, then there exists TF′ ∈ A𝜀 such that�����ET [LT (TF)] −
1
𝑇

𝑇∑︁
𝑡=1

L̂𝑡 (TF)
����� ≤ 2𝐿𝜀. (36)

Let N(A, 𝜌, 𝜀) = |A𝜀 | be the 𝜀-covering number. Combining the above inequalities ((33), (35) and (36)), and applying
union bound, we have that with probability at least 1 − 2𝛿,

ET [RT (T̂F)] ≤ min
𝜀≥0

{
4𝐿𝜀 + 𝐵

√︂
2 log(N (A, 𝜌, 𝜀)/𝛿)

𝑇

}
.

□

Understanding the MTL performance in Figure 4: Following transfer learning discussion in Sec 4, let us ask the same
question for the MTL algorithm: If the transformer perfectly learns the MTL tasks 𝚯MTL = (β𝑡)𝑇𝑡=1, it does not actually need
𝑛 = Ω(𝑑) samples to perform well on new prompts drawn from source tasks. To see this, consider the following algorithm:
Given a prompt, TF(𝚯MTL) conducts a discrete search over (β𝑡)𝑇𝑡=1 and returns the source task that best fits to the prompt.
Thanks to the discrete search space, it is not hard to see that, we need 𝑛 ∝ log(𝑇) samples rather than 𝑛 ∝ 𝑑 (also see
Figure 8). In contrast, based on Figures 4(a,b,c), MTL behaves closer to 𝑛 ∝ 𝑑 empirically. On the other hand, TF(𝚯MTL)
implemented by the transformer is rather intelligent: This is because MTL risks for 𝑑 ∈ {5, 10, 20} are all strictly better
than implementing least-squares8 and the performance improves as 𝑇 gets smaller. We leave the thorough exploration of the
inductive bias of the MTL training and characterization of TF(𝚯MTL) as an intriguing future direction.

C.3. Transfer Learning from the Lens of Task Diversity

In Section 4, we motivated the fact that transfer risk is controlled in terms of MTL risk and an additive term that captures the
distributional distance i.e. LT (TF) ≤ LMTL (TF) + dist(T , (D𝑡)𝑇𝑡=1). The following definition is a generalization of this
relation which can be used to formally control the transfer risk in terms of MTL risk.

Definition C.4 (Task diversity). Following Section 2, we say that task T is (𝜈, 𝜖)-diverse over the 𝑇 source tasks if for any
TF,TF′ ∈ A,

LT (TF) − LT (TF′) ≤
(

1
𝑇

𝑇∑︁
𝑡=1

(L𝑡 (TF) − L𝑡 (TF′))
)
/𝜈 + 𝜖 .

Now let us discuss transferability in light of this assumption and Thm 3.5. Consider the scenario where 𝑛 is small and
𝑇 → ∞. The excess MTL risk will be small thanks to infinitely many tasks. The transfer risk would also be small because
larger 𝑇 results in higher diversity covering the task space. However, if the target task uses a different/longer prompt length,
transfer may fail since the model never saw prompts longer than 𝑛. Conversely, if we let 𝑛→ ∞ and 𝑇 to be small, although
the MTL risk is again zero, due to lack of diversity, it may not benefit transfer learning strongly. Task diversity assumption
leads to the following lemma that bounds transfer learning in terms of MTL risk.

Lemma C.5. Consider the setting of Theorem 3.5. Let T̂F be the solution of (ERM) and assume that target task T is
(𝜈, 𝜖)-diverse over 𝑇 source tasks. Then with the same probability as in Theorem 3.5, the excess transfer learning risk
𝑅T (T̂F) = LT (T̂F) − minTF∈A LT (TF) obeys 𝑅T (T̂F) ≤ 𝑅MTL (T̂F)

𝜈
+ 2𝜖 .

Here we emphasize that the statement holds for arbitrary source and target tasks; however the challenge is verifying the
assumption which is left as an interesting and challenging future direction. On the bright side, as illustrated in Figures 4&5,
we indeed observe that, transfer learning can work with reasonably small 𝑇 and it works better if the target task is closer to
the source tasks.

8Ordinary least-squares achieves the minimum risk for transfer learning (𝑇 = ∞) however it is not optimal for finite 𝑇 .

