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Abstract

We study interactive learning in a setting where
the agent has to generate a response (e.g., an ac-
tion or trajectory) given a context and an instruc-
tion. In contrast, to typical approaches that train
the system using reward or expert supervision on
response, we study learning with hindsight label-
ing where a teacher provides an instruction that is
most suitable for the agent’s generated response.
This hindsight labeling of instruction is often eas-
ier to provide than providing expert supervision
of the optimal response which may require expert
knowledge or can be impractical to elicit. We initi-
ate the theoretical analysis of interactive learning
with hindsight labeling. We first provide a lower
bound showing that in general, the regret of any
algorithm must scale with the size of the agent’s
response space. Next we study a specialized set-
ting where the underlying instruction-response
distribution can be decomposed as a low-rank ma-
trix. We introduce an algorithm called LORIL
for this setting, and show that it is a no-regret
algorithm with the regret scaling with v/7" and
depends on the intrinsic rank but does not depend
of the agent’s response space. We provide ex-
periments showing the performance of LORIL in
practice for 2 domains.

1. Introduction

Success of a machine learning approach is intimately tied
to the ease of getting training data. For example, language
models (Brown et al., 2020; Achiam et al., 2023), which are
one of the most successful applications of machine learn-
ing, are trained on an abundance of language data which is
both easy to elicit from non-expert users and is available
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offline. In contrast, consider the task of a robot following
instructions specified by a human user (Misra et al., 2016;
Blukis et al., 2019; Myers et al., 2023). It is expensive
to collect ground truth robot trajectories making standard
imitation learning (IL) approaches (Pomerleau, 1991) expen-
sive to apply, whereas reinforcement learning (RL) (Sutton
& Barto, 2018) approaches suffer from high sample com-
plexity. This makes IL and RL- the two most common
ways of training agents, expensive in practice. Motivated by
the limitations of IL and RL, a line of work has proposed
using hindsight labeling, where the agent (robot in our ex-
ample) generates a response (trajectory) given an instruction,
and a teacher instead of providing expensive ground truth
response, provides the instruction that is suitable for the
agent’s response (Fried et al., 2018; Nguyen et al., 2021).
This reverses the labeling problem to an easier labeling
problem, since instructions are typically in a format such as
natural language, which can be inexpensively elicited from
non-expert users in contrast to robot trajectories. While
this approach has been applied empirically, a theoretical
understanding remains absent. In this work, we initiate
the theoretical understanding of interactive learning from
hindsight instruction.

We consider the learning setup illustrated in Figure 1. In
this setup, a teacher is teaching an agent to navigate in a
virtual home environment. In each round, the world gives
an instruction and a context to the agent. The instruction in
this case is expressed in natural language. The context is an
image that provides information about the environment such
as the position, color, and sizes of different objects. The
goal of the agent is to generate a trajectory that follows the
given instruction. In the beginning, the agent lacks any lan-
guage understanding and, therefore, cannot generate correct
trajectories. We assume access to a teacher that can provide
an instruction that best describes the agent’s trajectory. This
type of feedback can be viewed as a hindsight instruction, as
it was the correct instruction in hindsight for the trajectory
generated by the agent. In each round, the agent generates
a trajectory and receives a hindsight instruction from the
teacher. This allows the agent to learn a mapping from the
instruction space to the trajectory space, which helps im-
prove the agent’s policy. We call this learning approach as
Learning from Hindsight Instruction (LHI).

There are several different approaches for training a
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Round

Step 1: Agent is given an instruction and a
context

“Go to the red couch in the
corner of the room”

Step 2: Agent generates a trajectory to
follow the instruction

“Go to the red couch in the
corner of the room”

Step 3: Teacher generates an instruction
for the agent’s trajectory

X
! . 2 ~P(X Y =y)
Desireé o 7Tt - yt ................................ N
trajectory Agent’s Agent
Policy trajectory “Go round the coffee table

and stop in front of the
television.”

Figure 1. Shows sketch of our interactive Learning from Hindsight Instruction (LHI) setting. The agent interacts with the world iteratively.
In each round (or time step), the agent is given an instruction z; and a context s;. In our case, the context s; is the house layout. In
response, the agent generates a trajectory (response) 1; which is then labeled by a teacher model with an instruction x} (hindsight
instruction). The agent never receives any expert response or rewards.

decision-making agent. One of the most commonly used
approaches is imitation learning (IL) where a teacher pro-
vides access to expert demonstrations allowing the agent
to learn the right behavior (Ross et al., 2011). For the ex-
ample in Figure 1, this will require the teacher to be able
to understand the agent’s action space and dynamics. This
often requires domain expertise and can only be provided
by expert teachers and may require specialized tools.! In
contrast, a non-expert user can easily provide an instruction
for the red trajectory in Figure 1.

Reinforcement learning (RL) is another widely used ap-
proach for training agents that overcomes the expense of
collecting expert demonstrations by directly optimizing a
reward function that is more user-friendly to provide (Sutton
& Barto, 2018). However, RL approaches are less sample
efficient than IL approaches making them less suited for
real-world settings.In contrast, learning from hindsight in-
struction uses instruction feedback which is user-friendly
and more natural for humans to provide. Further, instruc-
tion feedback contains significantly richer information than
scalar rewards which can help in reducing the sample com-
plexity compared to RL (Nguyen et al., 2021).

Because of its promise, learning from hindsight labeling has
been explored in various applications (Andrychowicz et al.,
2017; Fried et al., 2018; Nguyen et al., 2021). However,
a principled understanding of this setting remains absent
despite these empirical results. In particular, we focus on
an interactive learning setting where a teacher trains the
agent using hindsight instructions. For these settings, the
natural evaluation metric is regret which penalizes the agent

!One such commonly used approach is motion capture where a
human can record behavior that can be transferred to a humanoid
agent but this requires specialized tools.

for failing to follow a given instruction. A key challenge in
designing algorithms for this setting is that the agent has to
both exploit to follow the given instruction, but also explore
to improve its understanding capabilities more generally. In
this work, we initiate the theoretical study of this setting.
We first present a formal interactive learning setting and
define a notion of regret. Motivated by natural settings
where the teacher is a human user, we assume access to a
black box teacher which can generate a sampled instruction
given the agent’s response but where the agent does not
have access to the teacher’s probability values. The agent
is evaluated using a hidden reward given by the probability
of the teacher labeling the agent’s response by the original
given instruction.

We first prove a lower bound for this setting showing that in
the worst case, the regret bounds for any algorithm will scale
polynomially with the size of the agent’s response space. In
many applications such as our robot navigation example, the
agent’s response is a trajectory, leading to an exponentially
large response space. However, in practice using function
approximations and featurization enables generalization in
infinitely large spaces. Motivated by this we introduce a low-
rank setting where where the agent has access to a feature
representation of the response and context and the teacher’s
distribution admits a low-rank decomposition in this feature
space. We introduce an algorithm LORIL for this setting and
derive regret bounds that scale as /7" with the horizon 7.
Importantly, the regret does not depend upon the size of the
agent’s response or the size of instruction or context space,
and instead depends on the rank of the teacher’s distribution,
which can be significantly smaller in practice.

We evaluate LORIL on two tasks. In the first setting, we use
a synthetic task where low-rank assumption holds and show
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Protocol 1 Shows the protocol for our setting: Learning
from Hindsight Instruction (LHI). The line in blue needs to
be implemented by an algorithm implementing the protocol.

1: fort=1,2,--- T do

2: World presents sy, x4 possibly adversarially

3 Agent generates a response y; € )

4: Teacher describes the response =} ~ P(X | yt, s¢)

5

6

Evaluate using a hidden reward r; = P(x; | yt, S¢)
: Return 37, 7

that LORIL achieves lower regret compared to baselines. In
the second setting, we apply LORIL to a setting with natural
language instruction and images and show that insights from
LORIL help even when the low-rank assumption does not
hold.

