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ABSTRACT

Machine learning models fail to perform when facing out-of-distribution (OOD)
domains, a challenging task known as domain generalization (DG). In this work,
we develop a novel DG training strategy, we call PGrad , to learn a robust gradient
direction, improving models’ generalization ability on unseen domains. The pro-
posed gradient aggregates the principal directions of a sampled roll-out optimiza-
tion trajectory that measures the training dynamics across all training domains.
PGrad ’s gradient design forces the DG training to ignore domain-dependent
noise signals and updates all training domains with a robust direction cover-
ing main components of parameter dynamics. We further improve PGrad via
bijection-based computational refinement and directional plus length-based cali-
brations. Our theoretical proof connects PGrad to the spectral analysis of Hes-
sian in training neural networks. Experiments on DomainBed and WILDS bench-
marks demonstrate that our approach effectively enables robust DG optimization
and leads to smoothly decreased loss curves. Empirically, PGrad achieves com-
petitive results across seven datasets, demonstrating its efficacy across both syn-
thetic and real-world distributional shifts.

1 INTRODUCTION

Deep neural networks have shown remarkable generalization ability on test data following the same
distribution as their training data. Yet, high-capacity models are incentivized to exploit any cor-
relation in the training data that will lead to more accurate predictions. As a result, these models
risk becoming overly reliant on “domain-specific” correlations that may harm model performance
on test cases from out-of-distribution (OOD). A typical example is a camel-and-cows classification
task (Beery et al., 2018; Shi et al., 2021), where camel pictures in training are almost always shown
in a desert environment while cow pictures mostly have green grassland backgrounds. A typical ma-
chine learning model trained on this dataset will perform worse than random guessing on those test
pictures with cows in deserts or camels in pastures. The network has learned to use the background
texture as one deciding factor when we want it to learn to recognize animal shapes. Unfortunately,
the model overfits to specific traps that are highly predictive of some training domains but fail on
OOD target domains. Recent domain generalization (DG) research efforts deal with such a chal-
lenge. They are concerned with how to learn a machine learning model that can generalize to an
unseen test distribution when given multiple different but related training domains. 1

Recent literature covers a wide spectrum of DG methods, including invariant representation learn-
ing, meta-learning, data augmentation, ensemble learning, and gradient manipulation (more details
in Section 2.4). Despite the large body of recent DG literature, the authors of (Gulrajani & Lopez-
Paz, 2021) showed that empirical risk minimization (ERM) provides a competitive baseline on many
real-world DG benchmarks. ERM does not explicitly address distributional shifts during training.
Instead, ERM calculates the gradient from each training domain and updates a model with the av-
erage gradient. However, one caveat of ERM is its average gradient-based model update will pre-
serve domain-specific noise during optimization. This observation motivates the core design of our
method.

1In the rest of this paper, we use the terms “domain” and “distribution” interchangeably.
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Figure 1: Overview of our PGrad training strategy. With a current parameter Θt, we first obtain
a rollout trajectory Θt → Θt

1 → Θt
2 → Θt

3 by sequentially optimizing across all training domains
Dtr = {Di}3i=1. Then PGrad updates Θt by extracting the principal gradient direction ∇p of the
trajectory. A target model’s generalization is evaluated on unseen (OOD) test domains Tj .

We propose a novel training strategy that learns a robust gradient direction for DG optimization,
and we call it PGrad . PGrad samples an optimization trajectory in high dimensional parameter
space by updating the current model sequentially across training domains. It then constructs a
local coordinate system to explain the parameter variations in the trajectory. Via singular value
decomposition (SVD), we derive an aggregated vector that covers the main components of parameter
dynamics and use it as a new gradient direction to update the target model. This novel vector - that
we name the ”principal gradient” - reduces domain-specific noise in the DG model update and
prevents the model from overfitting to particular training domains. To decrease the computational
complexity of SVD, we construct a bijection between the parameter space and a low-dimensional
space through transpose mapping. Hence, the computational complexity of the PGrad relates to the
number of sampled training domains and does not depend on the size of our model parameters.

This paper makes the following contributions: (1) PGrad places no explicit assumption on either the
joint or the marginal distributions. (2) PGrad is model-agnostic and is scalable to various model
architecture since its computational cost only relates to the number of training domains. (3) We
theoretically show the connection between PGrad and Hessian approximation, and also prove that
PGrad benefits the training efficiency via learning a gradient in a smaller subspace constructed from
learning trajectory. (4) Our empirical results demonstrate the competitive performance of PGrad
across seven datasets covering both synthetic and real-world distributional shifts.

2 METHOD

Domain generalization (Wang et al., 2021; Zhou et al., 2021) assumes no access to instances
from future unseen domains. In domain generalization, we are given a set of training domains
Dtr = {Di}ni=1 and test domains Tte = {Tj}mj=1. Each domain Di (or Tj) is associated with a

joint distribution PDi

X×Y (or PTj

X×Y ), where X represents the input space and Y is the output space.
Moreover, each training domain Di is characterized by a set of i.i.d samples {xi

k,y
i
k}. For any two

different domains sampled from either Dtr or Tte, their joint distribution varies PDi

X×Y 6= P
Dj

X×Y ,
and most importantly, PDi

X×Y 6= P
Tj

X×Y .

We consider the prediction task from the input x ∈ X to the output y ∈ Y . Provided with a model
family whose parameter space is Θ ⊂ Rd and the loss function L : Θ× (X × Y) → R+, the goal
is to find an optimal Θ∗te on test domains so that:

Θ∗te = arg min
Θ∈Θ

ETj∼TteE(x,y)∼P
Tj
X×Y
L[Θ, (x,y)]. (1)

In DG setup, any prior about Tte, such as inputs or outputs, are unavailable in the training phase.

Despite not considering domain discrepancies from training to testing, ERM is still a competitive
method for domain generalization tasks (Gulrajani & Lopez-Paz, 2021). ERM naively groups data
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from all training domains Dtr together and obtains its optimal parameter Θ∗tr via the following to
approximate Θ∗te:

Θ∗tr = arg min
Θ∈Θ

EDi∼Dtr
E

(x,y)∼PDi
X×Y
L[Θ, (x,y)]. (2)

In the rest of the paper, we omit the subscript in Θtr and use Θ for simplicity (during DG training,
only training domains Dtr will be available for model learning).

When optimizing with ERM on DG across multiple training domains, the update of Θ follows:

Θt+1 = Θt − γ

n

n∑
i=1

∇ΘtLDi
, (3)

where ∇ΘtLDi = ∇E
(x,y)∼PDi

X×Y
L[Θt, (x,y)] calculates the gradient of the loss on domain Di

with respect to the current parameter Θt and γ is the learning rate.

The gradient determines the learning path of a model. When using ERM in DG setting, each step
of model updates uses an average gradient and may introduce and preserve domain-specific noise.
For instance, if one training domain includes the trapping signals like cows always in pastures and
camels always in deserts (as mentioned earlier). When investigating across multiple training do-
mains, we envision such domain-specific noise signals will not be the main components of parameter
variations across all domains. This motivates us to design PGrad as follows.

