PAPR: Proximity Attention Point Rendering

Yanshu Zhang?*, Shichong Peng*, Alireza Moazeni, Ke Li
APEX Lab
School of Computing Science
Simon Fraser University
{yanshu_zhang, shichong_peng, seyed_alireza_moazenipourasil,keli}@sfu.ca

Abstract

Learning accurate and parsimonious point cloud representations of scene surfaces
from scratch remains a challenge in 3D representation learning. Existing point-
based methods often suffer from the vanishing gradient problem or require a large
number of points to accurately model scene geometry and texture. To address
these limitations, we propose Proximity Attention Point Rendering (PAPR), a novel
method that consists of a point-based scene representation and a differentiable ren-
derer. Our scene representation uses a point cloud where each point is characterized
by its spatial position, influence score, and view-independent feature vector. The
renderer selects the relevant points for each ray and produces accurate colours using
their associated features. PAPR effectively learns point cloud positions to represent
the correct scene geometry, even when the initialization drastically differs from the
target geometry. Notably, our method captures fine texture details while using only
a parsimonious set of points. We also demonstrate four practical applications of
our method: zero-shot geometry editing, object manipulation, texture transfer, and
exposure control. More results and code are available on our project websitel

1 Introduction

Learning 3D representations is crucial for computer vision and graphics applications. Recent neural
rendering methods [22, 142, 150, 23} [15} 48] leverage deep neural networks within the rendering
pipelines to capture complex geometry and texture details from multi-view RGB images. These
methods have many practical applications, such as generating high-quality 3D models [18| 143} 3| [7]
and enabling interactive virtual reality experiences [29} 25, [52]]. However, balancing representation
capacity and computational complexity remains a challenge. Large-scale representations offer better
quality but demand more resources. In contrast, parsimonious representations strike a balance
between efficiency and quality, enabling efficient learning, processing, and manipulation of 3D data.

3D representations can be categorized into volumetric and surface representations. Recent advances
in volumetric representations [22} 48, 50,137, [17] have shown impressive results in rendering quality.
However, the cubic growth in encoded information as the scene radius increases makes volumetric
representations computationally expensive to process. For example, to render a volumetric repre-
sentation, all the information along a ray needs to be aggregated, which requires evaluating many
samples along each ray. In contrast, surface representations are more parsimonious and efficient since
the encoded information grows quadratically. So surface representations can be rendered with much
fewer samples.

Efficient surface representations include meshes and surface point clouds. Meshes are difficult to learn
from scratch, since many constraints (e.g., no self-intersection) need to be enforced. Additionally, the
topology of the initial mesh is fixed, making it impossible to change during training [43]. In contrast,

*Denotes equal contribution

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://zvict.github.io/papr/

(a) Point Cloud Position (b) Depth (c) Point Feature (d) Rendering

Figure 1: Our proposed method, PAPR, jointly learns a point-based scene representation and a
differentiable renderer from scratch using only RGB supervision. PAPR effectively learns the point
positions (a) that represent the correct surface geometry, as demonstrated by the depth map (b).
Notably, PAPR achieves this even when starting from an initialization that substantially deviates from
the target geometry. Furthermore, PAPR learns a view-independent feature vector for each point,
capturing the local scene content. The clustering of point feature vectors is shown in (c). The renderer
selects and combines these feature vectors to generate high-quality colour rendering (d).

point clouds offer more flexibility in modelling shapes with varying topologies. Hence, in this work,
we focus on using point clouds to represent scene surfaces.

Learning a scene representation from scratch requires a differentiable renderer that can pass large
gradients to the representation. Designing a differentiable renderer for point clouds is non-trivial —
each point is infinitesimal and rarely intersects with rays, it is unclear what the output colour at such
rays should be. Previous methods often rely on splat-based rasterization techniques, where points are
turned into disks or spheres [45] [53|[11,[56]. These methods use a radial basis function (RBF)
kernel to calculate the contribution of each point to each pixel. However, determining the optimal
radius for the splats or the RBF kernel is challenging [9], and these methods suffer from the issue of
vanishing gradient when the ray is far away from the points, limiting their ability to learn the ground
truth geometry that drastically differs from the initial geometry. Additionally, the radius of each splat
should be small for accurate texture modelling, and this would require a point cloud with a large
number of points, which are difficult to process.

To address these limitations, we introduce a novel method called Proximity Attention Point Rendering
(PAPR). PAPR consists of a point-based scene representation and a differentiable renderer. The
scene representation is constructed using a point cloud, where each point is defined by its spatial
position, an influence score indicating its influence on the rendering, and a view-independent feature
vector that captures the local scene content. Our renderer learns to directly select points for each
ray and combines them to generate the correct colour using their associated features. Remarkably,
PAPR can learn accurate geometry and texture details using a parsimonious set of points, even when
the initial point cloud substantially differs from the target geometry, as shown in Figure [l We
show that the proposed ray-dependent point embedding design is crucial for effective learning of
point cloud positions from scratch. Furthermore, our experiments on both synthetic and real-world
datasets demonstrate that PAPR outperforms prior point-based methods in terms of image quality
when using a parsimonious set of points. We also showcase four practical applications of PAPR:
zero-shot geometry editing with part rotations and deformations, object duplication and deletion,
texture transfer and exposure control. In summary, our contributions are as follows:

1. We propose PAPR, a novel point-based scene representation and rendering method that can
learn point-based surface geometry from scratch.

2. We demonstrate PAPR’s ability to capture correct scene geometry and accurate texture
details using a parsimonious set of points, leading to an efficient and effective representation.

3. We explore and demonstrate four practical applications with PAPR: zero-shot geometry
editing, object manipulation, texture transfer and exposure control.

2 Related Work

Our work focuses on learning and rendering 3D representation, and it is most related to differentiable
rendering, neural rendering and point-based rendering. While there are many relevant works in
these fields, we only discuss the most pertinent ones in this context and refer readers to recent
surveys [9, for a more comprehensive overview.

Differentiable Rendering For 3D Representation Learning Differentiable rendering plays a
crucial role in learning 3D representations from data as it allows gradients to be backpropagated from
the rendered output to the representation. Early mesh learning approach, OpenDR [19]], approximate
gradients using localized Taylor expansion and differentiable filters, but do not fully leverage loss
function gradients. Neural Mesh Renderer [10] proposes non-local approximated gradients that
utilize gradients backpropagated from a loss function. Some methods [33| 18, 27] modify the
forward rasterization step to make the pipeline differentiable by softening object boundaries or
making the contribution of triangles to each pixel probabilistic. Several point cloud learning methods,
such as differentiable surface splatting [44]] and differentiable Poisson solvers [26], explore surface
reconstruction techniques but they do not focus on rendering fine textures. In contrast, our method
jointly learns detailed colour appearance and geometry representations from scratch.

Neural Scene Representation In recent years, there has been a growing interest in utilizing
neural networks to generate realistic novel views of scenes. Some approaches utilize explicit
representations like meshes [42, 49]], multi-plane images [5, 20} 21} 36} 55]], and point clouds [1} 30,
15]]. Another approach represents the scene as a differentiable density field, as demonstrated by Neural
Radiance Field (NeRF) [22]. However, NeRF suffers from slow sampling speed due to volumetric
ray marching. Subsequent works have focused on improving training and rendering speed through
space discretization [39, 16} 8 4} |31} [51} 146]] and storage optimizations [23} 38} 50, 37, [17]. These
methods still rely on volumetric representations, which have a cubic growth in encoded information.
In contrast, our proposed method leverages surface representations, which are more efficient and
parsimonious.