We include a discussion on the related literature after pre-
senting our results in Section 7. The code for all experi-

ments in the paper can be found at https://github.

com/microsoft/Intrepid.

2. Preliminary and Overview

We first introduce the mathematical notations before provid-
ing an overview of our setup.

Notation. For a given N € N, we define [N] =
{1,2,---,N}. For a given countable set I/, we denote
the set of all distributions over U by A(U). For a given
positive-definite matrix A € R?*9, we define the induced
norm of a vector v € R% as [|v|| , = Vo T Av.

Interactive Learning from Hindsight Instruction. We
define the space of contexts as S, the space of instructions
as X’ and the space of all possible agent response as ). We
assume S, X, and ) to be finite for our analysis but allow
them to be arbitrarily large. The finiteness is only a mild
assumption in practice, as it still allows us to handle the
most common data types. For example, if X denotes the
space of all m x n RGB images with each pixel taking
values in {0,1,--- , 255}, then |X| = 256>™" which is an
exponentially large but finite value.

The agent interacts with the world repeatedly over T'
rounds. Protocol 1 shows our learning framework. In
the ¢ round, the world presents a context s; and an
instruction x; sampled according to a fixed distribution
Di(-y- | ®1,y1, 81, ,@Tt—1,8t—1, Yt—1) that can depend
on the past history. Given the instruction and the context,
the agent generates a response y; € ). Ideally, we want
the agent to generate a response that fulfills the intent of
the instruction. After generating the response, the agent
receives a hindsight instruction x; sampled from a fixed con-

ditional distribution model P(X | Y = y;, S = s¢). This
conditional distribution models a teacher that provides an
instruction that is most appropriate for the agent response.
In a typical setting, this teacher will be modeled using a
human-in-the-loop.

The agent does not have access to P(X | Y = y;, S = s¢)
but can observe a sample from this distribution by gener-
ating a response and asking the teacher to label it with an
instruction. This is because in a human-in-the-loop setting,
we don’t have access to the human teacher’s distribution.

The teacher model P(X | Y, S = s;) is in practice highly
stochastic since there can be many possible ways to describe
instructions for a given response. Further, the space of all
possible responses and instructions can be impractically
large, necessitating the use of function approximation.

Computing Regret. Given a state s; and context x,
the ideal response should maximize the probability of the
teacher labeling the response with the right instruction x;,
i.e., the agent should play y = argmaxycy P(x: | y, 5¢).
We can, therefore, view P(z; | y, s¢) as a latent reward for
generating response y. This leads to a natural notion of
regret given by:

T
Reg(T) =) (glea)gi P(xy | 51,y) — Pla | sy>) :
t=1
(1)

where s;, x; are the context and instruction in round ¢ and
14 1s the response generated by the agent.

There can be alternative ways to define regret in Equation 1.
Log-probabilities log P(X | S,Y") may appear more natural
to use instead of probabilities, however, the former is un-
bounded which makes it ill-suited for defining reward. For
example, if in the first round, the agent generates a response
y1 for which P(zq | y1,s1) = 0, then the agent’s regret is
unbounded irrespective of the agent’s performance in later
rounds. Another choice for reward is the likelihood of the
response P(y | ¢, s¢). However, this requires assuming a
prior distribution over y which can be hard to realize.

[DM: Discuss relation to LLMs]

3. Lower Bound in the General Case

We first prove that it is impossible to design an algorithm
for Protocol 1 with a regret bound that doesn’t scale polyno-
mially in the size of plausible responses |V|.

We introduce the concept of ‘stochastic worlds’ to prove
our lower bound. A stochastic world W consists of a set of
instructions, contexts marginal distribution Py (X, .S) and a
conditional distribution of instructions given responses and
contexts Py (XY, S).


https://github.com/microsoft/Intrepid
https://github.com/microsoft/Intrepid

Provable Interactive Learning with Hindsight Instruction Feedback

When at time ¢ an agent A interacts via Protocol 1 with
a stochastic world W, the world produces an instruction
x,; and context s; sampled from a time-independent dis-
tribution Py (X, S). We use the notation Py 4 and Eyy
to denote the measure and expectations over trajectories
(s1,21, 1,24, -+, ST, @1, yr, T/ ) resulting from the inter-
action between A and world W. We show that for any K €
N, and any algorithm A, there is a stochastic world where
the regret of algorithm A satisfies Reg(T) > Q(VKT)
when A interacts with W through Protocol 1.

To prove our main result we exhibit a family of stochastic
worlds {T; }, such that world W; is defined by context space
S = {s,} instruction space X = {4, B}, response set ) =
[K] marginal Py, (X, S) = Uniform((4, s,), (B, s,)) for
all ¢ € [K], and conditional

Pw, (Xly;) = 1/2+4VE/T-1(j = i)-(1-2-1(X = B)).

The context distribution is a delta mass around context s,,.
In world W; the optimal response for instruction X = A
equals y;, and the optimal response for instruction X = B
is any y; for j # i. Any suboptimal decision, regardless of
the instruction incurs in regret of order /K /T. Our main
result is the following.

Theorem 1. Let T' > 256 log(2¢) and K > 8e. For any
algorithm, there is at least one stochastic world W; such

that Reg(T) > —Vis{T such that with probability at least
1/4e.

The proof can be found in Appendix A. Lemma 1 implies
the expected regret lower bound,

Corollary 2. If the conditions of Lemma 1 hold then for
any algorithm there exists at least one stochastic world W
such that Reg(T) > Q(vV KT). Where,

T
Reg(T) = Ew,,a Zgleagp(fﬂy? 50) — P(z¢[ye, So)
t=1

The proof of this result can also be found in Appendix A.
Theorem 1 shows that for tractable hindsight learning it is
necessary to impose structural assumptions on the condi-
tional probabilities P(X|Y,.S). We explore one such as-
sumption in the next sections.

4. Provable Learning in Low-Rank Setting

The analysis in Section 3 shows that the regret scales as
Q(y/]Y]) which makes this an intractable setting when Y
is extremely large. For settings with typically large input
or output spaces, it is natural in practice to use function
approximation. For example, a trajectory can be encoded
using a neural network to a representation that contains

the relevant information. In statistical learning theory, sig-
nificant progress has been made in the study of learning
with function approximation (Misra et al., 2020; Sekhari
et al., 2021; Foster et al., 2021). In particular, problems
with low-rank structures (Agarwal et al., 2020; Jin et al.,
2020) have received significant attention due to their abili-
ties to model commonly occurring settings and the success
of corresponding algorithms in real-world problems even
where the low-rank assumption is violated (Henaff et al.,
2022). Motivated by this, we introduce and study a setting
where the teacher model P(X | Y, S) admits a low-rank
decomposition.

Low-Rank Teacher Model. We consider a specialization
of our general setup where the teacher model follows a low-
rank decomposition. Formally, we assume that there exists
f*: X > R%and ¢g* : ¥ — R such that

Pz |y,s) = f*(x) " g"(y.5),

where d is the intrinsic dimension of the problem which is
much smaller than the size of S, X, and ) which can all be
infinitely large. We assume that the agent has knowledge of
g* but does not know f*.

VseS,xe X,ye),

We assume access to a model class F to learn f*. Our goal
is to get regret guarantees that do not scale with | X|, | V], |S|
and instead only depend on the intrinsic dimension d of the
problem and the statistical complexity of F.

LORIL Algorithm. We present the “Learning in LOw-
Rank models from Instruction Labels” algorithm (LORIL):
for low-rank teacher models in Algorithm 1. The algorithm
assumes access to the embedding function ¢g* for encoding
the agent’s response. In practice, such a function can be
available either using a pre-trained representation model
or by using a self-supervised learning objective such as
autoencoding. We discuss some implementation choices
later in the experiment section.

