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ABSTRACT

Time series forecasting is critical across various domains, including energy, trans-
portation, weather prediction, and healthcare. Although recent advances using
CNNs, RNNs, and Transformer-based models have shown promise, these ap-
proaches often suffer from architectural complexity and low computational ef-
ficiency. MLP-based networks offer better computational efficiency, and some
frequency-domain MLP models have demonstrated the ability to handle periodic
time series data. However, standard MLP-based methods still struggle to directly
model periodic and temporal dependencies in the time domain, which are essential
for accurate time series forecasting. To address these challenges, we propose the
Skip and Split MLP Network (SSNet), featuring innovative Skip-MLP and Split-
MLP components that enable MLP models to directly capture periodicity and tem-
poral dependencies in the time domain. SSNet requires fewer parameters than
traditional MLP-based architectures, improving computational efficiency. Empir-
ical results on multiple real-world long-term forecasting datasets demonstrate that
SSNet significantly outperforms state-of-the-art models, delivering better perfor-
mance with fewer parameters. Notably, even a single Skip-MLP unit matches the
performance of high-performing models like PatchTST.

1 INTRODUCTION

Time series forecasting has been extensively applied in various practical scenarios, including eco-
nomics (Clements et al., 2004; |Ghysels & Marcellino, 2018), energy (Deb et al., 2017; |Koprinska
et al.,|2018;Hu et al.,|2022)), transportation (Cirstea et al.,|[2022;|Cai et al.}|2020), weather (Hewage
et al. |2020; Taylor et al., 2009)), and retail (Fildes et al.| |2022). In particular, Long-Term Time Se-
ries forecasting presents significant real-world demands, where accurate modeling of periodic and
seasonal patterns is crucial for improving performance. PatchTST (Nie et al.l 2022) partitions time
series into multiple small patches to enhance the information of local sequence features and reduce
the computational cost associated with excessively long sequences. TimesNet (Wu et al., 2022) uses
the Fast Fourier Transform to perform multi-scale decomposition of time series data and processes
the 2D feature maps with CNN networks to capture rich periodic information. TimeMixer (Wang
et al.||2024)) leverages down-sampling techniques to hierarchically process sequences and aggregates
seasonal and trend information through Seasonal Mixing and Trend Mixing. These methods utilize
different approaches to capture periodic information and model both local and global information.
DLinear (Zeng et al., |2023)), based on trend and seasonality decomposition, employs a single linear
layer to demonstrate the MLP-based model’s excellent capability in time series forecasting. How-
ever, due to its symmetric point-mapping structure, MLPs struggle to model periodic and seasonal
patterns directly and are limited in distinguishing the temporal dependencies within sequences.

To address these limitations, we propose two novel network architectures, Skip-MLP and Split-
MLP, which extend traditional MLPs. These architectures consist of fundamental Skip Connected
Layers and Split Connected Layers, as illustrated in Figure [Il Skip-MLP skips over sequences
of a specific length (referred to as skip-size, generally related to the sequence’s periodicity) to cap-
ture periodic information. The Split-MLP layer segments sequences into sub-sequences of specific
lengths, establishing separate connections between these sub-sequences to focus on extracting local
features. When used in conjunction with Skip-MLP layers, it can further capture global sequence
information. Through matrix derivation, we demonstrate that the sparse Skip Connection Layer and
Split Connected Layer can be represented as combinations of multiple small, dense Fully Connected
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Layers. Experimental results further reveal that sharing parameters among these small matrices en-
hances prediction performance and computational efficiency.

To leverage the strengths of both Skip-MLP and Split-MLP layers, we designed the SSNet net-
work architecture, which includes three components: (1) an Auto-correlation Block that adaptively
extracts significant periodic patterns and their intensities, (2) a parallel multi-scale Skip-MLPs net-
work for capturing and integrating diverse periodic information, and (3) a serial SS-MLP Block
with residual connections that progressively reduces prediction bias. In our experiments, SSNet
consistently achieved state-of-the-art performance across various real-world forecasting scenarios
while maintaining linear time complexity. Our contributions are summarized as follows:

* We introduce two novel MLP networks, Skip-MLP and Split-MLP, which address the lim-
itations of traditional MLPs in capturing periodic information and can handle global and
local data information more effectively with fewer parameters.

* We propose the SSNet model architecture, which adaptively captures and integrates critical
periodic patterns, effectively differentiating between local and global information, making
it well-suited for long-term multivariate time series forecasting.

» Extensive experimental results demonstrate that SSNet achieves state-of-the-art perfor-
mance in long-term time series forecasting tasks, with fewer parameters and higher com-
putational efficiency.

2 RELATED WORK

Research on MLPs Multi-Layer Perceptrons (MLPs) are fundamental structures in deep learn-
ing and have been extensively studied. The MLP-Mixer(Tolstikhin et al., 2021} achieves compet-
itive performance in image classification by employing Token-mixing MLPs and Channel-mixing
MLPs to extract features from positional tokens and channels, respectively, thereby demonstrat-
ing the efficient visual representation capabilities of MLPs. The gMLP(Liu et al., [2021)) intro-
duces gating mechanisms to simulate the self-attention mechanisms found in Transformers, achiev-
ing performance that is competitive with or even exceeds that of Transformers in both language
and vision tasks. ResMLP(Touvron et al.l [2022) simplifies networks based on Vision Transform-
ers (ViT)(Dosovitskiy, 2020) by incorporating MLPs and residual connections, leading to high-
performance image classification. sSsMLPNet(Tang et al., [2022) utilizes 1D MLPs applied axially,
with parameter sharing between rows or columns, which reduces the number of model parame-
ters and computational complexity through sparse connections and weight sharing. Recently, the
KAN(Liu et al.,|2024b) model has sparked considerable discussion due to its superior interpretabil-
ity and improved performance in certain prediction scenarios, positioning it as a strong contender
among MLP variants. We propose enhancements to the traditional MLP architecture through Skip
Connected Layers and Split Connected Layers, which enhance its ability to handle sequential data
and improve computational efficiency.

Time Series Forecasting Time series prediction has been extensively studied, with traditional
methods such as Exponential Smoothing(Gardner Jr, [1985)), Holt-Winters(Chatfield, [1978)) and
ARIMA (Asteriou & Hall, |2011)) providing robust theoretical foundations and good interpretability.
However, these methods are limited by their assumptions and struggle with the complexities of real-
world time series data. Recent research has increasingly focused on deep learning-based approaches
for time series forecasting. RNN-based models (LSTNet(Lai et al.l [2018]), DeepAR(Salinas et al.,
2020)) capture sequential dependencies but encounter challenges such as gradient vanishing and
forgetting in long sequences. CNN-based models (MICN(Wang et al., |2023), SCINet(Liu et al.,
2022a)), TimesNet(Wu et al., 2022)) leverage CNN characteristics to capture 2D features but are of-
ten limited by receptive field sizes, impacting global feature extraction. Transformer-based models
(PatchTST(Nie et al.| |2022), FEDFormer(Zhou et al.||2022b)), Stationary(Liu et al., 2022b))) benefit
from self-attention mechanisms to extract rich temporal features and show strong prediction perfor-
mance, though they face high computational complexity with longer sequences. MLP-based models
(LTST-Linear(Zeng et al., [2023), TimeMixer(Wang et al., [2024), NBEATS(lori et al.| [2024)) are
generally simpler and more computationally efficient but struggle with directly modeling periodic
and local features. We propose the SSNet architecture for time series data modeling, which adap-
tively performs multi-scale modeling, effectively integrates both local and global information, and
achieves high computational efficiency and predictive performance.
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3 SSNET FRAMEWORK

