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ABSTRACT

Recent years have witnessed the widespread use of artificial intelligence (AI)
algorithms and machine learning (ML) models. Despite their tremendous success,
a number of vital problems like ML model brittleness, their fairness, and the lack
of interpretability warrant the need for the active developments in explainable
artificial intelligence (XAI) and formal ML model verification. The two major
lines of work in XAI include feature selection methods, e.g. Anchors, and feature
attribution techniques, e.g. LIME and SHAP. Despite their promise, most of the
existing feature selection and attribution approaches are susceptible to a range of
critical issues, including explanation unsoundness and out-of-distribution sampling.
A recent formal approach to XAI (FXAI) although serving as an alternative to the
above and free of these issues suffers from a few other limitations. For instance and
besides the scalability limitation, the formal approach is unable to tackle the feature
attribution problem. Additionally, a formal explanation despite being formally
sound is typically quite large, which hampers its applicability in practical settings.
Motivated by the above, this paper proposes a way to apply the apparatus of formal
XAI to the case of feature attribution based on formal explanation enumeration.
Formal feature attribution (FFA) is argued to be advantageous over the existing
methods, both formal and non-formal. Given the practical complexity of the
problem, the paper then proposes an efficient technique for approximating exact
FFA. Finally, it offers experimental evidence of the effectiveness of the proposed
approximate FFA in comparison to the existing feature attribution algorithms not
only in terms of feature importance and but also in terms of their relative order.1

1 INTRODUCTION

Thanks to the unprecedented fast growth and the tremendous success, Artificial Intelligence (AI)
and Machine Learning (ML) have become a universally acclaimed standard in automated decision
making causing a major disruption in computing and the use of technology in general (LeCun et al.,
2015; Jordan and Mitchell, 2015; Mnih et al., 2015; ACM, 2018). An ever growing range of practical
applications of AI and ML, on the one hand, and a number of critical issues observed in modern AI
systems (e.g. decision bias (Angwin et al., 2016) and brittleness (Szegedy et al., 2014)), on the other
hand, gave rise to the quickly advancing area of theory and practice of Explainable AI (XAI).

Numerous methods exist to explain decisions made by what is called black-box ML models (Miller,
2019; Molnar, 2020). Here, model-agnostic approaches based on random sampling prevail (Miller,
2019), with the most popular being feature selection (Ribeiro et al., 2018) and feature attribu-
tion (Lundberg and Lee, 2017; Ribeiro et al., 2018) approaches. Despite their promise, model-agnostic
approaches are susceptible to a range of critical issues, like unsoundness of explanations (Ignatiev,
2020; Huang and Marques-Silva, 2023) and out-of-distribution sampling (Slack et al., 2020; Lakkaraju
and Bastani, 2020), which exacerbates the problem of trust in AI.

An alternative to model-agnostic explainers is represented by the methods building on the success of
formal reasoning applied to the logical representations of ML models (Shih et al., 2018; Marques-
Silva and Ignatiev, 2022). Aiming to address the limitations of model-agnostic approaches, formal
XAI (FXAI) methods themselves suffer from a few downsides, including the lack of scalability and

1Source code and complete experimental setup are available in the supplementary material.
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T1 (≥ 50k)

Status = Married?

Education = Dropout? Rel. = Not-in-family?

-0.1569 0.0770 -0.1089 -0.3167

yes no

yes no yes no

T2 (≥ 50k)

Hours/w≤ 40?

Status = Married? Status = Never-Married?

-0.0200 -0.2404 -0.1245 0.0486

yes no

yes no yes no

T3 (≥ 50k)

Education = Doctorate?

40< Hours/w≤ 45? Rel. = Own-child?

0.0605 0.3890 -0.2892 -0.0580

yes no

yes no yes no

Figure 1: Example BT model (Chen and Guestrin, 2016) trained on the adult classification dataset.

the requirement to build a complete logical representation of the ML model. Formal explanations also
tend to be larger than their model-agnostic counterparts because they do not reason about (unknown)
data distribution (Wäldchen et al., 2021). Finally and most importantly, FXAI methods have not been
applied so far to answer feature attribution questions.

Motivated by the above, we define a novel formal approach to feature attribution, which builds on the
success of existing FXAI methods (Marques-Silva and Ignatiev, 2022). By exhaustively enumerating
all formal explanations, we can give a crisp definition of formal feature attribution (FFA) as the
proportion of explanations in which a given feature occurs. We argue that formal feature attribution
is hard for the second level of the polynomial hierarchy. Although it can be challenging to compute
exact FFA in practice, we show that existing anytime formal explanation enumeration methods can
be applied to efficiently approximate FFA. Our experimental results demonstrate the effectiveness of
the proposed approach in practice and its advantage over LIME and a few variants of SHAP given
publicly available tabular and image datasets, as well as on a real application of XAI in the domain of
Software Engineering (McIntosh and Kamei, 2017; Pornprasit et al., 2021).