LORIL implements Protocol 1. In the tth round, the
algorithm first computes a maximum likelihood esti-
mation f; of f* using the historical data (line 3). We
use this to define a policy m; to generate a response
y;. LORIL is based on the principle of optimism under
uncertainty. As per this principle, we first compute an
appropriate uncertainty measure b;(y) for a response
y € Y such that we know with high probability that the

true value of a response, i.e., f*(x;)  g*(y,s) lies in

[ft(xt)Tg*(y, st) = be(y, se), fo(@e) T g* (y, s¢) + be(y, 5¢)

with high probability. As f;(2;)T g*(y, s;) is the current
estimate of the value of a response y in the tt" round, we
can view b(y, s;) as defining a confidence interval for a
given response y and context s;. Second, we take the action
that has the maximum possible value in the confidence
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interval, namely:

Yr = argmax <ft(l't)T9*(ya5t)+bt(ya5t))- ()
yeY —_— ——

estimated model value bonus

For low-rank models, we will show that b;(y,s;) can
be expressed as O([|g*(y, s¢)||g-1) where ¥; = A +

Z;;ll 9" (y1,51)9*(y1,,81) " is a positive definite matrix
capturing information about historical data. This can
be viewed as a positive definite matrix ;I were A\, >
0 and a sum of rank one positive semi-definite matri-
ces g*(y1,51)g* (1, 51) T which form a covariance matrix
121 9% (wis1)g* (i, s1) T The quantity by(y, s¢) can be
viewed as a bonus in Equation 2 and is known as elliptic
bonus in the literature and is a frequently appearing quantity
in the study of linear models (Abbasi-Yadkori et al., 2011)
and low-rank models (Agarwal et al., 2020).2

The agent computes the optimistic response y; = ()
(line 6) and plays it. In response, the teacher provides a
description x} (line 7) which is added along with the agent
response to the historical data.

Note that the agent never has direct access to f* or the true
model P(X | Y, .S), but only has access through feedback
generated by the teacher model and through its knowledge
of g* and F. Further, the agent is also unaware of the true
horizon length T which is often unknown in practice.

Computational Efficiency. The computation of the co-
variance matrix can be performed easily as can the computa-
tion of bonus b, for a given response. The inverse of the co-
variance matrix can be computed efficiently in a numerically
stable way using the Sherman—Morrison formula (Sherman,
1949). The two main computationally expensive steps in
LORIL are maximum-likelihood estimation and solving the
optimization in line 5-6. The maximum likelihood estima-
tion is routinely computed for complex function classes
such as deep neural networks in practice. However, in this
case, the main challenge is in defining a function class F
such that f(-) T g*(y, s) is a well-defined distribution. This
question has been addressed for low-rank models (Zhang
et al., 2022) and we expect the same tools to also help here.
The optimization in line 5-6 can be trivially solved when )
is small enough to be enumerated. When ) is exponentially
large, this step can be challenging. One strategy can be to
use a proposal distribution ¢(y | x¢, s¢) to generate a set of
K responses, and then find the response with maximum ob-
jective value in Equation 4. The proposal distribution can be
trained by performing MLE on historic data and modeling y
autoregressively. However, we leave a computational study

The word elliptic comes from the fact that for a positive def-
inite matrix 3, the set {y | y' X~ 'y < 1} denotes an ellipsoid
centered at 0.

Algorithm 1 LORIL(g*, F): Learning in LOw-Rank mod-
els from Instruction Labels
Require: Response embedding function g* : S x J) — R¢
Require: Model class F = {f : X — R%}

1: Define A, = 1.

2: for t=1,2,---,Tdo R

3: Compute MLE estimator f; using {2/, ye, s¢}}_1.

t—1
fu = argmax > I ful@)) " g* (e, se)
=1

4: Define empirical covariance matrix
t—1
Se=Ml+ Y g" w509  Wes0) )
=1

5: Define policy for this round

mic s o angma (f(0) T (,8) + buly, 5))
yey

“4)

where
by, 5) = ' (VIog(tIFI/) + VAB) llg" (v )5,

and C’ is determined by Equation 7 in Lemma 1 .

6: Agent generates the response y; = (¢, S¢)
7: Teacher describes the response =} ~ P(X | yt, s¢)
8: Evaluate using a hidden reward ry = P(xy | ye, $¢)

T
return ) ,_ ¢

with exponentially large ) for future work. [DM: Discuss a
specific algorithm specially in RL framework]

5. Theoretical Analysis

Our main result is to show Algorithm 1 satisfies a sublinear
regret bound in the realizable setting,

Assumption 1. [Realizability] The teacher model
P(xly,s) = f*(x) " g*(y, s) satisfies f* € F for a known
model class F. Moreover, all teacher models parametrized

by feature maps f € F are valid distributions, i.e.,
(X)) g*(y,s) € A(X), foranyy € Y and s € S.

We also assume the feature maps in F are bounded.

Assumption 2. There exists a constant B > 0 such
that for any f € F we have sup,cy ||f(z)| < B and

SUPyey ses 19" (y, s)|| < B.

Our main theoretical result is a high probability upper bound
for the regret of Algorithm 1.
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Theorem 3. [Regret bound of LORIL] When Assumption 1
and Assumption 2 hold and Ny = 1/t the regret of Algo-
rithm 1 satisfies

Reg(T) :0(3 Tdlog(1+ TB)+

VTdlog(T|F|/5)log(1 + TB))
with probability at least 1 — 36 for all T € N.

The analysis of Algorithm 1 in Theorem 3 is based on the
principle of optimism. For any (s,z,y) € S X X x Y
thequantity f;(z)T g*(y, s) + be(y, s) can be understood as
an estimator for the value of P(x|y, s) where the corrective
bonus b, (y, s) takes into account the accuracy of the empir-
ical estimator ]IADt(x\y, s) = fi(z)Tg*(y,s). By definining
the bonus function b, : ) — R as an appropriately scaled
multiple of ||g*(y, s) \\2;1 it overestimates P(z|y, s). That
is,foralls € S,z € X,y € Yandt €N,

P(z|y, 5) < Bi(z]y, s) + be(y, 5) (5)

with probability at least 1 — 2. When Equation 5 is satisfied
the policy definition of line 5 immediately implies that

max P(z]y, s;) < max]P’t( [y, 5¢) + be(y, 5¢) =
yey SN

(6)

To prove Equation 5 we develop the following supporting
result,

Lemma 1. When Assumption 1 and Assumption 2 hold,
then with probability at least 1 — 2§ we have:

‘(@) = T, < € (ViosllIFI/3) + v/AB)
%)

sup
zeX

for all t € N simultaneously.

This result provides a bound for the maximum error in the
estimation of f*(z) as measured by the data norm || - [|g, .
It will prove crucial in bounding the error of the empirical
models P;(x|y, s). The detailed version of this result can its
proof can be found in Lemma 2 in Appendix B.

We denote as £ the event that Equation 7 holds. In this case,
we can upper bound the prediction error of the empirical

model Py(z|y, s) = fi(z)Tg*(y, s) forall (s, z,y) € S x
X x ).

Butaly )~ Plaly9)| = |(1°@) — 1)) " (09

() R
< | f (@) = fe(x) :, g™ (v, )llg -
(i)

< b(y,s) (8)

where (i) holds because for all v,w € R? and invert-
ible ¥ € R%*?, the Cauchy-Schwartz inequality implies

(v,w) = (820,27 2w) < |vls|w]z-1 and (ii) by

upper bounding ’ f*(x) — fi(x)||_ using the RHS of Equa-

tion 7.