Problem Definition Multivariate time series prediction involves forecasting future values for a
window of size H, given historical data from a look-back window of size L. A time series with
T time steps and N variables is represented as [X1, Xo,..., X7] € RV*T where X; € RV
denotes the N-dimensional values at time step ¢. Given the current time step ¢, the input sequences
fed into the model is X¢ = [X¢_ 141, X¢—142,.-.,X¢] € RV*L and the output will be Yy =
[(Xis1, Xigo, ..., Xepn] € RV,

3.1 SkIP CONNECTED LAYER AND SPLIT CONNECTED LAYER

Connection Mechanisms Traditional Multilayer Perceptrons (MLPs) are typically composed of
multiple Fully Connected Layers, which ensure that units in adjacent layers are entirely intercon-
nected. This architecture enables the network to model complex functions through successive layers.
However, is this the most optimal configuration? In the context of time series forecasting, we in-
troduce two novel connection mechanisms: the Skip Connected Layer and the Split Connected
Layer, as illustrated in Figure E}
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hy h; hy hy hs  hg
X1 X2 X3 X4

hy “hy hy ha hs  he

X1 X X3 X4

111000
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000 111 Split Connected Layer
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Figure 1: Examples of Skip Connected Layer and Split Connected Layer. A Skip Connected Layer
or Split Connected Layer is equivalent to applying a masking matrix on a Fully Connected Layer.
The figure shows the cases where skip-size and split-size are both equal to 2.

For a fully connected layer, given an input sequence X € R*% and a hidden layer dimension D,
the output is:
O = X¢Wruiy + Bruiy = [01,04,...,0p] € RV*P

where
LxD 1xD
Wruy € R**°7, Bray € R

For a Skip Connected Layer with a skip size S, define N;, = [£] and Np = [Z] as the numbers
of input and output groups respectively, [-|denotes the ceiling function. To align input and output
dimensions with the skip size, zero padding is applied where necessary. The output can be expressed
as:
O¢ = X¢Wsip + Bsiip = [O1, Oz, ..., Onpxs] € RV¥NES
where
Wskip = Wruity © Wasask € RVESXND-S o, e RIXND-S

W 1 if][i—jlmod S=0

Maski; =10 otherwise
Here, W45k 1s a sparse matrix, transforming the Fully Connected Layer into a Skip Connected
Layer, the matrix value is 1 if the absolute difference between indices is a multiple of .S, and O oth-
erwise. With appropriate matrix transformations and data compression, the Skip Connected Layer
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can be represented as a concatenation of several small dense matrices (proof provided in the Ap-
pendix [A). Here, multiple O, together form the output Oy:

Or, = Xe, Wruny, + Bi = [04,Oiys,. .., Oi(np—1)s] € RVNP
Xi, = [Xi, Xits, -, Xip (v, —1)s] € RVNE
WFully,; ERNLXNDa BiERIXNDv i€{1a27"'a5}

Similarly, for a Split Connected Layer with a split size .S, define N, = Np = (%] and Sp = L\%—‘
as the length of each output group. After transformation, a simplified form can be obtained:

O, = [Otl’otw... 7OtND} £ RN *Np-5p

Ot, = Xe.Wruiy, + Bi = [0i, 0i41, ..., Oip5, 1] € RV*5P
Xi, = [Xi, Xig1, .., Xivg—1] € RVXS
Weay, € R¥5P B, e RSP, i€ {1,2,...,Np}

Thus, in practical implementations, these connection mechanisms can be realized by concatenating
multiple small dense networks.

3.2 CONSTRUCTION OF SKIP-MLP AND SPLIT-MLP

Building on the multilayer Skip Connected Layer and Split Connected Layer, we develop the Skip-
MLP and Split-MLP architectures, as depicted in Figure[2] As demonstrated in Section [3.1] both
connection mechanisms can be modeled as multiple smaller fully connected layers with equivalent
dimensions. Our experiments indicate that sharing weights among these smaller layers enhances
network performance.

Skip Size =3 Split Size =3

Input Layer X1 Xz X3 X4 X5 pady Input Layer X1 Xy X3 X4 X5 pady
2 RS \
p y ‘
Hidden Layer hy 'h, ‘hy ‘hy (hs [ hg " h; hg [ hy HiddenLayer ' hy h, hs hy hs hg hy hg
N N —7 |
’ > /"
Y AN /
— 4 7\\ /
Output Layer 01 0z 03 04 05 06 Output Layer 0y 0, 03 04 05 06

Truncate Truncate

Figure 2: The left side shows an example of Skip-MLP with a skip-size of 3, while the right side
depicts an example of Split-MLP with a split-size of 3. Padding is applied to handle inputs that are
not divisible by the skip-size or split-size, and excess outputs are truncated. Connections with the
same color represent individual small MLPs, which together form the entire network.

We integrate Skip-MLP and Split-MLP net- [_Pad | R
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Figure 3: The overall structure of SS-MLP Block.
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previously acquired. This ensures that each output unit indirectly incorporates information from all
input units.

The first Skip-MLP and Split-MLP layers utilize the SELU activation function (Klambauer et al.,
2017) to introduce non-linearity and enhance the model’s representational capacity. We observed
that SELU significantly outperforms other activation functions such as ReLU (Nair & Hinton, [2010)
and GELU (Hendrycks & Gimpel, 2016) in this context.

3.2.1 SSNET

The SSNet architecture, depicted in Figure [5} comprises three primary components: the Auto-
correlation Block, Skip-MLPs at the input layer, and SS-MLPs in the intermediate layers.

Auto-correlation Block The Auto-correlation Block is designed to extract periodic hyperparam-
eters from the sequence before it enters the network. These hyperparameters are then used to con-
figure the network structure. As illustrated in Figure[d] the block first decomposes multivariate time
series data into univariate sequences, normalizes them, and computes the autocorrelation function:

Ry = [ T ft )7 de = / Y OFE T de

where f(t) represents the series data, f(t) denotes the complex conjugate of f(¢) and 7 represents
the lag order. Rj(7) indicates the correlation strength, with a larger value signifying stronger
correlation. Strong correlation means that the feature of the sequence f at time ¢ will reappear at
time ¢ + 7. The discrete form is given by

Ryp(r) = f(6)f(t—7)
tez
For a univariate sequence X;; = f; (t) € R, we compute the autocorrelation function:
ACF(Xit) = [Rp (=L +1),...,Rs,1,(0),..., Ry, s, (L — 1)] € R¥>(ZL=1)
Local peaks from the segment [Ry, 7, (0), Ry, 7, (1), ..., Ry, s, (L — 1)] are identified as periodic can-

didates. Aggregated periodic correlations from different variables yield the top K periods and their
corresponding correlation strengths.

Local Peaks
Auto- I

correlation .
Period, Strength,
Qs ’\ L Period, = |Strength,
correlation m TopK
I Periods Strengths
Auto- \’\‘ . L
correlation
\ | strengts ] '
\ ST Periody  Strengthy
‘\' ‘ Auto- ’\ PR
correlation m

Figure 4: Auto-correlation Block.

Autocorrelation-based periods offer practical advantages over Fast Fourier Transform (FFT) (Chat-
field & Xing||2019;Zhou et al.,[2022b)). The top periods typically align with meaningful periodicities
(e.g., hour, half-day, day, week), whereas FFT often struggles to filter out interference, particularly
in low-frequency components.

