Evaluating Judges as Evaluators: The JETTS Benchmark of
LLM-as-Judges as Test-Time Scaling Evaluators

Yilun Zhou ™' Austin Xu"' Peifeng Wang' Caiming Xiong' Shafiq Joty '

https://github.com/SalesforceAIResearch/jetts-benchmark

Abstract

Scaling test-time computation, or affording a gen-
erator large language model (LLM) extra compute
during inference, typically employs the help of ex-
ternal non-generative evaluators (i.e., reward mod-
els). Concurrently, LLM-judges, models trained
to generate evaluations and critiques (explana-
tions) in natural language, are becoming increas-
ingly popular in automatic evaluation. Despite
judge empirical successes, their effectiveness as
evaluators in test-time scaling settings is largely
unknown. In this paper, we introduce the Judge
Evaluation for Test-Time Scaling (JETTS) bench-
mark, which evaluates judge performance in three
domains (math reasoning, code generation, and
instruction following) under three task settings:
response reranking, step-level beam search, and
critique-based response refinement. We evaluate
10 different judge models (7B-70B parameters)
for 8 different base generator models (6.7B-72B
parameters). Our benchmark shows that while
judges are competitive with outcome reward mod-
els in reranking, they are consistently worse than
process reward models in beam search procedures.
Furthermore, though unique to LLM-judges, their
natural language critiques are currently ineffective
in guiding the generator towards better responses.

1 Introduction

For the last several years, the rapid increase in various capa-
bilities of large language models (LLMs) is mostly attributed
to scaling — the corresponding increase in model and train-
ing data sizes (Kaplan et al., 2020; Hoffmann et al., 2022).
Nonetheless, this effort has gradually saturated due to lack

“Equal contribution 'Salesforce Al Research. Correspon-
dence to: Yilun Zhou <yilun.zhou@salesforce.com>, Austin Xu
<austin.xu@salesforce.com>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Step-Level
Beam Search

Response
Reranking

= NI . .ﬁ_&_\
i * H . ¢ * !
NST NI ST SR SRR 4 S e 7: =ty
Critique-Based ! * * B @b LLM-judge
Refinement 3]
& D e e e N d Input query
L e AL NN
1 \ 1 \ Partial response
| i 1k * !
1 H S e B
A A [P Fullresponse
| I" I" I" I" ! ¢‘A ———————— 1—
i)
i E 1 * * i ——> Model generation
[S 4 1 I i i
e B BB 7 A 1 +425 ofinoment generation
! i @ \ a .
! H ' i ' '\ Judge reranking and

'/ top-K selection

Judge ‘ Reranking t Beam Search T Refinement 1

Prometheus-2 7B -0.107 -0.100 0.976
SFR-Judge 8B 0.035 0.001 0.941
Skywork-Critic 8B 0.039 0.046 -
OffsetBias 8B -0.020 0.015 -
Themis 8B -0.149 -0.021 0.996
SFR-Judge 12B 0.013 0.047 0.943
Prometheus-2 8x7B -0.079 -0.083 0.966
SFR-Judge 70B 0.171 0.138 0.951
Skywork-Critic 70B 0.177 0.132 -
Self-Taught Eval. 70B 0.095 0.072 -
Best RM 0.113 - -

Best PRM - 0.195 -

Random -0.193 -0.139 -

Baseline Value 0.000 0.000 1.000

Figure 1: Top: a graphical description of the three test-time com-
pute tasks in JETTS used to evaluate LLM-judges. Bottom: the
leaderboard of judges on the three benchmark tasks, along with

outcome/process reward models and random choice. “-” means

that the model cannot be used for the task. Achieving a value less
than the baseline (grayed out) means that the judge is worse than
some less compute-intensive approach (e.g., greedy decoding, see
Sec. 3.5 for details).

of additional data and prohibitive cost of model training and
serving. Recently, test-time scaling is being considered as
an alternative solution, in which more compute is dedicated
at the test time in the hope that better model responses are
generated (Snell et al., 2024; Jaech et al., 2024).

A common component in test-time compute is the evaluator
model, which gives a quality signal to various generated
responses. Scalar reward models (RMs) are predominantly
used to rerank either complete responses in best-of-N se-
lection or partial responses in step-wise generation (e.g.,
beam search). By contrast, generative LLM judges are often
favored in model evaluation, e.g., AlpacaEval (Dubois et al.,

https://github.com/SalesforceAIResearch/jetts-benchmark

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

2024b) and MT-Bench (Zheng et al., 2023), since they can
adapt to custom evaluation criteria and can (often) produce
natural language critiques (or explanations) of the response.

Despite LLM-judges achieving competitive performance on
reward model benchmarks (e.g., RewardBench (Lambert
etal., 2024)) and PPE (Frick et al., 2024)), they are less com-
monly used in test-time scaling scenarios compared to scalar
RMs (Jietal., 2025; Ke et al., 2025). This gap is perhaps sur-
prising given the potential benefits of LLM-judges. Namely,
judge models are often trained to engage in chain-of-thought
reasoning before giving a judgment, which could not only
benefit for reasoning-intensive domains such as math and
code, but also serve as effective critiques for the model to re-
fine its generation, such as in Reflexion (Shinn et al., 2024)
or SCORE (Zhang et al., 2024b). Furthermore, LLM-judges
could seamlessly integrate tool use. Last, LLM-judges are
inherently “instructable”, capable of giving different types
of judgment like binary yes/no answers, numerical scores,
fine-grained feedback, etc., simply with different prompts.

In this paper, we propose the first systematic benchmark
of LLM-judges for model’s test-time scaling. This bench-
mark consists of three tasks (Fig. 1): (1) response reranking,
where the judge picks the best response out of several ones,
(2) step-level beam search, where the judge guides the model
to generate the response step-by-step, and (3) critique-based
refinement, where the judge offers natural language critique
to the response for the model to refine. We evaluate 10
different judge models, ranging in size from 7B to 70B pa-
rameters on these three test-time scaling tasks. We cover
3 different domains (math reasoning, code generation, and
instruction following) and generate responses from up to 8
unique LLMs, ranging in size from 6.7B to 72B parameters.

The JETTS setup enables us to analyze the effects of judge-
guided test-time scaling: Can a “weak” (e.g., 8B) judge
actually help a “strong” (e.g., 72B) generator? How benefi-
cial are strong judges to weak generators? In what domains
are the current crop of judge models best suited for test-time
scaling? How useful are judge critiques in practice? We
find that weak judges can help strong generators in easier
tasks, such as instruction following, but not in reasoning-
intensive tasks like coding or math. Larger judges bring
the most benefit for math and instruction following tasks,
but no evaluated judges are able to reliably improve genera-
tor performance for coding. Lastly, while natural language
critiques are touted as a defining advantage of judges over
RMs, we find that such critiques have significant room for
improvement in terms of utility. We present these results
with many additional analyses in Sec. 4.

Comparison with RewardBench. In Fig. 2, we present a
preview of our results by comparing performance on JETTS
Best-of-N Reranking and Beam Search tasks against Re-
wardBench (Lambert et al., 2024), a popular RM and judge

0.20 4

0.154 Prometheus-2 78

SFR-Judge 8B o
Skywork-Critic 8B »
OffsetBias 8B

SFR-Judge 12B =
0.00 1+ Prometheus-2 8x7B
SFR-Judge 70B *
—0.05 1 Skywork-Critic 70B
Self-Taught Eval. 70B
JETTS Reranking
—-0.151 JETTS Beam Search

0.10 1

0.05

JETTS performance
(Normalized Helpfulness)

—0.10

—0.20

50 60 70 80 90 100
RewardBench performance
(Pairwise Accuracy)

Figure 2: Judge performance on RewardBench vs. JETTS, where
marker size signifies judge model size (7B-70B). Small judges
perform comparably to large judges on RewardBench, but lag
large judges on JETTS, which simulates test-time scaling settings.

model benchmark. While judge performance between the
two benchmarks is generally correlated, JETTS reveals a
difference in the “fundamental judging ability” between
judges of different scales. For example, if deciding between
Skywork-Critic-8B and 70B, the practical choice based on
RewardBench is to use the 8B model, trading off 4% in ac-
curacy for an order of magnitude fewer parameters. JETTS,
which simulates test-time scaling scenarios, reveals that this
choice is suboptimal for reranking: The 8B judge yields
substantively lower improvements over the greedy response
than the 70B judge. The benchmark construction approach
likely contributes to the difficulty gap: RewardBench forms
pairs of responses from different generators, meaning judges
can arrive at the right outcome via stylistic factors, like for-
matting (Tan et al., 2024). JETTS, however, requires judges
to compare responses sampled from the same generator,
limiting stylistic factors that lead to correct outcomes.

2 Background and Related Work

The concept of using more computation at test time to in-
crease model performance is not new. Chain-of-thought
(CoT) reasoning (Nye et al., 2021; Kojima et al., 2022; Wei
et al., 2022) can be considered as one of the earliest such
techniques, where the model is encouraged to generate a
reasoning chain before producing the final response. When
the query asks for a “single-target” response (e.g., number,
True/False, or name), self-consistency (Wang et al., 2022)
samples multiple CoT chains and returns the majority vote
answer. Orthogonally, tree-of-thoughts (Yao et al., 2024)
and graph-of-thoughts (Besta et al., 2024) break down the
chain into individual steps to search over.

While some studies (Madaan et al., 2024; Saunders et al.,
2022) find that a model could improve or correct its own
response, others highlight various issues and limitations in
these approaches based on the fundamental paradox that if
a model knows where it gets wrong, why it does not simply
output the correct response in the beginning (Huang et al.,
2023; Stechly et al., 2023; Valmeekam et al., 2023; Shridhar
et al., 2024). Thus, a new trend in test-time compute is the

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

use of an evaluator to help with model response, commonly
known as the reward model (RM) (Liu et al., 2025; Cobbe
et al., 2021; Ouyang et al., 2022). Beyond RMs that operate
on complete responses, known as outcome RMs (ORMs),
for reasoning tasks it is also possible to train process RMs
(PRMs) to provide step-level rewards (Wang et al., 2023a;
Lightman et al., 2023; Zhang et al., 2025b; Luo et al., 2024;
Dai et al., 2024).

Mostly parallel to this effort is the development of LLM-
as-judges (Zheng et al., 2023), i.e., specializing LLMs
into judges of model responses. While vanilla models are
originally used (e.g., GPT-4 in AlpacaEval (Dubois et al.,
2024b)), finetuned models are often found to deliver supe-
rior performance and be less susceptible to bias (Park et al.,
2024). To further leverage the reasoning abilities of LLMs
and improve explainability, recent judges are finetuned to
generate reasoning or critiques for the response, often be-
fore the final judgment. Since then, a long line of work
has been proposed in developing specialized LLM-judge
models, focusing both on data curation (Wang et al., 2024b;
Kim et al., 2023; 2024; Wang et al., 2023b; Li et al., 2023;
Vu et al., 2024) and training methodologies (Wang et al.,
2024a; Hu et al., 2024; Ye et al., 2024; Saad-Falcon et al.,
2024; Deshpande et al., 2024; Wang et al., 2024b).

As RMs and LLM-judges are both evaluators in nature, they
can often be directly compared, most notably on the Reward-
Bench leaderboard (Lambert et al., 2024), showing close
performance among the best RMs and LLM-judges. Due to
saturating performance on RewardBench, with top models
achieving over 95% accuracy, new benchmarks have been
proposed to evaluate the efficacy of evaluators (Feuer et al.,
2024; Liu et al., 2024b). Notably, ProcessBench (Zheng
et al., 2024) was proposed to evaluate how process reward
models (PRMs) perform in identifying step-level mistakes
in math reasoning. PPE (Frick et al., 2024) and RMB (Zhou
et al., 2024) both evaluate RM and LLM-judge efficacy in
pairwise preference and Best-of-N settings for alignment,
focusing on chat quality and safety. JudgeBench (Tan et al.,
2024) identifies shortcomings with RewardBench’s reason-
ing samples, and proposes a more difficult pairwise evalua-
tion set for reasoning tasks. Complementing outcome-based
judge benchmarks, Lan et al. (2024); Lin et al. (2024) eval-
uate the quality of critiques for single-round refinement.

JETTS, unlike recent judge benchmarks, does not assess
judges using fixed pairwise test sets. Instead, it simulates
three distinct test-time scaling scenarios (reranking, beam
search, and multi-round refinement) and evaluates the qual-
ity of LLM judges by measuring the improvement they bring
to the generator model. Snell et al. (2024) orthogonally in-
vestigate the efficacy of different test-time-compute scaling
approaches (Best-of-N reranking and step-by-step beam
search) with a fixed RM. Similarly, Zhang et al. (2024a) in-

Task Dataset Size Evaluation metric
Math GSM8k 1319 Accuracy via Math-Verify
Reasgnin MATH (Lvl5) 1324 Accuracy via Math-Verify
S CHAMP 270 Accuracy via GPT-4o0 grading
Cod HumanEval+ 164 Pass @ 1
Genoration MBPP+ 378 Pass @ 1
BigCodeBench 1140 Pass @ 1
Instruction AlpacaEval 805 Win rate vs. GPT-4 Turbo, with
F(;llowin GPT-4 Turbo as judge
€ IFEval 541 Prompt-level strict accuracy

Table 1: List of datasets and associated metrics in JETTS.

vestigates different types of verifiers for best-of-N reranking,
considering only one evaluation protocol (binary correct-
ness) for one prompted LLM-judge baseline per domain.

3 The JETTS Benchmark

In this section, we present our proposed benchmark: Judge
Evaluation for Test-Time Scaling (JETTS). As previewed in
Sec. 1, JETTS consists of three tasks: response reranking,
step-level beam search, and critique-based refinement.

3.1 Task and Dataset Selection

Judge evaluation has typically focused on judging instruc-
tion following as a proxy for chat quality (Zeng et al., 2023).
However, most recent efforts in test-time scaling have fo-
cused on math and code (e.g., Snell et al. (2024); Brown
et al. (2024)). To cover both typical judge and test-time
scaling domains, we consider three types of tasks: math
reasoning, code generation and instruction following; we
list the datasets in Tab. 1. In order to minimize the effect
of randomness, we pre-compute the model responses and
release them as part of the benchmark wherever possible.

For math, we use GSM8k (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021) and CHAMP (Mao et al., 2024).
For code, we use HumanEval+ (Liu et al., 2023a), MBPP+
(Liu et al., 2023a) and BigCodeBench (Zhuo et al., 2024).
HumanEval+ and MBPP+ are further refined versions of
HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
2021), respectively. For instruction following, we use Al-
pacaEval (Dubois et al., 2024b) and IFEval (Zhou et al.,
2023), with the former being LLM-evaluated and latter be-
ing algorithmically evaluated. App. A contains additional
details about evaluation protocols.

3.2 Task 1: Response Reranking

The most straightforward and used inference-time compute
technique is response reranking, where the generator model
samples multiple responses with stochastic decoding and the
judge reranks them to select the best one. In our benchmark,
recognizing that the greedy decoding often produces higher
quality responses, for each input query, we generate the
greedy response and 9 sampled responses with a temperature
of 1.0 and top-p with p = 0.95, for a total of 10 responses.

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

We ask LLM-judge to rerank and select the top response for
evaluation. Since no current judge supports one-shot direct
reranking of multiple responses, we consider two protocols:
pairwise round-robin and single-instance rating. In the for-
mer, for the N responses, we construct the N(N — 1)/2
response pairs, query the judge on each pair, assign the win-
ner a score of 1 and the loser a score of 0, and select the
response with the highest score (random tie-breaking if nec-
essary)!. In the latter, we ask the judge to generate a score
(an integer between 1 and 5), and the select the response
with the highest score. Since ties are much more common in
the single-instance rating setting, we keep all tied responses
and report min, average and max performance; e.g., if for a
test sample, a judge rates 3 of 10 responses as the highest
score, and those 3 responses have accuracy labels (1,0, 1),
then we use accuracy values (0, 2/3, 1) for this sample when
aggregating (min, average, max) performance.

Since the base performance is very different across datasets
and generators, we define and report the normalized help-
fulness for the judge as

h= Pjudge — Pgreedy ’ (1)
Poracle — Pgreedy

where pgrecdy 1S the average performance of the greedily
decoded responses across the dataset, poracle 1S the oracle
judge performance over all response selections (e.g., se-
lecting the correct response for a math problem whenever
there is one), and pj,qge s the average performance of top
responses reranked by the judge. A negative value indicates
strict harm as h = 0 can be trivially achieved by selecting
the greedy response. We also include random baseline (i.e.,
the expected helpfulness of a judge that randomly reranks
the responses) to compare each judge against an “average’
reranker. For GSM8k and MATH, we also compute the
performance of the majority-vote answer for each problem?.

s

3.3 Task 2: Step-Level Beam Search

Using an evaluator to control the flow of generation is in-
creasingly popular. For example, when generating the re-
sponse line-by-line to a coding problem, an evaluator could
decide that newly generated line is bad and hence asks the
generator to resample a new line. In this task, we generalize
this procedure to beam search. Since this procedure requires
the notion of steps in a response, we consider only math and
code tasks, and define each step as a line of response from
our observation that the generated math solutions often put
each step on its own line and the fact that each line of code
naturally represents a programmatic operation.

'To account for positional bias, we employ additional consis-
tency checks which may lead to ties; See App. B.1 for details.

“Majority-vote aggregation is not feasible for CHAMP since
GPT-40 directly grades natural language responses against the
ground truth without extracting the “final answer”.

In a (N, M)-beam search with beam width of M, the gener-
ator samples N first steps, which are reranked by the judge
to keep the top-N/M. Then, for each chosen step, the gen-
erator samples M next steps, for a total of IV responses to
rerank again. When a generation ends (due to the EOS token
or length limit), its current step is not expanded, resulting in
less than NV responses. This process repeats until all selected
steps are finished, at which time a final reranking selects
the top response. Similar to before, in each sampling, one
response is greedily decoded and the rest are sampled with
temperature of 1.0 and top-p of 0.95. We use (10, 2)-beam
search in the benchmark and limit the tree depth to 10.

Notably, the beam search requires LLM-judges to reason
about partial responses, a use case not specifically designed
for any of the current judge models. Nonetheless, since they
are often trained with flexible judging criteria, we append
the following to the existing ones in this task:

Important note: the model response is generated with streaming,
meaning that it may not be finished yet but we still want to get a
sense of the partial progress so far. If this is the case, you should
provide judgment and feedback on the currently generated part,
focusing on its correctness and promise of leading to a correct
final solution.

Finally, we consider a lookahead variant of beam search
similar to Snell et al. (2024), where instead of sending par-
tial responses to the judge, we complete them with greedy
decoding to finish and send these “lookahead” versions
(without adding the instruction above). To contextualize
judge performances, we again compute the greedy, random
and oracle performance and derive normalized helpfulness.

3.4 Task 3: Critique-Based Refinement

A unique feature of LLM-judges is their ability to gener-
ate natural language critiques, or explanations, for their
judgments. The critique-based refinement task evaluates
whether these critiques are helpful for the model to improve
their response. Specifically, we define a (IV, M)-refinement
as the setup where we start with N seed responses, and
each response is iteratively refined M times, for a total of
N (M + 1) responses, which is reranked at the end to se-
lected the top response. Compared to reranking and beam
search, in which the judge reweighs the output distribution,
in refinement the judge directly modifies it with its critique.

Since most judges are finetuned on fixed judging templates,
they may not be able to directly revise responses. We instead
provide the generator model the judge rating and critique,
and ask it to revise its response using the feedback with the
prompt shown in Fig. 18 of App. A.3. In our benchmark,
we consider (1,9)-refinement, which yields 10 responses in
total to make it directly comparable to the reranking task.