These are the necessary ingredients to finalize our sketch
of Theorem 3. When £ holds the following inequalities are
satisfied,

T
Reg(T Z

t=1

Py | me(2e), 5¢))

ZEtlﬂ' CEt St)f

t( ) 9" (e, s¢)

—
INE

— £ () T g (ye, ) + be(ye, 5¢)

—~
INe

M~ ™=

2by (yt7 St)

o~
Il

1

where (a) is a consequence of Optimism (Equation 6). And
inequality (b) of the prediction error bound from Equation 8.
What we have managed to achieve at this point is to upper
bound the regret by a sum of estimation errors along the
features of the responses played by the algorithm at each
time-step. Finally, substituting the definition of the bonus
terms and invoking a standard sum of inverse norms bound
from the linear bandits literature (see for example Propo-

=P, (]ye, s¢) +S8QR, 3 (Pacchiano et al., 2021) and Proposition 7 in

Appendix C)

T T
th(yt) =0 ( 10g(T\.7-'|/5)Z ||g*(yt’5t)||if,l>

<0 (\/leog(T|}'\/5) log(1 + TB))

This finalizes the proof sketch of Theorem 3. These results
rely on the assumption that g* is known. Removing that
assumption yields a substantially harder problem as it makes
it more difficult to leverage the linearity structure. Although
this scenario can be dealt with by deriving algorithms and
bounds depending on statistical capacity measures such as
the eluder dimension (Russo & Van Roy, 2013) for the
combined f ()" g(y, s) model class we leave the derivation
of a sharper analysis of this setting for future work.

6. Empirical Study

We evaluate LORIL in two settings. The first is a synthetic
task that satisfies the low-rank teacher setting and all our
assumptions and is designed to provide a proof of concept
of LORIL. The second setting is a grounded setting with real
images, natural language instructions, and where the teacher
model is not low-rank. Our goal with these experiments
is not to present challenging settings for exploration, but
to show how various components of LORIL can be imple-
mented empirically. Our second experiment also evaluates
whether insights from LORIL carry over to more realistic
settings even where our assumptions are violated.
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6.1. Evaluating on a Synthetic Task

Environment. For a given intrinsic dimension d, instruc-
tion size | X’| and response size ||, we randomly initialize
two matrices F' € RI¥1*4 and G € RV, We ignore the
context in this setting by defining S as a singleton {so}. We
define X = [|X|] and Y = [|)|] and so an instruction = and
a response y are positive integers. We define these matrices
by first initializing them with values sampled iid with stan-
dard Gaussian distribution. We then take their exponent and
divide by a temperature coefficient 7. We then normalize
F and G row-wise such that FG € RI¥I*1¥| is a stochastic
matrix whose columns sum to 1. For a given (z,y) € X' x ),
we view the matrix entry (F'G)g, as denoting the value of
the teacher distribution P(X = 2 | Y = 4,5 = s9). We
can view the z'" row of F and the y'" column of G as
denoting f*(x) and g*(y) respectively.

Baselines. We evaluate the following baselines. Random:
the agent takes uniformly random actions. e-Greedy: the
agent performs maximum-likelihood estimation on the his-
toric data to learn an estimate ft similar to LORIL; however,
unlike LORIL, the exploration is not performed using elliptic
bonus but using e-greedy, where with e probability a random
action is taken and with the remaining probability, we take
the greedy action arg max,cy fi(x0) T g*(v). Greedy: This
is same as e-Greedy with € = 0 and only exploits based on
historic data. We tune the hyperparameters A and C’ for
LORIL and € for e-greedy using grid search.

—e— LORIL
17.54 £-Greedy
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Figure 2. Comparison of LORIL against baselines on the controlled
task. We run each baseline 3 times and report the average. The
shaded areas show the standard deviation.

Model and Optimization. We model f € F as f(z) =
d
( exp(0ai) ) ~, where (6,

Zorexexp(003) )4 TEX €]
eters that we train. For any f € F, we can verify that

4) are the param-

f(x)Tg*(y) is a valid conditional distribution over z given
y. We perform maximum likelihood estimation using Adam
optimization.

Results. Figure 2 shows cumulative regret over time steps
for LORIL and baselines. We ran each experiment 3 times
with different seeds. We select hyperparameters for each
algorithm based on the mean final regret. We can see that
LORIL performs better than all baselines achieving the best
regret which is 12.3% smaller than than the next best base-
line. Improvements over the greedy baseline show that ex-
ploration helps, whereas improvements over e-greedy show
that using elliptic bonus for exploration provides better re-
gret bounds.

6.2. Evaluation on an Image Selection Task

We evaluate LORIL on an image classification task where
the true model does not admit a low-rank decomposition.
In reinforcement learning, it has been found that using the
elliptic bonus for exploration is helpful in real-world set-
tings where low-rank assumption doesn’t hold (Henaff et al.,
2022). Our goal in this subsection is to test if a similar result
holds for our setting.

—e— LORIL

&-Greedy
4001 —®— Random
—o— Greedy

300 4

200 4

Cumulative Regret

0 100 200 300 400 500 600
Time step

Figure 3. Results on the image classification task. We run each
baseline 5 times and report the average performance. The shaded
areas show the standard deviation.

[DM: add a figure of the model]

Environment. The instruction space &’ is in natural lan-
guage where for a given z € X, we denote the i** token by
x;. The agent has an action space with |))| = K actions. In
each round, the world assigns an image of an object to each
action, and the agent is given a natural language instruction
describing the image that the agent should select. The agent
has a non-trivial context s € S that contains the identity of
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the object assigned to each action in the given round. No
two actions have the same image but the image associated
with each action can change across rounds. We sample an
object by picking an object of a given type and a given color
from a set of types and colors. The instruction space X
is in natural language as in our motivating example in Fig-
ure 1. We use a set of templates to generate instructions for
describing a given image using the object type and color.

Model. We model a function class H = {h : Y x § —
A(X)} using a deep neural network. Given an action y and
context s, we encode the image associated with the action
with an encoding ¢g* (v, s) € R?. We model g* as a 3-layer
convolutional neural network with LeakyReLu activation.
In this setting, we don’t assume that the environment pro-
vides the g*. Instead, we train g* using an autoencoder
objective and a set of offline images sampled from the en-
vironment. Alternatively, we could have used a pre-trained
image representation model such as ResNet (He et al., 2016)
or CLIP (Radford et al., 2021).

We use the encoding g*(y, s) to generate a distribution over
texts x = (x1,- -+ ,x,) using a two-layer Gated Recurrent
Unit (GRU). Specifically, we apply a fully connected layer
to g*(y, s) to reshape it to an appropriate size and use it to
initialize the hidden state of the GRU for all layers.

Results. Figure 3 shows the results. Similar to our pre-
vious experiment, LORIL performs better than baselines,
achieving 4.8% less regret than the next best baseline, even
though the setting does not admit a low-rank structure. We
also note that these tasks were not designed to present a
challenging scenario for exploration, and consequently the
gains relative to baselines are smaller.