Skip-MLPs  Skip-MLPs consist of parallel networks with skip sizes determined by the top K
periods identified by the Auto-correlation Block. The input sequence is processed through K Skip-
MLPs, each with a different skip size, to extract periodic information. The results are combined
based on their corresponding correlation strengths:
K
Lo =Y SkipMLPperioa, (Xt) - Strengthy,
k=1
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Figure 5: Overall structure of SSNet.

Here, K represents the number of selected top periods, while Periody and Strengthy, denote the
k-th period value and its associated correlation strength, respectively.

SS-MLPs SS-MLPs are composed of 2K — 1 SS-MLP Blocks, with residual connections applied
between consecutive layers. The output of the n-th layer is the sum of the SS-MLP output at that
layer and the output of the n — 1-th layer. This design ensures that features extracted across multi-
ple scales are preserved during deep propagation. Empirical results indicate that SS-MLPs achieve
better performance when the input and output layers utilize smaller skip sizes. To fully capture peri-
odic information, we adopt a design where the skip sizes are narrower at both ends and wider in the
middle. This approach outperforms purely increasing or decreasing skip-size strategies, introduces
no additional hyperparameters, and ensures a well-balanced, elegant network architecture.

The first K layers, where the periods increase, are defined as:
L, = SSMLPpecriod, (Ln-1) + Lp—1, 1<n<K
The remaining K — 1 layers, where the periods decrease, are defined as:
L, = SSMLPperiodss_,,(Ln—-1) + Lp—1, K+1<n<2K-1

The final output layer is implemented as a fully connected linear projection. Unlike Skip-Connected
and Split-Connected Layers, the fully connected layer excels at feature aggregation, effectively con-
solidating the diverse periodic, global, and local features extracted by the preceding layers. This
comprehensive integration enhances the prediction performance, enabling the model to achieve op-
timal results. The output layer maps the sequence to the target prediction length H:

O = Linear(Lax—1)

4 EXPERIMENTS

Datasets To evaluate the performance of the SSNet model, experiments were conducted on several
widely used real-world long-sequence datasets 2021). These include the ETT dataset
(comprising four subsets: ETTh1l, ETTh2, ETTml1, ETTm2), as well as Weather, Electricity, and
Traffic datasets. A more detailed description of each dataset is provided in the Appendix (B} The
basic characteristics for each dataset are summarized below:
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Table 1: Details of the datasets used for evaluation.
Datasets ETThl ETTh2 ETTml ETTm2 Weather Electricity Traffic
Frequency hour hour 15min 15min 10min hour hour

Features 7 7 7 7 21 321 862
Timesteps 17,420 17,420 69,680 69,680 52,696 26,304 17,544

Baselines We evaluate SSNet against ten state-of-the-art methods, including Transformer-based
models such as PatchTST (Nie et al., |2022), PDF (Dai et al., [2024), and FEDFormer (Zhou et al.,
2022b); CNN-based models like TimesNet (Wu et al., |2022), ModernTCN [Luo & Wang| (2024),
MICN (Wang et al.}2023), and FiLM (Zhou et al., 2022a); as well as MLP-based models including
TimeMixer (Wang et al.,2024) and FITS Xu et al.|(2023), DLinear (Zeng et al., [2023)).

Implementation Details All experiments were conducted on a single NVIDIA A100 80GB GPU,
using MSE Loss for training. The prediction output lengths were set to H = {96,192, 336, 720}.
The look-back length followed the specifications in the original papers for each model, with SSNet
using a fixed look-back window size of 512. Baseline models were optimized with their respective
best hyperparameters, whereas SSNet used a consistent set of parameters across different lengths
for the same dataset.

4.1 MAIN RESULTS

Table 2: Forecasting performance for multivariate long-term time series with prediction lengths
H = {96,192,336,720}. The best results are highlighted in bold red, while the second-best
are marked with underlined blue. ”Avg” represents the average performance across all lengths,
and "COUNT” indicates the number of times each model achieved the best result. The numbers
in parentheses indicate the look-back length for each model. Some model codes are not publicly
available and results are cited from the respective papers.

| MLP-Based | Transformer-Based | CNN-Based
Models SSNet TimeMixer FITS DLinear PatchTST PDF FEDformer FiLM TimesNet ModernTCN MICN
* | (Ours,512)  (Unknown)  (Unfixed) (336) 512) (720) (96) (Unfixed) (96) (Unfixed) (96)

Metric | MSE MAE MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE MSE MAE

96 | 0.339 0.374 | 0361 0.390 | 0.371 0.394 | 0.375 0.399 | 0.370 0.400 | 0.356 0.391 | 0.376 0.419 | 0.422 0.432 | 0.384 0.402 | 0.369 0.394 | 0.421 0.431
1921 0.359  0.386 | 0.409 0.414 | 0.404 0.413 | 0.405 0.416 | 0413 0.429 | 0.390 0.413 | 0.420 0.448 | 0.462 0.458 | 0.436 0.429 | 0.406 0.414 | 0.474 0487
336 | 0.370  0.399 | 0.430 0.429 | 0.425 0.425 | 0439 0443 | 0.422 0440 | 0.402 0.421 | 0459 0465 | 0.501 0.483 | 0.491 0.469 | 0.392 0.412 | 0.569 0.551
720 | 0.425 0.447 | 0.445 0.460 | 0.420 0.442 | 0472 0.490 | 0.447 0.468 | 0.462 0.477 | 0.506 0.507 | 0.544 0.526 | 0.521 0.500 | 0.450 0.461 | 0.770 0.672

| Avg | 0.373  0.402 | 0411 0423 | 0.405 0.419 | 0.423 0437 | 0413 0434 | 0403 0426 | 0.440 0.460 | 0.482 0475 | 0458 0.450 | 0.404 0421 | 0.559 0.535

96 | 0.216 0.298 | 0.271 0.330 | 0.272 0.337 | 0.289 0.353 | 0.274 0.337 | 0.270 0.332 | 0.358 0.397 | 0.323 0.370 | 0.340 0.374 | 0.264 0.333 | 0.299 0.364
192 | 0.261 0.332 | 0.317 0402 | 0.331 0375 | 0.383 0.418 | 0.341 0.382 | 0.334 0.375 | 0.429 0.439 | 0.391 0.415 | 0402 0414 | 0318 0373 | 0.441 0454
336 0.300 0.364 | 0332 0.396 | 0.339 0.388 | 0.448 0.465 | 0.329 0.384 | 0.324 0.379 | 0.496 0.487 | 0.415 0.440 | 0452 0.452 | 0.314 0.376 | 0.654 0.567
720 | 0372 0.419 | 0.342 0.408 | 0.372 0.420 | 0.605 0.551 | 0.379 0422 | 0.378 0.422 | 0.463 0.474 | 0.441 0.459 | 0462 0.468 | 0.394 0.432 | 0.956 0.716

| Avg | 0.287 0.353 | 0316 0.384 | 0329 0380 | 0.431 0447 | 0331 0.381 | 0.327 0.377 | 0.437 0.449 | 0.393 0.421 | 0414 0427 | 0322 0379 | 0.588 0.525