While reranking and beam search have oracle performance
as a natural upper-bound to define normalized helpfulness,

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

refinement has no such oracle. Therefore, we use improve-
ment ratio over reranking and greedy responses as measure
of judge efficacy, defined as

5(RR) (Rci / (RR)

(G) _ (Ref)
Judge pjudge7 0

- pjudge /ngGEd}” (2)
where, for (N, M)-refinement, pj(u q gi is the average per-
formance of the refined-and-reranked response across the
dataset, and p(u d i is that of the reranked response among
N(M+1) sampled ones (including one greedy) and pgreedy
is that of the greedy response. In our (1, 9)-refinement setup,
the latter two quantities are directly taken from the results

in Task 1 of reranking on 10 responses.

In order for refinement to be a meaningful test-time scaling
procedure, we need it to outperform both reranking and
greedy. So we define the effective improvement ratio as

6T — min (50, 5} 3)

3.5 The JETTS Leaderboard

Finally, we compute a leaderboard (Fig. 1) for three tasks.
We use normalized helpfulness h (Eq. 1) to measure judge
performance on reranking and refinement, and effective im-
provement ratio 6*%) (Eq. 3) on refinement. Each judge’s
score is computed by averaging the task-specific metric over
all datasets and generators. If a judge supports multiple
protocols (e.g., both single rating and pairwise comparisons
in reranking), we report the maximum aggregate perfor-
mance among all protocols. For convenience, we include
per-dataset and per-generator metrics for each of the three
tasks for all evaluated judges in App. C.

Practitioner note. Beam search evaluation requires signifi-
cantly more compute than reranking evaluation. While Task
3 reveals interesting findings, e.g., judges generalize to some
degree to assessing partial responses, we find reranking and
beam search performance to be correlated; see Fig. 2 and
analysis in Sec. 4.3. Our recommendation for practitioners
is to use reranking performance as a proxy for beam search
performance when evaluating future judge models, unless
working specifically on process-based judging.

4 Experimental Results

4.1 Experiment Setup

As introduced in Sec. 3.1, JETTS consists of eight datasets
from three task categories: math reasoning, code genera-
tion and instruction following. Models listed in Tab. 2 (top)
generate the responses. We use Llama 3.1 (Dubey et al.,
2024) and Qwen 2.5 (Yang et al., 2024) models in all tasks.
For math and code tasks, we also consider four domain-
specific models and intentionally choose newer models,

#Params

Qwen-2.5-Instruct 32, 72B
Qwen-2.5-Math 7B
Qwen-2.5-Coder 7B

Generator Model # Params ‘ Generator Model

Llama-3.1-Instruct 8, 70B
Deepseek-Math-Instruct 7B
Deepseek-Coder-Instruct 6.7B

Supported Capability

Params Pairwise Single Critique

Judge Model Abbr.

SFR-Judge
Skywork-Critic
OffsetBias
Prometheus
Self-Taught-Eval.
Themis

(Wang et al., 2024a) SFR 8,12,70B
(Shiwen et al., 2024) SC 8, 70B
(Park et al., 2024) OB 8B

(Kim et al., 2024) Prom 7, 8x7B
(Wang et al., 2024b) STE ~ 70B

(Hu et al., 2024) Thm 8B

MR ENEN
WX WX X |
IRV EVEVEN

Table 2: Top: the generator models to produce the model responses.
The models on the first row are used in all tasks, and those on
the second and third rows are used only in math and code tasks
respectively. Bottom: The judge models used in our experiments.

Qwen math (Yang et al., 2024) and coder (Yang et al., 2024),
and older models, DeepSeek math (Shao et al., 2024) and
coder (Guo et al., 2024), to analyze how judge-based test
time scaling improves models of different strengths.

Tab. 2 (bottom) lists the LLM-judge models that we bench-
mark. We additionally include several baseline models:

* the vanilla Llama-3.1-8B-Instruct model with SFR-Judge
prompts for response reranking;

* three ORMs for response reranking: Llama-3-OffsetBias-
RM-8B (OBgrwm), Skywork-Reward-Llama-3.1-8B-v0.2
and Skywork-Reward-Gemma-2-27B-v0.2 (Sgm); and

e PRM Qwen2.5-Math-PRM-7B (Qpgrm) for beam search.
App. A.2 includes more details on judges and RMs.

For all results presented below, unless otherwise noted, we
perform statistical analyses of reported quantity differing
from the baseline value (0 for reranking and beam-search,
and 1 for refinement) using a two-sided one-sample ¢-test
and indicate the significance as “x” for p < 0.05, “x*” for
p < 0.01, “x %« for p < 0.001, and “n.s.” or no marker for
not significant (p > 0.05).

4.2 Response Reranking

As discussed in Sec. 3.2, since no judge supports direct
reranking of N responses, we use either pairwise round-
robin comparison or single-instance rating and evaluate each
judge on the protocol(s) it supports. Furthermore, we experi-
ment with to judging prompts for single rating: Likert scale,
where judges are not given fine-grained criteria and simply
asked to rate on a 1-5 scale, and additive criteria (Yuan et al.,
2024), which instructs the model incrementally increase
score based based on given criteria, with a maximum score
of 5. The full results are presented in Tab. 3-5 in App. B.1.
Below, we highlight notable findings.

Reranking helpfulness varies across protocols and
datasets. Fig. 3 plots normalized helpfulness per dataset
averaged across judges and generators, along with the re-
spective random performance. There are two notable trends.

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

0.4

0.2 1

e Lol

Normalized Helpfulness
o
o

0.4 Pairwise Bl Single Likert I Single Additive mmm Random
T T
Q;# /\Q‘ X Ng % & & @&
N ¥ S & &
& D P
& & g
\)6\ <& ®
Ry ¥

Figure 3: Normalized helpfulness of judge reranking per dataset.
Asterisks on the bars denote statistical significance described at
the end of Sec. 4.1.

0.3

0.1 -
O,O]lllu_.l o "i _.I I'

=0.1++
—0.2 4

Normalized Helpfulness

-0.3 -
—0.4 - -~ - Math Reasoning
T T T

Code Generation B Instruction Following

Prom 7B
SFR 8B -
sC 8B
OB 8B
SFR 12B
Prom 8x7B -
SFR 70B -
SC70B
STE 708B -
Llama 8B
Best RM
Random 4

Figure 4: Normalized helpfulness of the pairwise protocol across
task categories of each judge, compared to Llama-3.1 8B with
judge prompt, best reward model and random reranking, averaged
across generator models and datasets. A violin plot depicting finer-
grained distributions is in Fig. 21 of App. B.1.

First, the pairwise protocol typically performs better than the
single-rating protocol with either Likert or additive rubric,
with the only exception of MBPP+, with all protocols worse
than the greedy baseline. This is consistent with past find-
ings, where both humans (Shah et al., 2016) and LLM-
judges (Liu et al., 2023b) are better at providing pairwise
comparison responses than single-rating responses. Given
this finding, for the next two benchmarking tasks, step-level
beam search and critique-based refinement, we use the pair-
wise protocol in reranking whenever possible. However, this
comes at a significant inference cost, as the judge inference
for pairwise reranking takes O(IN?) time for IV responses
to rerank, compared to O(N) for single-instance rating.

Second, there are also significant variations across datasets,
even within the same task category: pairwise protocols help
on GSM8k and MATH but not CHAMP, and all protocols
help on AlpacaEval (for both win rate and length-controlled
win, as we show in App. B.1) but none on IFEval. Overall,
judge helpfulness highly depends on the dataset, and fur-
ther fine-grained analyses to understand the strengths and
weaknesses of judgment would be valuable’.

Inter-task helpfulness variation is consistent across dif-

3Although different sets of judges are used to compute the
average for pairwise vs. single-instance protocols due to different
supported capabilities, Fig. 20 of App. B.1 shows that these trends
largely preserve within judges that support both capabilities.

1.0
"
a 054 s
[] s
g i i | HE 3
=3
2 oot T ol 2
z . y . JR
T 0579 *
N
©
£ —-1.04
£
S
=
-1.5
T T T
107! 10° 10t
Judge Size / Generator Size
—— Math coef: 0.16 (***) GSM8k MATH CHAMP
Code coef: 0.00 (n.s.) HumanEval+ MBPP+ BigCodeBench
—— IF coef: 0.06 (n.s.) AlpacaEval IFEval

Figure 5: Normalized helpfulness under the pairwise protocol for
different judge-to-generator size ratios, along with the best-fit lines
for each task in log scale.

ferent judges. Fig. 4 plots the normalized helpfulness of
each judge on each task category for the pairwise proto-
col, aggregating over respective datasets and all generator
models. With few exceptions, all judges, including the
vanilla Llama-3.1-8B Instruct with judge prompt and the
reward models, demonstrate highest helpfulness for instruc-
tion following, less but mostly positive helpfulness for math
reasoning, and mostly negative helpfulness for code genera-
tion. For single-rating protocols, consistent with Fig. 3, the
helpfulness is much lower, but the relative ranking is still
generally the same, as shown in Fig. 22 of App. B.1.

The consistency of inter-task helpfulness among judges co-
incides with the instruction-following training (and prompt-
ing) emphasis of current LLM-judges (Park et al., 2024;
Tan et al., 2024). Despite training data including both
math and code samples (e.g., Vu et al. (2024); Shiwen et al.
(2024)), judge-specific finetuning seems to primarily boost
instruction-following evaluation abilities, sometimes at the
cost of other capabilities. This effect is shown in Fig. 4,
where the vanilla Llama 3.1 8B model, prompted as a judge,
exhibits a baseline level of competency as a judge, per-
forming roughly at the greedy response level. Comparably
sized 7B/8B judge models outperform it significantly on
instruction-following and moderately on math, but perfor-
mance degrades, sometimes significantly, on coding. More-
over, task-specific judge prompting does not appear to miti-
gate this task gap, as we show in Fig. 23 in App. B.1.

Larger judge-to-generator size ratio under the pairwise
protocol increases helpfulness for math and instruction
following, but not code. For each pair of judge and gen-
erator, Fig. 5 plots the ratio of the number of parameters
in the judge to that in the generator (on log-scale) vs. the
helpfulness achieved by the judge, color-coded by task cat-
egory. A linear regression is plotted for each task on the
log-scale size ratio. For math reasoning, a larger size ratio
statistically significantly increases helpfulness, indicating
the promise of larger judges for small generators, (which,
nonetheless, may not be practical). At the lower end of

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

size ratio around 0.1 (e.g., 8B judge for 70B generator),
normalized helpfulness is negative on average, indicating
the absence of “weak-to-strong” guidance ability for LLM-
judges. For instruction following, all size ratios achieve
positive helpfulness but the effect of ratio increase is less
notable. For code generation, the size ratio does not have an
effect on the helpfulness, which is negative at all size ratios.
For single-ratings protocol with Likert and additive rubrics
(Fig. 24 of App. B.1), the effect of the size ratio is mildly
positive only on math datasets, at 0.07 and 0.03 respectively,
and negative on both of the other two tasks.

No judge can reliably outperform majority-vote on math
datasets. The output format specification of GSM8k and
MATH allows us to easily extract the final answer from
the generated response, and compute the majority-vote (i.e.,
self-consistency (Wang et al., 2022)) performance. In Fig. 6,
we plot the difference in the normalized helpfulness between
each judge and this heuristic and mark all positive cells with
purple stars. On GSM&8k, only SFR 70B and SC 70B offer
substantive improvement over majority-vote, but only for
relatively weak generator models. For MATH, only SFR
70B is able to meaningfully beat majority-vote on small-
to-medium generators only. Thus, in theory, an LLM that
simply extracts the majority-vote answer could serve as a
very strong reranker for these datasets.

Judges are over-lenient under the single rating proto-
col, resulting in a large number of top-ranked responses.
Despite more time-efficient, single-rating evaluation pro-
tocol performance results in evaluation that is too lenient.
Judges often rate a significant fraction of the N responses
a top score (i.e., a 4 or 5), with the most lenient models
consistently rating all 10 responses equally high (Fig. 25 of
App. B.1). Multiple responses tied as the “best” response
leads to large ranges of possible reranking performance.
Fig. 7 shows the average performance, as well as the mini-

Llama 8B
Llama 70B

Qwen 32B

GSM8k

Qwen 72B

Qwen-M 7B

Dpsk-M 7B

0.50
Llama 8B *
Llama 70B 0.25
Qwen 32B
0.00
Qwen 72B
Qwen-M 7B -0.25

Dpsk-M 7B * *

MATH

-0.50
%‘Z’ ‘b‘b

‘b AP AN4
% & P LS S
q@ °§‘ LS ‘3‘ @

ol A &
é& Y é\‘o 0@ Q}Q;’ &

Figure 6: Normalized helpfulness difference between each judge
and majority-vote for each generator on GSM8k and MATH. Posi-
tive value cells are marked with purple stars.

Normalized Helpfulness

©p>005 0p=005 [ps00l A ps=0001

Prom 78 SFR 8B Thm 88 SFR 128 Prom 8x78 SFR 708

Figure 7: Normalized helpfulness ranges for single-rating proto-
cols, showing minimum and maximum performance achievable
from tied top-rated responses, along with average performance.

mum and maximum achievable performances from the tied
responses. If one were to employ random tie-breaking, per-
formance can swing from extremely poor to near oracle.

4.3 Step-Level Beam Search

As mentioned in Sec. 3.3, we focus on math and code tasks
since their solutions can naturally be decomposed down into
steps. We consider the (10, 2)-beam search, where the judge
needs to rerank 10 candidates at each step and select the
top-5, which get expanded to 10 next-step candidates. We
use the pairwise protocol for the all rerankings, except for
Themis 8B, a single instance rating judge, where we use the
additive prompt. The full results are presented in Tab. 9 of
App. B.2, and we highlight notable findings below.

The effects of judge-to-generator size ratio are similar
to that of reranking. Fig. 8 shows the judge helpfulness
vs. the ratio of the number of parameters in the judge to
that in the generator (on log-scale), along with a linear re-
gression for each task. The effects of judge-to-generator
are remarkably similar to that in reranking: for math rea-
soning, a larger size ratio results in statistically significant
helpfulness gains, with generally negative helpfulness for
smaller size ratios. Like reranking, small judges are unable
to provide “weak-to-strong” improvements for large gener-
ators, revealing the need for large judges for beam search.
This requirement may be impractical due to the significant
computational overhead required to judge outputs at each
“step”. For code, scaling judge size relative to the generator
produces no statistically significant gains: for all size ratios,
the helpfulness is negative.

LLM-judges lag significantly behind the small Qpgry.
Fig. 9 compares the normalized helpfulness of non-
lookahead vs. lookahead beam search for different judges,
along with reranking, random and Qpry performance. For
math reasoning, while some judges can achieve positive
helpfulness, they struggle to outperform reranking even
with much more judge inference. More notably, by far the
best result is achieved by the 7B parameter Qpry. For
code generation, only large judges achieve positive helpful-
ness, with only SC 70B providing statistically significant
improvement. Qpgry, although finetuned on math data, still
achieves decent helpfulness at much smaller scale. These
results suggest that even though some judges are finetuned

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

Normalized Helpfulness

107! 10° 10t

Judge Size / Generator Size
—— Math coef: 0.09 (*¥**) GSM8k MATH CHAMP
Code coef: 0.01 (n.s.) HumanEval+ MBPP+ BigCodeBench

Non-Lookahead O Lookahead

Figure 8: Normalized helpfulness of beam search under for differ-
ent judge-to-generator size ratios, along with the best-fit lines for
each task in log scale.

to work with flexible rubrics, process judgment is likely too
out-of-distribution for small judges to be effective.

The benefit of lookahead is inconclusive. In the lookahead
mode, rather than incomplete responses, judges evaluate
full, rolled out responses, more aligned with judge training
distributions. However, somewhat surprisingly, lookahead
is not universally beneficial. For math reasoning, Fig. 9
shows that it benefits seven judges and Qpgry, Sometimes
by two to three times, while slightly hurting the other three
judges. For code generation, lookahead benefits five judges
while hurting the other five and Qpgry, With much milder
effects. Overall, judges that perform well on reranking full
responses tend to benefit from lookahead, whereas weaker
ones tend to benefit from non-lookahead. This suggests that
splitting full responses into shorter chunks makes evaluation
easier for them, despite the out-of-distribution nature of
step-level evaluation.

There is a high correlation among non-lookahead, looka-
head and reranking performance. Fig. 10 plots the cor-
relation between each judge’s reranking performance and
beam search performance (left), and the correlation between
its lookahead and non-lookahead performance (right), with
each scatter point representing a pair of dataset and genera-
tor. We observe high correlation among the three quantities,
suggesting that they are all likely to be tied under the same
underlying “fundamental judging capability” of the judge.

- — - — - - | | -

|
o
°

|
s o
2%

§

mm Math Non-Lookahead Math Lookahead Reranking m=m Random

°
=

Code Non-Lookahead Code Lookahead Reranking ~ mm=m Random

Normalized Helpfulness
°

°
S
] |

|
°

!
s
=

Pom7B SFR8B SC8B 0B8B ThmB8B SFR12B Prom8x7B SFR70B SC70B STE70B Qemm 7B

Figure 9: Normalized helpfulness of beam search by each judge
and Qwen-2.5-Math-PRM 7B. The judge’s reranking performance
on the task category is plotted for comparison, as well as the
random beam search baseline.

0.4 Non-Lookahead 0.4
O Lookahead 08

0.2 %

4 2 v e
00 8 RN
- I i

—0.6 1 —0.6 1

0.2 1

0.0 1

-0.21

-0.4

Beam Search Norm. Helpfulness
&)
0
&
Lookahead Norm. Helpfulness

-06 -04 -02 0.0 0.2 0.4
Non-Lookahead Norm. Helpfulness

-15 -1.0 -0.5 0.0 0.5
Reranking Norm. Helpfulness

® GSM8k A MATH
HumanEval+ MBPP+

x CHAMP
BigCodeBench

Figure 10: Relationship of judge’s reranking vs. beam search
performance, and non-lookahead vs. lookahead performance.

4.4 Critique-Based Refinement

Since this setup requires the judge to generate a critique
on its judgment of an individual sample, we only evalu-
ate judges with both single-instance rating and critique-
generation capabilities in Tab. 2: SFR-Judge, Prometheus
and Themis. In addition, when reranking the final candidate
responses, as the reranking performance is much better with
pairwise round-robin than single-instance rating (Sec. 4.2),
we use the former whenver the judge supports it (i.e., for
SFR-Judge and Prometheus) and fall back to the latter oth-
erwise (i.e., for Themis). The full results are presented in
Tab. 10 of App. B.3, with notable findings discussed below.

No judge yields a beneficial performance on refinement
across task category. For individual judges, Fig. 11 plots
the average effective improvement ratio (&%) for each
judge, with no judge achieving a ratio better than 1.0. In-
struction following experiences the largest loss, with up to
10% performance degradation. Thus, we conclude that all
are incapable at this task.

We now focus our analysis on (1) quantifying the utility of
refinement relative to greedy decoding and reranking and
(2) precisely quantifying the behavior of the refine-then-

rerank process. To do so, we define the following metrics.
(Ref)

Towards the quantifying refinement utility, denote p,,

and pf}?;ﬁ? to be the performance of a randomly selected re-

sponse and the best performing response from all responses

produced in the refinement process across the dataset, and
(RR) (RR)

rand. and Porac. on responses in reranking.

analogously p

RR) Ref) RR) RR Ref RR
We define 61£and = Earfd / 1(rand > ¢ ac) = p(()r:c)/p(()rac),
G) Ref) G Ref)
51Sand = Ea:d /pgreedy’ 5ora)c = pt()r:c /pgreedy To gain

deeper insights into the refinement process, we examine the
performance using the last refined response without rerank-

o
£ 1.00 {— _—
i | o e LE
20967 = o —
g ok
5092 .
>
o *
] :

BN Math Reasoning

Effective

Code Generation

B Instruction Following

Prom 7B SFR 8B Thm 8B SFR 12B Prom 8x7B SFR 70B

Figure 11: Effective improvement ratio § (B for each judge and
task category.