7. Related Work

Provably-efficient Interactive Learning. The ubiquitous
nature of interactive learning has resulted in significant atten-
tion devoted to its theoretical understanding. Protocol 1 su-
perficially resembles a contextual bandit problem but stands
in contrast with the scenario where the learner receives a
(possibly noisy) reward signal after taking an action in a
given context. The key difference is that while in the contex-
tual bandit setting the feedback equals an unbiased sample
of the reward corresponding to the arm and context, in our
setting the feedback is produced from a conditional distri-
bution of instructions that does not immediately relate to
the reward. Thus, it is not possible to immediately adapt
a contextual bandit algorithm to provide regret bounds for
Protocol 1. There is a vast literature dedicated to developing
sublinear regret algorithms for contextual bandit problems.
Early efforts to incorporate contextual information into ban-
dit problems led to the development of algorithms such as

LinUCB (Chu et al., 2011), OFUL (Abbasi- Yadkori et al.,
2011), and Linear Thompson Sampling (Agrawal & Goyal,
2013), for the setting when there is a linear relationship
between the context and the reward. A long line of work
has also focused on studying guarantees for imitation learn-
ing (Ross et al., 2011; Rashidinejad et al., 2021), and policy
optimization (Kearns & Singh, 2002; Auer & Ortner, 2006;
Azar et al., 2017; Foster et al., 2021). More recently, there
has been a focus on developing statistically efficient RL
algorithms with function approximation (Misra et al., 2020;
Jin et al., 2021; Foster et al., 2021). Our work focuses on
provable learning similar to these methods and uses similar
tools for analysis, but focuses on a novel learning setting
with a different type of feedback than IL and RL.

Low-rank Interactive Learning. Low-rank models have
been studied in bandit settings (Abbasi-Yadkori et al., 2011),
contextual bandit settings (Chu et al., 2011), and in more
general multi-step reinforcement learning (Jin et al., 2020;
Agarwal et al., 2020). One of the appeals of low-rank mod-
els is that they can generalize tabular MDPs and provide
a way to study function approximation settings which is
standard in empirical studies. This is also our motivation for
studying low-rank models. Further, low-rank models are one
of the most expressive settings for which both statistically
and computationally efficient algorithms exist.

Learning using Hindsight Feedback. Several different
works have found it advantageous to use hindsight feed-
back to convert a failed example into a positive example
by relabeling it with a different goal (or in our case instruc-
tion) (Andrychowicz et al., 2017; Li et al., 2020; Nair et al.,
2018). These approaches typically solve goal-conditioned
RL where a failed trajectory is labeled with its final state
as the goal. However, these approaches focus on empirical
performance and do not provide regret bounds.[DM: cite
Aviv’s paper]

Instruction Following. The task of developing agents that
can follow natural language instructions has received signif-
icant attention since the early days of AI (Winograd, 1972).
Several approaches have developed methods that train these
systems using imitation learning (Mei et al., 2016) and re-
inforcement learning (Misra et al., 2018; Hill et al., 2021).
Training agents with hindsight instruction labeling has been
previously explored for instruction following in (Nguyen
et al., 2021; Fried et al., 2018). The main focus of these
results is on empirical performance and they either provide
no theoretical analysis, or in the case of (Nguyen et al.,
2021) only provide asymptotic analysis. In contrast, we
provide the first finite-sample regret bounds for learning
from instruction labeling.
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8. Conclusion

In this work we define a formal interactive learning setup for
hindsight instruction and initiate its theoretical understand-
ing. Among other things we present a lower bound indicat-
ing that hindisght instruction learning in the general case
can be statistically intractable, thus implying the necessity
of imposing structural conditions for statistically efficient
learning with hindsight feedback. We present an algorithm
LORIL that has no-regret when the underlying teacher distri-

bution has low-rank. The regret of LORIL scales o (\/T

with the horizon and only depends on the rank of the dis-
tribution and does not depend on the size of the agent’s
response space or instruction space. We finalize our work
with an experimental demonstration of LORIL in a variety
of synthetic and grounded scenarios. This work represents
a first exploration of the hindsight instruction setup and
therefore many exciting research directions remain open.
Chief among them is to design provably efficient algorithms
for hindsight instruction under less restrictive function ap-
proximation assumptions and that are also computationally
efficient. We foresee that the algorithmic framework in-
troduced by the Decision Estimation Coefficient literature
(Foster et al., 2023; 2021) can serve as the basis of the devel-
opment of algorithms for hindsight instruction that are both
computationally tractable and statistically efficient and that
can lead to practical impact in scenarios such as training
language models and robotics.

Impact Statement

This paper presents an interactive learning algorithm that
learns from hindsight instructions. The main contributions
of this paper are theoretical, however, algorithmic principles
from our work can be useful in various empirical studies. A
key application can be in training embodied systems using
feedback provided by a human or a language model. An
important thing to keep in mind is ensuring safety and pri-
vacy of any human in the loop during the training process.
Further, if a language model is used to generate hindsight
instructions, then care must be taken to ensure that hallu-
cinations and implicit bias in the model does not lead to
undesired behavior in the embodied agent or robot. While
these questions are important, they are orthogonal to the
focus of our study.
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A. Lower Bound Proofs

Theorem 1. Let T' > 2561og(2¢) and K > 8e. For any algorithm, there is at least one stochastic world W such that
Reg(T) > YL such that with probability at least 1/4e.

Proof. Throughout the proof we’ll use the notation ¢ = /K/T so that problem W; has distribution P(X,S) =
Uniform((A, s,), (B, s,)) and

Pu, (Xly;) = 1/2+¢-1(j =) - (1 - 2- 1(X = B)).

Let’s start by defining the empty problem W as

P(X,S) = Uniform((4, s,), (B, $0))
B(Aly:) = P(Bly) = 1/2, Vi

Let’s consider an arbitrary algorithm for A for learning with hindsight labeling and consider its interaction with problem W.
We’ll use the notation Py, 4 and Eyy 4 to denote the measure and expectations induced by problem W and algorithm A.
First, we consider algorithm A’s interaction with problem W}.

Let’s consider an arbitrary algorithm for A for learning with hindsight labeling and its interactions with Wj.

Let n;(T) = Zthl 1(y; = i) denote the (random) number of times the learner selected y; = 4 from time 1 to T".

We’ll use the notation 1, - - - , £ to denote the ordering of indices in [K] such that,
]E]P’WQ,,A\ [nfl (T)} << EPWWA [n’eK (T)] .

Notice that for all j < | K/2],
2T
EPWW,A\ [nfl (T)] < ?,Vg < LK/QJ )]

Let’s start by noting that for any W;, the KL distance between Py, 4 and Py,  fori € {Zj } jell&/2)] satisfies the bound

> KL(Pw, (X'|V) || Pw, (X'[Y2))
T

> KL(Pyw, (XY, = ) || Pw, (XY, = ) 1(Y; = i)

KL (Pwy.a || Pw,.a) = Ew,.a

=Ew,.a

= Ew,.a [n:(T)] KL (Ber(1/2) || Ber(1/2 —¢))

Q) Te?
<O|(—
<o (%)
Where (4) is implied by inequality 9 for all £; with j € [| K/2]].
Define &; = {23:1 1V, =4, X, =A)+1(V1 #¢, X = B) > %} When interacting with world W; the event &;

corresponds to the event where A makes the right decisions in at least 37'/4 time-steps.

The complement event £ = {ZtT:1 1(Y; =4,X; = A) + 1(Y; # 4, X; = B) < L} corresponds to the event where A
makes the correct decisions in at most 77°/8 time-steps.

By the Huber-Bretagnolle inequality, all i € {£;} ;[ x/2)] satisfy

PWQ,A(&') + PW“A(&C) > exp (—KL (]P)W@,A || PWi,A))
>0 (-T€/K).

12
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since ¢ = /K /T, we have
PW@,A(Ei) -‘rIPWhA(gZC) > 1/6 for all i € {fj}jE[LK/QJ].

Letnx(T) = Zthl 1(X; = X) denote the (random) number of times the learner selected X; = X for X € {4, B} from
time 1to 7.