25

Generalization and Stability in In-context Learning

Proof. Let T̂F,TF★ be the empirical and population solutions of (ERM) and let TF† := arg min
TF∈A

LT (TF). Then the transfer

learning excess test risk of given algorithm T̂F ∈ A is formulated as

𝑅T (T̂F) = LT (T̂F) − LT (TF†)
= LT (T̂F) − LT (TF★) + LT (TF★) − LT (TF†).

Since target task T is (𝜈, 𝜀)-diverse over source tasks, following Definition C.4, we derive that

LT (T̂F) − LT (TF★) ≤
LMTL (T̂F) − LMTL (TF★)

𝜈
+ 𝜀 =

𝑅MTL (T̂F)
𝜈

+ 𝜀

LT (TF★) − LT (TF†) ≤
LMTL (TF★) − LMTL (TF†)

𝜈
+ 𝜀 ≤ 𝜀.

Here, since TF★ is the minimizer of LMTL (TF), LMTL (TF★) − LMTL (TF†) ≤ 0. Then, Lemma C.5 is easily proved by
combining the above two inequalities. □

D. Proof of Theorem 5.4
Lemma D.1. Suppose Assumptions 5.2 and 5.3 hold. Assume input and noise spaces X,W are bounded by 𝑥, �̄�. Let
𝑊 = (w1, . . . ,w 𝑗 ,w 𝑗+1, . . . ,w𝑚) and𝑊 ′ = (w1, . . . ,w 𝑗−1,w

′
𝑗
,w 𝑗+1, . . . ,w𝑚) be two arbitrary sequences and the only

difference between𝑊 and𝑊 ′ is the 𝑗’th term of the sequence. Allow the final excitation term w𝑚+1 to be stochastic (and
so are x𝑚+1,x

′
𝑚+1). Let S, S′ be the sequences built by𝑊 ,𝑊 ′, respectively, with the same initial state x0. Then, for any

𝑓 ∈ F , TF ∈ A,𝑊 ,𝑊 ′, 𝑚, and 𝑗 < 𝑚, we have the following:�����Ew𝑚+1

[
ℓ(x𝑚+1,TF(S ,x𝑚))

]
− Ew𝑚+1

[
ℓ(x′

𝑚+1,TF(S
′,x′

𝑚))
] ����� < 𝐾

𝑚− 𝑗 + 1
2�̄�𝜌�̄�
1 − �̄� .

Additionally, for the sequences that differ at their initial states (using the same𝑊), for any x0,x
′
0 ∈ X, we have�����Ew𝑚+1

[
ℓ(x𝑚+1,TF(S ,x𝑚))

]
− Ew𝑚+1

[
ℓ(x′

𝑚+1,TF(S
′,x′

𝑚))
] ����� < 𝐾

𝑚− 𝑗 + 1
2�̄�𝜌𝑥
1 − �̄� .

Proof. First, let us bound ∥x𝑖 − x′
𝑖
∥ℓ2 for every 𝑖 = 𝑗 , . . . , 𝑛. For 𝑖 = 𝑗 , since W is bounded by �̄�, we have

∥x 𝑗 − x′
𝑗 ∥ℓ2 = ∥ 𝑓 (x 𝑗−1) +w 𝑗 − 𝑓 (x 𝑗−1) −w′

𝑗 ∥ℓ2 ≤ 2�̄� ≤ 2�̄�𝜌�̄�.

For 𝑖 > 𝑗 , we have the following from Assumption 5.2:

∥x𝑖 − x′
𝑖 ∥ℓ2 ≤ �̄�𝜌 �̄� (𝑖− 𝑗) ∥x 𝑗 − x′

𝑗 ∥ℓ2 ≤ 2�̄�𝜌 �̄� (𝑖− 𝑗) �̄�.

Finally, using Assumption 5.3, we obtain�����E(w𝑚+1)
[
ℓ(x𝑚+1,TF(S ,x𝑚))

]
−E(w𝑚+1)

[
ℓ(x′

𝑚+1,TF(S
′,x′

𝑚))
] �����

≤ 𝐾

𝑚− 𝑗 + 1

𝑚∑︁
𝑖= 𝑗

∥x𝑖 − x′
𝑖 ∥ℓ2

≤ 𝐾

𝑚− 𝑗 + 1
2�̄�𝜌�̄�

𝑚∑︁
𝑖= 𝑗

�̄�𝑖− 𝑗 <
𝐾

𝑚− 𝑗 + 1
2�̄�𝜌�̄�
1 − �̄� .

To prove the second part of the lemma, similarly we have

∥x0 − x′
0∥ℓ2 ≤ 2𝑥 and then, ∥x𝑖 − x′

𝑖 ∥ℓ2 ≤ 2�̄�𝜌 �̄�𝑖𝑥.