Point-based Representation Rendering and Learning Rendering point clouds using ray tracing
is challenging because they do not inherently define a surface, leading to an ill-defined intersection
between rays and the point cloud. Early approaches used splatting techniques with disks, ellipsoids,
or surfels [57,132, 2L 28]]. Recent methods [1}/30} 24} [14]] incorporate neural networks in the rendering
pipeline but assume ground truth point clouds from Structure-from-Motion (SfM), Multi-View Stereo
(MVS) or LiDAR scanning without optimizing point positions. To learn the point positions, splat-
based rasterization methods [45. [15] 35} 153111} 156] employ radial basis function kernels to compute
point contributions to pixels but struggle with finding optimal splat or kernel radius [9]] and suffer
from gradient vanishing when points are far from target pixels. Consequently, these methods require
a large number of points to accurately model scene details and are limited to learn small point cloud
deformation. In contrast, our method can capture scene details using a parsimonious set of points and
perform substantial deformation in the initial point cloud to match the correct geometry.

Another approach [3]] predicts explicit intersection points between rays and optimal meshes recon-
structed from point clouds, but it requires auxiliary data with ground truth geometry for learning and
RGBD images for point cloud initialization. Our method overcomes these limitations. Xu et al. [48]
represent radiance fields with points and use volumetric ray marching, our approach utilizes more
efficient and parsimonious surface representations and generates output colour for each ray with only
a single forward pass through the network.

3 Proximity Attention Point Rendering

Figure 2| provides an overview of our proposed end-to-end learnable point-based rendering method.
The input to our model includes a set of RGB images along with their corresponding camera intrinsics
and extrinsics. Our method jointly learns a point-based scene representation, where each point
comprises a spatial position, an influence score, and a view-independent feature vector, along with a
differentiable renderer. This is achieved by minimizing the reconstruction loss between the rendered
image I and the ground truth image I, according to some distance metric d(-, -), w.r.t. the scene
representation and the parameters of the differentiable renderer. Unlike previous point cloud learning
methods [48, 145} [15, 135} 153} [11}, 13} [56]] which rely on multi-view stereo (MVS), Structure-from-
Motion (SfM), depth measurements or object masks for initializing the point cloud positions, our
method can learn the point positions from scratch, even when the initialization significantly differs
from the target geometry as demonstrated in Figure[d] In the following sections, we provide a more
detailed description of each component of our proposed method.

Embedding
MLPs

UNet

Value features
S : s | feature vectnﬂ—» —

Key features

=
2
t | s position —» > £ DH
Point Scene Representation Lt i
(x,y,z2) €R® position Query feature MmN
[€RM ‘fealure vector ray direction il N
T € R influence score =
(a) Ray-dependent Point Embedding (b) Proximity Attention (c) Point Feature Rendering

Figure 2: An overview of the proposed pipeline for rendering a point-based scene representation,
where each point is defined by its spatial position, an influence score, and a view-independent feature
vector. (a) Given a ray, ray-dependent features are created for each point. These features are used to
generate the key, value, and query inputs for a proximity attention model. (b) The attention model
selects the points based on their keys and the query, and combines their values to form an aggregated
feature. (c) The aggregated feature is gathered for all pixels to create a feature map. This feature map
is then passed through a feature renderer, implemented using a UNet architecture, to produce the
output image. The entire pipeline is jointly trained in an end-to-end manner using only supervision
from the ground truth image.

3.1 Point-based Scene Representation

Our scene representation consists of a set of N points P = {(p;, u;, Ti)}ﬁil where each point
i is characterized by its spatial position p; € R?, an individual view-independent feature vector
u; € R” that encodes local appearance and geometry and an influence score 7; € R that represents
the influence of the point on the rendering.

Notably, we make the feature vector for each point to be independently learnable, thereby allowing
the content encoded in the features to be independent of the distance between neighbouring points.
As a result, after training, points can be moved to different positions without needing to make a
corresponding change in the features. This design also makes it possible to increase the fidelity of the
representation by adding more points, thereby capturing more fine-grained details. Additionally, we
specifically choose the feature vectors to be view-independent, ensuring that the encoded information
in the representation remains invariant to view changes.

3.2 Differentiable Point Rendering with Relative Distances

Per-Point Contribution
Per-Point Contribution
Per-Point Contribution

A B C A B C A B C

Image Plane (a) Hard Boundary Splats (b) Soft Boundary Splats (c) Proposed

Figure 3: Comparison of point contributions in splat-based rasterization and the proposed method.
Three points are projected onto the image plane, with the ground truth image shown in the background.
The bar charts illustrate the contribution of each point towards a specific pixel, represented by the
red star. (a) If the points are splats with hard boundaries, none of them intersect with the given pixel,
resulting in zero contributions. Consequently, the gradient of the loss at the pixel w.r.t. each point is
non-existent, hindering the reduction of loss at that pixel. (b) For splats with soft boundaries, although
the point contributions are non-zero, they are extremely small, leading to vanishing gradients. (c) Our
proposed method normalizes the contribution of all points to the given pixel. This ensures that there
are always points with substantial contributions, enabling learning point positions from scratch.

To learn the scene representation from images from different views, we minimize the reconstruction
loss between the rendered output from those views and the ground truth image w.r.t. the scene
representation. Typically, we do so with gradient-based optimization methods, which need to compute

the gradient of the loss w.r.t. the scene representation. For this to be possible, the rendered output
must be differentiable w.r.t. the representation — in other words, the renderer must be differentiable.

In classical rendering pipelines, point clouds are often rendered with splat-based rasterization.
However, when attempting to learn point clouds from scratch using this method, several challenges
arise for the following reasons. A splat only contributes to the pixels it intersects with, so when a
splat does not intersect with a specific pixel, it does not contribute to the rendered output at that pixel.
As a result, the gradient of the loss at that pixel w.r.t. the position of the splat is zero. Now, consider
a pixel in the ground truth image that no splat intersects with. Even though the loss at that pixel
might be high, the gradient w.r.t. the position of every splat is zero, so the loss at that pixel cannot be
minimized, as illustrated in Figure [3p.

To address this issue, prior methods have employed a radial basis function (RBF) kernel to soften
splat boundaries. This approach makes the contribution of each splat to each pixel non-zero. However,
even with the soft boundaries, the contribution of a splat to a pixel remains small if the pixel is located
far away from the centre of the splat. Consequently, for a pixel far away from the centres of all splats,
the gradient of the loss at the pixel w.r.t. each splat remains too minuscule to exert a significant
influence on its position, as shown in Figure [3b — in other words, the gradient vanishes. As a result,
even though the loss at the pixel might be high, it will take a long time before it is minimized.