We now define Ego0a = {np(T) < 3L}, If T > 256 log(2e) Proposition 4 applied with o = 1/8 and § = 1/2¢ implies
that,
PW@ (ggood) Z 1-— 1/26

Define &; = & N Egooa. Forall i € {£;}jc(ix/2)]»

1/e < Puwy a (&) + P, a(E) = Py a(Ei N Eooa) + Py a(E:) + P, a(E5)
< Pwya(Efooa) + Pwy.a(E) + Pu, a(EF)

< 1/2e + Py, a(E) + Pw, a(EF)

And therefore Py, 4 (&;) + Pw, a(E) > 1/2e. Thus,

Y Pwyal&) +Pw, (&) > | K/2]/2€ (10)
i€{li}jerir/2))

Notice that when &; it follows that >/ 1(V; =4, X, = A)+ 5L > S 1(V, =4, X, = A)+1(Y; #4, X, = B) > L
and therefore Zthl 1(Y; = i,X; = A) > . This in turn implies that when &; holds then Zthl 1Y, # i, Xy
A)+1(X, =B) < i,

Notice that éN'l N éN’] = () for all 7 # j. This is because for all j # 4, when gz holds,

Zl(Yt:j,Xt:A)—kl(Yt;éj,Xt:B)§21(Yt7éi7Xt:A)+1(Xt:B)§T <=
t=1 t=1

Since & N gj = () the sum ) Pw,.a(E;) < 1. Thus Equation 10 implies,

i€{li}tjerk/2)

S P& = [K/2)/2¢ 1

i€{l;}je(1x/2))

And therefore there is an index i € {¢;} ;| /2] such that,

—~
.
=

1 1
W€ > ——
Pw.a(60) 2 50 | K/2]

v

1
de’
where inequality (¢) holds because K > 8e.

when £ = {31_, 1(Y; =i, X; = A) + 1(Y; # 4, X, = B) < ZL} holds,

T
DM AL Xe=A)+1(Y, =i, X, =B) > & (1D
t=1
also holds. When £LC is satisfied and therefore Equation 11 is satisfied, the regret can be lower bounded by ¢7'/8 = —Vg{ =
Q(VKT) since e = \/K/T. We conclude that,
VKT
Rea(T) = *—
with probability Py, 4 (£5) > L. O

13
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Corollary 2. Ifthe conditions of Lemma 1 hold then for any algorithm there exists at least one stochastic world W, such
that Reg(T) > Q(VKT). Where,

T
Reg(T) = Ew, a lz rynea%P(xtIy, S0) = P(@i|ys, 50)] :
t=1
Proof. Lemma 1 implies there exists at least one problem W; such that Reg(7") > —VgT with probability at least 1/4e.
Let’s call this event £. Therefore since 23:1 maxyecy P(X¢|y, so) — P(X]Y%, 50) > 0 with probability one,

T
Reg(T) = Ew. a lz I&a};{P(Xﬂy, S0) — P(X¢| Yz, s0)
t=1

> Buu(@)- V5L > o(/RT)

O

Proposition 4. Let 6 € (0,1), o € (0,1/2) and {X;}’_| be T i.i.d. random variables sampled from Ber(1/2). It
T > % log(1/6) then E;Trzl X; < (% + )T with probability at least 1 — §. Similarly if T > % log(1/6) then
Z;Trzl X; > (3 — )T with probability at least 1 — 6.

Proof. Let S = Zle X; be the sum of the outcomes { X };c(7). Hoeffding inequality implies

S —T/2 < 2y/Tlog(1/5)
with probability at least 1 — 0. Thus, as long as 21/T'log(1/§) < oT, (i.e. % log(1/8) < T) we have S < (% +a)T.

The reverse inequality can be derived using the same argument applied to the inequality 7'/2 — S < 24/Tlog(1/§) with
probability at least 1 — .

O

B. Regret Bounds for LORIL in low-rank distribution setting

In this section, we provide a regret bound for LORIL. We first enumerate the assumptions.

Assumption 1. [Realizability] The teacher model P(x|y, s) = f*(z) " g* (v, s) satisfies f* € F for a known model class F.
Moreover; all teacher models parametrized by feature maps f € F are valid distributions, i.e., T (X)"g*(y,s) € A(X),
foranyy € Yands e S.

Assumption 2. There exists a constant B > 0 such that for any f € F we have sup,cy ||f(z)|| < B and
Supyey,SES ||g*(y,8)|| < B.

tth

Let us consider the ¢*"* round. The empirical covariance matrix is given by ; where

t—1

Se=>_ g Wis)g (i, s) " + A
=1

for a regularizer value \; > 0. It is easy to verify that it is a positive definite matrix since A.I is a positive definite matrix
and C; = Zf;ll g*(y1,81)g* (y1, 1) T is a positive semidefinite matrix as it is a symmetric matrix and for any v € R% we
Z - 2 S . . oo oo
have v ' Cyv = Z;le v g*(y,5) 9" (1, 81) Tv = Zlel Hg*(yl, sl)TvH2 > 0. As X, is positive definite its inverse ¥] !
and exists and is also a positive definite matrix.? Finally, it can be shown that one can also define the square root of the

/

matrix Ei/ ? and that of its inverse ¥, '/2 and these are symmetric and positive definite as well.

This is trivial to show as v' X"t = (v Z7H)S(S 7 ) > 0if 7 v # 0 as ¥ is positive definite, further ©~'v = 0 < v = 0.
Therefore, if v # 0, then v ' £ ~'v > 0 and vice versa.
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Let @f(z | y,5) = fi(x)Tg*(y,s) be the model estimated in round ¢ by maximum likelihood estimation. Given any
s,z,y €S x X x Y, the following important inequality holds,

~ T
P(aly,s) — Bulaly, s)| = |(f"(@) = @) ")
(52 (@ - f@)) (570 0. 9)

< \/ (£~ f)) =252 (p@) — @) Vo oo S 5 g ws),
‘@) = @), e @9l (12)

)

9

where the second last step uses Cauchy-Schwarz inequality. This inequality allows us to bound the error in the estimated
model for a given y in terms of the error based on historical data given by ‘ fr(x) — ft(a;) H and the novelty of the given
PP

input ||g*(y, s)||s;—1. We want to bound the two terms in RHS of Equation 12.

First we’ll prove the following result,

Lemma 2. When Assumption 1 and Assumption 2, then with probability at least 1 — 26 we have:

f1(@) = fil@)|, < 8204V og @ F1/3) + 2V/\.B (13)

sup

for all t € N simultaneously.

Proof.

reX

sup || £*(z) — fil@)|2, g( (F(@) = Fol@) T g (wer s6) - 9 (wer 50) T (F* () — Fula)) + Ae f*(fv)ft(x)Hz>

y (f*(l‘)TQ*(yé,Se) - ft(x)Tg*(%sf)> A f H )

< > sup (£ 70" (e se) — Fule) g (wersn)) +Asup | £4() — ot
zeX reX

1= Uy first term := V; second term

‘We first bound the second term V; as:

sup
zeX

P = @), = s (15 @I+ [ f@), - 27 @7 i)

< sup ||f*(w)|\§ + sup Hft(a: H + 2 sup
reEX zeX TEX

()" fila)]

< sup |7 @13+ sup | )| + 250 17+ @)l |41
TEX TEX TEX

<4B?

)
2

where we use the assumption that sup,¢ x || f(z)|l, < B for any f € F and that f*, fi € F and the second last step uses
Cauchy-Schwarz inequality.

We now bound the first term Uy. For a given f € F we define Af (z,y,,50) = (f*(2) " g*(ye, s¢) — f(x) " g* (ye, Sg))Q

and X{ = sup,cx Af (2,90, , 8¢), which allows us to write U, = z;i X{t.

