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Abstract
Large Language Models (LLMs) have demon-001
strated impressive mathematical reasoning ca-002
pabilities, yet their performance remains brit-003
tle to minor variations in problem description004
and prompting strategy. Furthermore, reason-005
ing is vulnerable to sampling-induced errors006
which autoregressive models must primarily007
address using self-correction via additionally-008
generated tokens. To better understand self-009
correction capabilities of recent models, we010
conduct experiments measuring models’ abil-011
ity to self-correct synthetic perturbations in-012
troduced into their Chain of Thought (CoT)013
reasoning. We observe robust single-utterance014
intrinsic self-correction behavior across a range015
of open-weight models and datasets, ranging016
from subtle, implicit corrections to explicit ac-017
knowledgments and corrections of errors. Our018
findings suggest that LLMs, including those not019
finetuned for long CoT, may possess stronger020
intrinsic self-correction capabilities than com-021
monly shown in the literature. The presence022
of this ability suggests that recent "reasoning"023
model work involves amplification of traits al-024
ready meaningfully present in models.025

1 Introduction026

Large Language Models (LLMs) have shown pro-027

gressively impressive performance in mathemati-028

cal domains (Cobbe et al., 2021; Hendrycks et al.,029

2021; Lewkowycz et al., 2022; Yang et al., 2024),030

owing largely to improvements in data curation and031

post-training techniques.032

At inference time, researchers have found that033

performance can be substantially improved by en-034

couraging models to generate natural language ra-035

tionales that allow for an adaptive amount of com-036

putation for each subproblem (Nye et al., 2022;Wei037

et al., 2022; Zhou et al., 2023; Zheng et al., 2024,038

inter alia).039

However, despite the apparent sophistication of040

LLM reasoning capabilities, recent work has docu-041

mented a variety of reasoning failure modes. For042

example, models have a tendency to fall into poorly 043

performing reasoning patterns when presented with 044

familiar but subtly modified problems (Mirzadeh 045

et al., 2024), can be easily distracted with irrele- 046

vant context (Shi et al., 2023), and are brittle to 047

changes in premise ordering (Chen et al., 2024). 048

Critically, LLMs struggle to identify their own er- 049

rors and contradictions, making it difficult to trust 050

outputs without external verification. 051

While a three-turn generate-critique-correct pro- 052

cess with optimized prompting is popular in self- 053

correction literature (Madaan et al., 2023), recent 054

trends in frontier language model releases (Ope- 055

nAI, 2024; Qwen Team, 2024; Pichai et al., 2024; 056

DeepSeek, 2025) point to a growing interest in 057

models’ ability to perform self-evaluation intrinsi- 058

cally at test-time in a single-utterance, without aid 059

from external verifiers. A critical component of this 060

behavior is intrinsic self-correction, when models 061

recognize an error in their reasoning, acknowledge 062

the mistake, and output a corrected generation. 063

To better understand current capabilities around 064

single-utterance intrinsic self-correction, we intro- 065

duce a novel experimental framework focused on 066

evaluating how LLMs recover from perturbations 067

in their reasoning chains. Our results1 reveal that 068

language models, even those not trained as "rea- 069

soning" models, can successfully recover from in- 070

troduced reasoning perturbations, exhibiting both 071

implicit and explicit self-correction behavior. 072

2 Related Work 073

In contrast to approaches that rely on external feed- 074

back (See Appendix E.1), recent work has explored 075

methods to enable LLM self-correction using only 076

their own parametric knowledge. 077

Prompt-based self-correction techniques involve 078

models reviewing and revising their own outputs, 079

checking for potential errors, inconsistencies, or 080

1Full dataset and code will shortly be made available.
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Figure 1: Truncated excerpt of a candidate solution (brown) showing LLaMA 3.3 70B explicitly self-correcting
(green) mid-generation during single-utterance completion of a perturbed (red) on-policy reasoning stub.