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

1.00 4 — - - - — % - 788 .
74
0.95 L

vesrss
5 0.90
& 0.85 ———) 6 mmm 69w 69,

£
2 11 IR B
<4 . B = . s i | o P
g 101 m N - B |
£ o091 -
0] -
0.7 ol wm oY) wem 65, mem o
0.6 T T T T T = T
3 QL R x X & > >
& K 8 > Y & 2 N4
& & & < & & & «
[& « & 2
& S S
S & W
& &S

Figure 12: Various diagnostic metrics in refinement.

ing. We denote pl(f,ff) to be the performance of the last

response from the refinement process across the dataset and

RR Ref RR G Ref
define 6l(ast) = pl(ast)/pj(udg?a and 6l(asz = pl(ast)/pgreedy to

be analogous to 6(RR) and §(%) defined in Eq. 2. Fig. 26 in
App. B.3 illustrates these newly defined p metrics.

The refinement process improves upon either reranking
or greedy decoding, but never both. In Fig. 12 (top), we
see that 6 (BR) and §(%) are never meaningfully greater than
1.0 simultaneously on any dataset across all judges. As such,
refinement is typically a sub-optimal choice of test-time
scaling method, with greedy decoding or reranking leading
to better performance.

The benefit of final reranking is small. While Fig. 12 (top)
shows that § is consistently better than d),54, the difference is
small. Given the O(N?) complexity of pairwise reranking,
just using the last refinement may be practically favorable.

Generators and judges rarely engage in extensive refine-
ment processes. A notable trend from Fig. 12 (bottom) is

5r(Sn) 4. ~ 1 and dorac. < 1 for all datasets, suggesting that
the refined responses are very similar to the original greedy
seed and fail to discover much better solutions. It turns out,
in fact, that the refinement process is rarely extensive. In
Fig. 13, we plot the total number of generated refinements
(excluding the original greedy response) across the three
task categories. Among the four generator models, Llama
8B revised for significantly more rounds than other gen-
erators. This may suggest an intrinsic pliability to taking
feedback, and/or result from its initial greedy response being
much worse. Among judges, Prometheus 7B is much better

Math Reasoning

Code Generation Instruction Following

599 226 221 1.65

@&

¢ 1827 242 041 035
K

PS

527 0.12 0.04 0.03

/\‘\@

1572 130 053 028 274 121 1.08
9

S

3.14 147 0.83 0.70 413 207 170 1.27

5.60 2.07 1.08 0.92 417 205 111 1.24
1.74 0.03 0.05 0.01 256 039 031 032

393 159 085 0.88

<
@ o 1498 043 026 012 178 035 012 0.10 243 027 028 028
R
4
3
Q@é\ 2 543 066 0.18 0.17 429 0.52 053 0.54 3.05 0.58 0.42 0.20
,\0
& L QR R ® R .2 L L ® 53
‘7 @0% %«o (\,,”1/ (\/\'L @7’% b,\e (\,,;L (\«w @“’% 0«0 (:,;1/ (\,\w
& & C & &
RN OIS ¢ R S

Figure 13: The average number of refinement rounds carried out
by each (judge, generator) pair.

Math Reasoning de Generation

Co
g’ | ‘
04 4

Number of Refinements

Instruction Following

o

w

Prom 7B
SFR 8B
Thm 8B
SFR 12B
Prom 8x7B
SFR 70B
Prom 7B
SFR 8B
Thm 8B
SFR 12B
SFR 70B
Prom 7B
SFR 88
Thm 8B
SFR 12B
Prom 8x7B
SFR 70B

@
~
x
o
£
I
&

Cl

hosen Response Index

Figure 14: The distribution of number of refinement rounds con-
ducted by the Llama 3.1 8B generator, and the index of the chosen
response by the final reranking.

at giving actionable advice to encourage refinement behav-
ior, which unfortunately does not translate to meaningful
benefits in the final result (Fig. 11).

The final selected response is often generated early on.
For Llama 8B, Fig. 14 plots the distribution of number
of refinements (excluding the greedy seed response) and
distribution of the chosen response index (0 for greedy).
Llama 8B tends to either refine very minimally or use all
nine rounds. However, the response actually chosen by the
final reranking tends to be generated much earlier in the
process, with the seed response (index 0) still most likely to
be chosen, revealing limited utility of the critiques.

Critiques tend to over-focus on stylistic features than
response quality. We conduct a qualitative study on the
critiques in App. B.3. We inspect over 100 refinements and
find two major issues. First, the judge gives high scores
to responses with actual mistakes for stylistic reasons such
as it being easy to follow (Fig. 27), thus failing to lead
the generator to correct the error. Second, the judge is
overly critical about minor stylistic issues on fully correct
responses (Fig. 28) so that the generator engages in mean-
ingless refinements that may even flip correct answers.

5 Conclusion and Future Work

In this paper, we seek to understand the feasibility of us-
ing LLM-judges in place of typically used RMs in test-
time compute procedures. To this end, we propose JETTS,
the first such systematic benchmark with three tasks: re-
sponse reranking, step-level beam search and critique-based
refinement. Our benchmarking results reveal several lim-
itations and corresponding future research directions for
LLM-judges. First, the reranking task faces a performance-
efficiency dilemma: the pairwise protocol shows promise
in certain domains but runs in O(N?), while the O(N)
single-instance protocol performs much worse. Improv-
ing single-rating ability of judges is essential for compute-
efficient test-time scaling. Further, current chain-of-thought
reasoning generated by the judges is insufficient, both for
themselves to arrive at better judgments, especially in math
and code domains, and for generators as critiques to refine
responses. As such, a key next-step for judge development
is to produce better and more useful reasoning.

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Pod-
stawski, M., Gianinazzi, L., Gajda, J., Lehmann, T,
Niewiadomski, H., Nyczyk, P., et al. Graph of thoughts:
Solving elaborate problems with large language models.
In Proceedings of the AAAI Conference on Artificial In-
telligence, 2024.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V.,
Ré, C., and Mirhoseini, A. Large language monkeys:
Scaling inference compute with repeated sampling. arXiv
preprint arXiv:2407.21787, 2024.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Dai, N., Wu, Z., Zheng, R., Wei, Z., Shi, W, Jin, X., Liu,
G., Dun, C., Huang, L., and Yan, L. Process supervision-
guided policy optimization for code generation. arXiv
preprint arXiv:2410.17621, 2024.

Deshpande, D., Ravi, S. S., CH-Wang, S., Mielczarek, B.,
Kannappan, A., and Qian, R. Glider: Grading llm inter-
actions and decisions using explainable ranking. arXiv
preprint arXiv:2412.14140, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Dubois, Y., Galambosi, B., Liang, P., and Hashimoto, T. B.
Length-controlled alpacaeval: A simple way to debias
automatic evaluators. arXiv preprint arXiv:2404.04475,
2024a.

10

Dubois, Y., Li, C. X., Taori, R., Zhang, T., Gulrajani, 1., Ba,
J., Guestrin, C., Liang, P. S., and Hashimoto, T. B. Al-
pacafarm: A simulation framework for methods that learn
from human feedback. Advances in Neural Information
Processing Systems, 36, 2024b.

Feuer, B., Goldblum, M., Datta, T., Nambiar, S., Besaleli, R.,
Dooley, S., Cembalest, M., and Dickerson, J. P. Style out-
weighs substance: Failure modes of llm judges in align-
ment benchmarking. arXiv preprint arXiv:2409.15268,
2024.

Frick, E., Li, T., Chen, C., Chiang, W.-L., Angelopoulos,
A. N, Jiao, J., Zhu, B., Gonzalez, J. E., and Stoica, 1.
How to evaluate reward models for rlhf. arXiv preprint
arXiv:2410.14872, 2024.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K.
Zhang, W., Chen, G., Bi, X.,, Wu, Y., Li, Y, et al.
Deepseek-coder: When the large language model meets

programming—the rise of code intelligence. arXiv preprint
arXiv:2401.14196, 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Hu, X., Lin, L., Gao, M., Yin, X., and Wan, X.
Themis: A reference-free nlg evaluation language model
with flexibility and interpretability. arXiv preprint
arXiv:2406.18365, 2024.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu,
A. W, Song, X., and Zhou, D. Large language mod-
els cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Ji, Y., Li, J, Ye, H., Wu, K., Xu, J., Mo, L., and Zhang, M.
Test-time computing: from system-1 thinking to system-2
thinking. arXiv preprint arXiv:2501.02497, 2025.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

Ke, Z., Jiao, F., Ming, Y., Nguyen, X.-P., Xu, A., Long,
D. X,, Li, M., Qin, C., Wang, P., Savarese, S., et al. A
survey of frontiers in Ilm reasoning: Inference scaling,
learning to reason, and agentic systems. arXiv preprint
arXiv:2504.09037, 2025.

Kim, S., Shin, J., Cho, Y., Jang, J., Longpre, S., Lee, H., Yun,
S., Shin, S., Kim, S., Thorne, J., et al. Prometheus: Induc-
ing fine-grained evaluation capability in language models.
In The Twelfth International Conference on Learning
Representations, 2023.

Kim, S., Suk, J., Longpre, S., Lin, B. Y., Shin, J,
Welleck, S., Neubig, G., Lee, M., Lee, K., and Seo, M.
Prometheus 2: An open source language model special-
ized in evaluating other language models. arXiv preprint
arXiv:2405.01535, 2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:

22199-22213, 2022.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H,, Gonzalez, J. E., Zhang, H., and Stoica, 1. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Kydlicek, H. Math-Verify: Math Verification Library, 2025.
URL https://github.com/huggingface/m
ath-verify.

Lambert, N., Pyatkin, V., Morrison, J., Miranda, L., Lin,
B. Y., Chandu, K., Dziri, N., Kumar, S., Zick, T., Choi,
Y., et al. Rewardbench: Evaluating reward models for
language modeling. arXiv preprint arXiv:2403.13787,
2024.

Lan, T., Zhang, W., Xu, C., Huang, H., Lin, D., Chen, K.,
and Mao, X.-1. Criticeval: Evaluating large language
model as critic. arXiv preprint arXiv:2402.13764, 2024.

Li, J., Sun, S., Yuan, W., Fan, R.-Z., Zhao, H., and Liu, P.
Generative judge for evaluating alignment. arXiv preprint
arXiv:2310.05470, 2023.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, 1., and
Cobbe, K. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Lin, Z., Gou, Z., Liang, T., Luo, R., Liu, H., and Yang,
Y. Criticbench: Benchmarking llms for critique-correct
reasoning. arXiv preprint arXiv:2402.14809, 2024.

Liu, C. Y, Zeng, L., Liu, J., Yan, R., He, J., Wang, C.,
Yan, S., Liu, Y., and Zhou, Y. Skywork-reward: Bag

11

of tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451, 2024a.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is your code
generated by chatGPT really correct? rigorous evaluation
of large language models for code generation. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023a. URL https://openreview.net
/forum?id=1qvx610Cu’.

Liu, Y., Fabbri, A. R., Chen, J., Zhao, Y., Han, S., Joty,
S., Liu, P, Radev, D., Wu, C.-S., and Cohan, A. Bench-
marking generation and evaluation capabilities of large
language models for instruction controllable summariza-
tion. arXiv preprint arXiv:2311.09184, 2023b.

Liu, Y., Yao, Z., Min, R., Cao, Y., Hou, L., and Li, J. Rm-
bench: Benchmarking reward models of language models
with subtlety and style. arXiv preprint arXiv:2410.16184,
2024b.

Liu, Y., Yao, Z., Min, R., Cao, Y., Hou, L., and Li, J. Pair-
wise rm: Perform best-of-n sampling with knockout tour-
nament. arXiv preprint arXiv:2501.13007, 2025.

Luo, L., Liu, Y., Liu, R., Phatale, S., Lara, H., Li, Y., Shu,
L., Zhu, Y., Meng, L., Sun, J., et al. Improve mathemati-
cal reasoning in language models by automated process
supervision. arXiv preprint arXiv:2406.06592, 2024.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing
Systems, 36, 2024.

Mao, Y., Kim, Y., and Zhou, Y. Champ: A competition-level
dataset for fine-grained analyses of 1lms’ mathematical
reasoning capabilities. arXiv preprint arXiv:2401.06961,
2024.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv

preprint arXiv:2112.00114, 2021.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730-27744, 2022.

Park, J., Jwa, S., Ren, M., Kim, D., and Choi, S. Offsetbias:
Leveraging debiased data for tuning evaluators. arXiv
preprint arXiv:2407.06551, 2024.

https://github.com/huggingface/math-verify
https://github.com/huggingface/math-verify
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

Saad-Falcon, J., Vivek, R., Berrios, W., Naik, N. S.,
Franklin, M., Vidgen, B., Singh, A., Kiela, D., and Mehri,
S. Lmunit: Fine-grained evaluation with natural language
unit tests. arXiv preprint arXiv:2412.13091, 2024.

Saunders, W., Yeh, C., Wu, J., Bills, S., Ouyang, L., Ward, J.,
and Leike, J. Self-critiquing models for assisting human
evaluators. arXiv preprint arXiv:2206.05802, 2022.

Shah, N. B., Balakrishnan, S., Bradley, J., Parekh, A.,
Ramch, K., Wainwright, M. J., et al. Estimation from
pairwise comparisons: Sharp minimax bounds with topol-

ogy dependence. Journal of Machine Learning Research,
17(58):1-47, 2016.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Shiwen, T., Liang, Z., Liu, C. Y., Zeng, L., and Liu, Y.
Skywork critic model series. https://huggingf
ace.co/Skywork, September 2024. URL https:
//huggingface.co/Skywork.

Shridhar, K., Sinha, K., Cohen, A., Wang, T., Yu, P., Pa-
sunuru, R., Sachan, M., Weston, J., and Celikyilmaz, A.
The art of 1lm refinement: Ask, refine, and trust. In Pro-
ceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers),
pp- 58725883, 2024.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Stechly, K., Marquez, M., and Kambhampati, S. Gpt-
4 doesn’t know it’s wrong: An analysis of iterative

prompting for reasoning problems. arXiv preprint
arXiv:2310.12397, 2023.

Tan, S., Zhuang, S., Montgomery, K., Tang, W. Y., Cuadron,
A., Wang, C., Popa, R. A., and Stoica, I. Judgebench:
A benchmark for evaluating llm-based judges. arXiv
preprint arXiv:2410.12784, 2024.

Valmeekam, K., Marquez, M., and Kambhampati, S. Can
large language models really improve by self-critiquing
their own plans? arXiv preprint arXiv:2310.08118, 2023.

12

Vu, T., Krishna, K., Alzubi, S., Tar, C., Faruqui, M., and
Sung, Y.-H. Foundational autoraters: Taming large lan-
guage models for better automatic evaluation. arXiv
preprint arXiv:2407.10817, 2024.

Wang, P, Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen,
D., Wu, Y, and Sui, Z. Math-shepherd: A label-free
step-by-step verifier for 1lms in mathematical reasoning.
arXiv preprint arXiv:2312.08935, 2023a.

Wang, P, Xu, A., Zhou, Y., Xiong, C., and Joty, S. Di-
rect judgement preference optimization. arXiv preprint
arXiv:2409.14664, 2024a.

Wang, T., Kulikov, 1., Golovneva, O., Yu, P, Yuan, W,
Dwivedi-Yu, J., Pang, R. Y., Fazel-Zarandi, M., Weston,
J., and Li, X. Self-taught evaluators. arXiv preprint
arXiv:2408.02666, 2024b.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wang, Y., Yu, Z., Yao, W., Zeng, Z., Yang, L., Wang, C.,
Chen, H., Jiang, C., Xie, R., Wang, J., et al. Pandalm:
An automatic evaluation benchmark for llm instruction
tuning optimization. In The Twelfth International Confer-
ence on Learning Representations, 2023b.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E.,Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837,
2022.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C, Liu, D., Huang, F., Wei, H., et al. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Yao, S., Yu, D., Zhao, J., Shafran, 1., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Ye, Z., Li, X, Li, Q., Ai, Q., Zhou, Y., Shen, W., Yan,
D., and Liu, Y. Beyond scalar reward model: Learning
generative judge from preference data. arXiv preprint
arXiv:2410.03742, 2024.

Yuan, W., Pang, R. Y., Cho, K., Li, X., Sukhbaatar, S.,
Xu, J., and Weston, J. E. Self-rewarding language mod-
els. In Forty-first International Conference on Machine
Learning, 2024.

Zeng, Z., Yu, J., Gao, T., Meng, Y., Goyal, T., and Chen,
D. Evaluating large language models at evaluating in-
struction following. arXiv preprint arXiv:2310.07641,
2023.

https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://huggingface.co/Skywork

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Ku-
mar, A., and Agarwal, R. Generative verifiers: Re-
ward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024a.

Zhang, Y., Khalifa, M., Logeswaran, L., Kim, J., Lee, M.,
Lee, H., and Wang, L. Small language models need
strong verifiers to self-correct reasoning. arXiv preprint
arXiv:2404.17140, 2024b.

Zhang, Z., Zheng, C., Wu, Y., Zhang, B., Lin, R, Yu, B.,
Liu, D., Zhou, J., and Lin, J. The lessons of developing
process reward models in mathematical reasoning. arXiv
preprint arXiv:2501.07301, 2025a.

Zhang, Z., Zheng, C., Wu, Y., Zhang, B., Lin, R., Yu, B.,
Liu, D., Zhou, J., and Lin, J. The lessons of developing
process reward models in mathematical reasoning. arXiv
preprint arXiv:2501.07301, 2025b.

Zheng, C., Zhang, Z., Zhang, B., Lin, R., Lu, K., Yu, B,
Liu, D., Zhou, J., and Lin, J. Processbench: Identifying
process errors in mathematical reasoning. arXiv preprint
arXiv:2412.06559, 2024.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
Ilm-as-a-judge with mt-bench and chatbot arena. Ad-

vances in Neural Information Processing Systems, 36:
46595-46623, 2023.

Zhou, E., Zheng, G., Wang, B., Xi, Z., Dou, S., Bao, R.,
Shen, W., Xiong, L., Fan, J., Mou, Y., et al. Rmb: Com-
prehensively benchmarking reward models in 1lm align-
ment. arXiv preprint arXiv:2410.09893, 2024.

Zhou, J., Lu, T., Mishra, S., Brahma, S., Basu, S.,
Luan, Y., Zhou, D., and Hou, L. Instruction-following
evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Zhuo, T. Y., Vu, M. C., Chim, J., Hu, H., Yu, W., Widyasari,
R., Yusuf, I. N. B., Zhan, H., He, J., Paul, L., et al. Big-
codebench: Benchmarking code generation with diverse
function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

13

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

A Additional benchmark details: Evaluation procedures, judge models, and prompts

In this section, we provide additional details about benchmark evaluation procedures and the judge models evaluated.

A.1 Benchmark evaluation procedures.

Math reasoning. For GSM8K, we prompt generator models with a 0-shot version of the CoT prompt used by Llama-3.1
evaluations*. To parse and grade results, we use Math-Verify (Kydli¢ek, 2025), comparing the model responses against the
list of accepted responses provided by Llama-3.1 evaluations.

For MATH, we prompt the generator with 0-shot CoT prompt used in Shepherd-Math (Wang et al., 2023a). To parse and
grade results, we again use Math-Verify, comparing model responses against the original solution in MATH.

For CHAMP, we utilize the default 0-shot prompt released by CHAMP and their suggested evaluation pipeline: The
generator produces a response and is then asked to summarize its response into a final answer. A frontier LLM is then
prompted to evaluate the final answer and the ground-truth. We utilize GPT-4o for this evaluation. We evaluate all responses
generated across all tasks, regardless of if they are chosen or not, and store the results to be re-used for different judges. This
ensures that judge evaluation is not influenced by potentially stochastic GPT-40 inference.