26

Generalization and Stability in In-context Learning

Again using Assumption 5.3, we obtain�����E(w𝑚+1)
[
ℓ(x𝑚+1,TF(S ,x𝑚))

]
−E(w𝑚+1)

[
ℓ(x′

𝑚+1,TF(S
′,x′

𝑚))
] �����

≤ 𝐾

𝑚− 𝑗 + 1

𝑚∑︁
𝑖=0

∥x𝑖 − x′
𝑖 ∥ℓ2

≤ 𝐾

𝑚− 𝑗 + 1
2�̄�𝜌𝑥

𝑚∑︁
𝑖=0

�̄�𝑖 <
𝐾

𝑚− 𝑗 + 1
2�̄�𝜌𝑥
1 − �̄� . (37)

□

Theorem D.2 (Theorem 5.4 restated). Suppose Assumptions 5.2 and 5.3 hold and assume loss function ℓ(x, x̂) : X × X →
[0, 𝐵] is 𝐿-Lipschitz for all x ∈ X. Let T̂F be the solution of (ERM) under the dynamical setting as described in Section 5.
Then with probability at least 1 − 2𝛿, the excess MTL test risk (1) obeys

𝑅MTL (T̂F) ≤ inf
𝜀>0

{
4𝐿𝜀 + 2(𝐵 + �̄� log 𝑛)

√︂
log(N (A, 𝜌, 𝜀)/𝛿)

𝑐𝑛𝑇

}
.

where �̄� = 2𝐾 �̄�𝜌

1−�̄� (�̄� + 𝑥/
√
𝑛).

Proof. We follow the similar strategy as in the proof of Theorem 3.5. The main difference is that we need to consider
the dynamical system setting. Therefore, let us recall the dynamical problem setting in Sections 2&5. Suppose there
are 𝑇 independent trajectories generated by 𝑇 dynamical systems, denoted by S𝑡 = (x𝑡0,x𝑡1, · · · ,x𝑡𝑛), 𝑡 ∈ [𝑇] where
x𝑡𝑖 = 𝑓𝑡 (x𝑡 ,𝑖−1) +w𝑡𝑖 . Here, we consider the prediction function TF(S𝑖 , ·) : X → X , and denote the previously observed
sequences with S𝑖𝑡 := (x𝑡0, · · · ,x𝑡𝑖). Here, S0 = (x0) and hence, we set S−1 to be empty sequence. The objective function
in (ERM) can be rewritten as follows:

T̂F = arg min
TF∈A

L̂Sall (TF) :=
1
𝑇

𝑇∑︁
𝑡=1

L̂𝑡 (TF) (38)

where L̂𝑡 (TF) =
1
𝑛

𝑛∑︁
𝑖=1

ℓ(x𝑡𝑖 ,TF(S𝑖−2
𝑡 ,x𝑡 ,𝑖−1)).

Following the same argument as in the proof of Theorem 3.5, the excess MTL risk is bounded by:

𝑅MTL (T̂F) ≤ 2 sup
TF∈A

|L(TF) − L̂(TF) |.

Step 1: We start with the concentration bound |L(TF) − L̂(TF) | for any TF ∈ A. Define the random variables
𝑋𝑡 ,𝑖 = E[L̂𝑡 (TF) |x𝑡0, (w𝑡 𝑘)𝑖𝑘=1] for 𝑖 ∈ [𝑛] and 𝑡 ∈ [𝑇], that is, 𝑋𝑡 ,𝑖 is the expectation over L̂𝑡 (TF) given the filtration of
x𝑡0 and (w𝑡 𝑘)𝑖𝑘=1. Then, we have that 𝑋𝑡 ,𝑛 = E[L̂𝑡 (TF) |x𝑡0, (w𝑡 𝑘)𝑛𝑘=1] = L̂𝑡 (TF). Let 𝑋𝑡 ,0 = E[L̂𝑡 (TF)]. Then, for every
𝑡 in [𝑇], the sequences {𝑋𝑡 ,0, 𝑋𝑡 ,1, . . . , 𝑋𝑡 ,𝑛} are Martingale sequences. Here we emphasize that 𝑋𝑡 ,0 = E[𝑋𝑡 ,1 |x𝑡0,w𝑡1].
For the sake of simplicity, in the following notation, we omit the subscript 𝑡 for x,w and S, and look at the difference of
neighbors for 1 < 𝑖 ≤ 𝑛. Here, observe that “given F𝑖 := {x0, (w𝑘)𝑖𝑘=1}” implies {x0, · · · ,x𝑖} are known with respect to
this filtration.