misalignment (Bai et al., 2022; Saunders et al.,081

2022). These self-refinement processes can be iter-082

ated, allowing for rounds of reflection and refactor-083

ing to improve responses (Madaan et al., 2023; Ye084

et al., 2023). Yuan et al. (2024) applies a similar085

iterative strategy where self-critique takes the form086

of the generator itself acting as a judge of its own087

responses, using a rubric and its own judgment to088

assign a scalar reward to generations.089

Other approaches aim to develop models that090

robustly recognize and correct their own errors at a091

level beyond that offered by simple prompting by092

incorporating self-correction training into model093

training (Kumar et al., 2024).094

The most recent and emerging advances in in-095

trinsic self-evaluation focus on single-utterance096

techniques in which models continuously moni-097

tor, assess, and refine their generation trajectories098

(OpenAI, 2024; Qwen Team, 2024). Lambert et al.099

(2024), DeepSeek (2025), and Kimi Team (2025)100

have offered concrete insights into how simple re-101

inforcement learning (RL) against verifiable out-102

comes effectively elicits improved reasoning perfor-103

mance and qualitatively similar generation styles.104

In particular, DeepSeek’s R1-Zero highlights that105

self-evaluating behavior can be elicited directly106

from high-quality base models, and that this behav-107

ior can be distilled into models as small as 1.5B108

parameters (DeepSeek, 2025).109

Still, there exists criticism of self-correction110

experiments as commonly-performed in litera-111

ture: Huang et al. (2024) present perhaps the112

most direct challenge to the optimism surrounding113

self-correction capabilities, finding that language114

models, in a three-turn generate-critique-correct115

pipeline, not only struggle to reliably correct their116

own reasoning, but often perform worse after at- 117

tempting intrinsic self-correction in a setting in 118

which helpful information and criteria are not im- 119

parted into the critique prompt. 120

In contrast to either the extrinsic feedback ap- 121

proaches or multi-turn prompt-based intrinsic cor- 122

rection approaches, we examine models’ ability to 123

perform single-utterance intrinsic self-correction 124

of introduced perturbations. 125

3 Experiments 126

To better understand self-correction capabilities 127

in language models, we designed an experimental 128

framework to measure the elicitation of intrinsic 129

self-correction under synthetically perturbed rea- 130

soning trajectories. We evaluate a variety of mod- 131

els’ recovery performance in the context of popular 132

math reasoning datasets (See Appendix E.2). 133

For each model, our approach involves four 134

phases detailed in Figure B1 and Appendix C: First, 135

each evaluated model is prompted with a reasoning 136

problem and generates a 100-token solution "stub." 137

These stubs empirically contain enough progress 138

to enable effective perturbation, but not so much as 139

to leave no headroom for recovery. 140

Next, a held-out model (LLaMA 3.1 405B) ap- 141

plies a reasoning perturbation to the solution stub. 142

Perturbations include changing decimal places (e.g. 143

from "1.5" to "15"), switching operators (e.g. from 144

× to ÷), altering a key phrase (e.g. from "60% of 145

$5" to "60% more than $5"), or a number of other 146

perturbations (shown in Figure C3) similar to those 147

used in Sun et al. (2024). 148

Then, the model under evaluation completes the 149

generation stemming from the perturbed reasoning 150

stub to finish the candidate solution. This stub gen- 151
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Figure 2: Perturbation recovery success rate in on-policy (orange) and off-policy (blue) reasoning stub scenarios
shown for GSM8K and MATH-500 as a percentage of the success rate of the direct, unperturbed scenario. A 100%
represents equivalent performance to the unperturbed scenario.