2.1 PGRAD : PRINCIPAL GRADIENT BASED MODEL UPDATES

We extend ERM with a robust gradient estimation that we call PGrad . We visualize an overview in
Figure 1 to better explain how it works. Briefly speaking, given the current model parameter vector,
we sample a trajectory of parameters by training sequentially on each training domain. Next, we
build a local principal coordinate system based on parameters obtained from the sampled trajectory.
The chosen gradient direction is then built as a linear combination of the orthogonal axes of the local
principal coordinates. Our design also forces the learned gradient to filter out domain-specific noise
and follows a direction that maximally benefits all training domains Dtr; we refer to this extracted
direction as the principal gradient. In the following, we cover details of the trajectory sampling,
local coordinate construction, direction and length calibration, plus the noise suppression for our
principal gradient design.

Trajectory Sampling. Denote the current parameter vector as Θt. We first sample a trajectory S
through the parameter space Θ by sequentially optimizing the model on each training domain:

Θt
0 = Θt, Θt

i = Θt
i−1 − α∇Θt

i−1
LDi

, i = {1, · · · , n} (4)

We refer to the process of choosing an order of training domain to optimize as trajectory sampling.
Different ordering arrangements of training domains will generate different trajectories.

Principal Coordinate system Construction. Now we have a sampled trajectory S = {Θt
i}ni=0 ∈

R(n+1)×d, that were derived from Θt. Note: the inclusion of the starting location Θt
0 as part of the

trajectory is necessary; see the proof in Appendix (A.3).

Then we construct a local principal coordinate system to explain the variations in S. We are looking
for orthogonal and unit axes V = [vT

z ]nz=0 ∈ R(n+1)×d to maximally capture the variations of the
trajectory. Each vz ∈ Rd is a unit vector of size d, the same dimension as the parameters Θt.

max
vz

Variance([Svz]), s.t. V TV = Id. (5)

The above objective is the classic principal component analysis formulation and can be solved with
singular value decomposition (a.k.a. SVD). Eq. (5)) has the closed-form solution as follows (the
revised computational complexity is n):

λz, vz = SVDz(
1

n
ŜT Ŝ), (6)

Here λz,vz denote the z-th largest eigenvalue and its corresponding eigenvector. Ŝ denotes the cen-
tered trajectory by removing the mean from S. In the above Eq. (6)), the computational bottleneck
lies in the SVD, whose computational complexity comes at O(d3) due to ŜT Ŝ ∈ Rd×d. d denotes
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the size of the parameter vector and is fairly large for most state-of-the-art (SOTA) deep learning
architectures. This prohibits the computation of the eigenvalues and eigenvectors from Eq. (6) for
SOTA deep learning models. Hence, we refine and construct a bijection as follows to lower the
computational complexity (to O((n+ 1)3)):

ŜŜTez = λzez =⇒ ŜT ŜŜTez = λzŜ
Tez =⇒ vz = ŜTez (7)

Eq. (7) indicates that if λz, ez are the z-th largest eigenvalue and corresponding eigenvector of
ŜŜT , the z-th largest eigenvalue and corresponding eigenvector of ŜT Ŝ are λz, ŜTez (i.e., vz =

ŜTez). This property introduces a bijection from eigenvectors of ŜŜT ∈ R(n+1)×(n+1) to those
of ŜT Ŝ ∈ Rd×d. Since n - the number of training domains - is much smaller than d, calculating
eigen-decomposition of ŜŜT ∈ R(n+1)×(n+1) is therefore much cheaper.

Directional Calibration. With the derived orthogonal axes V = [vT
z ]nz=0 from Eq. (7), now we

construct a local principal coordinate system with each axis aligning with one eigenvector vz . These
principal coordinate axes V are ordered based on the magnitude of the eigenvalues. This means that
vi explains more variations of the sampled trajectory S than vj if i < j, and they are all unit
vectors. In addition, these vectors are unoriented, which means either positive or negative multiple
of an eigenvector still falls into the eigenvector set.

Now our main goal is to get a robust gradient direction by aggregating information from V . First we
calibrate the directions of each eigenvectors so that they point to the directions that can improve the
DG prediction accuracy. Learning an ideal direction is impossible without a reference. The choice
of the reference is flexible, as long as it is pointing to a direction that climbs up the loss surface. We
want the reference to guide the principal gradient in the right direction for gradient descent based
algorithms. For simplicity, we use the difference between the starting point Θt

0 and the end point
Θt

n of the trajectory S as our reference ∇r = Θt
0 − Θt

n. So for each coordinate axis, we revise
its direction so that the resulting vector wz is positively related to the reference ∇r in terms of the
inner product:

wz = rzvz, rz =

{
1, if 〈vz,∇r〉 ≥ 0,

−1, otherwise.
(8)

Constructing Principal Gradient. The relative importance of each wz is conveyed in the cor-
responding eigenvalue λz . Larger λz implies higher variance when projecting the trajectory S
along wz direction. We weight each axis with their eigenvalues, and aggregate them together into a
weighted sum. This gives us the principal gradient vector being calculated as follows:

∇p =

n∑
z=0

λz
||λ||2

wz, λ = [λ0, λ1, · · · , λn] (9)

There exists other possible aggregation besides Eq. (9). For instance, another choice of weight could
be λz/||λ||1 or simply λz since the eigenvalue of a semi-positive definite matrix is non-negative.
Gradient normalization has been widely recommended for improving training stability (You et al.,
2017; Yu et al., 2017). Our design in Eq. (9) automatically achieves L2 normalization, because:

||∇p||22 =

n∑
z=0

λ2
z

||λ||22
||wz||22 = 1, (10)

Length Calibration. As training updates continue, a fixed length gradient operator may become
too rigid, causing fluctuations in the loss. We, therefore, propose to calibrate the norm of ∇p with a
reference, for achieving adaptive length tuning. Specifically, we propose to multiply the aggregated
gradient from Eq. (9) with the L2 norm of ∇r:

∇p =

n∑
z=0

λz||∇r||2
||λ||2

wz, (11)

With this length calibration via ||∇r||2, the norm of the proposed gradient is constrained by the
multiplier, and is automatically tuned during the training process.

Noise Suppression. Most wz axes correspond to small eigenvalues and may relate to just domain-
specific noise signals. They may help the accuracy of a specific training domain Di, but mostly hurt
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the overall accuracy on Dtr. We therefore define the principal gradient as follows and show how to
use it to solve DG model training via gradient descent optimization (where k is a hyperparaemter):

∇p =

k∑
z=0

λz||∇r||2
||λ[: k]||2

wz, Θt+1 = Θt − γ∇p. (12)

2.2 THEORETICAL ANALYSIS

In Appendix (A.5.1), we prove that
1

n
ŜT Ŝ in Eq. (6) provides us with the mean of all training

domains’ domain-specific Fisher information matrix (FIM). Since FIM is the negative of Hessian
under mild conditions, PGrad essentially performs spectrum analysis on the approximated Hessian
matrix. Moreover, in Appendix (A.5.2), we show that PGrad improves the training efficiency
of neural networks by recovering a subspace from the original over-parameterized space Θ. This
subspace is built from the top eigenvectors of the approximated Hessian. We visualize the evolution
of the eigenvalue distributions in Figure 8.