We fix f € F. We have Xf > 0 by definition and as f*(x) " g*(ye, s¢), f(2) T g* (v, 5¢) € [0, 1], we also have

: * * * 2
x/ = sup A (z,ye,80) = sup (f* (@) g (e, 50) — f(@) T g* (yes se))” <1, (14)
xE S
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Let P, € A(Y) be the marginal distribution over y, conditioned on {x¢/, s¢', yer, ) }57:11 U {x¢, s¢} then

E, -z, [(ng] — o, [sup (F(@) 79 (v 50) — F@) g 0, se>>4]

reX
< 16Eyp, [||f*(-)Tg*(y,8z) - f(-)Tg*(%Se)Hiv} )
< 16Eyp, [0 T0" wose) — 1O T sy ]

where we use the fact that || - ||oo < || - ||1, that TV distance between two distributions is equal to half of 1-norm distance
between them, and that ||-||, < 1. Thus, using the anytime Freedman’s inequality (see Lemma 6) and union bound over all
feF, weget:

= — 2 Clog(t|F|/é
S X <0 Eyer, {(Xg) } +(77 /%)
=1 (=1

= 16’72_:[“3%% 17T (s = O 9" (w50 [y] + Clog(zm/d)
=1

)

simultaneously for all ¢ € N and all f € F with probability at least 1 — 4.
In particular by setting f = ft this implies,

t—1

F S - 27 Clog(t|F|/s
U= X/"<16n)y Ey.p, U PO g (. s0) = F() T g* (v, SZ)HTVj| + g(nll/) (15)
=1 =1
with probability at least 1 — §. Finally, Proposition 6 implies that with probability at least 1 — 6,
t—1 A )
ZEwae U )T (y, s0) — £ () T g™ (v, Se)HTV} < 2log(t|F|/9) (16)
=1

for all t € N. Therefore a union bound implies that with probability at least 1 — 24, combining the bounds of Equation 15

and Equation 16,
t—1

U, =S X/ < 32nl0g(t]F1/9)
=1

| Clog(ti71/9)
n

simultaneously for all ¢ € N. Optimizing for 7 gives us 7 = /<, which gives us U; < v/32C log(t|.F|/6).

32°

Plugging together the upper bounds for U, and V; we get:

. 2
sup || f*(z) = ful@)||, < Us+AVi < V32Clog(t].F|/5) + 4N B2,
TeX t
with probability 1 — 2§ for all ¢t € N. This gives us the desired bound as sup,cy H (@) — fi(2) s <
\/\/SQClog(t|F|/5) +4MB? < (320)Y%/log(t|F|/8) + 2v/X\:B where we use vVa+b < \/a + Vb for any
a,b>0. O

From now on we’ll define as £ the event that Equation 13 holds for all ¢ € N. As established in Lemma 2, we have
P(€) > 1 — 26. From Lemma 2 we can also establish the following corollary.

Corollary 5. If event £ holds then we have:

(@)~ @) 009 < (3200 ViRlTFS) + 2NB) 9" 09l

foralls €S, x € Xandy € Y andallt € N.
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Proof. Let the event £ hold. Then the following sequence of inequalities holds,

(@)
<

(@ - i@) a0 < o) - o)

* o
:, 19" (Y, 5) -1
(id)

< ((320)1/4 log (¢| F|/9) + 2\/ATB) g™ (v 8)lls1 »

where (¢) holds by Inequality 12 and (77) holds because of Lemma 2 and because we are assuming £ holds. O

B.1. Proving Optimism for LORIL

We next show that LORIL derives a useful optimism inequality that allows us to upper bound the true model probabilities
P(x | y,s) = f*(z) " g*(y, s) using the estimated model probabilities f;(x) " g*(y, s).

Lemma 3. Ifevent £ holds, then we have:
f*(x)Tg*(ﬂ*(;v,s)7s) < ft(x)—rg*(ﬂt(x,s),s) + ((320)1/4\/10g(t|]:|/5) + 2\/)?3) ||g*(7rt(x,s),s)||§;1 , 37

forallz € X and t € N, where m; is the policy in t'"* round of LORIL and 7* : x,s + argmaxyecy P(z | y, s) is the
optimal policy.

Proof. If event € holds then forany z € S,z € X,y € J, and t € N we have directly from Corollary 5 the following:

(@) 79 (:9) < fi@) g (. s) + (3204 10g(UIFI/8) +2V/AB) 19" (4. ) I+ -

Forany s € S,z € X and t € N, this implies:

@) g (7 @,5),5) < i) 9" (7" (@,5), 5) + ((320)/4 10U FI/8) + 2/ NB) 9" (7" (. 5), )

< fu@) g (m(x), 5) + ((320) /4 10g (U FI/8) + 2/ A llg” (mi(2), ) i+
where the second inequality holds because of the definition of 7 (x, s). O
B.2. Regret Upper Bound

We are ready to upper bound the regret of LORIL(Algorithm 1). Recall that we define regret for a given run of LORIL as,
T
Reg(T) = > (P(xy | 7 (e, 1), 5¢) — Plae | me(we, 50), 50)) -
t=1

The main result is the following theorem,

Theorem 3. [Regret bound of LORIL] When Assumption 1 and Assumption 2 hold and My = 1/t the regret of Algorithm 1
satisfies

Reg(T) :o(B Tdlog(1+ TB)+

V/Tdlog(T|F|/8)log(1 + TB))

with probability at least 1 — 36 for all T € N.

17
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Proof. Fix T' € N. We assume event £ holds, then we can bound the regret as:

Reg(T') = (P(s | 7 (¢, 8¢),5¢) — P(@e | ye, 8¢))

W

~~
Il

1

(f*(@e) "g* (™ (o), s0) — f*(20) g (me(e), 50))

[
B

~~
I
-

—
.
=

[M]=

(ft(ﬂft)Tg*(Wt(xt% 5t)
+ (8200410 (I F1/3) + 20/AB) llg* (o). s0) 5 = £* (@) " (mal), 1))

where we use Lemma 3 in the last step. We also have:

Fula) Tg* (mi(@n), 50) = f* (@) Tg™ (molae), 1) < ((320)1/4\/ log([F1/3) + 2\//\73) g™ (me(e), ¢) |-

due to Corollary 5. Combining these two results we get:

~
I
—

Reg(T) < Z (320 Y/4flog (t| F]/6) +2\FB) lg* (me(2), 51) 11 (18)
t=1
< sup (2 ((320)1/4 10g(t’\.7-’|/5)+2\/)\7/3)> -Z||g*(ﬁt($t)a8t)||§t—1 (19)
t'e[T] —

Let 3, :sz;i 9*(ye, se) (g* (yg7 s¢))" + Al for all t € [T). Further, let D; = foi 9* (e, 5¢) (9% (ye, s¢)) |, which
gives us 3; = Dy 4+ Arl and Et D, + M. This implies that for any v € R? we have

lolls, = /o7 (Di + ArDyw = (/o Dyw+ Az [[ol2 < /0T Do+ A Jull2 = /0T (De + ADyw = [loll, -
As 5y = 5 - Oand 5 = & + (A — Ar)L with A, — A > 0 it follows that by Proposition 8, ||v]|s—+ < [[v]|5-1. This
implies

ZH!] 7Tt ﬂft St

*(me (), st ||Z 1

HMH

Finally, Proposition 7 implies

T
TB?
Z g™ (v St)Hi;t—l < \/2Tdbg <1 + )\T>

=1
where we use sup,cy ses 9% (¥, s)|l, < B. Combining these we get:

Reg(T) < sup (2 ((320)/4 V108 (¥ F1/3) + 2/AB) ) \/2Tdbg (1 + Tjﬁ)

ve[T
Using \; = 1/t < 1 we get:
Reg(T ( ( (320)Y/4/1og (T F1/6) + 23)) V2Tdlog (1 + T2B?)
8 ((20)/4\/10g(T|F1/5) + B) \/Tdlog (1 + TB),

where we use log(1 + T2 B?) < 2log(1 + T'B). This gives us

| /\

Reg(T) = O (B\/leog(l + TB) + \/Tdlog(T|F|/8)log(1 + TB)) .
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C. Useful Lemmas

Lemma 4 (Hoeffding Inequality). Ler {Y;}3°, be a martingale difference sequence such that Yy is Yy € |ag, b almost
surely for some constants ag, by almost surely forall £ = 1,--- ,t. then

t

t
Y v< ;bg—agﬂn(;).