eration and completion are seen from the model’s152

perspective a single, uninterrupted utterance.153

Finally, a grader model (LLaMA 3.1 405B) with154

access to the ground-truth solution determines can-155

didate solution correctness.156

3.1 Models and Datasets157

We evaluate seven modern language models of var-158

ious size and origin, aiming to cover a range of159

sizes across diverse model families. Models in-160

clude Command R7B (Cohere, 2024), Nemo 12B161

(AI, 2024), Gemma 2 27B (Team, 2024), QwQ162

32B Preview (Qwen Team, 2024), LLaMA 3.3 70B163

(et al., 2024), Qwen 2.5 72B (Team et al., 2024),164

and R1 (DeepSeek, 2025). QwQ and R1 are ad-165

vertised as "reasoning" models. For perturbation166

generation and solution verification, we employ167

LLaMA 3.1 405B. See Table A2 for more informa-168

tion on inference providers and model precision.169

These models are evaluated on three popular170

math reasoning datasets: GSM8K (Cobbe et al.,171

2021), GSM-Symbolic (Mirzadeh et al., 2024),172

and MATH-500, a subset of the popular compe-173

tition math dataset (Hendrycks et al., 2021) as em-174

ployed in Lightman et al. (2023). We additionally175

re-evaluated on the subset of the GSM8K dataset176

from which our GSM-Symbolic template-swapped177

sample was derived, which we refer to as "GSM8K178

Matched" (See Appendix E.2).179

3.2 Evaluation Scenarios180

We evaluated models across three scenarios:181

Direct Solutions: We evaluate each model’s nat- 182

ural, unperturbed "pass@1" rate, giving a single 183

opportunity to correctly solve each problem as de- 184

termined by a grader language model with access 185

to the ground-truth solution. 186

Perturbed On-Policy Reasoning Stub: We per- 187

form the four-phase workflow described in Sec- 188

tion 3 using our evaluated model to generate a rea- 189

soning stub which is then perturbed and completed. 190

Perturbed Off-Policy Reasoning Stub: We per- 191

form a similar set of experiments using a held- 192

out language model to produce common reasoning 193

stubs in the same four-phase workflow described 194

in Section 3. This controlled set of perturbed stubs 195

are individually completed by all evaluated models 196

for an apples-to-apples comparison. 197

Model correction performance is evaluated using 198

a simple accuracy metric, with the success rate 199

S computed as Sa = c
N , where c is the number 200

of correct solutions as determined by our grader 201

language model and N is the number of problems 202

in the dataset. Models are accessed via OpenRouter 203

or Cohere APIs in their original precision. Solution 204

generation uses Top-P sampling (Holtzman et al., 205

2020) with P=0.8 and T=0.2, while perturbation 206

and verification use greedy decoding. 207

3.3 Results 208

Our results demonstrate that self-correction ca- 209

pabilities are found across all evaluated models 210

in the context of synthetic reasoning perturba- 211

tions, even those not explicitly advertised as hav- 212
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Model GSM8K GSM-Symbolic GSM8K Matched MATH-500
Direct Off On Direct Off On Direct Off On Direct Off On

Command R7B 88.0 8.8 10.8 85.0 8.0 12.0 94.0 7.0 9.0 59.0 20.6 18.0
Nemo 12B 87.7 9.2 9.3 87.0 10.0 6.0 89.0 8.0 7.0 45.4 11.4 14.4
Gemma 2 27B 90.8 16.3 12.1 94.0 22.0 11.0 90.0 14.0 11.0 57.8 28.0 25.4
QwQ 32B Preview 95.2 24.0 66.4 95.0 30.0 70.0 94.0 24.0 66.0 85.5 50.8 61.6
LLaMA 3.3 70B 96.4 46.4 43.1 94.0 54.0 41.0 96.0 48.0 40.0 75.0 51.8 52.2
Qwen 2.5 72B 95.1 39.0 41.8 93.0 45.0 46.0 95.0 43.0 39.0 85.1 53.8 54.0
R1 (671B) 96.4 87.0 89.3 98.4 76.8 80.0 95.0 88.0 90.0 91.9 90.0 90.0

Table 1: Completion recovery success rate shown across datasets. Direct, On, and Off refer to our Direction Solution,
perturbed on-policy reasoning stub, and perturbed off-policy reasoning stub scenarios, respectively. Models range in
size from 7B to 671B and are ordered by parameter count, ascending.