Our theoretical analysis connects to the machine learning literature that performs spectrum analysis
of Hessian matrix (Gur-Ari et al., 2018) and connects its top subspace spanned by the eigenvectors
to training efficiency and generalization in neural networks (Wei & Schwab, 2019; Ghorbani et al.,
2019; Pascanu et al., 2014). For example, (Hochreiter & Schmidhuber, 1997) shows that small
eigenvalues in the Hessian spectrum are indicators of flat directions. Another work (Sagun et al.,
2017) empirically demonstrated that the spectrum of the Hessian contains both a bulk component
with many small eigenvalues and a few top components of much more significant positive eigenval-
ues. Later, (Gur-Ari et al., 2018) pointed out that the gradient of neural networks quickly converges
to the top subspace of the Hessian.

2.3 VARIATIONS OF PGRAD

There exist many ways to construct a sampled trajectory, creating multiple variations of PGrad .

• PGrad-F : The vanilla trajectory sampling method will sample a trajectory of length n + 1 by
sequentially visiting each Di in a fixed order. See appendix for the results of the rigid variation.

• PGrad : We can randomly shuffle the domain order in the training, and then perform to sample a
trajectory. This random order based strategy is used as the default version of PGrad .

• PGrad-B : We can split each training batch into B smaller batches and construct a long sampled
trajectory that is with length n ∗B + 1.

• PGrad-BMix : Our method is model and data agnostic. Therefore it is complementary and can
combine with many other DG strategies. As one example, we combine the random order based
PGrad-B and MixUp (Zhang et al., 2017) into PGrad-BMix in our empirical analysis.

In PGrad and PGrad-F , the principal gradient’s trajectory covers all training domainsDtr exactly
once (per domain). There are two possible limitations. (1) If the number of training domains n is
tiny, a length-(n + 1) trajectory will not provide enough information to achieve robustness. In the
extreme case of n = 1, we will only be able to get one axis wz , that goes back to ERM. (2) The
current design can only eliminate discrepancies between different domains. Notable intra-domain
variations also exist because empirically approximating the expected loss may include noise due to
data sampling, plus batch-based optimization may induce additional bias. Based on this intuition, we
propose a new design for sampling a trajectory by evenly splitting {xi

k,y
i
k} from a training domain

Di into B small batches. This new strategy allows us to obtain nB pseudo training domains. Such a
design brings in two benefits: (1) We can sample a longer trajectory S, as the length changes from n
to nB. (2) Our design splits each domain’s data into B batches and treats each batch as if they come
from different training domains. By learning the principal gradient from these nB pseudo domains,
we also address the intra-domain noise issue. We name this new design PGrad-B . Appendix (A.1)
includes a figure comparing vanilla trajectory sampling with this extended trajectory sampling.

2.4 CONNECTING TO RELATED WORKS

We can categorize existing DG methods into four broad groups.

Invariant element learning. Learning invariant mechanisms shared across training domains pro-
vides a promising path toward DG. Recent literature has equipped various deep learning components
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- especially representation modules - with the invariant property to achieve DG (Li et al., 2018d;e;
Muandet et al., 2013). The central idea is to minimize the distance or maximize the similarity be-
tween representation distributions P (f(X )|D) across training domains so that prediction is based
on statistically indistinguishable representations. Adversarial methods (Li et al., 2018d) and mo-
ment matching (Peng et al., 2019; Zellinger et al., 2017) are two promising approaches for distribu-
tional alignment. A recent line of work explores the connection between invariance and causality.
IRM (Arjovsky et al., 2019) learns an invariant linear classifier that is simultaneously optimal for
all training domains. Under the linear case and some constraints, the invariance of the classifier in-
duces causality. Ahuja et al. further extend IRM by posing it as finding the Nash equilibrium (Ahuja
et al., 2020) and adding information bottleneck constraints to seek theoretical explanations (Ahuja
et al., 2021). However, later works (Kamath et al., 2021) show that even when capturing the cor-
rect invariances, IRM still tends to learn a suboptimal predictor. Compared to this stream of works,
our method places no assumption on either the marginal or joint distribution. Instead, the PGrad
explores the promising gradient direction and is model and data-agnostic.

Optimization methods. One line of optimization-based DG works is those related to the Group
Distributionally robust optimization (a.k.a DRO) (Sagawa et al., 2019). Group DRO aims to tackle
domain generalization by minimizing the worst-case training loss when considering all training dis-
tributions (rather than the average loss). The second set of optimization DG methods is optimization-
based meta-learning. Optimization-based meta-learning uses bilevel optimization for DG by achiev-
ing properties like global inter-class alignment (Dou et al., 2019) or local intra-class distinguisha-
bility (Li et al., 2018b). One recent work (Li et al., 2019) synthesizes virtual training and testing
domains to imitate the episodic training for few-shot learning.

Gradient manipulation. Gradient directions drive the updates of neural networks throughout train-
ing and are vital elements of generalization. In DG, the main goal is to learn a gradient direction that
benefits all training domains (plus unseen domains). Gradient surgery (Mansilla et al., 2021) pro-
poses to use the sign function as a signal to measure the element-wise gradient alignment. Similarly,
the authors of (Chattopadhyay et al., 2020) presented And-mask, to learn a binary gradient mask
to zero out those gradient components that have inconsistent signs across training domains. Sand-
mask (Shahtalebi et al., 2021) added a tanh function into mask generation to measure the gradient
consistency. They extend And-mask by promoting gradient agreement.

Fish (Shi et al., 2021) and Fishr (Rame et al., 2021) are two recent DG works motivated by gradient
matching. They require the parallel calculation of the domain gradient from every training domain
w.r.t a current parameter vector. Fish maximizes the inner product of domain-level gradients; Fishr
uses the variance of the gradient covariance as a regularizer to align the per-domains’ Hessian matrix.
Our method PGrad differs gradient matching by learning a robust gradient direction. Besides, our
method efficiently approximates the Hessian with training domains’ Fisher information matrix. Ap-
pendix (A.4) includes a detailed analysis comparing parallel versus sequential domain-level training.
Furthermore, we adapt PGrad with parallel training, and compare it against PGrad with sequential
training and ERM to justify our analysis, see visualizations in Figure 6. We then show that gradient
alignment is not necessary a sufficient indicator of the generalization ability in Figure 7.

Others. Besides the categories above, there exist other recently adopted to conquer domain gen-
eralization. Data augmentation (Xu et al., 2021; Zhang et al., 2021; 2017; Volpi et al., 2018),
which generates new training samples or representations from training domains to prevent over-
fitting. Data augmentation can facilitate a target model with desirable properties such as linearity
via Mixup (Zhang et al., 2017) or object focus (Xu et al., 2021). Other strategies, like contrastive
learning (Kim et al., 2021), representation disentangling (Piratla et al., 2020), and semi-supervised
learning (Li et al., 2021), have also been developed for the DG challenge.

3 EXPERIMENTS
We conduct empirical experiments to answer the following questions: Q1. Does PGrad success-
fully handle both synthetic and real-life distributional shifts? Q2. Can PGrad handle various ar-
chitectures (ResNet and DenseNet), data types (scene and satellite images), and tasks (classification
and regression)? Q3. Compared to existing baselines, does PGrad enable smooth decreasing loss
curves and generate smoother parameter trajectories? Q4. Can PGrad act as a practical comple-
mentary approach to combine with other DG strategies? 2 Q5. How do bottom eigenvectors in the
roll-out trajectories affect the model’s training dynamic and generalization ability?