96 | 0.277 0.340 | 0.291 0.340 | 0.304 0.345 | 0.299 0.343 | 0.293 0.346 | 0.277 0.337 | 0.379 0.419 | 0.302 0.345 | 0.338 0.375 | 0.297 0.348 | 0.316 0.362
192 | 0.312  0.361 | 0327 0.365 | 0.337 0.365 | 0.335 0.365 | 0.333 0.370 | 0.316 0.364 | 0.426 0.441 | 0.338 0.368 | 0.374 0.387 | 0.334 0.370 | 0.363 0.390
336 | 0.345 0.380 | 0.360 0.381 | 0.366 0.385 | 0.369 0.386 | 0.369 0.392 | 0.346 0.381 | 0.445 0.459 | 0373 0.388 | 0.410 0.411 | 0.370 0.392 | 0.408 0.426
720 | 0.404 0.409 | 0.415 0417 | 0415 0411 | 0425 0421 | 0416 0.420 | 0.402 0.409 | 0.543 0.490 | 0.420 0.420 | 0.478 0.450 | 0.413 0.416 | 0481 0.476

| Avg | 0.335 0.373 ] 0.348 0.376 | 0.355 0377 | 0.357 0.379 | 0.353 0.382 | 0.335 0.373 | 0.448 0.452 | 0.358 0.380 | 0.400 0.406 | 0.353 0.382 | 0.392 0414

g
96 [ 0.139 0233 | 0.164 0254 [0.163 0253 [0.167 0260 | 0.166 0256 | 0.159 0251 [ 0203 0.287 [ 0.165 0256 | 0.187 0.267 | 0.170 0.258 | 0.179 0275
192 | 0.180 0.263 | 0.223 0295 | 0.217 0291 | 0224 0.303 [ 0223 0296 | 0.217 0292 [ 0.269 0328 | 0222 0.296 | 0.249 0309 | 0.227 0299 | 0.307 0.376
336 [ 0.219 0290 | 0279 0330 | 0.269 0.326 | 0.281 0342 | 0.274 0.329 | 0266 0325 | 0325 0366 | 0.277 0333|0321 0351 [ 0276 0.329 | 0325 0388
720 | 0279 0332 | 0.359 0383 | 0.347 0377 | 0397 0421 | 0362 0385 | 0.345 0375 | 0421 0.415 | 0371 0389 | 0.408 0403 | 0.351 0381 | 0.502 0.490
Avg [ 0204 0280 | 0256 0.316 [0.249 0312 [0.267 03320256 0317 [0247 0311|0305 0349 [0.259 0319 | 0291 0.333 | 0256 0317 [ 0.328 0382
96 | 0.143 0.196 | 0.147 0.197 | 0.143 0.193 [ 0.176 0237 [ 0.149 0.198 | 0.143 0.193 [ 0.217 0.296 | 0.199 0262 [ 0.172 0.220 [ 0.151 0205 | 0.161 0.229
192 | 0.187 0240 | 0.189 0239 | 0.186 0.236 | 0.220 0.282 [ 0.194 0241 | 0.188 0.236 | 0276 0.336 [ 0.228 0.288 | 0.219 0261 | 0.196 0247 | 0.220 0.281
336 | 0218 0272 [ 0241 0280 | 0.237 0278 | 0265 0319 | 0245 0.282 | 0.240 0279 | 0.339 0380 | 0267 0.323 [0.280 0306 | 0.237 0.283 | 0.278 0331
720 | 0297 0.328 | 0.310 0330 | 0307 0329 | 0323 0362 | 0314 0334 | 0.308 0328 | 0403 0.428 | 0319 0.361 | 0.365 0359 | 0.315 0335 | 0.311 0.356
avg | 0211 0259 0222 0262 [ 0218 0.259 | 0.246 0300 | 0.226 0.264 [ 0220 0.259 | 0.309 0360 | 0.253 0309 | 0259 0.287 | 0.225 0.267 | 0.243 0299
96 [0.125 0219|0129 0224 [0.134 0231 [0.140 0237 | 0.129 0222 [ 0126 0220 [0.193 0308 [ 0.154 0267 | 0.168 0272 | 0.129 0.226 | 0.164 0.269
192 | 0.143 0236 | 0.140 0220 | 0.148 0244 | 0153 0249 | 0.147 0240 | 0.145 0238 [ 0.201 0315 | 0.164 0.258 | 0.184 0.289 | 0.143 0239 | 0.177 0.285
336 | 0.158 0.252 | 0.161 0255 | 0.163 0260 | 0.160 0.267 | 0.163 0259 | 0.150 0255 [ 0.214 0329 | 0.188 0.283 | 0.198 0300 | 0.161 0259 | 0.193 0.304
720 | 0.195 0.286 | 0.194 0287 | 0.202 0293 | 0.203 0301 | 0.197 0.290 | 0.194 0287 | 0.246 0355 | 0236 0.332 | 0.220 0.320 | 0.191 0.286 | 0.212 0321
| Avg | 0155 0248 | 0.156 0.247 [ 0.162 0257 | 0.166 0.264 | 0.159 0253 [ 0.156 0.250 | 0.214 0327 [ 0.186 0285 | 0.193 0.295 | 0.156 0.253 | 0.187 0.295
96 [ 0.347 0237|0360 0.249 [0386 0.268 [ 0.410 0282 | 0.360 0249 | 0350 0.239 [ 0.587 0.366 | 0.416 0294 | 0593 0.321 | 0368 0.253 | 0.519 0309
192 0370 0248 | 0.375 0250 | 0.393 0270 | 0423 0287 [ 0379 0256 | 0.363 0247 | 0.604 0373 | 0.408 0.288 | 0.617 0336 | 0.379 0261 | 0.537 0315
336 | 0380 0.255 [ 0.385 0270 | 0407 0277 | 0436 0286 | 0392 0264 | 0.376 0258 | 0.621 0383 | 0425 0298 | 0.629 0336 |0.397 0270 | 0.534 0313
720 | 0422 0.278 | 0.430 0281 | 0.448 0299 | 0466 0315 | 0.432 0286 | 0.419 0279 | 0.626 0382 | 0520 0.353 | 0.640 0350 | 0.440 0.296 | 0.577 0.325
[Avg | 0380 0.255 | 0388 0.263 | 0.408 0279 | 0.434 0293 | 0391 0264 0377 0256 | 0.610 0376 | 0442 0308 | 0.620 0.336 | 0.396 0.270 | 0.542 0316

COUNT | 52 | 5 [ 7 [ 0 [ 0 | 16| 0 [ 0 [ 0 [ 2 [ 0

ETTh1

ETTh2

ETTm1

ETTm2

‘Weather

Electricity

Traffic

The results of multivariate long-term time series forecasting are summarized in Table 2} Across all
datasets, SSNet achieves the optimal performance with a count of 52, significantly surpassing the
second-best PDF model. Compared to the Transformer-based model, SSNet reduces MSE by an
average of 16.13% and MAE by 11.07%. When compared to the CNN-based model, SSNet lowers
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MSE by 21.89% and MAE by 13.94%. Relative to the MLP-based model, SSNet decreases MSE
by 10.88% and MAE by 7.07%.

4.2 ABALATION STUDY

Kernel Weights Sharing. In order to verify the ability of Skip-MLP and Split-MLP to extract
periodic and common features between variables based on shared kernel weights parameters, we
conducted verification based on 4 long sequence datasets. For intuitive verification, we only con-
ducted verification based on the simplest network unit, which was divided into 5 groups: 1) the
original MLP network as a control; 2) the Skip-MLP network with shared parameters; 3) the Skip-
MLP network with independent parameters; 4) the Split-MLP network with shared parameters; 5)
the Split-MLP network with independent parameters. The experimental results are shown in Table[3]
Experimental results show that Skip-MLP and Split-MLP significantly outperform traditional MLPs

Table 3: Multivariate long-term time series forecasting results for different MLP-based networks
with prediction horizons H = {96, 192, 336, 720}. The best prediction results or the lowest param-
eter counts are highlighted in bold red.