Code generation. We utilize the code generation and evaluation scripts provided by BigCodeBench (Zhuo et al., 2024) and
EvalPlus (Liu et al., 2023a), with minor modifications to accommodate grading arbitrary subsets of the full evaluation set.
For fast evaluation, similar to CHAMP evaluation, we evaluate all responses once and store the results.

Instruction following. We directly prompt the generator model with the prompts provided by both AlpacaEval (Liu et al.,
2023a) and IFEval (Zhou et al., 2023) and utilize the evaluation scripts. We again making minimal changes to accommodate
grading arbitrary subsets of the full evaluation set. For AlpacaEval, we follow the same procedure as CHAMP and evaluate
all responses, storing results to be re-used for different judges. This again eliminates judge-by-judge stochasticity in GPT-4
evaluations.

A.2 Additional details about evaluated judge baselines.

As noted in Tab. 2, we benchmark 10 judges of varying capabilities. Here, we provide a more comprehensive overview of
each judge evaluated. We run inference with vLLM (Kwon et al., 2023), with 1 A100 40GB GPU for judges with sizes 12B
and smaller, and 8xA100 40GB GPUs for judges with sizes 8x7B and larger.

* SFR-Judge (Wang et al., 2024a): SFR-Judge is a family of three judge models trained from Llama-3.1-8B-and
70B-instruct and Mistral-NeMo-12B-Instruct using direct preference optimization (DPO). These judges are trained
with data samples from a diverse array of source datasets to provide natural language critiques and perform three
evaluation tasks: Pairwise comparisons, single-rating evaluation, and binary yes/no classification. Notably, SFR-Judge
training data preserves original human evaluation instructions, meaning the models are amenable to flexible prompting.

¢ Skywork-Critic (Shiwen et al., 2024): Skywork-Critic is a family of two judge models trained from Llama-3.1-8B-and
70B-instruct using supervised finetuning (SFT). These judges are trained on a smaller, curated preference dataset to
perform pairwise comparison evaluation, without providing natural language critiques. Skywork-Critic models are
trained with a fixed prompt template.

¢ OffsetBias (Park et al., 2024): OffsetBias is a pairwise comparison (without natural language critiques) model trained
from Llama-3-8B-Instruct using SFT. It is trained with data specifically aimed at mitigating common LL.M-as-judge
biases, such as length bias. OffsetBias is trained with a fixed prompt template.

¢ Prometheus-v2.0 (Kim et al., 2024): Prometheus-v2.0 is a family of two judge models trained from Mistral-7B-
and 8x7B-instruct. These judges are trained on purely synthetic data synthesized from GPT-4 to perform pairwise
comparisons and single-rating evaluation, and to provide natural language feedback. Notably, Prometheus specifically
generates per-instance fine-grained evaluation criteria, making it amenable to flexible prompting.

*Meta releases evaluation data publicly. For example, Llama-3.1-8B-Instruct results: https://huggingface.co/datasets/
meta-llama/Llama-3.1-8B-Instruct-evals

14

https://huggingface.co/datasets/meta-llama/Llama-3.1-8B-Instruct-evals
https://huggingface.co/datasets/meta-llama/Llama-3.1-8B-Instruct-evals

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

* Self-taught-evaluator (Wang et al., 2024b): Self-taught-evaluator is a model trained from Llama-3.1-70B-Instruct to
perform pairwise comparison evaluation and to provide natural language critiques. It is trained using iterative DPO
self-teaching, where adversarially generated samples from the model are produced at each training round, classified
into correct or incorrect judgments, and used to update the model with DPO. Self-taught-evaluator is trained with a
fixed prompt template.

e Themis (Hu et al., 2024): Themis is a single-rating specific model (with natural language critiques) trained from
Llama-3-8B-Instruct using a single-rating margin-based version of DPO. It is trained from a large mixture of preference
data from a diverse array of sources. Notably, original instructions given to human annotators is preserved in Themis
training data, making it amenable to flexible prompting.

For each judge, we adhere to prompt templates and judgment parsing code provided by authors, minimally updating the
evaluation criteria if necessary. We provide examples of prompts in the next section. We additionally evaluate four reward
model baselines: three ORMs for reranking and one PRM for beam search.

¢ Skywork-Reward-v0.2 (Liu et al., 2024a): A family of sequence classifier outcome reward models trained from
Llama-3.1-8B and Gemma-2-27B using the same dataset as the Skywork-Critic series.

o OffsetBias-RM (Park et al., 2024): A sequence classifier outcome reward model trained from Llama-3-8B using the
same dataset as the OffsetBias generative judge.

¢ Qwen2.5-Math-PRM (Zhang et al., 2025a): A process reward model specific for math domain trained from Qwen2.5.

A.3 Prompts used in JETTS.

Judge prompts. Here, we provide an example of the pairwise (Fig. 15), Likert (Fig. 16), and additive rating (Fig. 17)
prompts used for evaluation. We show the prompts used for SFR-Judge, with other prompts differing only in the template
(e.g., the expected format of outputs, whether or not to elicit CoT, order of input elements, etc). In all of the prompts, as
mentioned in Sec. 3.3, the message indicating a partial solution is inserted in the {partial_response_note} portion
of the prompt, or is left empty (with surrounding newlines removed) for non-beam-search tasks.

Generator refinement prompt. We provide the prompt given to the generator for critique-based refinement in Fig. 18.
As mentioned in Sec. 3.4, the generator is allowed to interpret the judge feedback and decide that no further refinement is
necessary.

15

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

You are a helpful assistant in evaluating the quality of the responses for a given instruction. Your goal is to select the best
response for the given instruction.

Select Response A or Response B, that is better for the given instruction. The two responses are generated
by two different Al chatbots respectively.
Do NOT say both / neither are good.

Here are some rules of the evaluation:

(1) You should prioritize evaluating whether the output honestly/precisely/closely executes the instruction, then consider
its helpfulness, accuracy, level of detail, harmlessness, etc.

(2) Responses should NOT contain more/less than what the instruction asks for, as such responses do NOT precisely
execute the instruction.

(3) You should avoid any potential bias and your judgment should be as objective as possible. Here are some potential
sources of bias:

- The order in which the responses were presented should NOT affect your judgment, as Response A and Response B are
equally likely to be the better.

- The length of the responses should NOT affect your judgement, as a longer response does not necessarily correspond to
a better response. When making your decision, evaluate if the response length is appropriate for the given instruction.

{partial_response_note}

Your reply should strictly follow this format:
Reasoning: <feedback evaluating the responses>

Result: <A or B>
Here is the data.

Instruction:

333

{query_text}

113

Response A:

133

{response_A}

113

Response B:

333

{response_B}

113

Figure 15: The pairwise evaluation prompt given to SFR-Judge models. Blue text are changed to the corresponding actual value when
rendering the template. Everything else is presented literally. The partial response note slot holds the beam search judging note of Sec. 3.3
is only used in the non-lookahead mode of beam search. The partial response note slot holds the beam search judging note of Sec. 3.3 is
only used in the non-lookahead mode of beam search.

16

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

You are tasked with evaluating a response based on a given instruction (which may contain an Input). Provide a
comprehensive feedback on the response quality based on the rules for evaluation. Follow this with a score between 1
and 5. Avoid generating any additional opening, closing, or explanations.

Here are some rules of the evaluation:

(1) You should prioritize evaluating whether the output honestly/precisely/closely executes the instruction, then consider
its helpfulness, accuracy, level of detail, harmlessness, etc.

(2) Responses should NOT contain more/less than what the instruction asks for, as such responses do NOT precisely
execute the instruction.

(3) You should avoid any potential bias and your judgment should be as objective as possible. Here is a potential source
of bias:

- The length of the response should NOT affect your judgement, as a longer response does not necessarily correspond to
a better response. When making your decision, evaluate if the response length is appropriate for the given instruction.

{partial_response_note}

Your reply should strictly follow this format:
Reasoning: <Your feedback>

Result: <an integer between 1 and 5>
Here is the data:

Instruction:

113

{query_text}

133

Response:

113

{response}

133

Figure 16: The Likert single-rating evaluation prompt given to SFR-Judge models. Blue text are changed to the corresponding actual
value when rendering the template. Everything else is presented literally.

17

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

You are tasked with evaluating a response based on a given instruction (which may contain an Input). Provide a
comprehensive feedback on the response quality based on the rules for evaluation. Follow this with a score between 1
and 5. Avoid generating any additional opening, closing, or explanations.

Here are some rules of the evaluation:

(1) You should prioritize evaluating whether the response satisfies the provided rubric. The basis of your score should
depend exactly on the rubric.

(2) You should avoid any potential bias and your judgment should be as objective as possible. Here is a potential source
of bias:

- The length of the response should NOT affect your judgement, as a longer response does not necessarily correspond to
a better response. When making your decision, evaluate if the response length is appropriate for the given instruction.

{ partial_response_note}

Your reply should strictly follow this format:
Reasoning: <Your feedback>

Result: <an integer between 1 and 5>
Here is the data:

Instruction:

133

{query_text}

113

Response:

133

{response_note }

113

Score rubrics:

- Add one point if the response is relevant and provides some information related to the user’s inquiry, even if it is
incomplete or contains some irrelevant content.

- Add a second point if the response addresses a substantial portion of the user’s question, but does not completely
resolve the query or provide a direct answer.

- Add a third point if the response answers the basic elements of the user’s question in a useful way, regardless of
whether it seems to have been written by an Al Assistant or if it has elements typically found in blogs or search results.
- Add a fourth point if the response is clearly written from an Al Assistant’s perspective, addressing the user’s question
directly and comprehensively, and is well-organized and helpful, even if there is slight room for improvement in clarity,
conciseness or focus.

- Add a fifth point for a response that is impeccably tailored to the user’s question by an Al Assistant, without extraneous
information, reflecting expert knowledge, and demonstrating a high-quality, engaging, and insightful answer.

Figure 17: The additive single-rating evaluation prompt given to SFR-Judge models, adapted from Yuan et al. (2024). Blue text are
changed to the corresponding actual value when rendering the template. Everything else is presented literally. The partial response note
slot holds the beam search judging note of Sec. 3.3 is only used in the non-lookahead mode of beam search.

18

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

You help revise a machine-generated response to a user query. Below, you will be provided with the user query and the
machine-generated response. You will also be provided with the output of an evaluator model, which gives a score (max
being {max_score}) and an explanation for the score.

You should revise and improve the current response, following the evaluator’s recommendation. If the evalua-
tor does not identify any area of improvement, you should output "No revision needed." Otherwise, you should output
the revised response surrounded by the <revised_response> and </revised_response> tags. You do not need to output
anything else.

<query>

{query}
</query>

<original_response>
{response}
</original_response>

<score>
{score} out of {max_score}.
</score>

<explanation>
{explanation}

</explanation>

Your revision (or "No revision needed."):

Figure 18: The refinement prompt given to the generator. Blue text are changed to the corresponding actual value when rendering the
template. Everything else is presented literally.

19

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

You are a helpful assistant in evaluating the quality of the responses for a given instruction, which is a math problem.
Your goal is to select the best response for the given instruction.

Select Response A or Response B, that is better for the given math problem. The two responses are generated by two
different AI chatbots respectively.

Do NOT say both / neither are good.

Here are some rules of the evaluation:

(1) You should prioritize evaluating if the output arrives at the correct solution for the given math problem and if the
logical reasoning to derive the solution is sound.

(2) If both responses arrive at the correct solution, choose the response that contains the better logical reasoning. For
reasoning, prioritize correctness, then completeness and conciseness.

(3) Responses should NOT contain more/less than what the question asks for, as such responses do NOT precisely solve
the problem.

(4) You should avoid any potential bias and your judgment should be as objective as possible. Here are some potential
sources of bias:

- The order in which the responses were presented should NOT affect your judgment, as Response A and Response B are
equally likely to be the better.

- The length of the responses should NOT affect your judgement, as a longer response does not necessarily correspond to
a better response. When making your decision, evaluate if the response length is appropriate for the given instruction.

You are a helpful assistant in evaluating the quality of the responses for a given instruction, which is a coding problem.
Your goal is to select the best response for the given instruction.

Select Response A or Response B, that is better for the given coding problem. The two responses are generated by two
different Al chatbots respectively.

Do NOT say both / neither are good.

Here are some rules of the evaluation:

(1) You should prioritize evaluating if the output response code correctly implements the desired functionality in the
instruction.

(2) If both responses correctly implement the desired functionality, choose the response that contains the better written
code. Prioritize conciseness and readibility.

(3) Responses should NOT contain more/less than what the question asks for, as such responses do NOT precisely solve
the problem.

(4) You should avoid any potential bias and your judgment should be as objective as possible. Here are some potential
sources of bias:

- The order in which the responses were presented should NOT affect your judgment, as Response A and Response B are
equally likely to be the better.

- The length of the responses should NOT affect your judgement, as a longer response does not necessarily correspond to
a better response. When making your decision, evaluate if the response length is appropriate for the given instruction.

Figure 19: Domain-specific evaluation criteria given to SFR-Judge-8B for math reasoning (top) and code generation (bottom) evaluation.

20

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

B Complete benchmark results and additional experiments

In this section, we present the raw benchmark performance as well as additional visualizations for all judges and reward
model baselines across the three tasks.

B.1 Response reranking

Pairwise round-robin reranking details. Because judge models are prone to positional biases (Li et al., 2023), we employ
a consistency-based pairwise evaluation setup. We form all N(N — 1)/2 pairs of responses. Then, we run each pairwise
comparison twice, swapping the order of responses in the second run. If the same response is chosen for both runs, then
we assign the selected response 1 “point” and the rejected response 0 “points”. If the judge is inconsistent, i.e., selects
different a different response when the order changes, we consider this a tie and assign both response 0.5 “points”. The
round-robin tournament winner is selected based on the response that has the most points after all N (N — 1)/2 comparisons
are completed.

Full experimental results. We present the full raw benchmark performance for all judges, generators, and dataset
combinations for the pairwise comparison protocol in Tab. 3, Likert rating protocol in Tab. 4, and additive rating protocol
in Tab. 5. We also report the performance of Llama-3.1-8B-Instruct prompted with SFR-Judge prompts and three reward
models to contextualize judge performance.

‘Prom 7B SFR8B SC8B OBSB SFRI12B Prom8x7B SFR70B SC70B STE70B | Llama8B BestRM Greedy Random Oracle Maj

Llama 8B 85.22 89.08 88.86 85.82 89.31 85.22 93.71 91.36 90.07 87.11 90.37 85.67 82.08 96.44 90.83

- Llama 70B 95.83 95.91 9598 9522 95.68 94.69 96.29 96.59 94.92 95.53 96.51 95.53 95.11 98.48 96.82

°2° Qwen 32B 95.00 96.21 95.53 95.68 95.60 94.84 95.91 95.75 95.22 95.15 96.06 95.22 95.22 98.56 96.06

7] Qwen 72B 95.07 95.53 95.60 9575 95.22 95.30 95.68 96.21 95.75 95.22 96.29 95.68 95.52 97.88 96.29

© Qwen-M 7B 94.69 95.45 95.53 94.69 95.60 94.47 95.68 95.68 95.07 94.77 95.68 95.15 91.65 97.88 95.83

Dpsk-M 7B 80.44 86.73 8749 8241 86.66 81.05 91.74 90.22 87.11 84.15 87.83 80.97 79.75 95.53 87.49

Llama 8B 23.19 29.98 2576 2485 29.98 25.15 36.71 29.83 29.98 29.15 29.83 24.70 21.98 53.47 33.08

Llama 70B 43.35 48.11 4721 4298 47.28 45.717 51.81 48.41 49.55 47.81 50.04 43.81 42.07 68.35 52.49

E Qwen 32B 54.76 59.06 57.93 5355 60.05 55.06 64.05 59.82 59.59 58.01 59.34 57.10 52.24 78.17 62.61

%: Qwen 72B 62.31 65.86 64.20 6125 65.03 62.31 68.20 66.84 67.37 65.33 66.01 62.99 61.37 82.78 69.26

Qwen-M 7B 66.77 70.09 67.75 6548 69.71 67.07 71.68 69.79 68.96 69.71 68.58 66.39 55.28 80.14 70.24

Dpsk-M 7B 16.01 23.56 2145 21.07 21.53 19.94 29.68 24.85 26.28 22.13 24.58 18.66 17.04 4721 25.68
Llama 8B 30.74 30.37 30.74 31.11 34.07 3111 34.07 32.96 3333 30.37 31.85 29.26 27.30 60.00 -
o Llama 70B 45.93 51.48 50.74 4852 48.89 45.56 48.15 52.22 47.78 48.52 52.22 47.41 46.07 71.48 -
= Qwen 32B 70.00 71.11 67.41 7296 68.52 68.89 70.37 68.89 70.37 67.78 71.30 75.19 70.67 85.56 -
é Qwen 72B 65.93 66.30 70.00 66.67 68.52 68.15 67.41 70.37 67.78 68.52 68.70 71.48 67.11 85.56 -
C Qwen-M 7B 65.19 70.37 68.15 67.04 67.78 67.41 72.59 70.00 70.37 66.67 70.00 62.96 46.26 81.85 -
Dpsk-M 7B 27.04 42.59 38.52 3444 39.26 25.56 42.96 40.00 39.63 30.74 41.48 26.30 28.78 72.22 -
. Llama 8B 53.66 58.54 64.02 61.59 60.98 55.49 67.68 66.46 64.02 61.59 67.07 63.35 56.70 79.88 -
= Llama 70B 67.07 71.34 78.05 7561 77.43 70.73 75.61 79.27 77.44 75.61 78.66 75.61 73.23 90.85 -
[JE Qwen 32B 79.88 8232 81.10 84.15 82.32 79.88 81.10 83.54 81.10 81.10 85.37 81.10 82.56 93.29 -
E Qwen 72B 82.93 84.76 8598 8598 82.93 81.71 86.59 87.80 82.93 82.32 87.80 82.32 82.13 93.90 -
= Qwen-C 7B 75.00 82.32 81.10 79.88 82.32 78.05 84.15 83.54 82.93 82.32 82.32 86.59 81.52 93.90 -
Dpsk-C 6.7B 66.46 69.51 75.00 67.68 67.68 66.46 77.43 76.83 74.39 69.51 77.44 71.95 67.62 86.59 -
Llama 8B 47.62 54.23 5741 58.99 52.38 49.21 56.88 62.70 62.17 56.61 60.85 54.50 55.21 76.46 -
4 Llama 70B 55.29 58.73 6429 6534 56.08 56.08 60.32 69.31 66.14 65.34 68.39 65.08 63.68 83.07 -
& Qwen 32B 73.81 75.93 7593 76.46 74.87 73.81 75.66 78.04 75.40 75.13 76.06 75.40 75.45 84.13 -
=] Qwen 72B 74.60 76.72 76.46 76.19 75.13 75.40 7725 76.98 76.46 78.04 76.72 76.19 75.71 84.66 -
= Qwen-C 7B 66.40 69.05 70.11 70.11 66.93 66.93 72.49 75.13 73.28 71.43 72.22 71.69 66.51 85.45 -
Dpsk-C 6.7B 53.44 58.73 61.11 61.38 57.67 57.41 60.58 64.02 61.90 65.87 65.87 66.14 62.12 79.37 -
= Llama 8B 26.23 32.46 3325 3272 31.23 28.33 36.05 37.19 36.23 30.35 35.09 31.67 28.03 56.84 -
E Llama 70B 40.44 42.19 42.89 4228 41.67 40.00 42.63 43.51 43.60 43.33 43.90 45.44 41.92 62.63 -
3 Qwen 32B 43.51 46.23 4526 4491 45.79 43.86 47.72 46.84 46.67 45.18 46.23 45.53 44.66 65.18 -
B Qwen 72B 45.79 46.84 4746 47.89 47.63 45.70 47.54 47.28 47.63 45.79 48.60 46.67 46.30 60.18 -
go Qwen-C 7B 36.32 40.26 39.74 41.23 39.91 38.33 43.33 43.86 42.63 40.18 42.37 42.37 37.89 61.58 -
A Dpsk-C 6.7B 3228 36.14 3842 3754 37.19 33.60 40.18 40.09 39.30 36.84 38.99 3491 32.49 58.95 -
E Llama 8B 34.94 37.15 3698 3423 39.93 37.31 40.54 37.86 37.63 32.00 38.98 27.26 26.80 55.07 -
= Llama 70B 46.02 44.88 4288 40.99 45.92 45.20 46.87 43.90 45.69 40.17 45.08 35.48 34.27 61.90 -
i Qwen 32B 44.18 43.82 4270 4136 47.78 44.59 45.97 43.66 46.70 41.84 4517 32.92 35.80 61.69 -
< Qwen 72B 58.94 62.22 5598 5835 64.16 60.51 63.69 61.43 63.03 58.73 62.56 52.01 56.76 76.52 -
Llama 8B 67.28 70.24 70.06 71.90 71.90 68.95 74.68 71.34 72.09 69.87 73.01 72.83 67.79 87.80 -
S Llama 70B 82.07 81.70 80.78 80.04 81.70 80.04 82.99 82.26 82.99 80.22 82.62 84.29 81.21 92.42 -
g Qwen 32B 80.60 81.70 80.41 79.48 80.04 80.22 82.62 82.62 82.26 79.85 82.38 80.22 79.44 90.02 -
- Qwen 72B 82.81 84.66 84.47 83.73 84.84 83.55 85.03 85.40 83.92 85.21 86.04 83.55 83.42 92.05 -

Table 3: Performance of the top response after LLM-judge pairwise comparison-based reranking, in the context of the vanilla Llama 3.1
8B model using the SFR-Judge pairwise comparison prompt, the best reward model (using single-instance score to rerank), and various
baselines. “-M” and “-C” suffixes represent the math and code domain-specific models.