2 BACKGROUND

This section briefly overviews the status quo in XAI and background knowledge the paper builds on.

2.1 CLASSIFICATION PROBLEMS

Classification problems consider a set of classes K = {1, 2, . . . , k}2, and a set of features F =
{1, . . . ,m}. The value of each feature i ∈ F is taken from a domain Di, which can be categorical
or ordinal, i.e. integer, real-valued or Boolean. Therefore, the complete feature space is defined as
F ,

∏m
i=1 Di. A concrete point in feature space is represented by v = (v1, . . . , vm) ∈ F, where

each component vi ∈ Di is a constant taken by feature i ∈ F . An instance or example is denoted
by a specific point v ∈ F in feature space and its corresponding class c ∈ K, i.e. a pair (v, c)
represents an instance. Additionally, the notation x = (x1, . . . , xm) denotes an arbitrary point in
feature space, where each component xi is a variable taking values from its corresponding domain Di
and representing feature i ∈ F . A classifier defines a non-constant classification function κ : F→K.

Many ways exist to learn classifiers κ given training data, i.e. a collection of labeled instances (v, c),
including decision trees (Hyafil and Rivest, 1976) and their ensembles (Breiman, 2001; Chen and
Guestrin, 2016), decision lists (Rivest, 1987), neural networks (LeCun et al., 2015), etc. This paper
considers boosted tree (BT) models trained with the use of XGBoost (Chen and Guestrin, 2016).

Example 1. Figure 1 shows a BT model trained for a simplified version of the adult dataset (Kohavi,
1996). For an instance v = {Education = Bachelors, Status = Separated, Occupation = Sales, Re-
lationship = Not-in-family, Sex = Male, Hours/w ≤ 40}, the model predicts <50k because the sum
of the weights in the 3 trees for this instance equals −0.4073 = (−0.1089− 0.2404− 0.0580) < 0.

2.2 ML MODEL INTERPRETABILITY AND POST-HOC EXPLANATIONS

Interpretability is usually deemed to be a subjective concept, with no formal definition (Lipton, 2018).
One way to measure interpretability is in terms of the succinctness of information provided by an ML

2Any set of classes {c1, . . . , ck} can always be mapped into the set of the corresponding indices {1, . . . , k}.
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||||||||||

0.03
Hours/w <= 40

||||||||||

-0.03
Relationship: Not-in-family

||||||||||

0.07
Status: Separated

(a) LIME

|||||||||
0.01
Education: Bachelors

|||||||||
0.09

Status: Separated

|||||||||
0.11

Hours/w <= 40

|||||||||
-0.12

Relationship: Not-in-family

(b) SHAP

X1 = { Education, Hours/w }

IF Education = Bachelors
AND Hours/w ≤ 40
THEN Target <50k

X2 = { Education, Status }

IF Education = Bachelors
AND Status = Separated
THEN Target <50k

(c) AXp’s X1 and X2

||||||||||

0.50
Status: Separated

||||||||||

0.50
Hours/w <= 40

||||||||||

1.00
Education: Bachelors

(d) FFA

Figure 2: Examples of feature attribution reported by LIME and SHAP, as well as both AXp’s (no
more AXp’s exist) followed by FFA for the instance v shown in Example 1.

model to justify a given prediction. Recent years have witnessed an upsurge in the interest in applying
interpretable models in safety-critical applications (Rudin, 2019; Molnar, 2020). An alternative to
interpretable models is post-hoc explanation of black-box models, which this paper focuses on.

Numerous methods to compute explanations have been proposed recently (Miller, 2019; Molnar,
2020). The lion’s share of these comprise what is called model-agnostic approaches to explainabil-
ity (Ribeiro et al., 2016; Lundberg and Lee, 2017; Ribeiro et al., 2018) are of heuristic nature that
resort to extensive sampling in the vicinity of an instance to explain in order to “estimate” the behavior
of the classifier in this local vicinity of the instance. In this regard, they rely on estimating input data
distribution by building on the information about the training data (Lakkaraju and Bastani, 2020).
Depending on the form of explanations model-agnostic approaches offer, they are conventionally
classified as feature selection or feature attribution approaches briefly discussed below.

Feature Selection approaches identify feature subsets that are deemed sufficient for a given prediction
c = κ(v). As such, a feature selection explanation given as a set of features ω ⊆ F should be
interpreted as the conjunction

∧
i∈ω (xi = vi) deemed responsible for prediction c = κ(v), v ∈ F,

c ∈ K. The majority of feature selection approaches are model-agnostic with one prominent example
being Anchors (Ribeiro et al., 2018). As such, the sufficiency of the selected set of features for a given
prediction is determined statistically based on extensive sampling around the instance of interest, by
assessing a few measures like fidelity, precision, among others. Due to the statistical nature of these
explainers, they are known to suffer from various explanation quality issues (Lakkaraju and Bastani,
2020; Ignatiev, 2020; Slack et al., 2021). An additional line of work on formal explainability also
tackles feature selection while offering guarantees of soundness; these are discussed below.