Models | MLP | Skip-MLP | Skip-MLP(I) | Split-MLP | Split-MLP(I)

Metric | MSE  Params Macs | MSE  Params Macs | MSE  Params Macs | MSE  Params Macs | MSE  Params ~ Macs

96 | 0.370 3.050M 2.666G| 0.360 0.053M 0.154G| 0.360 0.179M 0.154G| 0.366 0.053M 0.154G| 0.364 0.179M 0.154G
1921 0.410 3.097M 2.707G| 0.396 0.099M 0.195G| 0.395 0.226M 0.195G| 0.405 0.010M 0.195G| 0.423 0.226M 0.195G
336| 0.427 3.168M 2.769G| 0.407 0.170M 0.256G| 0.407 0.297M 0.256G| 0.418 0.170M 0.256G| 0.430 0.297M 0.256G
720| 0.480 3.356M 2.933G| 0.439 0.358M 0.420G| 0.443 0.485M 0.420G| 0.447 0.358M 0.420G| 0.455 0.484M 0.420G

96 | 0.310 12.059M 10.54G| 0.285 0.049M 0.164G| 0.290 0.200M 0.164G| 0.306 0.071M 0.164G| 0.302 0.189M 0.164G
192] 0.345 12.106M 10.58G| 0.327 0.096M 0.205G| 0.324 0.247M 0.205G| 0.342 0.118M 0.205G| 0.338 0.236M 0.205G
336| 0.366 12.177M 10.64G| 0.353 0.166M 0.267G| 0.354 0.317M 0.267G| 0.370 0.188M 0.267G| 0.368 0.306M 0.267G
720 0.424 12.364M 10.80G| 0.406 0.354M 0.431G| 0.411 0.505M 0.431G| 0.423 0.376M 0.431G| 0.422 0.494M 0.431G

96 | 0.136  48.09M 963.9G| 0.129 0.135M 3.527G| 0.128 2.157M 3.527G| 0.165 0.143M 3.527G| 0.136 2.153M 3.527G
192 0.151 48.14M 964.8G| 0.148 0.182M 4.467G| 0.149 2.204M 4.467G| 0.150 0.190M 4.467G| 0.148 2.200M 4.467G
336| 0.166 48.21IM 966.2G| 0.161 0.252M 5.878G| 0.160 2.274M 5.878G| 0.165 0.260M 5.878G| 0.163 2.270M 5.878G
720| 0.206 48.40M 970.0G| 0.203 0.440M 9.639G| 0.204 2.462M 9.639G| 0.205 0.448M 9.639G| 0.204 2.458M 9.639G

96 | 0.395 48.09M 970.6G| 0.362 0.135M 42.61G| 0.364 2.157M 42.61G| 0.385 0.143M 42.61G| 0.384 2.153M 42.61G
1921 0.412 48.14M 971.6G| 0.380 0.182M 43.56G| 0.382 2.204M 43.56G| 0.398 0.190M 43.56G| 0.398 2.200M 43.56G
336| 0.419 48.2IM 973.0G| 0.390 0.252M 44.98G| 0.392 2.274M 44.98G| 0.407 0.260M 44.98G| 0.406 2.270M 44.98G
720| 0.461 48.40M 976.8G| 0.428 0.440M 48.77G| 0.430 2.462M 48.77G| 0.442 0.448M 48.77G| 0.442 2.458M 48.77G

ETThl

ETTml

Electricity

Traffic

under the same hidden layer dimensions in time series forecasting. Moreover, both parameter count
and computational cost are drastically reduced (related to the top-1 period). Skip-MLP achieves
optimal performance through efficient parameter sharing. As shown in Table 2] a single Skip-MLP
with kernel weight sharing matches the performance of state-of-the-art models like PatchTST.

SkipMLPs and SS'MLP BIOCkS'_ The in-  Taple 4: Multivariate long-term time series fore-
put layer of SSNet consists of multiple parallel  casting results for different SSNet structures with
Skip-MLP networks, while the intermediate prediction horizons H = {96,192, 336, 720}. The

layer is based on residual connection SS-MLP  pegt prediction results are highlighted in bold red.
Blocks. To evaluate the feature extraction ca- SS-Net SS-Net

pabilities and contributions of these compo- ~ Methods SS-Net (SSOnly)  (Skip Only)
nents, we conducted experiments by removing Metric MSE MAE MSE MAE MSE MAE
each part separately. ”SS Only” denotes the 96 | 0.339 0.374 | 0344 0376 | 0.341 0.377
removal of the Sklp-MLP networks, retaining 192 | 0.359 0.386 | 0.366 0.390 | 0.360 0.390
only the Auto-correlation Block and SS-MLP 336 | 0.370 0.399 | 0.383 0.406 | 0.376 0.404
Blocks. ”Skip Only” indicates the removal of 720 | 0.425 0.447 | 0.440 0459 | 0.430 0.452

the SS-MLP Blocks. 96 | 0.277 0.340 | 0.280 0.342 | 0.297 0.353
. o 192 | 0.312 0.361 | 0.317 0.363 | 0.338 0.374
Experimental results indicate that both the par- 336 | 0.345 0.380 | 0.357 0.384 | 0.372 0.391
serial SS-MLPs in the intermediate layer are 96 | 0.125 0.219 | 0.127 0.221 | 0.129 0.222
essential. Removing either component sig- 1921 0.143  0.236 | 0.145 0.240 | 0.145 0238
nificantly degrades the model’s performance. 3;8 g{gg gigé 8%88 8332 858421 8%31
This confirms the rationale behind SSNet’s ar- 5 0'347 0'237 0'348 0'238 0'362 0'244
chitectural design. The .results show that the 192 | 0370 0.248 | 0373 0249 | 0381 0.252
SS-MLPs have a greater impact on overall per- 336 | 0.380 0.255 | 0381 0.255 | 0.381 0.255
formance; omitting them leads to a more pro- 720 | 0.422 0278 | 0.435 0.298 | 0435 0.298

nounced decrease in model effectiveness.

ETThl

ETTml

Electricity

Traffic
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4.3 ANALYSIS OF EFFICIENCY

The computational complexity of the SSNet model is given by O (% + H ) where L and H de-

. . b 1
note the lengths of the input and output sequences, respectively, and S = K 175 represents the

harmonic mean of the Top-K periods. Transformer-based or CNN-based models generally exhibit
higher computational complexity. We conducted experiments on the ETTm2 dataset to evaluate the
runtime efficiency and GPU memory usage of various models. The experiments were divided into
two groups: (1) we fixed the output length at 96 and varied the input length from 192 to 3072; (2)
we fixed the input length at 96 and varied the output length from 192 to 3071.
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Figure 6: Efficiency and GPU memory usage with varying input lengths and output lengths.

The experimental results indicate that SSNet exhibits exceptional GPU memory usage and runtime
efficiency, closely approaching that of the simplest linear model, DLinear. This efficiency enables
SSNet to effectively handle large-scale long-sequence forecasting tasks, making it well-suited for
applications in industrial production.