21

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

Prom7B SFR8B Thm8B SFRI12B Prom8x7B SFR70B | Llama8B OBgry 8B Sgm 8B Sgm 27B Greedy Random Oracle Maj

Llama 8B 84.32 86.86 81.92 86.16 83.95 88.33 84.70 90.03 88.78 90.37 85.67 82.08 96.44 90.83

~ Llama 70B 95.80 95.77 95.38 95.60 95.42 95.47 95.59 95.87 96.06 96.51 95.53 95.11 98.48 96.82

°2° Qwen 32B 95.45 95.65 95.07 95.34 95.30 95.47 95.35 96.06 95.91 95.79 95.22 95.22 98.56 96.06

7] Qwen 72B 95.85 95.55 95.41 95.58 95.56 95.62 95.70 95.83 96.29 96.13 95.68 95.52 97.88 96.29

© Qwen-M 7B 93.72 95.36 91.86 95.35 94.19 95.57 94.74 95.45 95.53 95.68 95.15 91.65 97.88 95.83

Dpsk-M 7B 80.89 82.74 79.60 82.77 80.86 87.13 81.26 85.90 87.72 87.83 80.97 79.75 95.53 87.49

Llama 8B 2433 26.69 21.30 26.35 24.65 29.42 24.34 29.25 28.44 29.83 24.70 21.98 53.47 33.08

Llama 70B 45.05 45.67 41.59 46.23 44.71 46.15 45.14 46.98 47.73 50.04 43.81 42.07 68.35 52.49

E Qwen 32B 54.79 54.53 52.11 55.84 53.97 54.99 55.05 55.97 59.34 57.78 57.10 52.24 78.17 62.61

<§t Qwen 72B 62.73 63.61 61.60 63.16 62.06 63.78 62.84 64.09 66.01 65.94 62.99 61.37 82.78 69.26

Qwen-M 7B 55.81 67.35 56.26 67.33 61.71 67.78 64.14 67.86 67.71 68.58 66.39 55.28 80.14 70.24

Dpsk-M 7B 17.22 21.76 16.33 19.83 18.11 24.87 20.30 23.79 24.58 24.43 18.66 17.04 4721 25.68
Llama 8B 27.13 24.92 28.41 30.22 29.74 31.57 30.94 31.85 30.00 30.74 29.26 27.30 60.00 -
o Llama 70B 47.02 50.30 46.99 50.90 47.95 48.94 47.67 5222 50.74 50.56 4741 46.07 71.48 -
= Qwen 32B 70.17 69.68 70.81 71.06 70.30 70.81 69.36 69.63 68.70 71.30 75.19 70.67 85.56 -
é Qwen 72B 64.95 68.09 67.42 67.40 66.43 66.99 68.50 68.15 68.70 67.41 71.48 67.11 85.56 -
O Qwen-M 7B 64.47 65.88 66.41 67.26 64.20 68.44 66.08 67.78 70.00 68.15 62.96 46.26 81.85 -
Dpsk-M 7B 26.70 31.83 29.15 33.02 30.52 39.11 31.96 39.44 41.48 34.81 26.30 28.78 7222 -
Llama 8B 58.61 61.54 57.03 61.47 57.49 64.87 57.55 60.37 64.33 67.07 63.35 56.70 79.88 -
% Llama 70B 74.76 72.88 73.63 73.17 73.37 74.11 73.84 77.44 78.66 77.44 75.61 7323 90.85 -
E Qwen 32B 82.90 81.30 82.29 82.53 82.50 84.85 81.80 84.76 81.71 85.37 81.10 82.56 93.29 -
g Qwen 72B 82.01 85.51 82.17 84.51 82.10 84.61 81.87 84.15 84.76 87.80 82.32 82.13 93.90 -
E Qwen-C 7B 81.81 81.95 81.77 81.82 81.91 84.59 81.80 81.71 79.27 82.32 86.59 81.52 93.90 -
Dpsk-C 6.7B 67.95 69.97 68.42 71.09 68.00 73.16 69.66 72.56 73.78 77.44 71.95 67.62 86.59 -
Llama 8B 56.75 54.20 55.94 57.17 56.42 60.72 56.85 60.32 60.85 56.88 54.50 55.21 76.46 -
. Llama 70B 64.92 60.33 63.84 61.81 64.26 65.01 64.74 64.55 68.39 63.23 65.08 63.68 83.07 -
) Qwen 32B 74.94 75.42 7577 75.40 75.41 75.59 75.84 75.13 76.06 75.40 75.40 75.45 84.13 -
a Qwen 72B 76.31 76.95 76.07 76.55 76.11 76.01 76.68 76.72 75.26 76.46 76.19 75.71 84.66 -
= Qwen-C 7B 67.94 67.73 67.17 69.28 67.74 70.95 69.33 7143 7222 71.56 71.69 66.51 85.45 -
Dpsk-C 6.7B 62.26 62.73 62.64 62.12 62.48 61.90 63.54 63.62 65.87 58.20 66.14 62.12 79.37 -
= Llama 8B 29.69 30.65 28.95 32.00 29.85 34.20 30.43 32.63 34.96 35.09 31.67 28.03 56.84 -
% Llama 70B 42.37 42.75 42.55 42.88 42.73 4331 42.74 43.63 43.90 43.86 45.44 41.92 62.63 -
3 Qwen 32B 45.01 45.61 44.70 45.44 44.93 45.80 45.65 46.05 46.07 46.23 4553 44.66 65.18 -
B Qwen 72B 46.76 46.93 46.33 47.27 46.37 47.45 46.63 46.89 48.60 48.33 46.67 46.30 60.18 -
Féo Qwen-C 7B 38.60 39.95 38.11 40.36 38.54 4253 39.49 41.05 4237 42.06 42.37 37.89 61.58 -
A Dpsk-C 6.7B 34.22 34.80 33.07 35.66 33.97 38.65 35.31 36.84 38.99 38.86 34.91 32.49 58.95 -
T; Llama 8B 28.42 29.95 27.80 29.50 27.64 29.43 27.36 33.62 36.05 38.98 27.26 26.80 55.07 -
= Llama 70B 36.13 36.86 35.01 36.55 35.50 35.60 33.99 39.10 42.05 45.08 35.48 34.27 61.90 -
é Qwen 32B 37.08 37.08 36.40 37.21 36.17 36.54 3598 39.29 42.42 45.17 32.92 35.80 61.69 -
= Qwen 72B 54.40 54.75 53.80 54.99 54.05 54.54 54.08 55.95 60.34 62.56 52.01 56.76 76.52 -
Llama 8B 67.85 70.34 69.13 70.63 69.15 71.80 70.41 72.46 71.07 73.01 72.83 66.43 87.80 -
T; Llama 70B 82.26 82.27 82.26 82.29 81.99 82.72 81.45 81.15 82.62 81.89 84.29 79.94 9242 -
E‘] Qwen 32B 80.40 80.19 80.30 79.71 79.89 82.64 80.95 82.38 80.41 81.42 80.22 77.38 90.02 -
- Qwen 72B 83.25 83.72 83.29 84.29 83.63 84.87 83.91 84.57 86.04 83.46 83.55 81.44 92.24 -

Table 4: Judge reranking performance under the Likert scale single-instance rating protocol.

22

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

Prom7B SFR8B Thm8B SFR12B Prom8x7B SFR70B | Llama8B OBgrym 8B Sgm 8B Sgm 27B Greedy Random Oracle Maj

Llama 8B 83.28 85.45 82.10 85.32 85.69 86.51 84.99 90.03 88.78 90.37 85.67 82.08 96.44 90.83

~ Llama 70B 95.63 95.78 95.53 95.71 95.88 95.35 95.68 95.87 96.06 96.51 95.53 95.11 98.48 96.82

°2° Qwen 32B 95.26 95.47 94.97 95.32 95.39 95.27 95.49 96.06 95.91 95.79 95.22 95.22 98.56 96.06

7] Qwen 72B 95.57 95.55 95.15 95.53 95.67 95.50 95.13 95.83 96.29 96.13 95.68 95.52 97.88 96.29

© Qwen-M 7B 91.61 95.25 91.85 95.14 93.78 95.34 95.05 95.45 95.53 95.68 95.15 91.65 97.88 95.83

Dpsk-M 7B 79.94 83.42 79.97 81.21 82.41 85.32 81.35 85.90 87.72 87.83 80.97 79.75 95.53 87.49

Llama 8B 22.79 25.16 21.19 25.96 23.97 26.96 24.59 29.25 28.44 29.83 24.70 21.98 53.47 33.08

Llama 70B 43.35 45.71 42.54 46.26 44.26 44.98 46.02 46.98 47.73 50.04 43.81 42.07 68.35 52.49

E Qwen 32B 54.11 54.49 51.81 55.16 55.09 53.55 54.49 55.97 59.34 57.78 57.10 52.24 78.17 62.61

g Qwen 72B 61.71 62.97 61.85 62.84 63.08 62.46 62.49 64.09 66.01 65.94 62.99 61.37 82.78 69.26

Qwen-M 7B 50.09 67.07 54.68 67.42 61.01 67.41 63.83 67.86 67.71 68.58 66.39 55.28 80.14 70.24

Dpsk-M 7B 18.35 20.05 16.46 18.45 18.76 2245 18.64 23.79 24.58 24.43 18.66 17.04 4721 25.68
Llama 8B 29.77 27.78 28.74 32.05 31.61 31.18 30.70 31.85 30.00 30.74 29.26 27.30 60.00 -
o Llama 70B 47.96 49.85 47.19 49.40 49.44 4741 46.37 5222 50.74 50.56 4741 46.07 71.48 -
= Qwen 32B 69.64 70.62 70.85 70.51 70.47 70.62 71.35 69.63 68.70 71.30 75.19 70.67 85.56 -
é Qwen 72B 67.32 67.79 66.58 67.14 67.74 67.98 66.39 68.15 68.70 67.41 71.48 67.11 85.56 -
O Qwen-M 7B 61.98 68.10 67.15 66.89 67.19 67.43 64.68 67.78 70.00 68.15 62.96 46.26 81.85 -
Dpsk-M 7B 27.55 34.02 29.36 31.84 29.61 37.14 28.84 39.44 41.48 34.81 26.30 28.78 7222 -
Llama 8B 57.33 58.53 56.96 60.50 57.78 61.74 59.59 60.37 64.33 67.07 63.35 56.70 79.88 -
% Llama 70B 73.72 73.47 73.39 72.85 73.34 73.94 7243 77.44 78.66 77.44 75.61 7323 90.85 -
E Qwen 32B 83.05 79.01 82.53 82.58 82.60 82.51 81.00 84.76 81.71 85.37 81.10 82.56 93.29 -
g Qwen 72B 82.29 84.02 82.16 84.59 82.07 83.60 83.58 84.15 84.76 87.80 82.32 82.13 93.90 -
E Qwen-C 7B 81.96 82.20 81.93 81.98 82.29 82.39 80.37 81.71 79.27 82.32 86.59 81.52 93.90 -
Dpsk-C 6.7B 66.34 68.83 67.95 69.63 67.95 71.56 65.71 72.56 73.78 77.44 71.95 67.62 86.59 -
Llama 8B 58.09 55.70 55.82 56.76 56.56 60.33 56.80 60.32 60.85 56.88 54.50 55.21 76.46 -
. Llama 70B 64.85 62.64 63.90 62.10 64.13 64.22 62.40 64.55 68.39 63.23 65.08 63.68 83.07 -
) Qwen 32B 75.16 75.38 75.66 74.74 75.51 75.39 75.67 75.13 76.06 75.40 75.40 75.45 84.13 -
a Qwen 72B 76.46 76.32 75.93 75.93 76.48 76.85 77.33 76.72 75.26 76.46 76.19 75.71 84.66 -
= Qwen-C 7B 68.89 67.77 66.85 70.15 67.96 71.83 66.79 7143 7222 71.56 71.69 66.51 85.45 -
Dpsk-C 6.7B 64.08 60.50 62.67 61.15 62.50 63.07 62.49 63.62 65.87 58.20 66.14 62.12 79.37 -
= Llama 8B 29.48 30.40 28.88 31.20 29.90 32.27 29.78 32.63 34.96 35.09 31.67 28.03 56.84 -
% Llama 70B 42.66 42.27 42.55 41.94 42.66 42.88 42.72 43.63 43.90 43.86 45.44 41.92 62.63 -
3 Qwen 32B 44.77 45.63 44.77 45.83 45.53 4531 45.58 46.05 46.07 46.23 4553 44.66 65.18 -
K Qwen 72B 46.25 47.04 46.32 47.20 46.95 46.99 46.79 46.89 48.60 48.33 46.67 46.30 60.18 -
Féo Qwen-C 7B 37.97 39.98 38.07 39.61 39.09 41.07 39.36 41.05 4237 42.06 42.37 37.89 61.58 -
A Dpsk-C 6.7B 33.61 33.83 32.90 35.20 34.66 37.64 33.63 36.84 38.99 38.86 34.91 32.49 58.95 -
T; Llama 8B 29.02 30.78 27.86 30.16 28.79 29.32 29.08 33.62 36.05 38.98 27.26 26.80 55.07 -
= Llama 70B 36.05 38.19 35.64 36.60 36.48 36.17 36.32 39.10 42.05 45.08 35.48 34.27 61.90 -
é Qwen 32B 37.06 38.06 36.34 37.62 37.77 36.84 37.08 39.29 42.42 45.17 32.92 35.80 61.69 -
= Qwen 72B 55.17 55.85 5391 55.04 55.16 54.96 55.03 55.95 60.34 62.56 52.01 56.76 76.52 -
Llama 8B 67.99 69.37 69.11 69.49 69.75 70.48 69.32 72.46 71.07 73.01 72.83 66.43 87.80 -
T; Llama 70B 81.50 80.94 81.96 82.20 80.84 82.35 80.84 81.15 82.62 81.89 84.29 79.94 9242 -
E‘] Qwen 32B 79.34 79.97 79.94 79.46 80.17 80.21 79.42 82.38 80.41 81.42 80.22 77.38 90.02 -
- Qwen 72B 84.12 83.55 83.19 83.90 82.39 84.14 83.01 84.57 86.04 83.46 83.55 81.44 92.24 -

Table 5: Judge reranking performance under the additive scale single-instance rating protocol.

23

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

Additional visualizations for pairwise protocols. In Fig. 20, we visualize the performance of judges capable of both
single-rating evaluation and pairwise evaluation to present a wholistic picture of reranking performance under different
protocols. For the majority of benchmark and judge combinations, pairwise reranking tends to perform the best, with
additive and Likert single-rating protocols performing roughly equally.

Pairwise Bl Single Likert I Single Additive B Random

0.6
0.3 7%

ok

0.0 - e

03l B N g ey ee——w |
-0.6 T T T T T T
0.6
0.3 A1

m —_— —_— T
2T T T =
-0.6 T T T T T T
0.6
0.3 1

4 |- -_— - B e -
e F I e E . =
-0.6 T T T T T T T
0.6
0.3 A =2
OOy e ey g e -

-0.6 T T T T T T T
0.6

0.3 ok

0.0 A
03] *-'—! ﬁ -—. - L | *” —
-0.6 T T T T T T T

SFR 8B

SFR 12B

Normalized Helpfulness
SFR 70B

Prom 7B

Prom 8x7B

Figure 20: The reranking performance for different datasets, for each judge that supports both pairwise and single-rating protocols.

In Fig. 21, we present an expanded version of Fig. 4 by plotting the minimum, maximum, mean, and distribution of
normalized helpfulness for all pairwise judges. A similar set of plots is shown in Fig. 22 for single-rating protocols. Judges
tend to reach higher maximum performance under pairwise prompts, while the minimum possible performance is relatively
stable between the protocols.

1.0

[%2]

@ 0.5 1

o

2

& 0.0 1 I I
9]

T

T -0.5 1

N

©

€ -1.0-

o

z

—1.5 - Math Reasoning Code Generation Instruction Following

Prom 7B -
SFR 8B -
SC 8B -
OB 8B -
SFR 12B -
Prom 8x7B 4
SFR 70B A
SC 70B -
STE 70B -
Llama 8B -
Best RM -
Random -

Figure 21: The violin plot showing the full distributions of judges’ pairwise reranking performance. An equivalent bar chart containing
only the mean is presented in Fig. 4.

Judges are able to improve AlpacaEval length-controlled win-rates as well. It is well established that LLM-judges are
susceptible to length bias (Zeng et al., 2023; Park et al., 2024), with judges preferring longer responses, even if they do not
follow user instructions. As a result, AlpacaEval designed a length-controlled win rate (Dubois et al., 2024a), which fits a
generalized linear model in an attempt to normalize response preferences based on length of responses. As we show in
Tab. 6, pairwise reranking can lead to large gains in length-controlled win rate as well, highlighting that the responses judges

24

Evaluating Judges as Evaluators: The JETTS Benchmark of LLLM-as-Judges as Test-Time Scaling Evaluators

Lik. Add. Lik. Add. Lik. Add. Lik. Add. Lik. Add. Lik. Add. Lik. Add.
0.50

0.25 A
0.00 - [} 1

—0.25

—0.50 1

—0.75 1

Normalized Helpfulness

—1.00

—1.25 1

-1.50

0.2 B Math Reasoning mmm Code Generation B Instruction Following

0.1 4 I
o Li. 1
| |

. T -I— L
-0.11 l F F I* ! ! I l
* n *
ok *k o *x *
* *
o

—0.2 1
Prom 7B SFR 8B Thm 8B SFR 12B Prom 8x7B SFR 70B Llama 8B OBgm 8B Spm 8B Sgw 27B Random

Normalized Helpfulness

-0.3

Figure 22: Normalized helpfulness of the single-rating protocol (with both the Likert and additive prompt) across task categories of each
judge, compared to Llama-3.1 8B with judge prompt, best reward model and random reranking, averaged across generator models and
datasets. The top panel shows the full distribution while the bottom panel only shows the mean.

select are high quality, regardless of length. In these settings, the Skywork-Critic models excel. Single-rating protocols also
result in performance gains over greedy responses, but like the standard win rate setting, the gains are far less pronounced.
Full results for Likert single-rating are shown in Tab. 7 and additive single-rating are shown in Tab. 8.