We observe that with both hard- and soft-boundary splats, the contribution of each point to a given
pixel only depends on its own absolute distance to the pixel, without regard to the distances of other
points. This gives rise to the vanishing gradient problem because the absolute distances for all points
can be high. To address this issue, we make the contributions per point towards a pixel depend on
relative distances rather than absolute distances. Instead of relying solely on the distance to the pixel
from a single point to compute its contribution, we normalize the contributions across all points
so that the total contribution from all points is always 1. This ensures that there are always points
with significant contributions to each pixel, even if the pixel is far away from all points, as shown in

Figure 3.

This allows points to be moved far from their initial positions, so the initialization can differ sub-
stantially from the ground truth scene geometry. This also means that we can move sufficiently
many points from elsewhere to represent the scene geometry faithfully. On the other hand, the learnt
representation uses no more points than necessary to represent each local part of the scene geometry
faithfully, because if there were extraneous points, they could be moved to better represent other
parts. The end result is a parsimonious scene representation that uses just enough points to faithfully
represent each part of the scene geometry. So, fewer points tend to be allocated to smooth parts of
the surface and the interior of opaque surfaces, because having more points there would not improve
the rendering quality significantly. Moreover, since the points can be far away from a pixel without
having their contributions diminished, we can preserve the surface continuity even if we apply a
non-volume preserving transformation (e.g., stretching) to the point cloud post-hoc.

3.3 Implementation of Relative Distances with Proximity Attention

We design an attention mechanism to compute contributions from relative distances, which we dub
proximity attention. Unlike typical attention mechanisms, the queries correspond to rays and the keys
correspond to points. To encode the relationship between points and viewing directions, we design an
embedding of the points that account for their relative positions to rays. This embedding is then fed
in as input to the proximity attention mechanism. We describe the details of each below.
Ray-dependent Point Embedding Given a camera pose C specified by its extrinsics and intrinsics,
and a sensor resolution H x W, we utilize a pinhole camera model to cast a ray r; from the camera
centre to each pixel. Each ray r; is characterized by its origin 0o; € R3 and unit-length viewing
directiond; € R3, both defined in the world coordinate system.

To obtain the ray-dependent point embedding of point p; with respect to ray r;, we start by finding
the projection p; of the point onto the ray:

p; = 0; + (pi — 0;,d;) - d; M
where (-, -)” denotes the inner product. Next, we compute the displacement vectors, s; ; and t; ;:

sij = P; — 0j, tij = Pi — Pi, 2)

Here, s; ; captures the depth of the point p; with respect to the camera centre o; along the ray, while
t; ; represents the perpendicular displacement from the ray to the point p;. The final ray-dependent
point embedding contains these displacement vectors, s; ; and t; ;, as well as the point position p;.

Proximity Attention For a given ray r;, we start by filtering the top K nearest points p; based on
the magnitude of their perpendicular displacement vector ||t; ;||. This allows us to identify the points
that are most relevant for modelling the local contents of the ray.

We adopt the ray-dependent point embedding method described earlier for the K closest points,
which serves as the input to construct the key in the attention mechanism. For the value branch
input, we utilize the K associated point feature vectors u;, along with their displacement vectors

s;,; and t; ;. For the input to the query branch, we use the ray direction d;. Additionally, we apply
positional encoding [22, 40] y(p) = [sin (2'7p) , cos (2'7p) | leoﬁ to all components except for the

feature vector. These inputs pass through three separate embedding networks fo,, fo, and fg,,,
which are implemented as multi-layer perceptrons (MLPs). The resulting outputs form the final key,
value, and query for the attention mechanism:

kij = for ([v(si),7 (tig),v (Pi)]) 3
Vi = fov ([(si),7 (i), w]) 4
a; = fo, (7(d;)) 6)

To compute the aggregated value for the query, we calculate the weighted sum of the values as
f; = Efil w; ;V4, 7, where each weighting term is calculated by applying the softmax function to the
raw attention scores a; ;. The raw attention score a; ; is obtained by applying a ReLU function to the
dot product between the query q; and the keys k; ; scaled by their dimensionality p:

exp(a; ;)

ki
Wij =k, where a; ;= maX(O, M

(6)
Z’ranl exp(am,j) \//j)

By aggregating the features f; for all rays r; corresponding to each pixel on the image plane with
resolution H x W, we construct the feature map Fp € RH*W>dia for a given camera pose C.

Point Feature Renderer To obtain the final rendered colour output image Ifora given camera

pose C, we input the aggregated feature map to a convolutional feature renderer, I = fy,, (F¢). Our
renderer is based on a modified version of the U-Net architecture [34], featuring two downsampling
layers and two upsampling layers. Notably, we remove the BatchNorm layers in this network. For
more details regarding the model architecture, please refer to the appendix.

3.4 Progressive Refinement of Scene Representation

Point Pruning To eliminate potential outliers during the point position optimization process, we
introduce a point pruning strategy that utilizes a learnable influence score 7; € R associated with
each point. We calculate the probability w, ; € [0, 1] of a ray r; hitting the background by comparing
a fixed background token b to the product of each point’s influence score 7; and its raw attention score
a;,; (defined in Eqn. @ The probability is given by:

wyy — exp(b) @

exp(b) + Zfizl exp(@m,j * Tm)

By collecting the background probabilities wy, ; for all H x W rays cast from camera pose C, we

obtain a background probability mask Pr € R¥*W X1 The rendered output image I can then be
computed using this background probability mask as follows:

I=(1.-Pe) for(Fe)+ Pe -1y ®)
Here, I;, € RT>W>3 represents the given background colour. All influence scores are initialized to
zero. Starting from iteration 10, 000, we prune points with 7; < 0 every 500 iterations. Additional

details and comparisons to the model without pruning are available in the appendix.

6

Point Growing As mentioned in Sec.[3.1] our scene representation allows for increased modelling
capacity by adding more points. To achieve this, we propose a point growing strategy that incremen-
tally adds points to the sparser regions of the point cloud every 500 iterations until the desired total
number of points is reached. More information on how the sparse regions are identified can be found
in the appendix. Fig.[Th illustrates the effectiveness of our point growing strategy in progressively
refining the point cloud, resulting in a more detailed representation of the scene.

3.5 Training Details

Our training objective is minimizing the distance metric d(-, -) from the rendered image I to the
corresponding ground truth image I;;. We define the distance metric as a weighted combination of
mean squared error (MSE) and the LPIPS metric [54]. The loss function is formulated as:

£ =d(1,1,) = MSE(I,1,;) + A - LPIPS(I, I;))
We set the weight A to 0.01 for all experiments. During training, we jointly optimize all model

parameters, including p;, w;, 74, 0k, 0y, ¢ and . We train our model using Adam optimizer [12]
on a single NVIDIA A100 GPU.

3.6 Learning Point Positions From Scratch

We demonstrate the effectiveness of our method in learning point positions from scratch using the
Lego scene in the NeRF Synthetic Dataset [22]]. We compare our proposed method to recent point-
based methods, namely DPBRF [53]], Point-NeRF [48], NPLF [24]] and Gaussian Splatting [T1]]. It is
worth noting that NPLF does not inherently support point position learning, so we made modifications
to their official code to enable point position optimization.