5 CONCLUSIONS

In this paper, we introduce two innovative architectures, Skip-MLP and Split-MLP, which effectively
overcome the limitations of conventional MLPs in capturing periodic information and distinguish-
ing between global and local features. These architectures are distinguished by a reduced param-
eter count and enhanced computational efficiency. Building on these foundations, we developed
the SSNet temporal network, which adaptively identifies significant periodicities through an auto-
correlation method, extracts multi-scale periodic features via Skip-MLPs, integrates this multi-scale
information, and systematically reduces prediction bias using multiple SS-MLP Blocks with resid-
ual connections. SSNet demonstrates significant improvements over existing methods in various
long-term time series forecasting tasks, achieving superior prediction performance while utilizing
fewer parameters and minimizing runtime.
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A PROOF FOR SKIP-MLP AND SPLIT-MLP

A.1 PROOF FOR SKIP-MLP
Consider the Skip-MLP model:

O = X¢Wskip + Bskip = [01,02, ..., Onpxs) € RVN*Np-S

where
WSkip = WFully O Watask € RNL'SXND~S
and
Bspip € RV *NDS

with

1 if]i—j|lmodS=0

WMaskij = ‘ J‘ (1)
0 otherwise

This can be expressed as:
O1, = Xe; Wruny, + Bi = [04, Oiys, ..., Oiy (np—1)s] € RV*NP
Xy, = [Xi, Xits, -, Xig (v, —1)s] € RV

WFullyi c RNLXND,Bi c RlXND
where i € {1,2,...,5}.
After padding the input Xy € RV*L to a multiple of S, we get

11 21,2 T1,Np-S
T21 T22 - T2 Np-S

X¢ =pad(Xe) = | . R ) e RV*Ne-S
IN1 IN2 - ITN,Np-S

Consider the permutation matrices E, and Ey,. The matrix Ey, transforms the permutation
A = [ah ag, ... ,(J,NL.S} into:

L= (a1, a5515 - QN —1)8 41,02, QS 42, - s ANy —1)5425 - - - 5 BS, A28, * , AN,-S ]
which means A7 = A, - Ey,.
Similarly, Ey,, transforms the permutation Ap = [a1,as,...,an,.s] into:
D= 01,0541, Q(Np—1)S+1: 02, AS42, - - -, A(Np—1)S+25 - - -+ @S, A28, "+, ANp-S]
which means A, = Ap - En,,.
Applying these transformations to Xy and Wy, wWe get:
Xi =Xy En, 2)
Werip = EX, - Wskip - Eny 3)
Let x; ; and w; ; denote the elements at the i-th row and j-th column of X and Wy, respectively,

where i € {1,2,..., Ny, -S}tand j € {1,2,...,Np - S}. From Equation X4 can be represented
as:

i1 T1,8+1 0 L1(Np-1)S+1 - L1 s L1258 - L1,Np-S

, T21  T2,5+1 " T2 (Np-1)S+1 - T2, X228 - X2,Np-S
Xt = . . . . . .

N1 ZIN,S+1 °° TN(NL-1)S+1 " IN,S IN32S “*° IN,N.-S

13
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From Equation 3| W, can be represented as:

w1
Ws+1,1

s
w Skip — :
ws,1
w2s,1

WNy,-S,1

W1,S+1
Ws+1,5+1

W(NL-1)S+1,1  W(Np—-1)S+1,5+1

Ws,S+1
W28,5+1

WNL-S,S+1

W1,(Np—1)S+1
WS+1,(Np—1)S+1

W(NL-1)S+1,(Np—1)S+1

Ws,(Np-1)S+1
W2S,(Np—1)S+1

WN,-S,(Np—1)S+1

w1,
Ws+1,5

wW1,28
Ws+1,28

W(NL-1)S+1,S  W(NL-1)S+1,2S

ws,s
W2s,5

WN-8,8

ws,28
W2s,28

WNL-5,28

W1,Np-S
WS+1,Np-S

W(NL-1)S+1,Np-S

WS Np-S
W28,Np-S

WN.,-S,Np-S

From Equation when |i — j| mod S = 0, there are non-zero values; otherwise, they are masked

to zero. Thus, the matrix Wé kip €an be expressed as:

Wpu”yl 0] s 0]

. 0 Wrwiy, - @)

WSk'L'p = : : . .

0] O Wruilys
where
Wk, k Wk, S+k Wk, (Np—1)S+k
WS4,k WS+k,S+k WS+k,(Np—1)S+k
WFullyk = . .
W(NL-1)S+k,k  W(NL—1)S+k,S+k W(NL—1)S+k,(Np—1)S+k

Hence,

ke {l,2,...

X::Wékip = (XtENL)(EJj\;LWSkipEND) = Xt(ENLEJY\;L)WSkipEND = XtWSk:ipEND

Thus,
O = X¢Wskip + Bskip
= X{WinipExp + Bskip
= [Xt, Wruitty, » Xt Wruttyss - - -+ Xes Wruitys| Ex,, + Bskip
By applying the permutation matrix Ey,, to O, we have:

OtEND - [017 Ol—‘rSa ceey 01+(ND—1)Sa 023 O2+Sa e
= [Xt, Wruitys, Xeoa Wruitys - - - Xts Wrullys) + BskipEny,

which proves

O, = Xe;Wraty, + Bi = [01, Oiys, ..., Oiy(np—1)s] € RVNP
Xy, = [Xi, Xivs, -, Xiv(ny—1)s) € RV
Wruiy, € RNV B e RVMP e {1,2,...,5}

A.2 PROOF FOR SPLIT-MLP
For the Split-MLP model, let N, = Np = [£] and Sp = [N%W

Oy = X¢Wspiit + Bspiit = [01, 02, .. ] € RV*Np-Sp

'7OND><SD

where
SxS 1xS
Wspiit = Wruily © Warask € R7*7P, By € R777P

Ed

with
Ui 4] =

W]\/Iask-- =
! 0 otherwise
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Can be expressed as:
O; = [Ot170t27 . 7OtND:| c RNXND~SD

O1, = Xt,Wruny, + Bi = [0, 0441, ..., Oiys,-1] € RVN*5P
where
Xy, = [Xi, Xig1, oo Xips—1] € RVXS
WFullyi S RSXSD7Bi € RIXSDvi S {1723 .. '7ND}

According to Equation 4] it follows that there is a non-zero value if and only if [ﬂ = {S]—D] , which

implies that after splitting the matrix into blocks of size S x Sp, only the diagonal blocks of size
S x Sp have non-zero values, while the rest are zero. Therefore, the weight matrix Wgp;;+ can be
represented as:

Wiy, 0 0
0 WFullyg 0
Wsptit = : : _
0] 0 < Wruys
where:
W(k—1)S+1,(k—1)Sp+1  W(k—-1)S+1,(k—1)Sp+2 ~°° W(k—-1)S+1,kSp
W(k-1)S+2,(k—1)Sp+1  W(k—1)S+2,(k—1)Sp+2 *°° W(k—-1)S+2,kS
Wruiy, = = .( i = .( i . ). 7| e rS*Sp
WES,(k—1)Sp+1 WES,(k—1)Sp+2 T WkS,kSp
i J
— | ===k ke{l,2...,8
5] =[5 ] = renas
Thus:
O = X Wspiit + Bspiit = [Xe, Wruwiiy,, Xt Wruttys s - -+ » Xes Wruitys| + Bspiit
Ot, = Xe;Wruy, + Bi = [0i, 041, ..., Ojp5, 1] € RV*5P
where

Xi, = [Xi, Xit1, -, Xiys—1] € RV*S
Wruy, € R¥P, B; € R™P i€ {1,2,...,Np}
Therefore, the proof is complete.

B DETAILED INTRODUCTION OF THE DATASETS

* ETT (Electricity Transformer Temperature): The ETT dataset is collected from a power
grid, recording electricity transformer temperatures alongside other features such as load,
oil temperature, and ambient conditions. It is divided into four sub-datasets: ETThI,
ETTh2, ETTml, and ETTm?2. The ETTh datasets represent hourly data, while the ETTm
datasets record data every 15 minutes. Each sub-dataset spans two years and contains
7 features, including power load, transformer oil temperature, and ambient temperature.
This dataset is particularly suited for both short-term and long-term time-series forecasting
tasks.