LC ‘ Prom7B SFR8B SC8B OBS8B SFRI12B Prom8x7B SFR70B SC70B STE 70B ‘ Llama 8B BestRM Greedy Random Oracle

Lamasg | X | 3494 3715 3698 3423 3093 37.31 4054 3786 37.63 32.00 3786 2726 2680 55.07
v | 3165 3283 3633 3181 3594 32.94 3720 37.09 3323 29.53 3709 2533 2505 52.59

Llama70p | X | 4602 4488 4288 4099 4592 45.20 46.87 4390 45.69 40.17 4569 3548 3427 6190
ama V| 4612 4367 4614 4311 4524 44.09 46.88 4738 41.08 41.38 4738 3685 3657 63.19
Qwen3op | X | 4418 4382 4270 4136 4778 4459 4597 4366 4670 41.84 4670 3292 3580 61.69
V| 4694 4707 4738 4541 5007 4621 4861 49.13 4748 4521 49.13 3840 4052 6475

Qwen72B | X | 5894 6222 5598 5835 6416 60.51 63.69 6143 63.03 58.73 6303 5201 5676 76.52
V| 5227 5241 5548 5235 55.09 51.56 5607 5742 5424 52.13 5742 4718 4856 70.85

Table 6: Judge reranking performance under the pairwise protocol on AlpacaEval, showing both non-length-controlled (LC) win rate and
length-controlled win rate. The non-LC values are the same as those in Tab. 3.

| LC | Prom7B SFR8B Thm8B SFR12B Prom8x7B SFR70B | Llama8B OBgry 8B Sgy 8B Sgm27B Greedy Random Oracle

Llamasp | X | 2842 2095 2780 2950 27.64 29.43 27.36 33.62 3605 3898 2726 2680 55.07
v | 2662 2779 2584 2729 25.95 27.57 26.25 32.87 3478 3558 2533 2505 5259

Llama70B | X | 3613 3686 3501 36.55 35.50 35.60 33.99 39.10 4205 4508 3548 3427 6190
v | 3870 3875 3743 3860 38.01 37.95 37.84 4241 4490 4618 3685 3657 63.19

Qwen3p | X | 3708 3708 3640 3721 36.17 36.54 35.98 39.29 4242 4517 3292 3580 61.69
wen V| 4205 4157 4129 4200 41.11 41.40 4121 45.14 4636 4637 3840 4052 6475
Qwen72B | X | 5440 5475 5380 5499 54.05 54.54 54.08 55.95 6034 6256 5201 5676 76.52
© v | 4926 4940 4857 49.80 48.90 49.54 49.50 53.49 5499 5444 4718 4856 7085

Table 7: Judge reranking performance under the Likert scale single-instance rating protocol on AlpacaEval, showing both non-length-
controlled (LC) win rate and length-controlled win rate. The non-LC values are the same as those in Tab. 4.

25

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

| LC | Prom7B SFR8B Thm8B SFR12B Prom8x7B SFR70B | Llama8B OBgry 8B Sgy 8B Sgm27B Greedy Random Oracle

Llamagp | X | 29002 3078 2786 3016 28.79 29.32 29.08 33.62 3605 3898 2726 2680 55.07
v | 2715 2854 2594 2797 26.58 27.13 26.84 32.87 3478 3558 2533 2505 5259

Llama7o | X | 3605 3819 3564 3660 36.48 36.17 36.32 39.10 4205 4508 3548 3427 6190
v | 3851 3988 3800 385l 38.32 38.15 37.92 4241 4490 4618 3685 3657 63.19

Qwen32p | X | 3706 3806 3634 3762 37.77 36.84 37.08 39.29 4242 4517 3292 3580 61.69
wen V| 4168 4214 4129 4222 42.07 41.19 41.46 45.14 4636 4637 3840 4052 6475
Qwen72B | X | 3517 5585 5391 5504 55.16 54.96 55.03 55.95 6034 6256 5201 5676 76.52
© v | 4956 5037 4872 4978 49.74 49.76 49.31 53.49 5499 5444 4718 4856 7085

Table 8: Judge reranking performance under the additive scale single-instance rating protocol on AlpacaEval, showing both non-length-
controlled (LC) win rate and length-controlled win rate. The non-LC values are the same as those in Tab. 5.

Domain-specific prompts do not lead to judge improvements. Because the SFR-Judge family is trained to have flexible
evaluation criteria, we experiment with prompting SFR-Judge-8B with domain-specific prompts for math reasoning and
code generation benchmarks. We craft these prompts with an emphasis on correctness of output and validity of intermediate
reasoning steps. The evaluation criteria for both prompts is shown in Fig. 19, with output format kept the same from the
original prompt in Fig. 15. We show the impacts of this domain-specific prompting in Fig. 23. Namely, performance drops
on all benchmarks, though no difference is statistically significant at « = 0.05. This demonstrates that the instruction
following to reasoning domain gap discussed in Sec. 4.2 cannot be bridged with specialized prompting, which is more likely
to be detrimental instead.

0.24 Bl Math Original Prompt Code Original Prompt
: Math Domain-Specific Prompt Code Domain-Specific Prompt

@
o 0.1+
£
2
5 oof —
o
@
N
® -0.1
£
£
(=]
z

—0.21

-0.3 T T T T T T

GSM8k MATH CHAMP HumanEval+ MBPP+ BigCodeBench

Figure 23: Normalized helpfulness of SFR-Judge-8B across all benchmarks, averaged across all applicable models. Domain-specific
evaluation prompting performs worse in all cases.

Additional visualizations for single-rating protocols. The performance of judges based on judge-to-generator ratio for
single rating protocols is presented in Fig. 24. The positive effect for math is still present, but notably diminished compared
to that of the pairwise protocol (Fig. 5), whereas the sizable instruction following advantage found in the pairwise case is
eliminated.

Likert Rubrics Additive Rubrics
0.5 0.5
« *
g g8 § 3¢ i ot) 2:3.
8 L i »
£ oof-—2f — — . 0.0{ - —H—% - , X !
2 ~
2 T
E 4 'y
> —0.51 —0.51
@
N
©
£ -1.01 -1.04
o
= —— Math coef: 0.07 (n.s.) Code coef: -0.05 (n.s.) —— |F coef: -0.00 (n.s.) —— Math coef: 0.03 (n.s.) Code coef: -0.09 (**) —— |F coef: -0.02 (n.s.)
-1.5 T T T -1.5 T T T
107t 10° 10! 107t 10° 10!
Judge Size / Generator Size Judge Size / Generator Size
GSM8k MATH CHAMP HumanEval+ MBPP+ BigCodeBench AlpacaEval IFEval

Figure 24: The effect of judge-to-generator size ratio on the normalized helpfulness for under single-rating reranking protocols.

Finally, we plot the distribution of the fraction of tied, top-rated responses for single-rating protocols in Fig. 25. Notably,
under the additive rating protocol, the Prometheus models are consistently able reduce the number of top-rated responses
compared to other models. Interestingly, this reduction in top-rated responses does not translate to improved average
performance relative to other models, as shown in Fig. 7, which may suggest that the judge is assessing based on surface-
level factors. Other judges, for the most part, struggle even with finer-grained additive evaluation criteria, tending to assert a
large fraction of responses as top-quality, regardless of domain.

26

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

1.0 A - pr— T pr— e e e e e e e —
1 1 1 I 1 1 1 1 1 1 1 1
1 1 T 1+ 1 1 1 1 1 1 1 I
1 1 1 1 1 I I I I T 1 +
0.8 1 1 I 1 i 1 I 11 i + i T1 1
1 1 1 1 41 + i +T | 1 1 1
'] . T L | |
i 1 1 1
0.6 1 + | | 1 | 1 1 | | | |
+ 40 | | I | I | 1 +1 | |
1 1 1 1 I | I 1 | | | 1
0.4 1 1 1 1 t 1 t i 1 i t i 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 | | 1 | 1 | 1
0.2 1] i i i i i i I i i i i
L 11 11l 11l 11 11 1l 11 11 11 11 L
T T T T T T
Prom 7B Thm 8B SFR 8B SFR 12B Prom 8x7B SFR 70B
I Math Reasoning Code Generation B Instruction Following
—— Additive Rating —=—- Likert Rating

Figure 25: The distribution of fraction of total responses tied as top-rated under single-rating reranking protocols.

B.2 Step-Level Beam Search

We present full results for our beam search experiments in Tab. 9. As Mao et al. (2024) found out for the CHAMP dataset,
models’ full solution accuracy is often much lower than their final answer accuracy. Furthermore, even state-of-the-art
LLMs such as GPT-4 and 4 Turbo struggle to identify mistakes in intermediate steps. Thus, the oracle accuracy for math
datasets, defined based on final answer accuracy, is likely to be a (severe) over-estimate of the true value. Such issues may
also be present for code datasets, when a solution contains bugs not identified by the test cases, though the issue may be less
extensive as we empirically find the trees to contain fewer leaf nodes (945 for math vs. 192 for code) and recent efforts in
code evaluation have emphasized testing rigor (Liu et al., 2023a; Zhuo et al., 2024).

We additionally report the performance of the Qwen2.5-Math-PRM, a 7B PRM specialized for the math domain. Despite its
specialization to math, it also offers competitive performance in coding domain tasks, largely outperforming comparably
sized LLM-judge models in beam search.

27

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

| Lookahead | Prom 7B SFR8B SC8B OB8B Thm8B SFR12B Prom8x7B SFR70B SC70B STE70B | Qpgrw 7B Greedy Random Oracle
s |5 BTN W UE Ba we ua me s e | 0B wn ma s
v | X | el RS wE e EE RN | wu sw o owas e
Eoowm| X[UEOUR OBE O N RN OND % | wR e e o
T | A ER RS RS RN e NN OEN N R NS ER ww e s
v | S| ECONS Ve NR Ne me o mw mn | ER s mee e
b | X[BECBSOREOUR wE R NR Nk R kh | M8 wes we o
wess |5 BEONE BT NG BN Bk Ba ik ue e | a% ww o na
T T T
Dooem| 5 O[EN RV LT EROBD ONTOET DD OIT NS &M ow owwoaw
aams| B EROE N 08 g an e an an en | B oew as oam
e[5| EN ST AR on e en e e e | B em sw oaw
peons | X[E B R D e % 4R BRORR weun em w s
wess | F BTN ORT WD ORE Nm AN OERONE OED[ED e aw o
we | X[EE R OGN WD SR ONR S WOED OSN35 s ww e
Doowm| X | on BE BN N ORY RS MmN DR M| M me ne o
I A R R
| XSl g w0 RN wT gn Oh en en | R ew wn o
R T
ums | X[TR OGR RE OGN U0 SR ST an an o[@n es ows owe
L uwmm| X[GEOBE RS RE LR RN S an B T owe omw ne
E
Soowm| JOIERORE BN ML NN OENONRONR OBR OWLIRN ew s e
oowm| X[NEOND MR Wh WL BR W RN ER MR we ww o
aen| X[T BE L W Be Wk mw wm o wn 2R AR ws wn oo
ocom| K| BN G w0 we G on o n 08 WSk | 0T es ww s
wes |2 B ORT G da 9% Wn Sn 0 un wn 9n [an we oseown
umn| B SN g el R Gn @R e Gn an | e e e we
Eoowm| [| T8 TN NG We b nn mm pa e sen | me me we
TR R R T E e
amcn | K B T W e wh e aw ww B2 BT me wn s
macom| 5| 4N @ Gl a6 en ah an on ey of | 5% ee v e
umn | X[RN DR NS G B0 Bm e Mn nw | Em own o oam es
g wmow| X[REoweouwoun oSN PR B 0 OES BV 80 a0 am o on
IR A T
Pooam| X[EE OGN ME BN DM OSD B M S| s en wn e
A - A T
owccon | K| B NEOEN Ee ESOED BN ORE OB NR [54 we ue eo

Table 9: Performance of the final selected node via the judge-guided beam search procedure.

28

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

B.3 Critique-Based Refinement

We present full results for our critique-based refinement experiments in Tab. 10. Here, we report the judge selected response
after reranking all generated responses, as well as the performance after just taking the last generated response.

Prom 7B

SFR 8B
Perf. Last Rand. Orac.

Perf. Last Rand. Orac.

Thm 8B
Perf. Last Rand. Orac.

SFR 12B
Perf. Last Rand. Orac.

Prom8x7B
Perf. Last Rand. Orac.

SFR 70B

Perf. Last Rand. Orac.“"mcay Rand-RR Orac-RR

™ Llama 8B | 85.06 84.46 84.69 87.79 | 8550 85.14 8546 86.50 | 85.67 84.46 84.83 87.79 | 8590 85.82 8530 8832 | 84.76 8453 84.83 86.58 | 90.14 89.69 88.46 90.98 | 85.67 82.08 96.44
E Llama 70B | 95.07 9477 95.05 95.60 | 9545 9545 9549 9553 | 95.07 9507 9494 96.13 | 9500 94.77 9523 9591 | 9522 9522 9539 9553 | 9560 9545 9545 9591 | 9553 95.11 98.48
@ Qwen32B | 9507 95.15 9501 9553|9522 9522 9522 9522|9538 9538 95.16 9545 |94.84 9500 9500 9538|9515 9507 9510 9522|9522 9530 9527 9545 | 9522 95.22 98.56
© Qwen72B | 9575 95.68 9565 95.83 | 95.68 95.68 95.68 95.68 | 9553 9553 9558 95.68 | 95.53 95.53 95.63 9575 | 95.68 95.68 9568 95.68 | 95.75 9575 9570 95.83 | 95.68 95.52 97.88
Llama 8B | 2530 2492 25.02 27.64 | 25.13 25.00 25.08 25.68 | 26.36 26.59 2585 28.93 | 25.68 2591 25.58 28.78 | 2545 2538 2534 2742 | 29.83 2847 2774 32.18 | 24.70 21.98 53.47

E Llama 70B | 43.96 44.18 44.02 45.17 | 44.00 44.18 44.01 4441 | 4358 4350 4388 46.68 | 44.18 4396 43.73 4630 | 44.11 43.88 4383 4471 | 4494 44.64 4428 4539 | 4381 42.07 68.35
§ Qwen 32B | 57.02 57.25 57.08 5831 | 57.10 57.10 57.10 57.10 | 57.55 57.70 57.26 58.53 | 56.50 56.65 56.79 58.76 | 56.87 56.72 56.88 57.78 | 58.08 58.01 57.27 59.14 | 57.10 52.24 78.17
Qwen72B | 62.92 6276 62.80 63.22 | 63.26 63.29 63.14 6329 | 63.14 63.07 63.10 63.82 | 62.54 62.61 6270 6390 | 62.92 6299 6291 63.29 | 6329 63.07 63.04 6397 | 62.99 61.37 82.78

o Llama 8B | 29.63 30.00 30.45 36.30 | 27.78 27.41 28.80 3889 | 27.39 2741 2794 31.11 | 29.26 28.89 2941 3926 | 26.67 26.67 2739 32.22 | 36.30 3593 32.86 41.85| 29.26 27.30 60.00
2 Llama70B | 48.15 47.78 47.52 53.60 | 49.26 48.52 4875 57.78 | 4741 4741 4741 4889 | 47.78 46.67 4682 55.56 | 48.15 47.78 47.69 51.11 | 4852 4852 4833 5222 | 4741 46.07 71.48
; Qwen32B | 73.33 7333 74.04 7630 | 7481 7407 7458 7556 | 7533 7519 7525 7556 | 75.19 74.81 7449 7593 | 7444 7481 7483 7519 | 7481 7519 7512 7556 | 75.19 70.67 85.56
O Qwen72B | 71.85 7148 7153 7185|7074 7148 7124 7222 | 7111 7111 7123 7148 | 71.85 71.85 7174 7222 | 7111 7111 7122 7148 | 7148 7148 7154 7185 | 7148 67.11 85.56
+ Llama 8B | 59.76 58.54 60.38 63.41 | 64.63 64.02 64.27 67.07 | 63.41 6341 6341 6341 |59.15 5854 59.86 6524 | 6280 6220 6280 6341 | 6585 6585 64.47 67.68 | 63.35 56.70 79.88
uE Llama 70B | 71.34 71.34 73.08 75.61 | 71.34 7195 73.58 76.22 | 7500 7500 7541 7561 | 7439 7378 7411 7927 | 75.61 7500 7530 7561 | 75.61 7561 7500 77.44 | 75.61 73.23 90.85
£ Qwen32B | 81.10 8232 81.59 8232 | 81.10 7927 80.00 81.71 | 80.28 79.27 80.15 81.10 | 79.27 80.49 80.60 83.54 | 79.88 79.88 80.49 81.10 | 81.10 81.10 81.44 8293 | 81.10 82.56 93.29
é Qwen72B | 82.93 8232 8247 83.54 | 83.54 83.54 8297 8476 | 81.71 8171 82.01 82.32 | 81.71 81.71 81.97 8476 | 8232 8232 8232 82.32 | 8293 83.54 82.13 83.54 | 82.32 82.13 93.90
+ Llama 8B | 51.32 51.06 5257 56.35 | 46.30 44.97 47.36 59.26 | 54.62 5476 54.55 5529 | 49.21 44.97 4646 61.11 | 5423 5397 5425 5529 | 56.88 56.08 54.97 59.52 | 54.50 55.21 76.46
& Llama70B | 64.55 64.81 6478 66.93 | 5820 5741 59.52 69.05 | 6548 6534 6534 65.61 | 58.73 60.05 6049 69.31 | 64.02 64.02 6451 6534 | 64.81 6587 64.84 6746 | 65.08 63.68 83.07
2 Qwen32B | 7434 7407 7431 7593 | 6852 69.05 70.58 7884 | 7575 75.66 7569 7593 | 70.63 7090 70.87 7831 | 73.54 7381 7460 76.19 | 7434 7540 7455 7725 | 7540 75.45 84.13
= Qwen72B | 75.66 7540 75.84 77.25 | 70.37 69.58 71.12 7857 | 76.46 76.46 7632 76.46 | 70.63 70.63 72.17 7857 | 75.13 75.13 7575 76.72 | 73.81 74.07 7445 78.04 | 76.19 75.71 84.66
Llama 8B | 31.67 31.05 3132 3281 | 3026 29.30 29.69 3535 | 31.62 31.58 31.61 32.81 | 32.63 32.19 31.92 37.54 | 30.09 30.18 30.62 3439 | 3482 34.65 3341 3798 | 31.67 28.03 56.84
Llama 70B | 45.18 45.18 4541 4623 | 43.07 43.07 43.85 47.19 | 4575 4570 4557 4588 | 43.07 4272 4327 48.07 | 4377 4386 4450 47.02 | 45.09 4535 4516 4640 | 4544 41.92 62.63

3 Qwen32B | 45.09 45.18 4527 46.14 | 45.09 4491 4506 47.63 | 4553 4553 4553 4553 | 4421 4421 4467 4693 | 4456 4439 4491 4579 | 4570 4596 4570 47.19 | 45.53 44.66 65.18
2 QwenT72B | 46.58 46.67 46.63 47.19 | 4491 4491 4570 47.63 | 4674 4675 4674 4675 | 46.14 4605 4626 47.63 | 4570 4561 46.10 47.11 | 4728 47.11 4693 48.16 | 46.67 46.30 60.18
E] Llama 8B | 30.20 27.94 28.12 39.01 | 30.78 30.38 28.56 38.24 | 28.68 29.18 2832 34.07 | 3328 30.34 29.35 39.11 | 30.04 2933 2926 36.83 | 30.22 28.60 28.02 3635 | 27.26 26.80 55.07
4 Llama70B | 37.00 36.15 3621 4149 | 36.19 3523 3585 3952|3504 3518 3580 36.64 | 3560 3526 3576 37.65 | 3543 3548 3592 3697|3537 3479 3552 36.69 | 3548 3427 61.90
§ Qwen32B | 37.14 37.01 3525 39.67 | 3226 3226 3292 3292 | 32.14 3213 3278 33.56 | 3327 3344 3333 34.68 | 32.58 3279 33.20 33.86 | 32.73 3257 3294 3431 32.92 35.80 61.69
< Qwen72B | 5621 5583 5382 56.97 | 5246 51.00 51.22 53.84 | 5246 5231 51.85 5258 | 52.57 5247 51.83 5288 | 53.14 53.19 5230 52.86 | 5297 51.68 51.78 5348 | 52.01 56.76 76.52
Llama 8B | 67.65 68.39 69.45 77.45 | 7486 73.38 73.05 79.85| 7193 7320 7216 76.52 | 7449 7505 73.06 80.78 | 70.61 7098 7127 7579 | 7652 76.52 7472 79.48 | 7283 66.43 87.80

T Llama70B | 8336 8244 8350 87.25 | 8410 8336 83.58 87.99 | 84.53 84.47 8439 8503 | 8540 8429 8452 86.69 | 83.92 8429 84.13 8503 | 85.58 8521 84.80 8577 | 84.29 79.94 92.42
£ Qwen32B | 79.67 79.85 79.95 8262 | 8226 8226 81.76 8540 | 80.35 80.96 80.57 81.70 | 81.52 81.33 80.92 82.62 | 79.67 79.85 80.08 81.15 | 8244 8262 8132 83.18 | 80.22 77.38 90.02
- Qwen72B | 82.99 82.62 8332 8558 | 8521 84.47 84.84 86.51 | 82.86 82.81 83.13 83.92 | 84.47 84.10 8386 8558 | 84.10 84.66 84.19 84.66 | 84.29 84.47 84.01 8540 | 83.55 81.44 92.24

Table 10: Critique-based refinement result for the (1, 9)-refinement setup. Random and Oracle for each judge are computed from the
greedy seed response and nine responses generated during refinement. Random-RR and Oracle-RR are computed from the greedy seed
response and nine sampled ones used in the reranking experiments.