DPBREF [53]] Gaussian Splatting

A fria . ~] * ot
7 o N
O : 3
. R

PAPR (Ours) Reference Image

Figure 4: Comparison of our method and prior point-based methods on learning point cloud positions
from scratch. We modify NPLF [24]’s official implementation to support point position updates.
All methods start with the same initial point cloud of 1, 000 points on a sphere. Point pruning and
growing strategies are disabled for a fair comparison of geometry learnability. An RGB image of
the scene from the same view point as the point cloud visualizations is provided as a reference.
Point-NeRF [48]] and NPLF [24] fail to reconstruct a reasonable point cloud. DPBRF [53] captures a
rough shape but introduces significant noise and struggles to capture the rear end of the Lego bulldozer
effectively. Gaussian Splatting [11]] captures the Lego silhouette but lacks structural details, such as
the bulldozer’s track (the black belt around the wheels). In contrast, our method successfully learns a
point cloud that accurately represents the object’s surface and captures detailed scene structures.

In our comparison, all methods start with the same set of 1,000 points initialized on a sphere. To
ensure a fair evaluation of point cloud position learnability, we disable point pruning and growing
techniques for all methods. As shown in Figure 4] our method successfully deforms the initial point
cloud to correctly represent the target geometry. In contrast, the baselines either fail to recover the
geometry, produce noisy results, or lack structural details in the learnt geometry.

4 Experiments

To validate our contribution of learning point-based scene representation and rendering pipeline
directly from multi-view images, we compare our method to recent point-based neural rendering
methods, namely NPLF [24], DPBRF [53]], SNP [56], Point-NeRF [48] and Gaussian Splatting [11].
As a secondary comparison, we demonstrate the potential broader impact of our method by comparing
it to the widely used implicit volumetric representation method NeRF [22].

To assess the performance of scene modelling with a parsimonious representation, we conduct
evaluations using a total of 30, 000 points for each method. For all point-based baselines, we use
their original point cloud initialization methods, which are based on Multi-View Stereo (MVS),
Structure-from-Motion (SfM) or visual hull. Conversely, for our approach, we adopt a random point
cloud initialization strategy within a predefined volume, introducing an additional level of complexity
and challenge to our method. We set the parameter K = 20 for selecting the top nearest points, and
the point feature vector dimension h = 64. We evaluate all methods in both synthetic and real-world
scenarios. For the synthetic setting, we choose the NeRF Synthetic dataset [22], while for the
real-world setting, we use the Tanks & Temples [[13] subset, following the same data pre-processing
steps as in [48]. We evaluate rendered image quality using PSNR, SSIM and LPIPS [54] metrics.

4.1 Quantitative Results

Table [T] shows the average image quality metric scores. PAPR consistently outperforms the baselines
across all metrics in both synthetic and real-world settings, without relying on specific initialization.
These results demonstrate PAPR’s ability to render highly realistic images that accurately capture
details using an efficient and parsimonious representation.

NeRF Synthetic Tank & Temples

PSNR1 SSIM1 LPIPS,qq) PSNR?T SSIM1T LPIPS,4y | Initialization
NeRF [22] 31.00 0.947 0.081 27.94 0.904 0.168 —
NPLF [24] 18.36 0.780 0.213 21.19 0.761 0.240 MVS
DPBRF [53] 25.61 0.884 0.138 17.25 0.634 0.301 Visual Hull
SNP [56] 26.00 0.914 0.110 26.39 0.894 0.160 MVS
Point-NeRF [48] 25.93 0.923 0.129 24.75 0.890 0.184 MVS
Gaussian Splatting [11] 27.76 0.929 0.084 26.81 0.907 0.140 StM
PAPR (Ours) 32.07 0.971 0.038 28.72 0.940 0.097 Random

Table 1: Comparison of image quality metrics (PSNR, SSIM and LPIPS [54]]) on the NeRF Synthetic
dataset [22]] and Tanks & Temples subset [13]]. Higher PSNR and SSIM scores are better, while
lower LPIPS scores are better. All point-based baselines use a total number of 30, 000 points and are
initialized using the original techniques proposed by their respective authors. Despite being initialized
from scratch, our method outperforms all baselines on all metrics for both datasets with the same
total number of points.

4.2 Qualitative Results

Figure [5|shows a qualitative comparison between our method, PAPR, and the baselines on the NeRF
Synthetic dataset. PAPR produces images with sharper details compared to the baselines. Notably,
our method captures fine texture details on the bulldozer’s body, the reflections on the drums and the
crash, the mesh on the mic, and the reflection on the material ball. In contrast, the baselines either fail
to capture the texture, exhibit blurriness in the generated output, or introduce high-frequency noise.
These results validate the effectiveness of PAPR in capturing fine details and generating realistic
renderings compared to the baselines. For additional qualitative results, please refer to the appendix.

4.3 Ablation Study

Effect of Number of Points We analyze the impact of the number of points on the rendered image
quality in our method. The evaluation is performed using the LPIPS metric on the NeRF synthetic
dataset. As shown in Figure[6] our method achieves better image quality by using a higher number of
points. Additionally, we compare the performance of our model to that of DPBRF and Point-NeRF.
The results show that our model maintains higher rendering quality even with a reduced number of

Drums Lego

Mic

e
=
ol
s
(((i (>\ (
NeRF [22] NPLF [24] DPBRF [533] SNP [36] Point- Gaussian PAPR (Ours) Ground
NeRF [48] Splat- Truth
ting [[LT]

Figure 5: Qualitative comparison of novel view synthesis on the NeRF Synthetic dataset [22]. All
point-based methods use a total number of 30,000 points. NPLF [24] fails to capture the texture
detail, NeRF [22], SNP [56] and Gaussian Splatting [11]] exhibit blurriness in the rendered images,
while DPBREF [53]] and Point-NeRF [48]] display high-frequency artifacts. In contrast, PAPR achieves
high-quality rendering without introducing high-frequency noise, demonstrating its ability to capture
fine texture details.

points, as few as 1,000 points, compared to the baselines. These findings highlight the effectiveness
of our method in representing the scene with high quality while using a parsimonious set of points.

Effect of Ray-dependent Point Embedding Design We analyze our ray-dependent point embed-
ding design by gradually removing components, including the point position p; and the displacement
vector t; ;, which are described in Sec. @ Figure |Z| shows both the qualitative and quantitative
results of this analysis. Removing p; in key features introduces increased noise in the learnt point
cloud, indicating its importance. Likewise, removing ¢; ; in both key and value features results in a
failure to learn the correct geometry. These findings validate the effectiveness of our point embedding
design and highlight the necessity of both the point position and displacement vector for achieving
accurate and high-quality results.

4.4 Practical Applications

Zero-shot Geometry Editing We showcase the zero-shot geometry editing capability of our
method by manipulating the positions of the point representations only. In Figure [8a, we present
three cases that deform the object geometry: (1) rigid bending of the ficus branch, (2) rotation of
the statue’s head, and (3) stretching the tip of the microphone to perform a non-volume preserving
transformation. The results demonstrate that our model effectively preserves surface continuity after
geometry editing, without introducing holes or degrading the rendering quality. Additional results
and comparisons with point-based baselines can be found in the appendix.

Object Manipulation In Figure[8p, we present object duplication and removal scenarios. Specifi-
cally, we add an additional hot dog to the plate and perform removal operations on some of the balls
in the materials scene while duplicating others. These examples demonstrate the versatility of our
method in manipulating and editing the objects in the scene.