* Weather: The Weather dataset contains meteorological data recorded every 10 minutes
throughout the year 2020. It includes 21 meteorological indicators, such as air temperature,
humidity, wind speed, and pressure. The dataset provides a high-resolution view of weather
patterns and is commonly used in environmental forecasting and anomaly detection tasks.

¢ Electricity: The Electricity dataset contains hourly electricity consumption data from 321
clients between 2012 and 2014. This dataset is challenging due to its high variability and
non-stationary characteristics, making it a popular choice for evaluating the robustness of
forecasting models.
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 Traffic: The Traffic dataset contains road occupancy rates measured by 862 different sen-
sors on freeways in the San Francisco Bay Area over a two-year period. Data was collected
by the California Department of Transportation. This dataset captures dynamic traffic pat-
terns and is widely used in transportation forecasting and optimization research.

OT Value for ETTh1 OT Value for ETTh2 OT Value for ETTm1 OT Value for ETTm2

Time Time. Time Time

Figure 7: Samples of the ETT dataset.

OT Value for weather OT Value for electricity OT Value for traffic

weather electricity traffic

3750
460 0.05

3500
3250

g
3 003
3 3
3000 >

OT Val

g

OT Value
ot

2750 0.02
2500

420 2250

Figure 8: Samples of the Weather, Electricity, and Traffic datasets.

C EXPERIMENTS WITH IDENTICAL LOOKBACK WINDOWS

We conducted experiments on four datasets from the ETT dataset, evaluating nine state-of-the-art
models, including iTransformer|Liu et al.| (2023), PDF |Dai et al.[(2024), PatchTST Nie et al.[(2022),
ModernTCN |[Luo & Wang| (2024)), FITS Xu et al.| (2023), Koopa |[Liu et al.| (2024a)), CrossGNN
Huang et al.|(2023), FourierGNN Y1 et al.| (20244), and FreTS Y1 et al.|(2024b)), using fixed lookback
windows of 96, 336, and 512. The results demonstrate that SSNet consistently outperforms other
models in predictive accuracy across different lookback lengths, with performance improving as
the sequence length increases. Specifically, for the lookback window of 96, SSNet achieved an
average reduction in MSE of 12.36% and an average reduction in MAE of 8.87% compared to other
models. For a lookback window of 336, the MSE decreased by an average of 19.56%, and the MAE
decreased by 12.16%. With a lookback window of 512, the MSE decreased by 19.76% on average,
and the MAE decreased by 12.39%.
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Table 5: Experimental Results with a Fixed Lookback Window of 96