ing been trained in single-utterance self-correction.213

Table 1 shows accuracy performance across all214

datasets, scenarios, and models. Several key find-215

ings emerged from our experiment:216

First, all models other than R1 experience mean-217

ingful performance degradations when errors are218

synthetically introduced into their reasoning pro-219

cess. We observe an average absolute drop in suc-220

cess rates (excluding R1) of 61.6% in the on-policy221

scenario, with the smallest models suffering the222

largest relative performance drops.223

We observe that smaller models (< 30B) expe-224

rience a larger average drop of 78.1% in absolute225

success rates, while larger models (>30B) experi-226

ence a more modest drop of 41.7% (ignoring R1).227

Qwen 2.5 72B and LLaMA 3.3 70B show surpris-228

ingly robust self-correction capabilities relative to229

QwQ 32B Preview and R1’s impressive "reason-230

ing" model performances, approximately matching231

the recovery performance of QwQ on MATH-500.232

Recovery performance on GSM-Symbolic and233

MATH-500 is consistent with GSM8K results, sug-234

gesting that observed self-correction capabilities235

are not dataset-specific but rather indicative of gen-236

eral model ability. Interestingly, Figure 2 shows237

that higher relative recovery rates were observed in238

the more difficult MATH dataset than in GSM8K.239

QwQ exhibited degraded performance in the240

scenario involving completion of a perturbed off-241

policy reasoning stub. Examination of these com-242

pletions indicates that QwQ’s ability to initiate its243

characteristic self-evaluating style of generation is244

contingent on the style of the off-policy stub that it245

continues generation from. This drop in off-policy246

performance suggests that the reasoning capability247

induced by QwQ’s reinforcement learning finetun-248

ing may couple style with capability, with perfor-249

mance degrading when generating outside a famil-250

iar format distribution. In contrast, we observe R1251

to be much more capable of re-initiating effective 252

reasoning regardless of the reasoning stub’s origin. 253

Finally, we observe a diversity of styles of 254

self-correction behaviors on display from non- 255

"reasoning" models, ranging from implicit correc- 256

tion behavior to explicit, well-aligned corrections 257

as seen in Appendix D. Explicit self-correction 258

examples from non-"reasoning" models include 259

"Wait a minute, let me double-check that because 260

I think I might have made a mistake" and "How- 261

ever, the problem states that the discount is 30%, 262

not 50%. Let’s correct this and recalculate." We 263

observe common use of critical "pivot tokens" (e.g. 264

"Wait," "However," "Hold on") during generation 265

in a manner reminiscent of the meta-cognitive "aha 266

moment" highlighted in DeepSeek’s (2025) R1 267

technical report. 268

The meaningful presence of these behaviors in 269

our limited experiment suggests that strong models 270

inherently possess latent self-correction capabili- 271

ties, helping to explain why recent RL techniques 272

have been particularly effective in promoting and 273

amplifying these patterns. 274

3.4 Conclusion 275

Our work reveals that current language models may 276

exhibit intrinsic self-correction capabilities more 277

frequently than commonly believed, demonstrating 278

that models can, in a single utterance, detect and 279

recover from errors in their own reasoning chains 280

without explicit prompting or external verification. 281

However, important limitations remain, as mod- 282

els commonly fail to detect simple introduced er- 283

rors. Looking ahead, we believe that a better un- 284

derstanding of self-correction capabilities, more 285

investigation into the coupling of style and reason- 286

ing in recent models, and improved methods for 287

eliciting such behavior are crucial to developing 288

reliable and trustworthy systems. 289
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4 Limitations290