=1
With probability at least 1 — 5

See for example Corollary 2.20 from (Wainwright, 2019).

Our results relies on the following variant of Bernstein inequality for martingales, or Freedman’s inequality (Freedman,
1975), as stated in e.g., (Agarwal et al., 2014; Beygelzimer et al., 2011).

Lemma 5 (Simplified Freedman’s inequality). Let X1, ..., X1 be a bounded martingale difference sequence with | X,| < R.
Forany §' € (0,1), andn € (0,1/R), with probability at least 1 — ¢’,

T T
log(1/¢’
ST X, <03 Bl + e 20)
{=1 1=1 n
where E¢[-] is the conditional expectation* induced by conditioning on X1,--- , X¢_1.

Lemma 6 (Anytime Freedman). Ler {X;}7°, be a bounded martingale difference sequence with | X;| < R for allt € N.
Forany 0’ € (0,1), and n € (0,1/R), there exists a universal constant C' > 0 such that for all t € N simultaneously with
probability at least 1 — ¢/,

ZXe < nZE 7]+ Clog:/‘s/) @

where B[] is the conditional expectation induced by conditioning on X1, -+ , Xo_1.

Proof. This result follows from Lemma 5. Fix a time-index ¢ and define §; =
at least 1 — &y,

15 t2 Lemma 5 implies that with probability

S o< 0y B x7) + 22U,

=1 (=1

A union bound implies that with probability at least 1 — 2221 o >1-10,

: ¢ log(12¢2/6'
ZXZ < UZ]EZ [X,?] + Og(n/)
= =1

(i) & /
<n) E/[X7]+ Clogn(t/é).
=1

holds for all t € N. Inequality (4) holds because log(12t%/6") = O (log(td")).

Adapted from Theorem 21 from (Agarwal et al., 2020). See also (Geer, 2000).

“We will use this notation to denote conditional expectations throughout this work.
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Proposition 6 (MLE Bound). For any fixed § € (0, 1),

t—1

By || £ 0% 050 = 10T o) < 2tk )

=1
Sor all t € N simultaneously with probability at least 1 — § where Py, € A(Y) is the distribution over y, conditioned on

{Jf@l, Sers Yer s x%/}g/_:ll U {Jjg, Sg}.

Proof. This result is an immediate consequence of Theorem 21 from (Agarwal et al., 2020). We convert this result into an
anytime statement by invoking this result repeatedly with probability values §; = 3;% and then applying a union bound. [J

Proposition 7 (Proposition 3 from (Pacchiano et al., 2021)). For any sequence of vectors v1,--- v C R? satisfying
[lvel < L forall £ € N, let ¥ be its corresponding Gram matrix £; = A\ + Z/ L vev/ . Then for all t € N, we have

T
TL?
e_zl ||’Ue||2;1 S \/Qleog (1 + )\)

Proposition 8. Let A = 0 be a d x d positive definite matrix. And let X' > 0. If v € R?,

v+t > [[v]la
and

[vllca+rm-1 < llvlla

Proof. Letwvy,--- ,vg be an orthonormal basis of eigenvectors of A. The eigenvalues of A are positive because the matrix
is assumed to be positive definite. Call p; > 0 to the eigenvalue associated with eigenvector v;. Elementary linear algebra
shows that,

(A + /\/]I)Ui = Av; + /\/’Ui = (Mi + /\/)’Ui

thus showing that v; are also an orthonormal basis of eigenvectors for A + \'T and have eigenvalues u; + A’. Thus,

d d
lolli =v" (A)v =" pi ((v,0:))* Z (i +N) - ((0,03))" =0 (A+ VD) = [[olZgan

Notice that A=t = Zf 1 ul v;v; and (A + NI)~! Zf 17 _~_/\/uZ . And therefore,
d_ 4 d 1
- 2 2 -1
HU||,2471 =vl A7 = Z IT ((v,v3))" > Z m ((v,03))" = v’ (A+XND) T v= ||U||%A+)\’H)*1
i=1"" i=1 "
The result follows. O

D. Experimental Details

We provide additional details of our experiments in this section.

D.1. Additional Details for the First Experiment on Synthetic Task

We use the almost same implementation of LORIL as listed in Algorithm 1. The only change we make is that we use a
simplified policy given by:

mi(we) = argmax fi(e) 9" (v, 50) + k9" (v s0)lls (22)

where k is a single hyperparameter. We also use A\; = A which is a hyperparameter to be tuned. We use the hyperparameter
values in Table 1.
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Hyperparameter Values
€ grid search in [0.05,0.1,0.2,0.3]
A grid search in [0.05,0.1, 1.0]
k grid search in [0.1, 1.0, 10.0]
optimization Adam
learning rate 0.001
temperature used in defining F' and G 0.75
| X 2000
d 10
V) 10

Table 1. Grid search for hyperparameter for the first experiment.

Hyperparameter Values
€ grid search in [0.05,0.1,0.2,0.3]
A grid search in [0.05,0.1, 1.0]
k grid search in [0.1, 1.0, 10.0]
optimization Adam
learning rate 0.001
vocabulary size 34
word embedding dimension 10
GRU hidden dimension 10
dimension of g* encoding 16
number of layers in GRU 2
possible templates 10
object types [“square”, “rectangle”, “triangle”, “circle”]
object color [“red”, “blue”, “green”, “yellow”, “black™, “grey”, “black”, “cyan”, “orange”]
V| 5

Table 2. Grid search for hyperparameter for the second experiment.

D.2. Additional Details for the Second Experiment on the Image Selection Task

We use the hyperparameter values shown in Table 2. The list of templates is given below where {objectl} and {colorl} are
variables that are replaced by the object type and its color in a given image.

1. “You are seeing a {object1} of color {colorl}”

2. “The image contains a {object1} of color {colorl}”

3. “There is a {colorl} colored object of type {objectl}”
4. “A {colorl} {objectl}”

5. “The object is a {objectl} and its color is {colorl}.”
6. “The image has a single {colorl} colored {objectl}.”
7. “You are seeing a {color1} colored {object1}.”

8. “There is a {colorl} colored object.”

9. “You are seeing a {object1} in the image.”

10. “There is a {color1} colored object1.”
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Autoencoder. We use a 3-layer autoencoder with leaky relu activations. The first two layers apply a convolution with 16
8 x 8 kernels with stride 4. The last layer applies 15 4 x 4 kernels with stride 2. The input image is an RGB image of size
200 x 200 x 3. After applying the CNN encoder, we get a feature of size 16 x 4 x 4 = 64. We flatten this feature and apply
a fully connected layer to map it to another vector of size 64. We reshape it and pass it through a 3-layer deconvolutional
network with leaky relu activation, to predict an image of the same size as the input. The first layer of the decoder applies 16
4 x 4 convtranspose2d of stride 2 and output padding 1. The second layer applies 16 8 x 8 convtranspose2d of stride 4 and
output padding 1. Finally, the last layer applies 16 8 x 8 convtranspose2d of stride 4 with no output padding. We train the
autoencoder with squared loss using Adam optimization. We apply gradient clip to clip gradient above a clipping value of
2.5. Finally, we model g*(y, s) by first applying the encoder to generate a feature map of 16 x 4 x 4, and then summing
over the first dimension and flattening the remaining tensor into a 16-dimensional vector.

Compute. We use A2600 for all experiments. The entire set of experiments took 3 hours to finish. We used PyTorch to
implement the code.
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