Models

SSNet

iTransformer

PDF

PatchTST

ModernTCN

FITS

Koopa

CrossGNN

FourierGNN

FreTS

Metric

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

| MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

96

192
336
720

ETThl

0.378
0.413
0.435
0.463

0.387
0.404
0.421
0.456

0.386
0.445
0.485
0.509

0.407
0.439
0.460
0.495

0.376
0.429
0.464
0.481

0.397
0.426
0.441
0.475

0.394
0.445
0.484
0.480

0.408
0.434
0.451
0.471

0.385
0.438
0.444
0.474

0.397
0.424
0.428
0.464

0.385
0.435
0.474
0.457

0.394
0.422
0.440
0.455

0.391
0.455
0.490
0.533

0.409
0.442
0.457
0.493

0.382
0.428
0.471
0.476

0.396
0.424
0.442
0.464

0.443
0.500
0.554
0.658

0.450
0.484
0.517
0.597

0.392
0.451
0.503
0.581

0.406
0.443
0.471
0.547

| Avg

| 0.422

0.417

0.456

0.450

0.437

0.435

0.451

0.441

0.435

0.438

0.428

0.467

0.450

0.439

0.431

| 0.539

0.512

0.482

0.467

96
192
336
720

ETTh2

0.228
0.290
0.340
0.410

0.300
0.340
0.380
0.431

0.304
0.379
0.389
0.415

0.352
0.398
0.414
0.437

0.294
0.378
0.380
0.414

0.342
0.393
0.408
0.435

0.294
0.377
0.381
0.412

0.343
0.393
0.409
0.433

0.281

0.294
0.377
0.398
0.412

0.341
0.391
0.416
0.432

0.307
0.388
0.385
0.425

0.356
0.407
0.410
0.441

0.289
0.380
0.421
0.433

0.341
0.403
0.441
0.455

0.429
0.482
0.618
0.866

0.457
0.475
0.557
0.690

0.313
0.417
0.474
0.772

0.364
0.432
0.467
0.615

| Avg

| 0317

0.363

0.372

0.400

0.367

0.395

0.366

0.395

0.370

0.395

0.376

0.404

0.381

0.410

| 0.599

0.545

0.494

0.470

96
192
336
720

ETTml1

0.343
0.374
0.406
0.479

0.373
0.390
0.406
0.445

0.344
0.386
0.429
0.493

0.379
0.398
0.427
0.460

0.322
0.359
0.388
0.453

0.361
0.380
0.402
0.436

0.360
.382

0.401
0.436

0.355
0.392
0.424
0.484

0.375
0.393
0.415
0.448

0.328
0.372
0.401
0.462

0.366
0.389
0.411
0.447

0.329
0.370
0.401
0.453

0.369
0.391
0.413
0.444

0.408
0.432
0.467
0.520

0.421
0.436
0.460
0.491

0.336
0.383
0.422
0.492

0.374
0.402
0.434
0.475

| Avg

| 0.400

0.403

0.413

0.416

0.380

0.395

0.395

o
@
%
>3

0.414

0.408

0.390

0.403

0.388

0.404

| 0.457

0.452

0.408

0.421

96

192
336
720

ETTm2

0.160
0.215
0.260
0.322

0.250
0.283
0.313
0.351

0.189
0.254
0.317
0.414

0.274
0.313
0.352
0.406

0.174
0.241
0.302
0.399

0.258
0.302
0.341
0.395

0.260
0.306
0.341
0.397

0.183
0.247
0.308
0.406

0.266
0.305
0.343
0.397

0.180
0.243
0.301
0.396

0.263
0.304
0.341
0.397

0.176
0.243
0.302
0.402

0.258
0.302
0.338
0.396

0.230
0.326
0.385
0.703

0.326
0.390
0.426
0.610

0.182
0.254
0.336
0.535

0.269
0.324
0.376
0.494

| Avg

| 0.239

0.299

0.293

0.337

0.279

0.324

0.326

| 0.286

0.328

0.280

0.326

| 0.281

0.324

| 0411

0.438

0.327

0.366

Table 6: Experimental Results with a Fixed Lookback Window of 336

Models

SSNet

iTransformer

PDF

PatchTST

ModernTCN

FITS

Koopa

CrossGNN

FourierGNN

FreTS

Metric

MSE

MAE

MSE

MAE

MAE

MSE

MAE

| MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

96

192
336
720

ETThl

0.343
0.364
0.376
0.429

0.375
0.387
0.400
0.449

0.406
0.449
0.449
0.534

0.422
0.448
0.455
0.524

0.391
0413
0.423
0.460

0.375
0.414
0.431
0.450

0.399
0.421
0.436
0.466

0.369
0.406
0.392
0.450

0.394
0.414
0412
0.461

0.373
0.406
0.427
0.421

0.395
0.414
0.425
0.442

0.389
0.438
0.455
0.473

0.415
0.442
0.458
0.480

0.369
0.416
0.448
0.460

0.392
0.426
0.448
0.467

0.478
0.511
0.563
0.685

0.472
0.495
0.538
0.633

0.412
0.460
0.483
0.629

0.432
0.465
0.475
0.563

Avg

| 0378

0.403

0.460

0.462

0.422

0.417

0.431

0.404

0.421

0.407

0.419

0.439

0.448

| 0423

0.433

| 0559

0.534

=
=
°
=

0.484

96
192
336
720

ETTh2

0.219
0.267
0.306
0.379

0.297
0.334
0.367
0.421

0.305
0.389
0.383
0.412

0.361
0.412
0.415
0.443

0.337
0.382
0.387
0.423

0.274
0.339
0.330
0.379

0.336
0.379
0.380
0.422

0.264
0.318
0.314
0.415

0.277
0.337
0.342
0.379

0.339
0.377
0.388
0.419

0.301
0.358
0.349
0.418

0.360
0.399
0.399
0.444

0.285
0.359
0.368
0.480

0.341
0.393
0411
0.526

0.382
0.499
0.550
0.932

0.429
0.498
0.530
0.711

0.357
0.410
0.466
0.711

Avg

| 0.293

0.355

0.372

0.408

0.382

0.331

0.379

0.328

0.334

0.381

0.357

0.400

| 0373

0.418

| 0.591

0.542

S|
n
oy
A

0.486

96

192
336
720

ETTml

0.273
0.311
0.348
0.407

0.336
0.360
0.381
0.413

0.312
0.354
0.383
0.446

0.364
0.389
0.405
0.441

0.336
0.361
0.385
0.416

0.292
0.331
0.365
0.417

0.343
0.369
0.392
0.423

0.297
0.346
0.376
0.429

0.304
0.337
0.372
0.427

0.345
0.365
0.385
0.416

0.304
0.341
0.377
0.435

0.356
0.379
0.403
0.432

0.297
0.337
0.367
0.420

0.342
0.366
0.384
0414

0.354
0.395
0.439
0.490

0.404
0.428
0.461
0.484

0.369
0.386
0.413
0.449

Avg

| 0.335

0.373

0.374

0.400

0.374

0.351

0.382

0.362

0.360

0.378

0.364

0.392

| 0.355

0.376

| 0.419

0.444

o
@
3
4

0.404

96

192
336
720

ETTm2

0.140
0.180
0.219
0.280

0.235
0.264
0.291
0.332

0.172
0.243
0.287
0.373

0.265
0.314
0.341
0.393

0.255
0.292
0.328
0.383

0.165
0.221
0.278
0.367

0.255
0.292
0.329
0.385

0.170
0.228
0.290
0.375

0.166
0.221
0.275
0.366

0.255
0.292
0.327
0.382

0.177
0.241
0.301
0.376

0.263
0.308
0.347
0.395

0.162
0.221
0.275
0.369

0.249
0.294
0.331
0.388

0.226
0.284
0.354
0.569

0.327
0.360
0.403
0.529

0.266
0.266

| Avg

| 0.205

0.280

0.269

0.328

0.315

0.258

0.315

| 0.266

0.321

| 0.257

0.314

0.274

0.328

| 0.257

0.316

| 0.358

0.405

Table 7: Experimental Results with a Fixed Lookback Window of 512

Models

SSNet

iTransformer

PDF

PatchTST

ModernTCN

FITS

Koopa

CrossGNN

FourierGNN

FreTS

Metric

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

| MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

96
192
336
720

ETThl

0.339
0.359
0.370
0.427

0.374
0.386
0.398
0.449

0.400
0.426
0.431
0.556

0.424
0.443
0.452
0.537

0.359
0.392
0.409
0.472

0.391
0414
0.431
0.482

0.370
0.413
0.422
0.447

0.400
0.429
0.440
0.468

0.367
0.403
0.395
0.461

0.396
0.416
0.416
0.470

0.371
0.405
0.418
0.421

0.396
0.415
0.427
0.444

0.387
0.423
0.441
0.544

0.417
0.441
0.453
0.519

0.370
0.429
0.425
0.458

0.397
0.437
0.433
0.474

0.482
0.508
0.532
0.659

0.477
0.496
0.515
0.615

0.428
0.463
0.493
0.586

0.443
0.470
0.484
0.542

Avg

0.374

0.402

0.453

0.464

0.408

0.429

0.413

0.434

0.407

0.424

0.404

0.421

0.449

0.458

0.421

0.435

| 0.545

0.526

0.492

0.485

96
192
336
720

ETTh2

0.216
0.262
0.300
0.372

0.298
0.332
0.364
0.419

0.306
0.379
0.391
0.434

0.363
0.408
0.423
0.459

0.272
0.333
0.326
0.394

0.336
0.377
0.383
0.436

0.274
0.340
0.329
0.380

0.337
0.381
0.384
0.423

0.256
0.310
0.315
0.411

0.329

0.377
0.444

0.272
0.330
0.339
0.372

0.337
0.375
0.387
0.418

0.308
0.358
0.360
0.453

0.364
0.401
0.408
0.471

0.277
0.343
0.382
0.428

0.346
0.396
0.411
0.471

0.384
0.441
0.549
0.702

0.427
0.466
0.540
0.615

0.313
0.390
0.494
1.273

0.368
0.421
0.487
0.774

Avg

| 0.287

0.353

0.378

0.413

0.331

0.383

0.331

0.381

0.323

0.380

0.328

0.379

0.370

0.411

0.357

0.406

| 0.519

0.512

0.618

0.512

96

192
336
720

ETTml

0.277
0.312
0.345
0.404

0.315
0.351
0.382
0.442

0.367
0.387
0.409
0.441

0.281
0.326
0.352
0.410

0.337
0.368
0.386
0.417

0.290
0.334
0.369
0.416

0.344
0.371
0.392
0.420

0.309
0.346
0.377
0.428

0.355
0.374
0.395
0.420

0.307
0.338
0.368
0.421

0.349
0.367
0.384
0.413

0.314
0.347
0.379
0.438

0.364
0.384
0.407
0.432

0.304
0.345
0.375
0.423

0.348
0.371
0.392
0.417

0.363
0.402
0.439
0.490

0.406
0.425
0.448
0.478

0.346
0.381
0.405
0.465

0.379
0.408
0.419
0.453

Avg

| 0.335

0.373

0.401

0.342

0.377

0.352

0.382

0.365

0.386

0.358

0.378

0.369

0.397

0.362

0.382

| 0.423

0.439

0.399

0.415

96

192
336
720

ETTm2

0.139
0.181
0.219
0.279

0.179
0.245
0.290
0.369

0.273
0.315
0.344
0.393

0.162
0.224
0.267
0.346

0.252
0.297
0.327
0.377

0.166
0.223
0.274
0.362

0.256
0.296
0.329
0.385

0.171
0.229
0.293
0.386

0.262
0.303
0.344
0.401

0.165
0.219
0.272
0.357

0.254
0.291
0.326
0.380

0.187
0.244
0.300
0.372

0.275
0.314
0.352
0.397

0.161
0.223
0.283
0.367

0.240
0.330
0.393
0.755

0.338
0.399
0.436
0.629

0.208
0.297
0.330
0.391

0.272
0.323
0.361
0.414

| Avg

| 0.204

0.271

0.331 | 0.250

0.313

0.256

0.317

| 0270

0.328

| 0.254

0.313

0.276

0.334

| 0.259

0.318

| 0.430

0.450

| 0.306

0.342
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