There are a variety of limitations of our current291

analysis that could be explored in future work.292

Off-Policy Perturbations: We use a language293

model to apply perturbations to the reasoning of294

a model under evaluation. These errors that are295

introduced are likely to be significantly off-policy296

with respect to the models under evaluation, poten-297

tially making the recovery task artificially simple.298

Our reliance on API-based inference results in an299

inability to observe token-level probabilities at crit-300

ical decision points in the reasoning process. If301

models were self-hosted, we could generate more302

realistic perturbations by selecting high-probability303

but incorrect continuations, creating a more natural304

experiment.305

Dataset Coverage: While we evaluated model306

recovery on multiple math datasets of varying dif-307

ficulty, our analysis could benefit from the inclu-308

sion of even more challenging math and reasoning309

benchmarks. An earlier incarnation of our exper-310

iment tested recovery on the NuminaMath-CoT311

(LI et al., 2024) and ZebraLogic (Lin et al., 2025)312

datasets through a different method of error intro-313

duction, but the results were inconclusive. Our314

current experimental setup could similarly be used315

to evaluate the robustness of model alignment by316

introducing misaligned perturbations to assistant re-317

sponses or to evaluate model instruction-following318

abilities by violating stated constraints.319

Perturbation Abstraction: Our perturbation320

methodology introduces errors that may be rela-321

tively easy for models to detect and correct. Rather322

than applying low-level perturbations like the cor-323

ruption of arithmetic operations, future work could324

consider higher-level perturbations that signifi-325

cantly effect the problem-solving trajectory of the326

model under evaluation. Such perturbations would327

be useful in evaluating a model’s ability to perform328

reasoning backtracking.329

Assistant Prefill: While we used a battery of330

heuristic prefill-completion tests to select Open-331

Router model/provider combinations that seem to332

support the assistant prefill feature, OpenRouter333

and downstream inference provider documentation334

and support for this uncommonly-used feature is335

lacking, and we cannot guarantee with certainty336

that the assistant-prefill feature functions as adver-337

tised for each model/provider combination.338

Model Availability: Several promising open-339

weight models including DeepSeek 2.5 and the340

recently-released Deepseek V3 could not be evalu- 341

ated due to the lack of inference provider support 342

for the assistant prefill feature required for models 343

to complete assistant turns prefixed by perturbed 344

reasoning stubs. Similarly, many frontier closed- 345

source models do not expose this feature. 346

Provider Reliability: We encountered reliabil- 347

ity issues with certain model-provider combina- 348

tions, particularly with QwQ 32B Preview and R1, 349

leading to a small number of absent responses for 350

cases in which 20 retries failed to yield 2XX re- 351

sponses. Although these data collection gaps are 352

relatively small and do not meaningfully effect the 353

results, they highlight the challenges of conducting 354

large-scale evaluations using third-party inference 355

providers. 356

Scale Effects: Our study does not systematically 357

explore how self-correction capability varies with 358

model scale within the same model family. While 359

we observe positive correlation between model 360

size and self-correction performance, a more con- 361

trolled study across model scales within model fam- 362

ilies would be needed to draw stronger conclusions 363

about whether explicit self-correction is emergent 364

with model scale. 365

Taxonomies: We have not developed a compre- 366

hensive taxonomy of either perturbation types or 367

observed correction strategies. Analysis powered 368

by a more detailed categorization of both the kinds 369

of errors introduced and the methods models use 370

to recover could provide insights to improve model 371

robustness. 372

5 Ethics Statements 373

Our research on self-correction capabilities in lan- 374

guage models touches on several important ethical 375

considerations. 376

Reliability and Trust: Understanding how lan- 377

guage models detect and correct their own errors 378

is crucial for developing more reliable AI systems, 379

and especially critical in high-stakes applications 380

where unchecked errors in reasoning could have 381

serious social consequences. 382

Dual Use Considerations: Our work aims to im- 383

prove our understanding of model self-correction 384

capabilities, but enhancements in self-correction 385

capabilities could improve LM-powered systems 386

designed with nefarious intentions. We acknowl- 387

edge the dual-use nature of AI systems and their 388

potential for misuse. 389
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Figure A1: Accuracy results across all models, datasets, and scenarios (Direct, On-Policy Stub, Off-Policy Stub)

Scenario Description
Direct Solution Evaluated models generate complete solutions without intermedi-

ate stubbing or perturbation. An unperturbed pass@1 reference
performance to which Off-Policy and On-Policy performance can
be compared.

Off-Policy Completion LLaMA 3.1 405B generates initial reasoning stub and its pertur-
bation; evaluated models complete generation stemming from a
common perturbed reasoning stub.

On-Policy Completion Evaluates models generate initial reasoning stub; LLaMA 3.1
405B generates a unique perturbed version of each reasoning stub,
and the evaluate model completes generation stemming from its
own perturbed reasoning stub.

Table A1: Evaluation scenarios for testing self-correction capabilities
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Model Precision Inference Provider
Command R7B ? Cohere
Nemo 12B BF16 DeepInfra
Gemma 2 27B BF16 DeepInfra
QwQ 32B Preview BF16 DeepInfra
LLaMA 3.3 70B BF16 Novita
Qwen 2.5 72B BF16 DeepInfra
R1 (671B) FP8 Together

Table A2: Provider and precision details of models evaluated in our experiments. Cohere R7B is not open-weight,
but likely provided by Cohere in its original precision.

B Experiment Diagram625

Figure B1: Diagram of experiment structure, showing the flow of data between language model calls
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C Prompts 626

Solve the following math or reasoning problem, clearly presenting your
reasoning and final answer.

Your input is as follows:
<problem>
{problem}
</problem>

Figure C1: Prompt used by models under evaluation for generation of initial reasoning stubs and stub completions.