|𝑋𝑡 ,𝑖 − 𝑋𝑡 ,𝑖−1 | =

������E
[

1
𝑛

𝑛∑︁
𝑗=1
ℓ(x 𝑗 ,TF(S 𝑗−2,x 𝑗−1))

����x0, (w𝑘)𝑖𝑘=1

]
− E

[
1
𝑛

𝑛∑︁
𝑗=1
ℓ(x 𝑗 ,TF(S 𝑗−2,x 𝑗−1))

����x0, (w𝑘)𝑖−1
𝑘=1

] ������
≤ 1
𝑛

𝑛∑︁
𝑗=𝑖

����E [
ℓ(x 𝑗 ,TF(S 𝑗−2,x 𝑗−1))

����x0, (w𝑘)𝑖𝑘=1

]
− E

[
ℓ(x 𝑗 ,TF(S 𝑗−2,x 𝑗−1))

����x0, (w𝑘)𝑖−1
𝑘=1

] ����
(𝑎)
≤ 𝐵

𝑛
+ 1
𝑛

𝑛∑︁
𝑗=𝑖+1

����E [
ℓ(x 𝑗 ,TF(S 𝑗−2,x 𝑗−1))

����x0, (w𝑘)𝑖𝑘=1

]
− E

[
ℓ(x 𝑗 ,TF(S 𝑗−2,x 𝑗−1))

����x0, (w𝑘)𝑖−1
𝑘=1

] ����
27

Generalization and Stability in In-context Learning

Here, (𝑎) follows from the fact that loss function ℓ(·, ·) is bounded over [0, 𝐵]. To proceed, call the right side terms
𝐷 𝑗𝑖 := | E[ℓ(x 𝑗 ,TF(S 𝑗−2,x 𝑗−1))

��x0, (w𝑘)𝑖𝑘=1] − E[ℓ(x 𝑗 ,TF(S
𝑗−2,x 𝑗−1))

��x0, (w𝑘)𝑖−1
𝑘=1] | . We now use the fact that 𝐷 𝑗

is an expectation over the sequence pairs that differ exactly at w𝑖 . For any realization x′
0, (w

′

𝑘
)𝑖
𝑘=1, we use the first part of

Lemma D.1 to obtain����E[ℓ(x 𝑗 ,TF(S 𝑗−2,x 𝑗−1))
��x′

0, (w
′
𝑘)
𝑖
𝑘=1, (w𝑘)𝑛𝑘=𝑖+1]

−E[ℓ(x 𝑗 ,TF(S 𝑗−2,x 𝑗−1))
��x′

0, (w
′
𝑘)
𝑖−1
𝑘=1, (w𝑘)𝑛𝑘=𝑖]

���� ≤ 𝐾

𝑗 − 𝑖
2�̄�𝜌�̄�
1 − �̄� .

Now taking expectation over (w𝑘)𝑛𝑘=𝑖 , we obtain

𝐷 𝑗𝑖 ≤
𝐾

𝑗 − 𝑖
2�̄�𝜌�̄�
1 − �̄� .

Combining above, for any 𝑛 ≥ 𝑖 > 1, we obtain

|𝑋𝑡 ,𝑖 − 𝑋𝑡 ,𝑖−1 | ≤
𝐵

𝑛
+ 1
𝑛

𝑛∑︁
𝑗=𝑖+1

𝐾

𝑗 − 𝑖
2�̄�𝜌�̄�
1 − �̄� <

𝐵

𝑛
+ 𝐾 log 𝑛

𝑛

2�̄�𝜌�̄�
1 − �̄� .

If we use the same argument as above and apply the second part of Lemma D.1, we obtain the following bound for
|𝑋𝑡 ,1 − 𝑋𝑡 ,0 |:

|𝑋𝑡 ,1 − 𝑋𝑡 ,0 | <
𝐵

𝑛
+ 𝐾 log 𝑛

𝑛

2�̄�𝜌 (�̄� + 𝑥)
1 − �̄� .

Moreover, as the loss function is bounded by 𝐵, we have

|𝑋𝑡 ,𝑛 − 𝑋𝑡 ,𝑛−1 | ≤
𝐵

𝑛
<
𝐵

𝑛
+ 𝐾 log 𝑛

𝑛

2�̄�𝜌�̄�
1 − �̄� .