Graphical illustration. Fig. 26 graphically depicts the refinement process, compared to the reranking process, and illustrates
the definition of various metrics used in Sec. 4.4.

. (Ref)
Pereedy Refinement Plast_
e, = P — y ©9) Reh) £33 RR)
O i o i T L @ T P Puee
l A A B 8 Fk . -1-» Judge

(RR)
— - T L (Refy Prand
_ i Prand .
-\ .
s | a0 5 Ty e .~ p= Random
UK X X K X X
§ \ \ \ _
I I -~ -~ -7 - -7 -~ ®eh (\g’\ ®®)
\ : Oracle * Porac. Porac.
Pgreedy Reranking

Figure 26: Illustration various metrics, all aggregated over the dataset. pgrecdy is calculated on the greedy response (seed in refinement

and first in reranking), and pl(fsif) on the last refined response. The judge, a random selector and an oracle selects respective responses

from each refinement and reranking process and compute their metrics.

Qualitative case study. Here, we provide examples of ineffective judge model critiques. We analyzed over 100 critique-
response pairs and found two primary failure modes that point to lack of judge actionability: (1) False positives due to judges
focusing on surface-level details rather than catching critical errors or (2) False negatives due to judges over scrutinizing
stylistic errors over substance. Examples of false positive and false negative failure modes are presented in Fig. 27 and
Fig. 28, respectively. In both cases, judges fail to assess based on validity and correctness of the response, offering feedback
that does not appropriately progress or stop the refinement cycle.

29

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

Dataset: MATH

Generator: Qwen2.5-72B-Instruct

Judge: SFR-Judge-70B

Refinement Round: 1

Type of Error: False positive. Generator produces the wrong output, but the judge does not catch the mistake.

Question:
The 5 x 5 grid shown contains a collection of squares with sizes from 1 x 1 to 5 x 5. How many of these squares contain
the black center square?

Generator Output:

Step 1: Identify the sizes of squares that can contain the black center square

The black center square is located at the center of the 5 x 5 grid. We need to count the number of squares of different
sizes that can contain this center square.

Step 2: Count the number of squares of each size that contain the center square

- *¥*1 x 1 squares**: Only the center square itself contains the black center square. There is 1 such square.

- ¥*%2 x 2 squares®™*: The center square can be part of 4 different 2 x 2 squares (one for each possible position of the
top-left corner of the 2 x 2 square that includes the center).

- *¥%3 x 3 squares**: The center square can be part of 4 different 3 x 3 squares (one for each possible position of the
top-left corner of the 3 x 3 square that includes the center).

- *¥%4 x 4 squares**: The center square can be part of 4 different 4 x 4 squares (one for each possible position of the
top-left corner of the 4 x 4 square that includes the center).

- *#%5 x b squares®*: The entire 5 x 5 grid is the only 5 x 5 square, and it contains the center square. There is 1 such square.

Step 3: Sum the number of squares of each size

1+4+4+4+1=14

Therefore, the final answer is: . I hope it is correct.

Judge Critique:

The response precisely executes the instruction by following the required format for complex problems and providing
a clear step-by-step solution. The explanation and calculations are concise and easy to follow. The response also
accurately counts the number of squares of each size that contain the center square and correctly sums them up to obtain
the final answer. The conclusion is also in line with the instruction.

Ground-Truth Solution:
All of the squares of size 5 x 5, 4 x 4, and 3 x 3 contain the black square and there are

124+224+32=14

of these. In addition, 4 of the 2 x 2 squares and 1 of the 1 x 1 squares contain the black square, for a total of
14+4+1=[19]

Figure 27: Example of a false positive judge critique. The judge focuses on surface-level details, such as ease of reading, rather than
verifying the logical errors in the model response. As a result, the refinement process stops without correcting the mistake.

30

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

Dataset: MATH

Generator: Llama-3.1-8B-Instruct

Judge: SFR-Judge-70B

Refinement Round: 1-6; 1 shown

Type of Error: False negative. Generator produces the correct output, but the judge overemphasizes details irrelevant to
response correctness.

Question:
In the diagram below, we have sin ZRP(Q = % What is cos ZRPS? [Tikz omitted]

Generator Output:
Step 1: We are given that sin ZRP(Q = % and we need to find cos ZRPS.

Step 2: To approach this problem, we can use the relationship between sine and cosine functions in a right-angled
triangle.

Step 3: Since sin ZRPQ = %, we can use the Pythagorean identity to find cos ZRPQ).

Step 4: The Pythagorean identity states that sin® 6 4 cos? § = 1 for any angle 6.

Step 5: Therefore, we can find cos ZRPQ by rearranging the Pythagorean identity: cos®> ZRPQ = 1 —sin®> ZRPQ.

Step 6: Substituting the given value of sin ZRPQ = % we get cos? ZRPQ =1 — (2—75)2 =1- % = 2;?.

Step 7: Taking the square root of both sides, we find cos ZRPQ = % = %.

Step 8: Now, we need to find cos ZRPS. Since ZRPS is the supplement of ZRP(Q), we can use the relationship
cos(f + 180°) = — cos .

Step 9: Therefore, cos ZRPS = —cos ZRPQ = —%.

24

Therefore, the final answer is: o5 |

Judge Critique:

The response precisely executes the instruction by providing a step-by-step solution to the problem. It clearly explains
each step and uses the required format. The response is also accurate, as it correctly applies the Pythagorean identity and
the relationship between sine and cosine functions in a right-angled triangle. Additionally, the response is harmless
and does not contain any unnecessary information. However, the response contains more steps than necessary, as the
problem can be solved in fewer steps.

Ground-Truth Solution:
For any angle z, we have cos(180° — x) = — cos x, so cos ZRPS = cos(180° — ZRPQ) = — cos ZRPQ.
Since sin? ZRPQ + cos? ZRPQ = 1, we have cos> /ZRPQ = 1 — (%)2 = 278. Since ZRPQ is acute, we have
%
25 |

cos ZRPQ = %, which gives us cos ZRPS = —cos ZRPQ =

Figure 28: Example of a false negative judge critique. The judge focuses on surface-level details, such as response length, ignoring the
fact that the outcome is correct.

31

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

C Tables of Normalized Results

Table 11-15 presents the normalized helpfulness and refinement ratio statistics for reranking, beam search and refinement.

‘ Prom7B SFR8B SC8B OB8B SFR12B Prom8x7B SFR70B SC70B STE 70B ‘ Llama 8B BestRM Greedy Random Oracle Maj

Llama 8B | -0.042 0.317 0296 0.014 0.338 -0.042 0.747 0.528 0.409 0.134 0.436 0.000 -0.333 1.000 0.479

- Llama 70B 0.102 0.129 0.153 -0.105 0.051 -0.285 0.258 0.359 -0.207 0.000 0.332 0.000 -0.142 1.000 0.437

°E° Qwen 32B | -0.066 0.296 0.093 0.138 0.114 -0.114 0.207 0.159 0.000 -0.021 0.251 0.000 0.000 1.000 0.251

7] Qwen72B | -0.277 -0.068 -0.036 0.032 -0.209 -0.173 0.000 0.241 0.032 -0.209 0.277 0.000 -0.073 1.000 0.277

© Qwen-M 7B | -0.168 0.110 0.139 -0.168 0.165 -0.249 0.194 0.194 -0.029 -0.139 0.194 0.000 -1.282 1.000 0.249

Dpsk-M 7B | -0.036 0.396 0.448 0.099 0.391 0.005 0.740 0.635 0.422 0.218 0.471 0.000 -0.084 1.000 0.448

Llama 8B | -0.052 0.184 0.037 0.005 0.184 0.016 0.417 0.178 0.184 0.155 0.178 0.000 -0.095 1.000 0.291

Llama 70B | -0.019 0.175 0.139 -0.034 0.141 0.080 0.326 0.187 0.234 0.163 0.254 0.000 -0.071 1.000 0.354

E Qwen32B | -0.111 0.093 0.039 -0.168 0.140 -0.097 0.330 0.129 0.118 0.043 0.106 0.000 -0.231 1.000 0.262

<2: Qwen72B | -0.034 0.145 0.061 -0.088 0.103 -0.034 0.263 0.195 0.221 0.118 0.153 0.000 -0.082 1.000 0.317

Qwen-M 7B 0.028 0.269 0.099 -0.066 0.241 0.049 0.385 0.247 0.187 0.241 0.159 0.000 -0.808 1.000 0.280

Dpsk-M 7B | -0.093 0.172 0.098 0.084 0.101 0.045 0.386 0.217 0.267 0.122 0.207 0.000 -0.057 1.000 0.246
Llama 8B 0.048 0.036 0.048 0.060 0.156 0.060 0.156 0.120 0.132 0.036 0.084 0.000 -0.064 1.000 -
a Llama 70B | -0.061 0.169 0.138 0.046 0.061 -0.077 0.031 0.200 0.015 0.046 0.200 0.000 -0.056 1.000 -
= Qwen 32B | -0.500 -0.393 -0.750 -0.215 -0.643 -0.608 -0.465 -0.608 -0.465 -0.715 -0.375 0.000 -0.436 1.000 -
§ Qwen72B | -0.394 -0.368 -0.105 -0.342 -0.210 -0.237 -0.289 -0.079 -0.263 -0.210 -0.197 0.000 -0.310 1.000 -
C Qwen-M 7B 0.118 0.392 0275 0216 0.255 0.236 0.510 0.373 0.392 0.196 0.373 0.000 -0.884 1.000 -
Dpsk-M 7B 0.016 0.355 0266 0.177 0.282 -0.016 0.363 0.298 0.290 0.097 0.331 0.000 0.054 1.000 -
+ Llama 8B | -0.586 -0.291 0.041 -0.106 -0.143 -0.475 0.262 0.188 0.041 -0.106 0.225 0.000 -0.402 1.000 -
= Llama 70B | -0.560 -0.280 0.160 0.000 0.119 -0.320 0.000 0.240 0.120 0.000 0.200 0.000 -0.156 1.000 -
uE Qwen 32B | -0.100 0.100 0.000 0.250 0.100 -0.100 0.000 0.200 0.000 0.000 0.350 0.000 0.120 1.000 -
g Qwen 72B 0.053 0.211 0316 0316 0.053 -0.053 0.369 0.473 0.053 0.000 0.473 0.000 -0.016 1.000 -
é Qwen-C7B | -1.585 -0.584 -0.751 -0.918 -0.584 -1.168 -0.334 -0.417 -0.501 -0.584 -0.584 0.000 -0.694 1.000 -
Dpsk-C6.7B | -0.375 -0.167 0208 -0.292 -0.292 -0.375 0.374 0.333 0.167 -0.167 0.375 0.000 -0.296 1.000 -
Llama 8B | -0.313 -0.012 0.133 0.204 -0.097 -0.241 0.108 0.373 0.349 0.096 0.289 0.000 0.032 1.000 -
. Llama 70B | -0.544 -0.353 -0.044 0.014 -0.500 -0.500 -0.265 0.235 0.059 0.014 0.184 0.000 -0.078 1.000 -
) Qwen 32B | -0.182 0.061 0.061 0.121 -0.061 -0.182 0.030 0.302 0.000 -0.031 0.076 0.000 0.006 1.000 -
= Qwen72B | -0.188 0.063 0.032 0.000 -0.125 -0.093 0.125 0.093 0.032 0.218 0.063 0.000 -0.057 1.000 -
= Qwen-C7B | -0.384 -0.192 -0.115 -0.115 -0.346 -0.346 0.058 0.250 0.116 -0.019 0.039 0.000 -0.376 1.000 -
Dpsk-C6.7B | -0.960 -0.560 -0.380 -0.360 -0.640 -0.660 -0.420 -0.160 -0.320 -0.020 -0.020 0.000 -0.304 1.000 -
= Llama 8B | -0.216 0.031 0.063 0.042 -0.017 -0.133 0.174 0.219 0.181 -0.052 0.136 0.000 -0.145 1.000 -
§ Llama 70B | -0.291 -0.189 -0.148 -0.184 -0.219 -0.316 -0.163 -0.112 -0.107 -0.123 -0.090 0.000 -0.205 1.000 -
g Qwen32B | -0.103 0.036 -0.014 -0.032 0.013 -0.085 0.111 0.067 0.058 -0.018 0.036 0.000 -0.044 1.000 -
2 Qwen72B | -0.065 0.013 0.058 0.090 0.071 -0.072 0.064 0.045 0.071 -0.065 0.143 0.000 -0.027 1.000 -
go Qwen-C7B | -0.315 -0.110 -0.137 -0.059 -0.128 -0.210 0.050 0.078 0.014 -0.114 0.000 0.000 -0.233 1.000 -
A Dpsk-C6.7B | -0.109 0.051 0.146 0.109 0.095 -0.054 0.219 0.215 0.183 0.080 0.170 0.000 -0.101 1.000 -
E] Llama 8B 0.276 0.356 0350 0.251 0.456 0.361 0.478 0.381 0.373 0.170 0.421 0.000 -0.017 1.000 -
= Llama 70B 0.399 0.356 0280 0.209 0.395 0.368 0.431 0.319 0.386 0.178 0.363 0.000 -0.046 1.000 -
é Qwen 32B 0.391 0.379 0.340 0.293 0.517 0.406 0.454 0.373 0.479 0.310 0.426 0.000 0.100 1.000 -
< Qwen 72B 0.283 0.417 0.162 0.259 0.496 0.347 0.477 0.384 0.450 0.274 0.430 0.000 0.194 1.000 -
Llama 8B | -0.371 -0.173 -0.185 -0.062 -0.062 -0.259 0.124 -0.100 -0.049 -0.198 0.012 0.000 -0.337 1.000 -
E Llama 70B | -0.273 -0.319 -0432 -0.523 -0.319 -0.523 -0.160 -0.250 -0.160 -0.501 -0.205 0.000 -0.379 1.000 -
£ Qwen 32B 0.039 0.151 0.019 -0.076 -0.018 0.000 0.245 0.245 0.208 -0.038 0.220 0.000 -0.080 1.000 -
- Qwen72B | -0.087 0.131 0.108 0.021 0.152 0.000 0.174 0.218 0.044 0.195 0.293 0.000 -0.015 1.000 -

Table 11: Normalized helpfulness of judge reranking (pairwise protocol), computed from raw data presented in Tab. 3.

32

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

‘ Prom7B SFR8B Thm8B SFR 12B Prom 8x7B SFR 70B ‘ Llama 8B OBgryM 8B Sgrm 8B Sgm 27B Greedy Random Oracle Maj