You are given a math problem, its ground-truth solution, and a candidate
solution to that problem, and your goal is to verify that the candidate
solution is correct.

You will be given the following information:
- The problem
- The answer to the problem
- The candidate solution, which includes reasoning and a final answer

You will output a single word, "correct" or "incorrect", to indicate if the
candidate solution is a valid solution to the problem.

You should not mark a candidate solution as incorrect because of any error in
its reasoning. You should only care about whether the final answer
produced matches the answer.

Your input is as follows:
<problem>
{problem}
</problem>
<answer>
{answer}
</answer>
<candidate_solution>
{candidate_solution}
</candidate_solution>

Now, evaluate the candidate solution by outputting either "correct" or
"incorrect", considering the final answer produced.

Do not output any other text than "correct" or "incorrect". Do not output any
form of reasoning or explanation. Only output "correct" or "incorrect",
this is absolutely critical.

Figure C2: Prompt used for verification of candidate solutions via LLaMA 3.1 405B.
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You will be given a reasoning stub from a math word problem solution. Your
task is to perturb this stub by introducing a single mathematical or
reasoning error.

Your goal is to modify this stub in a way that will change the results of
future reasoning and lead to an incorrect answer if followed. Follow these
guidelines:

1. Make minimal changes to the stub. Do not add additional reasoning or try to
solve for the right answer.

2. Focus on changing numbers, operators, or key words/phrases that will affect
the result of the reasoning if it were played out.

3. Do not change the overall structure or length of the stub.
4. Do not apply any additional formatting (e.g. bolding, italicizing, etc.)

your perturbation.

Good perturbations may include:
- Changing a number (e.g., from 40 hours to 45 hours)
- Switching an operator (e.g., from multiplication to division, or addition to

subtraction)
- Altering a key phrase (e.g., from "60% of $5" to "60% more than $5")
- Reversing the order of operations (e.g., from "(2 + 3) * 4" to "2 + (3 * 4)")
- Changing units of measurement (e.g., from "meters" to "feet" without

converting)
- Swapping comparison operators (e.g., from "greater than (>)" to "less than

(<)")
- Modifying time relationships (e.g., from "per hour" to "per minute")
- Inverting fractions (e.g., from "3/4" to "4/3")
- Changing decimal places (e.g., from "1.5" to "15.0")

Bad perturbations include:
- Adding new steps or explanations
- Removing large portions of the stub
- Changing the reasoning stub entirely.

... (Continued in the next figure) ...

Figure C3: Prompt used for perturbation of reasoning by LLaMA 3.1 405B (Part 1/2).
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... (Continued from the previous figure) ...

Here are some examples of good perturbations, along with explanations of what
perturbation was applied:

<examples>

Original: "To solve this problem, let's break it down step by step.\n\n1.
**First, calculate the cost of the first glass and the second glass.**\n -
The first glass costs $5.\n - The second glass costs 60% of $5, which is
$5 * 0.60 = $3.\n\n2. **Determine the pattern for the cost of the
glasses.**\n - Every odd-numbered glass (1st, 3rd, 5th"

Perturbed: "To solve this problem, let's break it down step by step.\n\n1.
First, calculate the cost of the first glass and the second glass.\n - The
first glass costs $5.\n - The second glass costs 60% more than $5, which
is $5 1.60 = $8.\n\n2. Determine the pattern for the cost of the
glasses.\n - Every odd-numbered glass (1st, 3rd, 5th"

Explanation: The perturbation changed "60% of $5" to "60% more than $5" and
consequently updated the calculation from "$5 0.60 = $3" to "$5 1.60 =
$8". It will lead to incorrect subsequent calculations.

{{Additional 3 exemplars omitted for brevity}}

</examples>

Here is the reasoning stub that I want you to perturb:

<reasoning_stub>
{stub}
</reasoning_stub>

Apply a single perturbation to the reasoning stub.

First, briefly reason about the specific perturbation you will apply.
Then, provide your perturbed version of the reasoning stub as

<perturbed_stub>[answer]</perturbed_stub>, where [answer] is your
perturbed version of the reasoning stub. Make sure to close your perturbed
tags with </perturbed_stub>.

Ensure that your perturbation is impactful and that it maintains the original
structure and length of the stub as closely as possible.