Note that |L𝑡 (TF) − L̂𝑡 (TF) | = |𝑋𝑡 ,0 − 𝑋𝑡 ,𝑛 | and for every 𝑡 ∈ [𝑇], we obtain

𝑛∑︁
𝑖=1

��𝑋𝑡 ,𝑖 − 𝑋𝑡 ,𝑖−1
��2 ≤

(𝑛 − 1)
(
𝐵 + 𝐾 2�̄�𝜌�̄�

1−�̄� log 𝑛
)2

+
(
𝐵 + 𝐾 2�̄�𝜌 (�̄�+�̄�)

1−�̄� log 𝑛
)2

𝑛2 ≤

(
𝐵 + 2𝐾 �̄�𝜌 (�̄�+�̄�/

√
𝑛)

1−�̄� log 𝑛
)2

𝑛
.

Armed with this bound on increments, we can now apply Azuma-Hoeffding and obtain the result equivalent to Eq. (15) in
the proof of Theorem 3.5 by swapping 𝐾 with �̄� = 2𝐾 �̄�𝜌

1−�̄� (�̄� + 𝑥/
√
𝑛).

Step 2: Next, we turn to bound supTF∈A |L(TF) − L̂(TF) | where A is assumed to be a continuous search space. We
follow the analysis in Step 2 of the proof of Theorem 3.5 verbatim: By applying an 𝜀-covering argument in an identical
fashion (e.g. until obtaining (20)), we conclude with the result. □

E. Model Selection and Approximation Error Analysis
To proceed with our analysis, we need to make assumptions about what kind of algorithms are realizable by transformers.
Given ERM is the work-horse of modern machine learning with general hypothesis classes, we assume that transformers can
approximately perform in-context ERM. Hypothesis 6.1 states that the algorithms induced by the transformer can compete
with empirical risk minimization over a family of hypothesis classes.

With this hypothesis, instead of searching over the entire hypothesis space Fall :=
⋃𝐻
ℎ=1 F𝑖 , given prompt length 𝑚 we search

over the hypothesis space Fℎ𝑚 only, and dim(Fℎ𝑚) ≤ dim(Fall) where dim(·) captures the complexity of a hypothesis class.

In Hypothesis 6.1, we assume that F is a family of countable hypothesis classes with |F| = 𝐻. As stated in Section 6, F is
not necessary to be discrete. The following provides some examples of F, where the first three correspond to discrete model
selection whereas the left are continuous.

28

Generalization and Stability in In-context Learning

• Fsparse = {F𝑠 : 𝑠-sparse linear model},

• FNN = {F𝑠 : 2-layer neural net with width 𝑠},

• FRF = {F𝑠 : Random forest with 𝑠 trees},

• Fridge = {F𝜆 : Linear model with parameter bounded by ∥β∥ℓ2 ≤ 𝜆} (akin to ridge regression)

• Fweighted = {F𝚺 : Linear model with covariance-prior 𝚺, β⊤𝚺−1β ≤ 1} (akin to weighted ridge).

To proceed, let us introduce the following classical result that controls the test risk of an ERM solution in terms of the
Rademacher complexity (Mohri et al., 2018; Maurer, 2016).

Theorem E.1. Let F : X → Y be a hypothesis set and let S = (x𝑖 , y𝑖)𝑛𝑖=1 ∈ X × Y be a dataset sampled i.i.d. from
distribution D. Let ℓ(y, ŷ) be a loss function takes values in [0, 𝐵]. Here ℓ(y, ·) is 𝐿-Lipschitz in terms of Euclidean norm
for all y ∈ Y. Consider a learning problem that

𝑓 := arg min
𝑓 ∈F

1
𝑛

𝑛∑︁
𝑖=1

ℓ(y𝑖 , 𝑓 (x𝑖)). (39)

Let L★ = min 𝑓 ∈F L(𝑓) where L(𝑓) = E[ℓ(y, 𝑓 (x))]. Then we have that with probability at least 1 − 2𝛿, the excess test
risk obeys

L(𝑓) − L★ ≤ 8𝐿R𝑛 (F) + 4𝐵

√︄
log 1

𝛿

𝑛
,

where R𝑛 (F) = ES E𝝈𝑖 [sup 𝑓 ∈F 1
𝑛

∑𝑛
𝑖=1 𝝈

⊤
𝑖
𝑓 (x𝑖)] is the Rademacher complexity of F (Mohri et al., 2018) and 𝝈𝑖’s are

vectors with Rademacher random variable in each entry.