2Note: we leave hyperparameter tuning details and some ablation analysis results in Appendix (A.7 to A.9).
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Table 1: A summary on DOMAINBED dataset, metrics, and architectures we used.
Dataset # of Images Domains # of Classes

PACS (Li et al., 2017) 9,991 Artpaint, Cartoon, Sketches, Photo 7
VLCS (Fang et al., 2013) 10,729 PASCAL VOC 2007, LabelMe, Caltech, Sun 5

OFFICEHOME (Venkateswara et al., 2017) 15,588 Art, Clipart, Product, Real-World 65
TERRAINCOGNITA (Beery et al., 2018) 24,788 Location #100, #38, #43, #46 10

DOMAINNET (Peng et al., 2019) 586,575 Clipart, Infograph, Painting, Quickdraw, Real, Sketch 345

Table 2: Test accuracy (%) on five datasets from the DomainBed benchmark. We group 20% data
from each training domain to construct validation set for model selection.

Categories Algorithms VLCS PACS OfficeHome TerraInc DomainNet Avg
Baseline ERM 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3

Invariant

IRM 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 61.6 –1.7
MMD 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 58.8 –4.5
DANN 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 62.6 –0.7
CORAL 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.5 +1.2

Optimization GroupDRO 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 60.7 –2.6
MLDG 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 63.6 +0.3

Augmentation MixUp 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 63.4 +0.1
ARM 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 61.7 –1.6

Gradient
Manipulation

Fish 77.8 ± 0.3 85.5 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 42.7 ± 0.2 63.9 +0.6
Fishr 77.8 ± 0.1 85.5 ± 0.4 67.8 ± 0.1 47.4 ± 1.6 41.7 ± 0.0 64.0 +0.7

PGrad 79.3 ± 0.3 +1.8 85.1 ± 0.3 –0.4 69.3 ± 0.1 +2.8 49.0 ± 0.3 +2.9 41.0 ± 0.1 +0.1 64.7 +1.4
PGrad-B 78.9 ± 0.3 +1.4 87.0 ± 0.1 +1.5 69.6 ± 0.1 +3.1 49.4 ± 0.8 +3.3 41.4 ± 0.1 +0.5 65.3 +2.0
PGrad-BMix 78.9 ± 0.2 +1.4 86.2 ± 0.4 +0.7 69.8 ± 0.1 +3.3 50.7 ± 0.6 +4.6 42.6 ± 0.2 +1.7 65.7 +2.4

3.1 DOMAINBED BENCHMARK

Setup and baselines. The DomainBed benchmark (Gulrajani & Lopez-Paz, 2021) is a popular suite
designed for rigorous comparisons of domain generalization methods. DomainBed datasets focus
on distribution shifts induced by synthetic transformations, We conduct extensive experiments on
it to compare it with SOTA methods. The testbed of domain generalization implements consistent
experimental protocols for various datasets, and we use five datasets from DomainBed (excluding
two MNIST-related datasets) in our experiments. See data details in Table 1.

DomainBed offers a diverse set of algorithms for comparison. Following the categories we summa-
rized in Section 2.4, we compare with invariant element learning works: IRM (Arjovsky et al., 2019),
MMD (Li et al., 2018d), DANN (Ganin et al., 2016), and CORAL (Sun & Saenko, 2016). Among
optimization methods, we use GroupDRO (Sagawa et al., 2019) and MLDG (Li et al., 2018b). The
most closely related works are those based on gradient manipulation, and we compare with Fish (Shi
et al., 2021) and Fishr (Rame et al., 2021). Of the representation augmentation methods, we pick two
popular works: MixUp (Zhang et al., 2017) and ARM (Zhang et al., 2021). DomainNet’s additional
model parameters in the final classification layer lead to memory constraints on our hardware at the
default batch size of 32. Therefore, we use lower batch size 24. For our method variation PGrad-B
, we set B = 3 for all datasets except using B = 2 for DomainNet. We default to Adam (Kingma
& Ba, 2017) as the optimizer to roll-out a trajectory. All experiments use the DomainBed default
architecture, where we finetune a pretrained ResNet50 (He et al., 2016).

Results analysis. We aggregate results on each dataset by taking the average prediction accuracy
on all domains, and the results are summarized in Table 2. The per-domain prediction accuracy on
each dataset is available in Appendix (A.7).

We summarize our observations: 1). ERM remains a strong baseline between all methods, and gra-
dient alignment methods provide promising results compared to other categories. 2). PGrad ranks
first out of 11 methods based on average accuracy. Concretely, PGrad consistently outperforms
ERM on all datasets and gains 1.8% improvement on VLCS, 2.8% on OfficeHome, 2.9% on Ter-
raIncognita, and no improvement on DomainNet. 3) Our variation PGrad-B outperform PGrad
on almost all datasets except VLCS (where it is similar to PGrad ). This observation showcases
that intra-domain noise suppression can benefit OOD generalization. A longer trajectory enables
PGrad to learn more robust principal directions. 4) The combined variation PGrad-BMix outper-
forms MixUp across all datasets. On average (see last column of Table 2), PGrad-BMix is the best
performing strategy. This observation indicates our method can be effectively combined with other
DG categories to improve generalization further.
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Table 3: Analysis the effect of varying k. The experiments are performed on PACS dataset. We
highlight first and second best results.

Method Algorithms P A C S Avg

PGrad
k = 0 98.0±0.2 87.3±0.2 76.8±0.4 73.4±1.3 83.9
k = 2 97.8±0.0 87.5±0.3 78.2±0.8 74.0±1.5 84.4
k = 3 97.8±0.0 87.8±0.4 78.4±0.6 77.2±1.1 85.3
k = 4 97.4±0.1 87.6±0.3 79.1±1.0 76.3±1.2 85.1

PGrad-B

k = 0 97.5±0.1 89.1±0.8 80.3±0.6 77.5±0.4 86.1
k = 2 97.7±0.2 88.5±1.0 79.9±1.1 79.2±0.7 86.4
k = 4 98.0±0.2 89.9±0.2 80.0±0.6 80.1±0.9 87.0
k = 7 97.6±0.3 88.2±0.8 81.1±1.3 79.0±1.5 86.5
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(h) PGrad: Tte = S

Figure 2: Visualzing domain-wise training losses on VLCS. Curves are the average over 9 runs,
surrounded by ±σ the standard deviation. For comparison, the loss curves start from 1,000 epochs.

Tuning k for noise suppression. As we pointed out in Section 2.1, we achieve domain-specific
noise suppression by only aggregating coordinate axes {wz}kz=0 when learning the principal gradi-
ent∇p. To investigate the effect of k, we run experiments with different values of k for both PGrad
and PGrad-B . The analysis results on PACS dataset are collected in Table 3. Note that for default
version of PGrad , the maximum number of training domains is n = 3, therefore, the length of the
PGrad trajectory is upper bounded by 4.

Table 3 shows that the generalization accuracy initially improves and then drops as k increases. If
we use k = n + 1 (as k = 4 for PGrad), domain-specific noise is included and aggregated from
principal coordinateW and the performance decreases compared with k = 3. The same pattern can
also be observed in PGrad-B (note: the length of the trajectory is upper bounded by nB+1 = 10).