Figure C4: Prompt used for perturbation of reasoning stubs by LLaMA 3.1 405B (Part 2/2).
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D Example GSM8K Corrections627

Figure D1: Gemma 27B Implicit Self-Correction

Figure D2: Nemo 12B Implicit Self-Correction
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Figure D3: Command R7B Implicit Self-Correction
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Figure D4: LLaMA 3.3 70B Explicit Self-Correction
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Figure D5: LLaMA 3.3 70B Explicit Self-Correction
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Figure D6: Qwen 2.5 72B Explicit Self-Correction
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Figure D7: Qwen 2.5 72B Explicit Self-Correction

19



Figure D8: Qwen 2.5 72B Explicit Self-Correction
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Figure D9: QwQ 32B Preview Explicit Self-Correction
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Figure D10: QwQ 32B Preview Explicit Self-Correction
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Figure D11: QwQ 32B Preview Explicit Self-Correction of Perturbed Off-Policy Reasoning Stub
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Figure D12: R1 Explicit Self-Correction of Perturbed On-Policy Reasoning Stub
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Figure D13: R1 Explicit Self-Correction of Perturbed On-Policy Reasoning Stub
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Figure D14: QwQ 32B Preview Failure to Self-Correct Perturbed Off-Policy Reasoning Stub
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Figure D15: LLAMA 3.3 70B exhibiting multiple corrections before reaching an incorrect solution
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E Supplementary Content628

E.1 Extrinsic Feedback Approaches629

A significant line of work has focused on augmenting language models with external verification compo-630

nents.631

Tool augmentation approaches enhance language model capabilities by providing access to external632

tools that can verify outputs or assist in error-prone computation. These approaches can provide reliable633

verification in specific domains, but are somewhat limited to tasks where appropriate tools exist (Gou634

et al., 2024; Qiao et al., 2024).635

Other approaches use a separate model trained specifically to detect errors or verify the output of a636

primary language model. These learned verifiers and critics are often instantiated from trained language637

models and further trained using human feedback to develop more specialized capabilities (Wang et al.,638

2023; Ke et al., 2024; Li et al., 2024; Cui et al., 2024; Welleck et al., 2023). Unlike tool-based approaches,639

learned verifiers and critics can potentially operate across a broader range of domains, though their640

effectiveness depends on the quality and coverage of their training data. Still other techniques use external641

reward models that offer scalar rewards to generations rather than textual critiques. These scalar rewards642

are combined with search-inspired decoding strategies at test time to generate higher-quality trajectories643

(Uesato et al., 2022).644

In contrast, multi-agent debate frameworks leverage multiple instances of language models trained645

and/or prompted to critique and refine eachothers’ outputs through structured dialogue. Models take on646

specialized roles in the debate, such as proposer, critic, and judge, working together to identify and correct647

errors through iterative refinement (Du et al., 2023; Liang et al., 2024).648

E.2 Dataset Descriptions649

GSM8K: Cobbe et al. (2021) developed a high-quality dataset of human-authored grade school-level650

math word problems centered around real-world scenarios. Problems are designed to require 2-8 steps of651

basic arithmetic operations to solve. We evaluate model performance against the 1,319-problem test split.652

GSM-Symbolic: Mirzadeh et al. (2024) introduced a programmatically-generated benchmark derived653

from the GSM8K dataset, employing symbolic templates that enable the generation of diverse variants of654

familiar grade-school math problems while preserving their underlying reasoning structure and correctness.655

We use a 100-problem subset derived from 100 unique GSM8K problems.656

MATH: Hendrycks et al. (2021) contributed a math reasoning benchmark drawn from high school657

math competitions covering a range of problem difficulties across seven diverse subject areas. For cost658

and expediency, we evaluate models on the 500-problem MATH-500 subset of the test split as seen in659

Lightman et al. (2023).660

GSM8K Matched: To better understand how recovery performance of models is affected by the661

template-based substitutions of the 100-record sample of GSM-Symbolic used in our experiments,662

we included results for the GSM8K Matched dataset, which is simply GSM8K filtered to the same663

100 problems that were used to derive our specific GSM-Symbolic sample. Comparing the recovery664

performance between GSM8K Matched and GSM-Symbolic is a way to assess whether dataset familiarity665

played a significant role in the self-correction behavior of models under evaluation.666
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