Texture Transfer We showcase the capability of our method to manipulate the scene texture in
Figure 8. In this example, we demonstrate texture transfer by transferring the associated feature
vectors from points corresponding to the mustard to some of the points corresponding to the ketchup.
The model successfully transfers the texture of the mustard onto the ketchup, resulting in a realistic
and coherent texture transformation. This demonstrates the ability of our method to manipulate and
modify the scene texture in a controlled manner.

Exposure Control We showcase the ability of our method to adjust the exposure of the rendered
image. To accomplish this, we introduce an additional random latent code input to our feature

renderer fy,, and finetune the model using the cIMLE technique [16]. Figure@ shows different
exposures in the rendered image by varying the latent code input. For more detailed information on
this application, please refer to the appendix. This demonstrates our method’s flexibility in controlling
exposure and achieving desired visual effects in the rendered images.

Ours Rendered Depth Point Rendered Depth Point
Point-NeRF Image Cloud Image Cloud
DPBRF S s
z,g 0.2+ 2 ﬁ !
& 3
3 01 | &

0.02| ‘ ‘ B & ‘?h
Ik 10k 20k 30k 9)
Number of points S s e | i e /
Figure 6: Ablation study on the effect GT‘

of the number of points on rendered :
image quality. The results show that Figure 7: Ablation study on the design for the ray-dependent
increasing the number of points im- point embedding. We incrementally remove key components
proves the performance of our method. in the point embedding, starting with the point position p;
Moreover, our approach consistently and then the displacement vector ¢; ;. The results show a
outperforms the baselines when using significant degradation in the learnt geometry and rendering
an equal number of points, while also quality at each step of removal. This validates the importance
exhibiting greater robustness to a re- of each component in the design of our point embedding.
duction in the number of points.

w/o p;, ti; WO p;

5 Discussion and Conclusion

Limitation Our pruning strategy currently assumes the background image to be given, making
it suitable for scenarios with a near-constant background colour. However, this assumption may
not hold in more diverse and complex backgrounds. To address this limitation, we plan to explore

learning a separate model dedicated to handling background variations in future work.
e

Original

After Editing

(a) Deformation (b) Duplication & Removal (c) Texture (d) Exposure
Transfer Control

Figure 8: Applications of PAPR: (a) Zero-shot Geometry editing - deforming objects (bending branch,
rotating head, stretching mic), (b) Object manipulation - duplicating and removing objects, (c) Texture
transfer - transferring texture from mustard to ketchup, (d) Exposure control - changing from dark to
bright.

Societal Impact Expanding our method’s capacity with more points and deeper networks can
improve rendering quality. However, it’s important to consider the environmental impact of increased
computational resources, potentially leading to higher greenhouse gas emissions.

Conclusion In this paper, we present a novel point-based scene representation and rendering method.
Our approach overcomes challenges in learning point cloud from scratch and effectively captures
correct scene geometry and accurate texture details with a parsimoinous set of points. Furthermore,
we demonstrate the practical applications of our method through four compelling use cases.
Acknowledgements This research was enabled in part by support provided by NSERC, the BC
DRI Group and the Digital Research Alliance of Canada.

10

References

[1] Kara-Ali Aliev, Dmitry Ulyanov, and Victor S. Lempitsky. Neural point-based graphics. In
European Conference on Computer Vision, 2019.

[2] Mario Botsch, Alexander Sorkine-Hornung, Matthias Zwicker, and Leif P. Kobbelt. High-
quality surface splatting on today’s gpus. Proceedings Eurographics/IEEE VGTC Symposium
Point-Based Graphics, 2005., pages 17-141, 2005.

[3] Jen-Hao Rick Chang, Wei-Yu Chen, Anurag Ranjan, Kwang Moo Yi, and Oncel Tuzel. Pointer-
sect: Neural rendering with cloud-ray intersection. ArXiv, abs/2304.12390, 2023.

[4] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In European Conference on Computer Vision, 2022.

[5] John Flynn, Michael Broxton, Paul E. Debevec, Matthew DuVall, Graham Fyffe, Ryan S.
Overbeck, Noah Snavely, and Richard Tucker. Deepview: View synthesis with learned gradient
descent. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2362-2371, 2019.

[6] Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien P. C. Valentin.
Fastnerf: High-fidelity neural rendering at 200fps. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 14326—14335, 2021.

[7] Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron Sarna, Daniel Vlasic, and William T.
Freeman. Unsupervised training for 3d morphable model regression. 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 8377-8386, 2018.

[8] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul E. Debevec.
Baking neural radiance fields for real-time view synthesis. 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 5855-5864, 2021.

[9] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim Kehl, and
Adrien Gaidon. Differentiable rendering: A survey. ArXiv, abs/2006.12057, 2020.

[10] Hiroharu Kato, Y. Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3907-3916, 2017.

[11] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), 2023.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[13] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Bench-
marking large-scale scene reconstruction. ACM Transactions on Graphics, 36(4), 2017.

[14] Georgios Kopanas, Julien Philip, Thomas Leimkiihler, and George Drettakis. Point-based neural
rendering with per-view optimization. Computer Graphics Forum, 40, 2021.

[15] Christoph Lassner and Michael Zollhofer. Pulsar: Efficient sphere-based neural rendering. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 1440-1449,
2021.

[16] Ke Li*, Shichong Peng*, Tianhao Zhang*, and Jitendra Malik. Multimodal image synthesis
with conditional implicit maximum likelihood estimation. International Journal of Computer
Vision, May 2020.

[17] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse
voxel fields. ArXiv, abs/2007.11571, 2020.

[18] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable renderer
for image-based 3d reasoning. 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 7707-7716, 2019.

11

[19] Matthew Loper and Michael J. Black. Opendr: An approximate differentiable renderer. In
European Conference on Computer Vision, 2014.

[20] Erika Lu, Forrester Cole, Tali Dekel, Weidi Xie, Andrew Zisserman, D. Salesin, William T.
Freeman, and Michael Rubinstein. Layered neural rendering for retiming people in video. ACM
Transactions on Graphics (TOG), 39:1 — 14, 2020.

[21] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi
Ramamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis
with prescriptive sampling guidelines. arXiv: Computer Vision and Pattern Recognition, 2019.

[22] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. ArXiv,
abs/2003.08934, 2020.

[23] Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM Transactions on Graphics (TOG), 41:1 —
15, 2022.

[24] Julian Ost, Issam Hadj Laradji, Alejandro Newell, Yuval Bahat, and Felix Heide. Neural point
light fields. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 18398-18408, 2021.

[25] Keunhong Park, U. Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B. Goldman, Steven M.
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 5845-5854, 2020.

[26] Songyou Peng, Chiyu Max Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and Andreas
Geiger. Shape as points: A differentiable poisson solver. In Neural Information Processing
Systems, 2021.

[27] Felix Petersen, Amit H. Bermano, Oliver Deussen, and Daniel Cohen-Or. Pix2vex: Image-
to-geometry reconstruction using a smooth differentiable renderer. ArXiv, abs/1903.11149,
2019.

[28] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus H. Gross. Surfels: surface
elements as rendering primitives. Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, 2000.

[29] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf:
Neural radiance fields for dynamic scenes. 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10313-10322, 2020.