Training loss curve analysis. Learning and explaining a model update’s behavior is an important
step toward understanding its generalization ability. To answer Q3, we look for insights by visualiz-
ing domain-wise training losses as updates proceed. To prevent randomness, we plot average results
together with the standard deviation over 9 runs. The results for ERM and PGrad are visualized
in Figure 2. Compared to ERM, our method PGrad has smoother decreasing losses as training
proceeds. Besides, all training domains benefit from each update in PGrad. On the other hand,
ERM’s decreasing loss on one domain can come with increases on other domains, especially late
in training. We hypothesize this is because domain-specific noise takes a more dominant role as
training progresses in ERM. PGrad can effectively suppress domain-specific noise and optimize all
training losses in unison without significant conflict. Moreover, the loss variances across training
domains are stably minimized, achieving a similar effect as V-REx (Krueger et al., 2021) without
an explicit variance penalty. In Appendix (A.2), we visualize four training trajectories trained with
PGrad and ERM. ERM trajectories proceed over-optimistically at the beginning and turn sharply
in late training. PGrad moves cautiously for every step and consistently towards one direction.
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Table 4: A summary on WILDS dataset, metrics, and architectures we used.
Dataset Domain Types Input Output Train

Domains
Val

Domains
Test

Domains Metric Arch.

POVERTYMAP
Countries (23),
Urban/Rural (2)

Satellite
Images Asset (real valued) 13 5 5 Pearson (r) ResNet-18

FMOW Time (16),
Regions (5)

Satellite
Images Land Use (62 classes) 11 3 2 Avg Region Acc. DenseNet-121

Table 5: Results on WILDS benchmark. Top two results are highlighted.

Method
FMOW POVERTYMAP

Val. Accuracy (%) Test Accuracy (%) Val. Pearson Test Pearson

IRM 57.2±0.01 50.9±0.32 0.81±0.04 0.78±0.03
Coral 56.7±0.06 50.5±0.30 0.80±0.04 0.77±0.05
Fish 57.3±0.01 51.8±0.12 0.80±0.01 0.80±0.01

PGrad 57.5±0.15 51.9±0.10 0.81±6e-3 0.80±0.01
PGrad-B 57.9±0.08 52.1±0.09 0.82±8e-4 0.82±5e-3

3.2 WILDS BENCHMARK

WILDS (Koh et al., 2021) is a curated benchmark of 10 datasets covering real-life distribution
shifts in the wild such as poverty mapping and land use classification. We apply our method to
its two vision applications. Our goal is to investigate the scalability of PGrad under different
model architectures and metrics, and more importantly, its performance when facing real-world
OOD shifts. We conduct experiments on WILDS to explore both Q1 and Q2.

For each dataset, we use the recommended metrics and model architecture. A summary of the
dataset, the metrics, and the model architectures are provided in Table 4. (I) The POVERTYMAP
dataset is collected for poverty evaluation, where the input x ∈ X is an 8-channel multispectral
satellite image, the output y ∈ Y is the real-value asset wealth index. The dataset includes satellite
images from 23 different countries and covers both urban and rural areas for each country. We use
13 countries as training domains, pick 5 other countries for model selection, and use the remaining
5 countries for test purpose. We calculate the Pearson correlation r between the predicted index and
the groundtruth, and report the average r across 5 test domains and two different areas. (II) The
objective of the FMOW dataset is to categorize land use based on RGB satellite images spanning 16
years and 5 geographical regions. The training domains contain images from the first 11 years, with
the middle 3 years as validation domains and the last 2 years as test domains. We report the average
region accuracy on both validation and test domains to evaluate our method under the geographical
distributional shift challenge. 3 The training details and the hyperparameters we used can be found
in Appendix (A.9). We compare ours with SOTA methods including IRM (Arjovsky et al., 2019),
Coral (Sun & Saenko, 2016), and Fish (Shi et al., 2021). We repeat each experiment with three
random seeds and report both recommended metrics and their standard deviations on each dataset.

In Table 5, PGrad achieves state-of-the-art results on both datasets, and the variation PGrad-B
further improves the performance. On POVERTYMAP, PGrad demonstrates a strong correlation
between the predicted wealth index and the ground truth by achieving the highest Pearson coeffi-
cient on both validation and testing domains. Its low standard deviation indicates PGrad is stable
across different random seeds. PGrad-B achieves better domain generalization by enabling more
extended trajectory sampling. Similarly, on the FMOW data, PGrad improves over baseline IRM
and Coral, and is on par with Fish. PGrad-B achieves the best accuracy. These experimental re-
sults demonstrate that the proposed methods are effective across different model architectures and
can successfully handle the real-life distributional shift.

4 CONCLUSION
In this paper, we made an effort toward domain generalization by proposing a new training strategy.
Our method learns robust gradient directions by analyzing the parameter path created by sequential
optimization on training domains. The learned gradient direction, which we call the principal gradi-
ent, aggregates and explains the variation of the sampled optimization trajectory. Principal gradients
improve domain generalization by reducing the impact of gradient directions specific to individ-
ual training domains. Our design also enables convenient gradient normalization and re-calibration
for smooth multi-domain training. Empirically, PGrad demonstrates state-of-the-art performance
across two DG benchmark suites, covering both synthetic and real-world distribution shifts.

3We follow the exact same training protocols as in Fish (Shi et al., 2021). On FMOW, we pretrain the model
with ERM to a suboptimal starting and then proceed with PGrad .
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A SUPPLEMENTARY FOR PGrad : Learning robust gradients for domain
generalization.

This appendix includes the following contents:

• We include figures describing the different trajectory sampling methods in A.1.

• To understand how PGrad changes the optimization path of model’s parameters, we show the
TSNE projection of parameters during training in A.2. In Figure 4, we visualize the projection for
different datasets and test domains.

• The inclusion of the starting point during trajectory sampling is important; we analyze the reason
for this effect in A.3.

• PGrad differs from related work in that it adopts a sequential training strategy when sampling
a trajectory. We include a detailed discussion comparing the parallel training used in gradient
matching methods like Fish with our sequential training strategy in A.4. We empirically demon-
strate that gradient alignment is not necessarily a sufficient indicator of the generalization ability,
see Figure 7.

• To justify the analysis between PGrad under sequential training and parallel training, We design
experiments comparing PGrad-B (Sequential), PGrad-B (Parallel), and ERM. The observations
are consistent with the intuitive analysis. Using ERM as baseline, PGrad-B (Sequential) enlarges
clean direction and PGrad-B (Parallel) enlarges noise. See Figure 6 in A.4

• We show that our method has two major theoretical contributions. First, instead of being driven by
gradient alignment, PGrad learns a gradient flow from the tangent space spanned by the eigen-
vectors of the Hessian matrix - see A.5.1 for the detailed analysis. Second, in A.5.2, we show
that PGrad has a deep connection to the efficient training of neural networks by projecting the
high-dimensional parameter space to some low-dimensional subspace. To further understand the
evolution of eigenvalue distributions over time, we visualize their average log values over 1k
training step intervals in Figure 8.

• A critical question is how bottom eigenvectors affect the training dynamic and generalization
ability. We design experiments showing that those bottom eigenvectors span the normal subspace
perpendicular to the tangent space of the loss landscape. Updating the model with any directions
lie within the normal subspace will make no changes to the training loss but hurt the generalization
ability. See A.6 for details.

• Finally, in A.7, A.8, and A.9, we show the per-domain prediction accuracy of our PGrad variants
and the experimental details on both benchmarks.