Llama8B | -0.125 0.110 -0.348 0.045 -0.160 0247 | -0.090 0405 0289 0436 0000 -0.333 1000 0479
. Llama70B | 0092 0081 0051 0024 0037 -0.020 0.020 0115 0180 0332 0000 -0.142 1.000 0437
£ Qwen32B| 0069 0129 0045 0036 0.024 0.075 0.039 0251 0207 071 0000 0000 1000 0251
% Qwen72B | 0077 -0059 -0.123 -0.045 -0.055 -0.027 0.009 0068 0277 0205 0000 -0.073 1000 0277
© QwenM7B | 0524 0077 -1205 0073 -0352 0.154 | -0.150 0110 0139 0194 0000 -1.282 1000 0.249
Dpsk-M7B | -0.005 0.122 -0.004 0.24 -0.008 0423 0.020 0339 0464 0471 0000 -0.084 1.000 0448
Llama8B | -0.013 0069 -0.118 0057 -0.002 0164 | -0013 0158 0130 078 0000 -0.095 1000 0.291
Llama70B | 0051 0076 -0.090 0.099 0.037 0.095 0.054 0120 0160 0254 0000 -0.071 1.000 0.354
Z Qwen32B | -0.110 0022 -0237 0060 -0.149 0100 | -0.097 -0054 0106 0032 0000 -0231 1000 0.262
S Qwen72B| -0013 0031 0070 0009 0047 0040 | -0.008 0056 0153 0.49 0000 -0.082 1000 0317
Qwen-M7B | -0769 0070 -0737 0068 -0340 0.101 | -0.164 0107 0096 0.5 0000 -0.808 1.000 0.280
Dpsk-M7B | -0.050 0109 -0.082 0.041 -0.019 0218 0.057 0180 0207 0202 0000 -0.057 1000 0.246
Llama8B | -0.069 -0.141 -0028 0.031 0.016 0.075 0.055 0084 0024 0048 0000 -0.064 1000 -
o Llama70B | -0.016 0120 -0017 0.145 0.022 0.064 0011 0200 0138 031 0000 -0.056 1000 -
S Qwen32B | -0484 -0531 -0422 0398 0472 0422 | 0562 -0536 -0.626 -0375 0000 -0436 1000 -
S Qwen72B | -0464 -0241 0288 -0290 0359 -0319 | -0212 0237 -0.197 -0289 0000 -0310 1000 -
O Qwen-M7B | 0080 0.55 0183 0228 0.066 0.290 0.165 0255 0373 0275 0000 -0.884 1000 -
Dpsk-M7B | 0009 0120 0062 0.146 0.092 0279 0.123 0286 0331 085 0000 0054 1000 -
Llama8B | -0.287 -0.109 -0382 -0.114 -0.355 0092 | -0351 -0.180 0059 0225 0000 -0402 1000 -
% Llama70B | 0056 -0.179 -0.130 0160 -0.147 0098 | -0.116 0120 0200 020 0000 -0.156 1000 -
£ Qwen32B | 0.148 0016 0098 0.17 0.115 0.308 0.057 0300 0050 0350 0000 0120 1000 -
2 Qwen72B| -0027 0275 0013 0189 -0.019 0.198 | -0.039 0158 0211 0473 0000 -0.016 1000 -
2 QwenC7B| 0654 0635 0659 -0.653 0640 -0274 | -0655 -0.668 -1.001 -0.584 0000 -0.694 1000 -
Dpsk-C67B | -0.273 -0.135 -0241 -0059 -0270 0083 | -0.156 0042 0125 0375 0000 -0.296 1000 -
Llama8B | 0102 0014 0066 0.122 0.087 0.283 0.107 0265 0289 008 0000 0032 1000 -
, Llama70B | -0009 -0264 0060 -0.182 0046 -0004 | 0019 0029 018 -0103 0000 -0078 1000 -
£ Qwen32B | -0053 0002 0042 0.000 0.001 0.022 0050 -0031 0076 0000 0000 0006 1000 -
& Qwen72B | 0014 0090 -0014 0.043 0009 -0.021 0.058 0063 0110 0032 0000 -0.057 1000 -
Z QwenC7B| -0273 0288 0328 -0.175 0287 -0054 | 0172 0019 0039 -0.009 0000 -0376 1000 -
Dpsk-C6.7B | -0.293 -0258 -0265 -0304 -0277 -0320 | -0.197 -0.190 -0020 -0.600 0000 -0304 1000 -
= Llama8B | -0.079 -0041 -0.108 0.013 -0.072 0.101 | -0.049 0038 0131 0136 0000 -0.145 1000 -
2 Llama70B | -0179 0156 -0.168 -0.149 -0.158 -0.124 | -0.157 -0.105 -0.090 -0.092 0000 -0.205 1000 -
2 Qwen32B | -0.026 0004 -0042 -0.005 -0.031 0014 0.006 0026 0027 003 0000 -0.044 1000 -
E Qwen72B | 0007 0019 -0.025 0044 -0.022 0058 | -0.003 0016 0143 0123 0000 -0.027 1000 -
% Qwen-C7B | -0.196 -0.126 -0222 -0.105 -0.199 0008 | -0.15 -0.069 0000 -0.016 0000 -0233 1000 -
& Dpsk-C67B | -0.029 -0.005 -0077 0.031 -0.039 0.156 0.017 0080 0170 0.64 0000 -0.101 1000 -
S Llama8B | 0042 0097 0019 0081 0.014 0.078 0.004 0229 0316 0421 0000 -0.017 1000 -
2 Llama70B | 0025 0052 -0018 0.040 0.001 0.005 | -0.056 0137 0249 0363 0000 -0.046 1000 -
§ Qwen32B| 0145 0145 0121 0.149 0.113 0.126 0.106 0221 0330 0426 0000 0100 1000 -
< Qwen72B | 0098 0.112 0073 0122 0.083 0.103 0.084 0161 0340 0430 0000 0194 1000 -
Llama8B | -0.333 -0.166 -0247 -0.147 -0246 -0.069 | -0.162 -0025 -0.118 0012 0000 -0428 1000 -
T Llama70B | -0250 -0248 -0250 -0.246 -0.283 0193 | -0349 0386 -0205 -0.295 0000 -0.535 1000 -
£ Qwen32B | 0018 -0003 0008 -0.052 -0.034 0247 0.074 0220 0019 0122 0000 -0.290 1000 -
T Qwen72B | -0.035 002 -0030 0.085 0.009 0.152 0.041 0117 0287 -0010 0000 -0.243 1000 -

Table 12: Normalized helpfulness of judge reranking (single-rating protocol with Likert scale prompt), computed from raw data presented
in Tab. 4.

33

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

‘ Prom7B SFR8B Thm8B SFR 12B Prom 8x7B SFR 70B ‘ Llama 8B OBgryM 8B Sgrm 8B Sgm 27B Greedy Random Oracle Maj

Llama8B | -0.222 -0.020 -0.331 -0.032 0.002 0078 | -0.063 0405 0289 0436 0000 -0.333 1000 0479
. Llama70B | 0034 0085 0000 006 0119 -0.061 0.051 0115 0180 0332 0000 -0.142 1.000 0437
£ Qwen32B| 0012 0075 0075 0030 0.051 0.015 0.081 0251 0207 071 0000 0000 1000 0251
% Qwen72B | -0050 -0059 -0241 -0.068 -0.005 -0.082 | -0.250 0068 0277 0205 0000 -0.073 1.000 0277
O Qwen-M7B | -1297 0037 -1209 -0.004 -0.502 0070 | -0.037 0110 0139 0194 0000 -1.282 1000 0.249
Dpsk-M7B | -0071 0.168 -0.069 0016 0.099 0.299 0.026 0339 0464 0471 0000 -0.084 1.000 0448
Llama8B | -0.066 0016 -0.122 0044 -0.025 0079 | -0.004 0158 0130 078 0000 -0.095 1000 0.291
Llama70B | -0.019 0077 -0052 0.100 0.018 0.048 0.090 0120 0160 0254 0000 -0.071 1.000 0.354
E Qwen32B | -0.142 -0.124 0251 -0.092 -0.095 -0.168 | -0.124 0054 0106 0032 0000 -0231 1.000 0262
S Qwen72B| -0065 -0001 0058 -0.008 0.005 -0027 | -0.025 0056 0153 0.49 0000 -0.082 1000 0317
Qwen-M7B | -1.I85 0049 -0852 0.075 -0.391 0074 | -0.186 0107 0096 0.5 0000 -0.808 1.000 0.280
Dpsk-M7B | -0011 0049 -0.077 -0.007 0.004 0133 | -0.001 0180 0207 0202 0000 -0.057 1000 0.246
Llama8B | 0017 -0.048 -0017 0091 0.076 0.062 0.047 0084 0024 0048 0000 -0.064 1000 -
o Llama70B | 0023 001 -0009 0.083 0.084 0000 | -0.043 0200 0138 031 0000 -0.056 1000 -
S Qwen32B | 0535 -0441 0419 0451 -0.455 0441 | -0370 053 -0626 0375 0000 -0436 1000 -
S Qwen72B | 0295 -0262 -0.348 -0308 0266 -0249 | -0362 0237 -0.197 -0289 0000 -0310 1000 -
U Qwen-M7B | -0052 0272 0222 0208 0.224 0237 0.091 0255 0373 0275 0000 -0.884 1000 -
Dpsk-M7B | 0027 0168 0067 0.121 0.072 0236 0.055 0286 0331 085 0000 0054 1000 -
Llama8B | -0.364 0292 -0387 -0.172 -0337 -0.097 | -0227 -0.180 0059 0225 0000 -0402 1000 -
% Llma70B | -0.124 -0.140 -0.146 -0.181 0149 0110 | -0.209 0120 0200 020 0000 -0.156 1000 -
£ Qwen32B | 0160 -0.171 0117 0.121 0.123 0.116 | -0.008 0300 0050 0350 0000 0120 1000 -
2 Qwen72B| -0003 0147 0014 0195 -0.022 0.111 0.109 0158 0211 0473 0000 -0.016 1000 -
Z QwenC7B | 0633 0601 0637 0631 0588 -0575 | -0.851 0668 <1001 -0584 0000 -0.694 1000 -
Dpsk-C6.7B | -0.383 -0213 -0273 -0.158 -0273 20027 | -0426 0042 0125 0375 0000 -0.296 1000 -
Llama8B | 0163 0.055 0060 0.103 0.094 0.265 0.105 0265 0289 008 0000 0032 1000 -
. Llama70B | -0013 -0.136 -0066 -0166 -0.053 0048 | -0.149 0029 0.84 0103 0000 -0.078 1000 -
£ Qwen32B | -0027 -0.002 0030 -0.076 0.013 -0.001 0031 -0031 0076 0000 0000 0006 1000 -
& Qwen72B| 0032 0015 -0031 -0.031 0.034 0.078 0.135 0063 0110 0032 0000 -0.057 1000 -
= QwenC7B| -0203 0285 0352 0112 0271 0010 | -035%6 0019 0039 -0.009 0000 -0376 1000 -
Dpsk-C6.7B | -0.156 0426 -0262 -0377 -0275 0232 | -0276 0190 -0.020 -0.600 0000 -0.304 1000 -
= Llama8B | -0.087 -0050 -0.111 -0.019 -0.070 0024 | -0.075 0038 0131 0136 0000 -0.145 1000 -
2 Llama70B | -0.162 0184 -0.168 -0204 -0.162 -0.149 | -0.I5 -0.105 -0.090 -0.092 0000 -0.205 1000 -
2 Qwen32B | -0.039 0005 -0039 0015 0000 -0.011 0.003 0026 0027 003 0000 -0.044 1000 -
B Qwen72B | -0.031 0027 -0026 0.039 0.021 0.024 0.009 0016 0143 0123 0000 -0.027 1000 -
% Qwen-C7B | -0229 -0.124 -0224 -0.144 0171 0068 | -0.157 0069 0000 -0.016 0000 -0233 1000 -
& Dpsk-C67B | -0.054 -0.045 -0084 0012 -0.010 0114 | -0083 0080 0170 0.64 0000 -0.101 1000 -
S Llama8B | 0063 0127 002 0.104 0.055 0.074 0.065 0229 0316 0421 0000 -0.017 1000 -
2 Llma70B | 0022 0103 0006 0.042 0.038 0.026 0.032 0137 0249 0363 0000 -0.046 1000 -
§ Qwen32B | 0144 0179 0119 0.163 0.169 0.136 0.145 0221 0330 0426 0000 0100 1000 -
< Qwen72B | 0029 057 0078 0124 0.129 0.120 0.123 0161 0340 0430 0000 0194 1000 -
Llama8B | -0.323 0231 -0248 -0.223 0206 -0.157 | -0234 0025 -0.118 0012 0000 -0428 1000 -
T Llama70B | -0.343 -0412 0287 0257 0424 0239 | -0424 -0386 0205 -0295 0000 -0.535 1000 -
£ Qwen32B | -0.090 -0026 -0020 0078 -0.005 -0.001 | -0.082 0220 0019 0122 0000 -0.290 1000 -
T Qwen72B| 0066 0000 -0041 0040 -0.133 0068 | -0.062 0117 0287 -0010 0000 -0.243 1000 -

Table 13: Normalized helpfulness of judge reranking (single-rating protocol with additive prompt), computed from raw data presented in
Tab. 5.

34

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

| Lookahead | Prom 7B SFR8B SC8B OB8B Thm8B SFR12B Prom8x7B SFR70B SC70B STE70B | Qpgrw 7B Greedy Random Oracle
vmass | 5[OLTGIE GBS SN0 R Gh g Dm0 | 030 ome ame o
vemron | X[GUE G ORS g oo SN oo 0 G| 0w e tow
£ o] X[DS ORI Sh o ol uoh oam vew | o3 oo oo tow
Toewen| B[AN SE oureme mwoum g g om0 0 omo ome iwo
| 5O L e o o ;o om o | ol om ses umo
b | X[DReGW QR GNT G ST 0 oD wie a1 e owo oon tow
wmss | E | Om e OIS e bon aem oms tam oim bew | ome o0 oms tow
vmaron | [BTGOSO GG tee GRS oW oeR b | 0 owo oos tow
Soomm| 5[U Ul U b ol o o om om oen | oa om0 aon o
s |5 OB OR G e oes i omy e | o owo o i
o | 5| G UL Gl o e ome o om | 03 ow o umo
maw | X[U N Gen ol oms bem ohn ome ome | o oow oow umo
s | E | e Sew i om uon oim oo | om oo owe tow
| X[DR O U om Sew o oew oew oow | o oow o o
Doowms| K| BISGemoone om0 O GW 0 i oo | 0% ome am o
Toawms| L[G0 Gle SEogmGNS S M G e | b oo aos tow
o | X T o oen aew om ow o | MM ow ows mo
o | X[N ol ol ovs e o o om | 20 oow oow umo
s | E | OHUR OB LN tew 0m ome o aom oo | om oo oo tow
| XU UE 0 b i ol bme em e | NT omo om o
E
AR A I B R
Toowens| K| 0RE G om OGO W0 R O o | O ome o o
I T A
macom | 5| G U U b b ol oaw oms e o[oM omo o
v | X GUE G o ol Dl ool W o | ok ow oo tow
e | X[UGS 0R tew oms oen m owm e oan |t oom emn e
o] D [00 D G om een oo om om boa om | om om om ow
s | B OOt Gom o oow iy e bom | om om0 omo o
ovcs [X[GESETOR B O UN 0 o o e | S ome awm wom
occonm| K| GNS OB GaGEL GIGNT Gl 0T O o | 0w o umo
s [5[GBSGNT S ORGSO Gin oew e o | oo ome ame 1
g wme| X[ORI GRS G Gem o sen sen ben | 0 o0 oo row
oo | X[G IO OE U thn Gen om sen bew tew | b o ows tow
e T T R A
aurcTs | X[GG 0D b e Sen bae oen oo oma | bR omo aom 1o
oconn| K| GHS ome uen Gow oml g ooe om oM oew | S owo om0 mo

Table 14: Normalized helpfulness of judge beam search, computed from raw data presented in Tab. 9.

35

Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators

Prom 7B SFR 8B Thm 8B SFR 12B Prom8x7B SFR 70B
SRR) 5(G) §EM) | §RR) §C) §EBMH | GRR) 5@ gEM | GRR) 5Q) §ED | GRR) 5@ B | §RR) §Q) GEM)
. Liama8B | 0.998 0993 0993 | 0.960 0998 0960 | 1.043 1.000 1.000 | 0962 1.003 0962 | 0.995 0989 0989 | 0962 1.052 0.962
£ Llma70B | 0992 0995 0992 | 0995 0999 0995 | 0.995 0995 0995 | 0.993 0994 0993 | 1.006 0997 0997 | 0.993 1.001 0.993
% Qwen32B | 1.001 0998 0998 | 0.990 1.000 0990 | 1.004 1.002 1.002 | 0992 0996 0992 | 1.003 0.999 0999 | 0.993 1.000 0.993
© Qwen72B | 1.007 1001 1.001 | 1.002 1.000 1.000 | 1.004 0998 0998 | 1.003 0998 0998 | 1.004 1.000 1.000 | 1.001 1.001 1.001
Llama 8B | 1.091 1.024 1.024 | 0.838 1.017 0.838 | 1.244 1067 1.067 | 0.857 1.040 0.857 | 1.012 1.030 1.012 | 0.813 1208 0.813
£ Llama70B | 1.014 1003 1.003 | 0915 1.004 0915 | 1.024 0995 0995 | 0934 1.008 0934 | 0.964 1007 0964 | 0.867 1.026 0.867
g Qwen32B | 1.041 0999 0999 | 0.967 1.000 0967 | 1.111 1.008 1.008 | 0.941 0989 0941 | 1.033 0996 0996 | 0.907 1.017 0.907
Qwen72B | 1.010 0.999 0999 | 0.961 1.004 0961 | 1.021 1.002 1.002 | 0.962 0993 0962 | 1.010 0999 0999 | 0.928 1.005 0.928
o Llama8B | 0.964 1013 0964 | 0915 0949 0915 | 0953 0936 0936 | 0.859 1.000 0.859 | 0.857 0911 0.857 | 1.065 1241 1.065
S Llama70B | 1.048 1016 1.016 | 0957 1.039 0957 | 1.005 1.000 1.000 | 0.977 1008 0977 | 1.057 1016 1016 | 1.008 1.023 1.008
X Qwen32B | 1.048 0975 0975 | 1.052 0995 0995 | 1.063 1002 1.002 | 1.097 1.000 1.000 | 1.081 0990 0990 | 1.063 0.995 0.995
O Qwen72B | 1.090 1.005 1.005 | 1.067 0.990 0.990 | 1.068 0.995 0995 | 1.049 1.005 1.005 | 1.043 0995 0995 | 1.060 1.000 1.000
% Llama8B | 1.114 0943 0943 | 1.104 1.020 1.020 | 1.113 1.001 1.001 | 0.970 0934 0.934 | 1.132 0991 0991 | 0.973 1.039 0.973
& Llama70B | 1064 0944 0944 | 1000 0944 0944 | 1022 0992 0992 | 0.961 0.984 0961 | 1.069 1.000 1000 | 1.000 1000 1.000
£ Qwen32B | 1.015 1.000 1.000 | 0.985 1.000 0985 | 0.973 0990 0973 | 0.963 0977 0963 | 1.000 0.985 0.985 | 1.000 1.000 1.000
Z Qwen72B | 1.000 1.007 1.000 | 0.986 1.015 0.986 | 0.995 0993 0993 | 0.985 0993 0985 | 1.007 1.000 1.000 | 0.958 1.007 0.958
, Llama8B | 1.078 0942 0942 | 0.854 0850 0.850 [0979 1.002 0.979 | 0939 0.903 0.903 | 1.102 0995 0995 | 1.000 1.044 1000
& Llama70B | 1.167 0992 0992 | 0.991 0.894 0.894 | 1.025 1.006 1.006 | 1.047 0902 0902 | 1.142 0984 0984 | 1.074 0996 0.996
@ Qwen32B | 1.007 0986 0986 | 0.902 0909 0902 | 1.001 1.005 1.001 | 0.943 0937 0937 | 0.996 0975 0975 | 0.983 0.986 0.983
2 Qwen72B | 1014 0993 0993 | 0917 0924 0917 | 1007 1004 1.004 | 0.940 0927 0.927 | 0.996 0.986 0986 | 0.955 0.969 0955
5 Llama8B | 1207 1000 1.000 | 0.932 0955 0932 | 1.095 0998 0998 | 1.045 1.030 1.030 | 1.062 0950 0950 | 0.966 1.099 0.966
2 Llama70B | 1.117 0994 0994 | 1.021 0948 0948 | 1.075 1.007 1.007 | 1.034 0948 0948 | 1.094 0963 0963 | 1.058 0992 0.992
2 Qwen32B | 1.036 0990 0990 | 0.975 0990 0975 | 1.017 1.000 1.000 | 0.965 0971 0965 | 1.016 0979 0979 | 0.958 1.004 0.958
Z Qwen72B | 1.017 0998 0998 | 0.959 0962 0959 | 1.009 1.001 1.001 | 0.969 0989 0969 | 1.000 0979 0979 | 0.995 1.013 0.995
S Llama8B | 0.864 1.108 0.864 | 0.829 1.129 0.829 | 1.029 1.052 1.029 | 0.833 1.221 0.833 | 0.805 1.102 0.805 | 0.745 1.109 0.745
4 Llama70B | 0.804 1.043 0.804 | 0.806 1.020 0.806 | 0.983 0988 0983 | 0.775 1.003 0775 | 0.784 0.999 0.784 | 0.755 0.997 0.755
§ Qwen32B | 0841 1128 0841 | 0736 0980 0736 | 0.884 0976 0884 | 0696 1011 0.696 | 0.731 0990 0731 | 0712 0994 0712
< Qwen72B | 0954 1.081 0954 | 0.843 1.009 0843 | 0973 1.009 0973 | 0.819 1.011 0819 | 0.878 1.022 0878 | 0.832 1.018 0.832
Llama 8B | 1.005 0929 0929 | 1.066 1.028 1.028 | 1.041 0988 0988 | 1.036 1.023 1.023 | 1.024 0970 0970 | 1.025 1.051 1.025
S Llama70B | 1.016 0989 0989 | 1.029 0.998 0998 | 1.031 1.003 1.003 | 1.045 1.013 1013 | 1.048 0996 0996 | 1.031 1.015 1.015
B Qwen32B | 0988 0993 0988 | 1.007 1.025 1.007 | 1.005 1.002 1.002 | 1.018 1016 1.016 | 0.993 0993 0993 | 0.998 1.028 0.998
T Qwen72B | 1.002 0993 0993 | 1.006 1.020 1.006 | 0.996 0992 0992 | 0.996 1.011 0996 | 1.007 1.007 1.007 | 0.991 1.009 0.991

Table 15: The three improvement ratios for the (1, 9)-critique-based refinement setup, computed from raw data presented in Tab. 10.

36