[30] Ruslan Rakhimov, Andrei-Timotei Ardelean, Victor S. Lempitsky, and Evgeny Burnaev.
Npbg++: Accelerating neural point-based graphics. ArXiv, abs/2203.13318, 2022.

[31] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding up neural
radiance fields with thousands of tiny mlps. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 14315-14325, 2021.

[32] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Object space ewa surface splatting: A
hardware accelerated approach to high quality point rendering. Computer Graphics Forum, 21,
2002.

[33] Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian Theobalt.
A versatile scene model with differentiable visibility applied to generative pose estimation.
2015 IEEE International Conference on Computer Vision (ICCV), pages 765-773, 2015.

[34] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. ArXiv, abs/1505.04597, 2015.

[35] Darius Riickert, Linus Franke, and Marc Stamminger. Adop: Approximate differentiable
one-pixel point rendering. ACM Trans. Graph., 41:99:1-99:14, 2021.

12

[36] Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng, and
Noah Snavely. Pushing the boundaries of view extrapolation with multiplane images. 2079
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 175-184,
2019.

[37] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast
convergence for radiance fields reconstruction. 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5449-5459, 2021.

[38] Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Miiller, Morgan McGuire, Alec
Jacobson, and Sanja Fidler. Variable bitrate neural fields. ACM SIGGRAPH 2022 Conference
Proceedings, 2022.

[39] Towaki Takikawa, Joey Litalien, K. Yin, Karsten Kreis, Charles T. Loop, Derek Nowrouzezahrai,
Alec Jacobson, Morgan McGuire, and Sanja Fidler. Neural geometric level of detail: Real-time
rendering with implicit 3d shapes. 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11353-11362, 2021.

[40] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let

networks learn high frequency functions in low dimensional domains. ArXiv, abs/2006.10739,
2020.

[41] Anju Tewari, Otto Fried, Justus Thies, Vincent Sitzmann, S. Lombardi, Z Xu, Tanaba Simon,
Matthias NieBner, Edgar Tretschk, L. Liu, Ben Mildenhall, Pranatharthi Srinivasan, R. Pandey,
Sergio Orts-Escolano, S. Fanello, M. Guang Guo, Gordon Wetzstein, J y Zhu, Christian Theobalt,
Manju Agrawala, Donald B. Goldman, and Michael Zollhtfer. Advances in neural rendering.
Computer Graphics Forum, 41, 2021.

[42] Justus Thies, Michael Zollhofer, and Matthias Niener. Deferred neural rendering: Image
synthesis using neural textures. arXiv: Computer Vision and Pattern Recognition, 2019.

[43] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Hang Yu, Wei Liu, X. Xue, and Yu-
Gang Jiang. Pixel2mesh: 3d mesh model generation via image guided deformation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 43:3600-3613, 2020.

[44] Yifan Wang, Felice Serena, Shihao Wu, Cengiz Oztireli, and Olga Sorkine-Hornung. Differen-
tiable surface splatting for point-based geometry processing. ACM Transactions on Graphics
(TOG), 38:1 — 14, 2019.

[45] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson. Synsin: End-to-end view
synthesis from a single image. 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7465-7475, 2019.

[46] Xiuchao Wu, Jiamin Xu, Zihan Zhu, Hujun Bao, Qixing Huang, James Tompkin, and Weiwei
Xu. Scalable neural indoor scene rendering. ACM Transactions on Graphics (TOG), 41:1 — 16,
2022.

[47] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shigin Yan, Numair Khan, Federico
Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual
computing and beyond. Computer Graphics Forum, 41, 2021.

[48] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich
Neumann. Point-nerf: Point-based neural radiance fields. 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5428-5438, 2022.

[49] Bangbang Yang, Chong Bao, Junyi Zeng, Hujun Bao, Yinda Zhang, Zhaopeng Cui, and Guofeng
Zhang. Neumesh: Learning disentangled neural mesh-based implicit field for geometry and
texture editing. ArXiv, abs/2207.11911, 2022.

[50] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5491-5500, 2021.

13

[51] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees
for real-time rendering of neural radiance fields. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 5732-5741, 2021.

[52] Yu-Jie Yuan, Yang tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. Nerf-editing:
Geometry editing of neural radiance fields. 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 18332-18343, 2022.

[53] Qian Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz, and Felix Heide. Differentiable point-
based radiance fields for efficient view synthesis. SIGGRAPH Asia 2022 Conference Papers,
2022.

[54] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 586-595, 2018.

[55] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnifi-
cation: Learning view synthesis using multiplane images. ArXiv, abs/1805.09817, 2018.

[56] Yiming Zuo and Jia Deng. View synthesis with sculpted neural points. ArXiv, abs/2205.05869,
2022.

[57] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus H. Gross. Surface splatting.
Proceedings of the 28th annual conference on Computer graphics and interactive techniques,
2001.

14

A Implementation Details

A.1 Proximity Attention

As introduced in Sec. our model utilizes an attention mechanism to determine the proximity
between the ray r; and a point 7. To achieve this, we use three independent embedding MLPs to
compute the key k; ;, value v, ; and query q; for the attention mechanism. The architecture details
of these three embedding MLPs are shown in Figure 0]

[Conv: 32—128, kernel size=3]

Max Pooling

J
Conv: 128256, kernel size=3]
)

ReLU

H

|Si,j |ti,j | piEF | Sij | tij
v

D —
Max Pooling

[Positional Encoding: L=6] [Positional Encoding: L=6] [Positional Encoding: L=6]

(

(

[

()
9 fon for (Conv: 256512, kemnel size=3 |

(ReLU)

[}

I

Layer Norm Layer Norm Linear: d,, =256

Transposed Conv: 512256,
kernel size=2, stride=2

Linear: d; »256 Linear: d;, 256 ReLU

%47

ReLU

Conv: 512256, kernel size=3]

Linear: 256256 Linear: 256—256 ReLU

ReLU]

Linear: 25632

Layer Norm

[J
[]
(Linear: 256256 | »
[]
[]

Layer Norm

Linear: 256256 Linear: 256256 kernel size=] 2 stride=2

[]
[]
(ReLU] »
[]
()
[]

[)
[]
| ,
[]
[)
[)

[Transposed Conv: 256128,]

v §47
Y i L [Conv: 256128, kernel size=3]

Figure 9: Embedding MLPs architecture details. (ReLU)

[Linear: 128-3 J

Figure 10: U-Net details.

A.2 Point Feature Renderer

As described in Sec. [3.3] our point feature renderer uses a modified U-Net architecture to generate
colour outputs from the aggregated feature map. The architecture details are shown in Figure[10]

A.3 Point Pruning

As described in Sec. we use a background token b to determine whether a ray intersects with the
background. In our experiments, we set b = 5. Moreover, we modify the calculation of the attention
weights w; ; for each point in Eqn. [6] to incorporate both the background token and the influence
score, the updated definition is as follows:

wh . -
b , where w;j = eXp(ai; - 7i) (10)

Wij = K ; K
Zm:l w;n] exp(b) + Zm:l exp(am,j : Tm)
Here, a; ; is defined in Eqn. [6]

Figure[TT|shows a comparison between the point cloud learnt by the model with and without pruning
on the Lego scene. The results demonstrate that the adopted pruning strategy yields a cleaner point
cloud with fewer outliers.