A.1 ILLUSTRATIVE EXPLANATION OF THE PROPOSED TRAJECTORY SAMPLING METHODS

We compare the three proposed trajectory sampling methods in Figure 3. As vanilla trajectory
sampling only considers inter-domain variations, the long trajectory sampling variant splits per-
batch to smaller batches to eliminate intra-domain discrepancies from data collection, data sampling,
etc.
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Figure 4: Two-dimensional projection of the parameters’ trajectories on different datasets. We use
ResNet50 as the backbone and apply TSNE for projection. Both PGrad and ERM start from a sim-
ilar random initialization. Increasing path thickness represents the later training phase. To reinforce
the visual effect, we smooth the curve within a window of size 8.
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Figure 3: Comparison of three trajectory sampling methods. Assume the number of training domains
n = 3. The top-left box shows the fixed-order trajectory sampling, which is PGrad-F . The top-
right box shows the random-order trajectory sampling, the default method PGrad . The bottom box
represents PGrad-B , a version of the long trajectory sampling with B = 2.

A.2 REAL OPTIMIZATION TRAJECTORY VISUALIZATION

We visualize the optimization paths for both our method PGrad and the ERM baseline with TSNE
projection. Concretely, we save the model’s parameters into the memory buffer after every 100
training steps and project them to the xy-plane after finishing 5,000 training steps. The trajectories
for different datasets and test domains are shown in the following Figure 4.

ERM moves over-confidently with a large step size at the beginning, the turns sharply in late training.
Our method PGrad ‘thinks fast’ but ‘moves cautiously’. It samples roll-out optimization trajectory
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(a): Sequential training will reinforce robust direction
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Figure 5: Comparison of sequential training and parallel training to learn principal gradient. Stars
represent domain-specific optimal minimum, Θk−1 is the starting point, {Θk

i }3i=0 forms a trajectory,
the ellipse captures the current principle coordinate chart.

and aggregates the principal directions. The training curves are consistently smooth even late in
training.

A.3 TRAJECTORY SAMPLING

The inclusion of the starting point Θt
0 in the trajectory sampling is important, otherwise the learned

principal gradient will skip the gradient information from the first training domain from each update.
We show the derivation in the following. To simplify the notation, we substitute ∇Θt

i−1
LDi with

∇Θt
i

and assume we have only two training domains.

Sampled Trajectory With Starting Point Θt
0

S = {Θt
0 → (Θt
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1
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2
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Sampled Trajectory W/O Starting Point Θt
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1 −∇Θt
2
)}

Trajectory Centering
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2
∇Θt

2
→ −1

2
∇Θt
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}

After trajectory centering, the gradient information from the first training domain ∇Θt
1

will be
skipped if trajectories are sampled without the starting point Θt

0. To learn from all training domains,
we use the left policy for sampling.

A.4 COMPARISON BETWEEN THE PARALLEL TRAINING AND SEQUENTIAL TRAINING

In this subsection, we detailed the comparison between our method PGrad with the other two
gradient-based methods: Fish and Fishr. Both Fish and Fishr are inspired by gradient alignment.
They made efforts to align the gradients from different domains and adding the alignment as a
penalty to the loss function. In their vanilla implementation, both Fish and Fishr calculate the per-
domain gradient w.r.t the current parameter Θt

0. We can name the training paradigm as ‘parallel
training’. As contrast, our method learns a robust gradient direction from the optimization trajec-
tory sampled by sequential training. We explain why parallel training is not a proper choice when
learning the principal direction in PGrad .

Principal directions learn dominant changing directions. If we apply parallel training in PGrad , the
centering of the trajectory will suppress the shared pattern and reinforce the domain-specific noises,
see Figure 5(b). Instead, the sequential training keeps enlarging shared gradient patterns with each
of the multi-step updating. We visualize and compare the two cases using Figure 5. Moreover, the
sequential training is more efficient comparing with parallel training.

In Figure 5, we intuitively explain that sequential training will reinforce the learning of a clean
direction and parallel training will significantly suppress it. We now design experiments to justify
our hypothesis. We adapt PGrad-B by learning the principal direction through parallel training.
We fix all random mechanisms and compare PGrad-B under sequential training, PGrad-B under
parallel training, and ERM. The test accuracy as functions of the training epoch is visualized in
Figure. In the left panel, we use C, P, R as training domains. In the right panel, we use A, P, R as
training domains. We attribute the performance drop of the PGrad-B (parallel) to the enlarged noise
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component and suppressed clean direction. The observations are consistent with above analysis.
Another interesting observation is that curves from PGrad-B are smoother compared to ERM.
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Figure 6: Comparison of PGrad-B (sequential) , PGrad-B (parallel), and ERM on OfficeHome
dataset.

We highlight the novelty of our method by showing that PGrad achieves domain generalization
without constraining the gradient alignment. Specifically, we define a gradient alignment measure-
ment as the mean of the cosine gradient similarity across all training domain pairs:

1/
(
n
2

)∑
i 6=j

< ∇(Di),∇(Dj) >

||∇(Di)||||∇(Dj)||
(13)

In Figure 7, We visualize the test domain accuracy and training domains gradient alignment as func-
tions of the training epoch. The figure implies the gradient alignment is not a sufficient indicator
of the generalization ability. The test accuracy of the PGrad is lower bounded by Fish, but Fish
aligns training domains’ gradient better than PGrad . Secondly, the right figure shows the smooth-
ness of the gradient alignment curves has a positive correlation with the test accuracy. Starting from
3,000 epochs, the alignment curve of the PGrad becomes smooth, and the model achieves higher
prediction accuracy in the test domain. The starting phase of the Fish reveals the same pattern.

Figure 7: Visualization of test domain accuracy and training domain gradient alignment.

A.5 THEORETICAL ANALYSIS

The basic motivation of PGrad is to learn a gradient flow combines the top eigenvectors of the Hes-
sian which are approximated by the average of the Fisher information matrix calculated sequentially
on each training domain.

A.5.1 CONNECTION TO HESSIAN AND FISHER INFORMATION MATRIX.

Hessian matrix, which is widely used for analyzing the model’s training behaviour, is defined as the
second order derivative of the function. Similar to NTK (Jacot et al., 2018), we assume the loss
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function L is a functional acting on parameters Θ,

L(Θ) = Ex,yL[Θ, (x,y)] ≈ 1

|x× y|
∑
i

L[Θ, (xi,yi)]. (14)

We have Taylor expansion around parameter Θ:

L(Θ′) = L(Θ) + (Θ′ −Θ)T∇ΘL+
1

2
(Θ′ −Θ)TH(Θ′ −Θ) +O(||Θ′ −Θ||2), (15)

where Hi,j =
∂2L

∂Θi∂Θj
. The Hessian matrix H contains local geometric properties of the loss

landscape around Θ.

The calculation of the second-order gradient is impractical, especially for modern neural network
architectures. Under certain mild regularity conditions and equipped with log-likelihood as loss
function (Schervish, 2012), we can approximate H with the outer product of the gradient. Specifi-
cally,

I = ∇ΘL ⊗∇ΘL = − ∂
2L
∂Θ2

= −H (16)

where I is also known as Fisher information matrix (FIM).

We explain how our method PGrad automatically approximates and aggregates the eigenvalues
of the Hessian matrix by following the proposed training procedures. We sample a trajectory as
S = {Θ0,Θ1, · · · ,Θn} ∈ R(n+1)×d. In the following, we show the trajectory centering operation
is equivalent to taking the average of the training domains’ Hessian approximations.