Lemma E.2 (Formal version of Observation 6.2). Let L★T := minTF∈A LT (TF) be the optimal target risk as stated in
Section 2. Assume that Hypothesis 6.1 holds, then the approximation error obeys

L★T ≤ 1
𝑛

𝑛−1∑︁
𝑚=1

min
ℎ∈[𝐻]

{
L★ℎ + 8𝐿R𝑚 (Fℎ) + 𝜀ℎ,𝑚TF

}
+ 𝑐𝐵√

𝑛
, (40)

where R𝑚 (F) is the Rademacher complexity over data distribution DT , and L★
ℎ
= min 𝑓 ∈Fℎ E[ℓ(y, 𝑓 (x))].

Proof. Let us assume Hypothesis 6.1 holds for algorithm T̃F ∈ A. Since L★T is the minimal test loss, we have that

L★T ≤ LT (T̃F) = EST

[
1
𝑛

𝑛∑︁
𝑖=1

ℓ(y𝑖 , T̃F(S𝑖−1,x𝑖))
]
=

1
𝑛

𝑛∑︁
𝑖=1
E(x,y,S𝑖−1)

[
ℓ(y, T̃F(S𝑖−1,x))

]
.

Then by directly applying Hypothesis 6.1 we have that

L★T ≤ 1
𝑛
E(x,y)

[
ℓ(y, T̃F(S0,x))

]
+ 1
𝑛

𝑛−1∑︁
𝑖=1
E(x,y,S𝑖)

[
ℓ(y, T̃F(S𝑖 ,x))

]
(41)

≤ 𝐵

𝑛
+ 1
𝑛

𝑛−1∑︁
𝑚=1

min
ℎ∈[𝐻]

{
risk(ℎ, 𝑚) + 𝜀ℎ,𝑚TF

}
. (42)

Here the first term in (42) comes from the fact that loss function is bounded by 𝐵, and we assume S0 = ∅, and the second

term follows the Hypothesis 6.1. Next, we turn to bound risk(ℎ, 𝑚). To proceed, let 𝑋ℎ,𝑚 := E(x,y)
[
ℓ(y, 𝑓 (ℎ)S𝑚 (x))

]
be the

random variables, where we have |𝑋ℎ,𝑚 | ≤ 𝐵. Following Theorem E.1, we have that for any 𝑚 ∈ [𝑛], ℎ ∈ [𝐻]

P
(
𝑋ℎ,𝑚 − L★ℎ − 8𝐿R𝑚 (Fℎ) ≥ 𝜏

)
≤ 2𝑒−

𝑚𝜏2
16𝐵2 .

29

Generalization and Stability in In-context Learning

The upper-tail bound of the last line implies that there exists an absolute constant 𝑐 > 0 such that

risk(ℎ, 𝑚) = ES𝑚
[
𝑋ℎ,𝑚

]
≤ L★ℎ + 8𝐿R𝑚 (Fℎ) +

𝑐𝐵
√
𝑚
.

Combining it with (42) and following the evidence
∑𝑛
𝑚=1

1√
𝑚

≤ 2
√
𝑛 complete the proof.

□

F. Further Related Work on Multitask/Meta learning
In order for ICL to work well, the transformer model needs to train with large amounts of related prompt instances. This
makes it inherently connected to meta learning (Finn et al., 2017; Kirsch & Schmidhuber, 2021; Kirsch et al., 2022).
However, a key distinction is that, in ICL, adaptation to a new task happens implicitly through input prompt. Our analysis has
some parallels with recent literature on multitask representation learning (Maurer et al., 2016; Du et al., 2020; Tripuraneni
et al., 2020; Cheng et al., 2022; Li et al., 2022; Kong et al., 2020; Qin et al., 2022; Tripuraneni et al., 2021; Collins et al.,
2022; Modi et al., 2021; Faradonbeh & Modi, 2022; Zhang et al., 2022) since we develop excess MTL risk bounds by
training the model with 𝑇 tasks and quantify these bounds in terms of complexity of the hypothesis space (i.e. transformer
architecture), the number of tasks 𝑇 , and the number of samples per task. In relation to (Sun et al., 2021; Chen et al., 2022),
our experiments on linear regression with covariance-prior (Figure 2(b)) demonstrate ICL’s ability to implicitly implement
optimally-weighted linear representations.

30