A4 Point Growing

As mentioned in Sec.[3.4] our method involves growing points in the sparser regions of the point cloud.
To identify these sparse regions, we compute the standard deviation o; of the distances between

15

w/o pruning

w/ pruning

Figure 11: Comparison between point clouds learnt from the model without pruning (top row) and
the model with pruning (bottom row). The point cloud learnt from the model with pruning exhibits
cleaner structure and fewer outliers compared to the point cloud trained without pruning.

Reference

Feature Clusters

Caterpillar Materials Drums

Figure 12: Visualization of the clustered point feature vectors. In the bottom row for each scene, each
colour represents a feature cluster. The clusters are obtained by clustering the learnt point feature
vectors by the K-Means clustering algorithm with K = 6.

each point ¢ and its top 10 nearest neighbours. Subsequently, we insert new points near the points
with higher values of o;. The location of the new point near point 7 is selected as a random convex
combination of ¢ and its three nearest neighbours.

A.5 Clustering Feature Vectors

To demonstrate the effectiveness of our learnt point feature vectors, we visualize the feature vector
clustering in Fig[T2] The clustering is obtained by applying the K-Means clustering algorithm
with K = 6 to the learnt feature vectors of the points. The resulting clustering reveals distinct
separation, indicating the successful encoding of local information at surfaces with different textures
and geometries.

More specifically, the feature vectors capture various colours within the scene. In the caterpillar scene,
for instance, the point features associated with gray-coloured areas, such as the wheels and the side of
the shovel, are clustered together. Moreover, the feature vectors can effectively differentiate between
different materials, even when their colours may appear similar. For instance, in the materials
scene, two balls on the bottom right most side have similar colours but different finishes—one
with a matte appearance and the other with a polished look—and their feature vectors accurately
distinguish between them. Additionally, the feature vectors demonstrate the capability to discern

16

variations in local geometry. In the drum scene, for example, the feature vectors for the large drum in
the foreground differ from those representing the smaller drums in the background. These results
highlight the encoding of distinct local scene information by the feature vectors, presenting potential
utility in applications such as part segmentation.

A.6 Zero-shot Geometry Editing and Object Manipulation

As mentioned in Sec[4.4] our model is capable of zero-shot geometry editing and object manipulation
by modifying the scene point cloud. For zero-shot geometry editing, we achieve this by altering the
positions of the points, while for object addition or removal, we duplicate or delete specific points
accordingly. It is important to note that our approach eliminates the need for any additional pre- or
post-processing steps for rendering the scene after the editing process. This shows the simplicity and
robustness of our approach in editing the scenes.

A.7 Texture Transfer

As mentioned in Sec. @ to transfer textures between different parts of a scene, we first select the
points representing the source and target parts, along with their corresponding point feature vectors.
To capture the essential texture information, we identify the top K principal components for both the
source and target feature vectors. To facilitate texture transfer, we project the source feature vectors
onto the target principal components and get the corresponding coordinates. Finally, we apply an
inverse transformation to bring these coordinates back to the original space along the source principal
components. To render an image with transferred textures during testing, we simply replace the
texture vectors of the source points with the transferred texture vectors. The remaining components
of the model remain unchanged during testing.

Feature Map

Linear: 1285256

ReLU

Linear: 256—64

[]
(J
(Linear: 256256)
(ReLU)
[]
[]

Max(0,x) + 1

k.

EE
" Feature Map |>< + Iz“
v

e]

Figure 13: Modified point feature renderer architecture for exposure control, where we add an
additional latent code input z which is fed into an MLP to produce affine transformation parameters
for the feature map. The transformed feature map serves as the input to the U-Net architecture to
produce the final RGB output image.

A.8 Exposure Control

As exposure level is an uncontrolled variable in novel view synthesis of the scene, there can be
multiple possible exposure levels for rendering unseen views not present in the training set. Therefore,
we introduce an additional latent variable z to the model to explain this variability. Specifically,
we modify the architecture of the point feature renderer fp,, and use the latent code z € R!?8
as an additional input. The latent code is first passed through an MLP, which produces a scaling
vector v € R32 and a translation vector 3 € R3? for the feature map. The scaling vector v and the
translation vector [are applied channel-wise to the feature map. The output is then fed into the
U-Net architecture (described in Sec.[A.2) to produce the final RGB image. The architecture details
are shown in Figure

17

To effectively train a model to solve this one-to-many prediction problem, we employ a technique
known as cIMLE (conditional Implicit Maximum Likelihood Estimation) [16]. cIMLE is specifically
useful for addressing the issue of mode collapse and effectively capturing diverse modes within the
target distribution. Algorithm [I]shows the pseudo code of cIMLE:

Algorithm 1 Conditional IMLE Training Procedure

Require: The set of inputs {x; }._, and the set of corresponding observed outputs {y;};_,
Initialize the parameters 6 of the generator Tj
for p = 1to N,yierr do

Pick a random batch S C {1,...,n}
fori € Sdo
Randomly generate i.i.d. m latent codes
Z1,...,Zm
Vij < To(xi,25) Vj € [m]
0(2) < argmin; d(y;, ¥:;) Vj € [m]
end for
for ¢ = 1to Nj,per do
Pick a random mini-batch S cs B
0 0—1Vo (X ,c5d¥isYiow)) /5]
end for
end for
return ¢

In our specific context, x; is the feature map, T} is the modified point feature renderer, y; is the target
RGB image. We first load pre-trained weights for all model parameters except the additional MLP
for the latent variable before training. During test time, we randomly sample latent codes to change
the exposure of the rendered image.

B Additional Results

B.1 Qualitative Comparison

We include extra qualitative results for NeRF Synthetic dataset [22] in Figure[T4] Furthermore, we
include qualitative comparisons between our method and the more competitive baselines, based on
metric scores, on the Tanks & Temples subset in Figure T3]

)

o A5 - a - —
7R 4 P78 R/ R/

Chair

Ficus

7 Point- Gaussian PAPR (Ours) Ground
NeRF [438]] Splat- Truth
ting

Figure 14: Qualitative comparison of novel view synthesis on the NeRF Synthetic dataset [22].

18

Ignatius Family Caterpillar Barn

Truck

NeRF [22]] SNP [56] Gaussian PAPR (Ours) Ground Truth
Splatting [11]]

Figure 15: Qualitative comparison of novel view synthesis between our method, PAPR, and the more
competitive baselines on Tanks & Temples [13] subset.

B.2 Point Cloud Learning

We show the point clouds generated by our method for each scene, depicted in Figure [I6] for the
NeRF Synthetic dataset [22]], and Figure [T7] for the Tanks & Temples subset. These results
demonstrate the effectiveness of our method in learning high-quality point clouds that correctly
capture the intricate surfaces of the scenes.

ﬁ/ﬁ”x?'&\%}gﬁ

Chair Drums Ficus Hotdog Lego Materials Ship

Point Cloud Reference

Figure 16: Point clouds learnt by our method on the NeRF Synthetic dataset [22].

19

Reference

Point Cloud

TR

Barn Caterpillar Family Ignatius Truck

Figure 17: Point clouds learnt by our method on the Tanks & Temples [13] subset.