Lemma A.1 The centered trajectory Ŝ is the linear transformation of the domain-specific gradi-
ent, whose columns can be interpreted as the domain-wise gradient vector starting from the same
initialization. The shared initialization is the trajectory center of S.

The first half of the Lemma is easy to show. Any vector within a convex hull can be recovered by the
linear combination of its edges. See Appendix A.3 for the derivation on a simple case. It implies that
the centered trajectory Ŝ contains as rich information as training domains’ gradient matrix. For the

sampled trajectory S, the center is calculated as So =

∑n
i=0 Θi

n+ 1
. We can re-interpret the sampled

trajectory with local coordinate centered with So. Since the update step is small enough, we have:

Ŝ = [Θ0 − So,Θ1 − So, · · · ,Θn − So] = [∇̂0, ∇̂1, · · · , ∇̂n] (17)

The new gradients {∇̂i}ni=0 shares pseudo initialization So.

We then proceed to show the covariance of the centered trajectory gives us the mean of the training
domains’ FIM.

PGrad uses the training domains’ average FIM to approximate the real expected FIM.

1

n
ŜTS =

1

n
[∇̂0, ∇̂1, · · · , ∇̂n]⊗ [∇̂0, ∇̂1, · · · , ∇̂n] (18)

=
1

n

∑
i

∇̂i ⊗ ∇̂i =
1

n

∑
i

Ii = − 1

n

∑
i

Hi, (19)

where Ii,Hi are domain-specific FIM and Hessian matrix, respectively. The approximation is a
covariance matrix, which is positive semi-definite (SPD) and has the eigenvalue-eigenvector pairs
{(λz,vz)}nz=0 with λ0 > λ1 > · · · > λn. The eigenvalue λz is the curvature of the loss in direction
of vz in the neighborhood of So. The training behaviour of the neural network is determined by
the distribution of the eigenvalues. Specifically, first-order optimization methods slow down sig-
nificantly when {λz}nz=0 are highly spread out (Bottou & Bousquet, 2007; Ghorbani et al., 2019).
The property inspires us to zero out insignificant directions and use the directions with the large
curvature to derive our gradient direction∇p.
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As a contrast, Fishr (Rame et al., 2021) uses the current parameter value as the initialization and
parallelly approximates the per-domain Hessian matrix with its gradient variance. It defines the
Fishr regularization as the square of the Euclidean distance between gradient variance matrices to
bring closer domain-wise Hessian. Its goal is to align the second order gradient of the training
domains. The high computational cost from parallel training constrains them to operate only on
the last classification layer in practice.

Comparing with other gradient manipulation works which emphasize alignment or matching,
PGrad uses the average of the FIMs to approximate the underlining Hessian matrix under the DG
setup. The operation can also reduce the noise variance by 1/n, where n is the size of the training
domains. The property also provides an explanation of why PGrad-B achieves better generalization
ability compared with PGrad . Second, instead of matching eigenvalues of per-domain Hessian, we
learn a robust gradient flow which is the combination of the eigenvectors reflecting the dominant
changes and zero out the remaining directions, which are empirically proved to be generalization
toxic, see Table 3. Our approximation of the Hessian matrix and introduced bijection allows us to
efficiently operate on the high-dimensional parameter space.

A.5.2 CONNECTION TO THE LEARNING BEHAVIOUR OF THE NEURAL NETWORKS

Modern SOTA neural networks are usually over-parameterized (Allen-Zhu et al., 2019; Zou & Gu,
2019). Improving the training efficiency of high-dimensional neural networks is an active research
direction (Li et al., 2018a). Recent works (Gur-Ari et al., 2018; Gressmann et al., 2020) have shown
that deep neural networks can be optimized in some subspace of much smaller dimensionality than
their native parameter space, we show how PGrad connects to the line of the work.

It was proved by previous work (Li et al., 2018c; Gur-Ari et al., 2018; Gressmann et al., 2020)
that the functional induced by the neural network varies most along only some specific directions.
We, therefore, focus on recovering the low-dimensional subspace where the loss function L varies
the most on average, and project the native parameter space to the subspace. We formulate the
discussion in the following.

Given a direction v, the directional derivative of the loss L at Θ is defined as:

∂Lv(Θ) = [∇ΘL(Θ)]Tv, (20)

and we can measure the expected scale (or length) of the directional derivative as:

EΘ|∂Lv(Θ)|2 = EΘ[vT∇ΘL(Θ)⊗ vT∇ΘL(Θ)] = vTEΘ[∇ΘL(Θ)⊗∇ΘL(Θ)]v, (21)

However, the distribution of the Θ is unavailable, we turn to utilize the parameters from different
training domains for empirical approximation.

EΘ|∂Lv(Θ)|2 ≈ vT (
1

n

∑
i

∇̂n ⊗ ∇̂n)v =
1

n
vT ŜT Ŝv. (22)

We demonstrate that learning the principal gradient direction enables us to find a low-rank updating
space which is noise resistant by showing the following lemma.

Lemma A.2 Suppose we are searching for a k dimensional linear projection M ∈ Rk×d of the
original parameter space Θ ∈ Rd, such that it keeps largest directional derivatives with respect to
the loss L. If the eigenvalue-eigenvector pair of the outer product matrix EΘ[∇ΘL(Θ)⊗∇ΘL(Θ)]
are {λz,vz}nz=0 with λ0 > λ1 · · · > λn. We have:

Span{M0,M1, · · · ,Mk} = Span{v0,v1, · · · ,vk}. (23)

To understand how eigenvalue changes during training, we visualize the relative contribution of
each eigenvalue by normalizing with their summation and then plotting the log of their average
over 1k training epochs in Figure 8. In our experiments, we learn ∇p by aggregating eigenvectors
corresponding to the top-4 eigenvalues. The figure indicates that the contribution from the smallest
eigenvalues keeps decreasing as training continues. Our method PGrad can effectively distinguish
domain-specific noise and update with shared patterns by suppressing the information from small
eigenvalues.
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(a) PGrad-B : OfficeHome, Tte = A
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(b) PGrad-B : OfficeHome, Tte = C

Figure 8: The changing of the eigenvalue distribution with our proposed PGrad-B , where B = 3.
The length of the trajectories is nB + 1 = 10. We plot the distribution of the top-9 eigenvalues
since the smallest one is out-of-precision. We calculate the contribution of each component by
normalization with their sum. To smooth the results, we take the log value of the average across
per-thousand training epochs. The ∇p is learned by aggregating the top-4 eigenvectors.

A.6 WHAT ARE THE TAIL EIGENVECTORS?

To answer the last question we proposed in Section 3, we conduct the analysis to show the effect of
the bottom eigenvectors on the training dynamics. Ablation studies in Table 3 indicate that including
bottom eigenvalues into principal gradient will hurt the generalization ability. We add new exper-
iments to clarify that the bottom eigenvectors are noise signals of ‘special’ properties. Concretely,
we design three different strategies to update the model with PGrad :

• Always from bottom eigenvectors.

• Start from the top eigenvectors and then switch to the bottom vectors in the middle.

• Always from the top eigenvectors.

The training losses keep being constant for case (1) and case (2) after the switching, even when we
set the step size to be meaningfully large. The training loss keeps getting decreased for the setup (3).
These results imply that those bottom components span the subspace perpendicular to the tangent
space of the loss landscape. They do not hurt the training loss but are not helpful for generalization.
Similar to the original setup, we calibrate the direction and length for optimization purpose. We
show the training loss curves in Figure 9.

A.7 EXPERIMENTAL SETUP DETAILS FOR DOMAINBED

Following the training protocol described in DomainBed, we run experiments on each domain with
a random mechanism to reduce the bias of hyperparameter selection. The DomainBed experiments
(Gulrajani & Lopez-Paz, 2021) select the best model from random samples of the hyperparameter
search space, and repeat this search process 3 times. Specifically, for each domain, we select 2
random combinations of hyperparameters from a relatively narrow range and repeat the search 3
times to report confidence intervals. For a dataset with n domains, we train n models. Tte, held out
for testing, and use the rest as training domains Dtr. This design leads to a total of 6n experiments
per dataset for each method.
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Figure 9: In the left figure, we learn principal gradient always from bottom eigenvectors; the middle
figure starts with top eigenvectors and switches to bottom ones after 200 epoch; the right figure
always uses top eigenvectors. The vertical line indicates when the intervention happened. The
y-axis is the training loss, the x-axis is the training epoch.

Lacking access to data from the test distribution during training makes it hard to perform model se-
lection for DG compared to other supervised learning tasks. In the main, we follow the popular setup
where we sample 20% of the data from each training domain and group them as a validation set.
The validation accuracy will be used as an indicator of the optimal model. We show the prediction
accuracy of PGrad and the extensions on each domain in Tables 7-11.

A.8 HYPERPARAMETER SEARCH

We following a similar training and evaluation protocol to the DomainBed experiments (Gulrajani
& Lopez-Paz, 2021). We list our hyperparameter search space in Table 6.

Table 6: Sample space for hyperparameters.

Hyper-parameter Default value Random distribution
Inner learning rate 5e− 5 5e− 5
Outer learning rate 0.1 0.1

Batch size 32 32 if not DomainNet else 24
ResNet dropout 0 RandomChoice([0, 0.1, 0.5])
Weight decay 0 10Uniform(−6,−4)

Training step 5,000 5,000 if not DomainNet else 6,000

We design a narrow search space to prevent undersampling and potential performance degeneration
from a smaller number of random trials. We use a fixed batch size of 32, which ensures there
are adequate samples to provide precise gradient directions when sampling with our long and high-
entropy method. For example, there are still 11 samples in each small batch ifB = 3. We also found
the outer learning rate γ = 0.1 works consistently well on each dataset. DomainNet’s additional
model parameters in the final classification layer lead to memory constraints on our hardware at the
default batch size of 32. Therefore, we use a lower batch sizes 24, and increase the training step to
6, 000.

A.9 EXPERIMENTAL DETAILS ON WILDS BENCHMARK

A summary of the two vision datasets in the WILDS benchmark is shown in Table 4. For the POVER-
TYMAP task, the inputs are 8-channel satellite images, therefore, we tuned the first convolutional
layer of the ResNet18 (He et al., 2016) to accommodate a multispectral input. To sample a trajectory
of length n̂+1 in high dimensional parameter space Θ, we randomly sample n̂ training domains and
sequentially update the parameter starting from Θt on each of them. We use the Adam optimizer for
trajectory construction and set the default learning rate to be 1e−3 without weight decay. We set the
outer learning rate γ = 0.1/n̂, which adjusts the step size based on the number of sampled training
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domains. We train the model with the proposed PGrad for 200 epochs and select the optimal model
based on the average Pearson coefficient on validation domains.

For the land use classification task FMOW, we follow the exact same training and evaluation proto-
col applied in Fish (Shi et al., 2021). We find a good starting point by updating the ERM objective
with an Adam optimizer for 24,000 iterations with a learning rate of 1e − 4. After pretraining, we
proceed with our proposed PGrad and keep tuning the model for 10 epochs with outer learning rate
γ = 0.01/n̂. After training is completed, we report the worst regional accuracy on the test domains.
This measurement is designed by WILDS (Koh et al., 2021) to test models’ generalization ability
when facing both time and regional distribution shift. The numerical results for both datasets are
available in Table 5.

Table 7: Per-domain prediction accuracy (%) on VLCS dataset
Algorithm C L S V Avg
PGrad-F 98.7 ± 0.2 64.4 ± 0.9 73.6 ± 0.2 76.9±0.4 78.4
PGrad 98.3 ± 0.2 64.4 ± 0.7 74.4 ± 0.4 79.9±0.7 79.3
PGrad-B 98.7 ± 0.3 63.9 ± 1.1 74.6 ± 0.5 78.5±0.6 78.9
PGrad-BMix 99.1 ± 0.1 63.8 ± 0.7 73.5 ± 0.5 79.0 ± 0.5 78.9

Table 8: Per-domain prediction accuracy (%) on PACS dataset
Algorithm A C P S Avg
PGrad-F 88.0 ± 0.4 79.2 ± 0.3 98.2 ± 0.2 76.6 ± 1.5 85.5
PGrad 87.6 ± 0.3 79.1 ± 1.0 97.4 ± 0.1 76.3 ± 1.2 85.1
PGrad-B 89.9 ± 0.2 80.0 ± 0.6 98.0 ± 0.2 80.1 ± 0.9 87.0
PGrad-BMix 89.6 ± 0.3 78.9 ± 0.6 97.7 ± 0.3 78.8 ± 1.0 86.2

Table 9: Per-domain prediction accuracy (%) on OfficeHome dataset
Algorithm A C P R Avg
PGrad-F 64.4 ± 0.4 54.7 ± 0.3 77.0 ± 0.3 78.6 ± 0.2 68.7
PGrad 64.7 ± 0.6 56.0 ± 0.7 77.4 ± 0.2 78.9 ± 0.3 69.3
PGrad-B 65.2 ± 0.4 55.9 ± 0.8 77.5 ± 0.5 79.3 ± 0.3 69.6
PGrad-BMix 65.8 ± 0.2 55.4 ± 0.4 78.0 ± 0.1 80.0 ± 0.4 69.8

Table 10: Per-domain prediction accuracy (%) on TerraIncognita dataset
Algorithm L100 L38 L43 L46 Avg
PGrad-F 52.0 ± 1.3 42.0 ± 0.9 57.2 ± 0.9 43.2 ± 2.1 48.6
PGrad 51.2 ± 0.8 43.4 ± 0.7 60.0 ± 0.6 41.3 ± 0.8 49.0
PGrad-B 52.7 ± 2.1 43.5 ± 0.7 59.5 ± 0.5 41.9 ± 0.3 49.4
PGrad-BMix 61.2 ± 2.2 45.7 ± 0.9 58.2 ± 0.3 37.9 ± 0.7 50.7

Table 11: Per-domain prediction accuracy (%) on DomainNet dataset
Algorithm clip info paint quick real sketch Avg
PGrad 57.0 ± 0.5 18.2 ± 0.2 48.4 ± 0.3 13.0 ± 0.1 60.9 ± 0.1 48.8 ± 0.1 41.0
PGrad-B 57.2 ± 0.2 18.8 ± 0.2 48.3 ± 0.1 13.1 ± 0.1 61.2 ± 0.1 49.9 ± 0.1 41.4
PGrad-BMix 59.4 ± 0.1 19.8 ± 0.1 49.1 ± 0.4 13.7 ± 0.1 61.8 ± 0.2 51.1 ± 0.1 42.5
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