B.3 Zero-shot Geometry Editing

We present comparisons with point-based baselines on two scenes in which we apply non-volume
preserving stretching transformations. In the first scene, we stretch the back of the chair, and in the
second case, we stretch the tip of the microphone. As shown in Figure [T8] NPLF [24], DPBRF [53],
Point-NeRF [48] and Gaussian Splatting [L1] either create holes or produce significant noise after the
transformation. Additionally, SNP [56] fails to preserve the texture details following the edits, such
as the golden embroidery pattern on the back of the chair and the mesh grid pattern on the tip of the
microphone. In contrast, our method successfully avoids creating holes and effectively preserves the
texture details after the transformation.

After Before

Before

After

Point-NeRF [48] Gaussian PAPR (Ours)
Splatting [T1]]

Figure 18: Qualitative comparisons among our method, PAPR, and point-based baselines following
non-volume preserving stretching transformations. The rendered images before and after the trans-
formations are shown. The results after the transformations are rendered by manipulating the point
positions only during test time.

NPLF [24] DPBREF [53] SNP [56]

20

B.4 Quantitative Results

We provide the metric scores broken down by scene on both datasets. Table[2] shows the per-scene
scores for the NeRF Synthetic dataset [22] and Table [3|shows the scores for the Tanks & Temples [13]]
subset.

Chair Drums Lego Mic Materials Ship Hotdog Ficus Avg.

PSNR?
NPLF [24] 19.69 1645 20.70 19.84 16.03 16.04 1856 19.55 18.36
DPBRF [53] 26.51 19.38 25.09 29.26 26.20 21.93 31.87 24.61 25.61
SNP [36) 28.81 2174 2575 28.17 24.04 2355 31.74 24.23 26.00
Point-NeRF [48] 30.24 23.60 2342 3175 2477 1872 26.56 28.40 25.93
Gaussian Splatting [II] 31.40 2244 28.18 31.96 27.39 10.84 36.19 24.66 27.76
PAPR(Ours) 3359 2535 3262 3564 2954 2692 3640 3650 32.07

SSIMt
NPLF [24] 0.798 0.737 0.763 0.886 0.739 0.678 0.792 0.842 0.780
DPBRF [53] 0.929 0.834 0.885 0951 0.895 0.713 0.953 0.909 0.884
SNP [56] 0.938 0.889 0.907 0.964 0909 0.823 0.961 0917 0.914
Point-NeRF [48] 0.971 0.927 0.904 0.985 0929 0.761 0.934 0973 0.923
Gaussian Splatting [II] 0.957 0.901 0.935 0.982 0.938 0.792 0.978 0.953 0.929
PAPR(Ours) 0986 0951 0981 0993 0972 0904 0988 0.994 0.971

LPIPSy 4.

NPLF [24] 0.183 0214 0.236 0.136 0.226 0.339 0.226 0.143 0.213
DPBRF [33] 0.098 0.174 0.142 0.070 0.143 0.288 0.093 0.095 0.138
SNP [36] 0.049 0.081 0.057 0.025 0.072 0.167 0.036 0.050 0.110
Point-NeRF [48] 0.065 0.125 0.152 0.038 0.148 0.298 0.143 0.067 0.129
Gaussian Splatting [II] 0.049 0.108 0.077 0.019 0.063 0.273 0.037 0.049 0.084
PAPR(Ours) 0.018 0.055 0.027 0.007 0036 0.129 0.021 0.010 0.038

Table 2: Comparison of image quality metrics (PSNR, SSIM and LPIPS [54]), broken down by scene,
for the NeRF Synthetic dataset [22].

B.5 Ablation Study

We provide additional quantitative results for the ablation study. Figure [I9]shows the PSNR and
SSIM scores for the methods using different number of points. Additionally, Table @] shows the PSNR
and SSIM scores for the various choices of the ray-dependent point embedding. These results validate
the effectiveness of our proposed method.

1l]
30 - 2
09+ 2
z =
L 20 1 A
Ours 081 Ours |
Point-NeRF Point-NeRF
10! DPBRF | | 07" DPBRF | |
1k lék 261(36k 1k lék 26k 361(
Number of points Number of points

Figure 19: Extra image quality metrics (PSNR, SSIM) for the ablation study on different number of
points. Higher values of PSNR and SSIM scores are better.

21

Ignatius Truck Barn Caterpillar Family Avg.

PSNR?T
NPLF [24)] 24.60 20.01 20.24 17.69 23.39 21.19
DPBRF [53]] 18.22 16.20 14.68 17.23 19.93 17.25
SNP [56] 28.41 24.32 25.27 22.62 31.31 26.39
Point-NeRF [48]] 28.59 25.57 20.97 17.71 30.89 24.75
Gaussian Splatting [11l] 26.48 22.32 26.22 23.27 3579 26.81
PAPR(Ours) 28.40 2698 27.06 26.79 34.39 28.72
SSIM*T
NPLF [24)] 0.882 0.725 0.634 0.719 0.846 0.761
DPBRF [53] 0.797 0.563 0.422 0.614 0.776 0.634
SNP [56] 0.944 0.876 0.832 0.858 0.958 0.894
Point-NeRF [48] 0.960 0.926 0.799 0.797 0.970 0.890
Gaussian Splatting [I1] ~ 0.937 0.867 0.860 0.889 0.983 0.907
PAPR(Ours) 0.956 0931 0.896 0.932 0.983 0.940
LPIPSv g4
NPLF [24)] 0.120 0.265 0.381 0.275 0.157 0.240
DPBRF [53] 0.174 0.317 0.484 0.334 0.194 0.301
SNP [56]] 0.077 0.177 0.278 0.196 0.071 0.160
Point-NeRF [48|] 0.085 0.162 0.355 0.237 0.084 0.184
Gaussian Splatting [I1] 0.095 0.186 0.231 0.155 0.032 0.140
PAPR(Ours) 0.072 0.108 0.157 0.118 0.031 0.097

Table 3: Comparison of image quality metrics (PSNR, SSIM and LPIPS [54]), broken down by scene,
for the Tanks & Temples [13]] subset.

Lego Mic
PSNR1T SSIM1t PSNR1T SSIM 1

Full Model 32.62 0.981 35.64 0.993
w/o p; 31.67 0.976 32.00 0.985
w/0 pi, ti,j 13.26 0.701 18.73 0.902

Table 4: Extra image quality metrics (PSNR, SSIM) for the ablation study on different designs for
the ray-dependent point embedding. Higher values of PSNR and SSIM scores are better.

22

	Introduction
	Related Work
	Proximity Attention Point Rendering
	Point-based Scene Representation
	Differentiable Point Rendering with Relative Distances
	Implementation of Relative Distances with Proximity Attention
	Progressive Refinement of Scene Representation
	Training Details
	Learning Point Positions From Scratch

	Experiments
	Quantitative Results
	Qualitative Results
	Ablation Study
	Practical Applications

	Discussion and Conclusion
	Implementation Details
	Proximity Attention
	Point Feature Renderer
	Point Pruning
	Point Growing
	Clustering Feature Vectors
	Zero-shot Geometry Editing and Object Manipulation
	Texture Transfer
	Exposure Control

	Additional Results
	Qualitative Comparison
	Point Cloud Learning
	Zero-shot Geometry Editing
	Quantitative Results
	Ablation Study