Feature Attribution. A different view on post-hoc explanations is provided by feature attribution
approaches, e.g. LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017). Based on random
sampling in the neighborhood of the target instance, these approaches attribute responsibility to all
model’s features by assigning a numeric value wi ∈ R of importance to each feature i ∈ F . Given
these importance values, the features can then be ranked from most important to least important. As
a result, a feature attribution explanation is conventionally provided as a linear form

∑
i∈F wi · xi,

which can be also seen as approximating the original black-box explainer κ in the local neighborhood
of instance v ∈ F. Among feature attribution approaches, SHAP (Lundberg and Lee, 2017; Arenas
et al., 2021b;c) and its variants is often claimed to stand out as it aims at approximating Shapley
values, a powerful concept originating from cooperative games in game theory (Shapley, 1953).

Formal Explainability. This work builds on formal explainability proposed in earlier work (Shih
et al., 2018; Ignatiev et al., 2019; Darwiche and Hirth, 2020; Audemard et al., 2020; Marques-Silva
and Ignatiev, 2022) where explanations are equated with abductive explanations (AXp’s). Abductive
explanations are subset-minimal sets of features formally proved to suffice to explain an ML prediction
given a formal representation of the classifier of interest. Concretely, given an instance v ∈ F and a
prediction c = κ(v), an AXp is a subset-minimal set of features X ⊆ F , such that

∀(x ∈ F).
∧

i∈X
(xi = vi)→(κ(x) = c) (1)

Abductive explanations are guaranteed to be subset-minimal sets of features proved to satisfy (1). As
other feature selection explanations, they answer why a certain prediction was made. An alternate
way to explain a model’s behavior is to seek an answer why not another prediction was made, or, in
other words, how to change the prediction. Explanations answering why not questions are referred to
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as contrastive explanations (CXp’s) (Miller, 2019; Ignatiev et al., 2020; Marques-Silva and Ignatiev,
2022). As in prior work, we define a CXp as a subset-minimal set of features that, if allowed to change
their values, are necessary to change the prediction of the model. Formally, a CXp for prediction
c = κ(v) is a subset-minimal set of features Y ⊆ F , such that

∃(x ∈ F).
∧

i 6∈Y
(xi = vi) ∧ (κ(x) 6= c) (2)

Finally, recent work has shown that AXp’s and CXp’s for a given instance v ∈ F enjoy the minimal
hitting set duality (Ignatiev et al., 2020; Reiter, 1987). The duality implies that each AXp for a
prediction c = κ(v) is a minimal hitting set3 (MHS) of the set of all CXp’s for that prediction, and
the other way around: each CXp is an MHS of the set of all AXp’s. The explanation enumeration
algorithm applied in this paper heavily relies on this duality relation and is inspired by the MARCO
algorithm originating from the area of over-constrained systems (Liffiton et al., 2016). A growing
body of recent work on formal explanations is represented (but not limited) by (Marques-Silva et al.,
2021; Arenas et al., 2021a; Wäldchen et al., 2021; Darwiche and Marquis, 2021; Malfa et al., 2021;
Boumazouza et al., 2021; Blanc et al., 2021; Gorji and Rubin, 2022; Marques-Silva and Ignatiev,
2022; Amgoud and Ben-Naim, 2022; Ferreira et al., 2022; Arenas et al., 2022).
Example 2. In the context of Example 1, feature attribution computed by LIME and SHAP as well
as all 2 AXp’s are shown in Figure 2. AXp X1 indicates that specifying Education = Bachelors
and Hours/w ≤ 40 guarantees that any compatible instance is classified as < 50k independent
of the values of other features, e.g. Status and Relationship, since the maximal sum of weights is
0.0770− 0.0200− 0.0580 = −0.0010 < 0 as long as the feature values above are used. Observe
that another AXp X2 for v is {Education, Status}. Since both of the two AXp’s for v consist of two
features, it is difficult to judge which one is better without a formal feature importance assessment.

3 WHY FORMAL FEATURE ATTRIBUTION?

On the one hand, abductive explanations serve as a viable alternative to non-formal feature selection
approaches because they (i) guarantee subset-minimality of the selected sets of features and (ii) are
computed via formal reasoning over the behavior of the corresponding ML model. Having said
that, they suffer from a few issues. First, observe that deciding the validity of (1) requires a formal
reasoner to take into account the complete feature space F, assuming that the features are independent
and uniformly distributed (Wäldchen et al., 2021). In other words, the reasoner has to check all the
combinations of feature values, including those that never appear in practice. This makes AXp’s
being unnecessarily conservative (long), i.e. they may be hard for a human decision maker to interpret.
Second, AXp’s are not aimed at providing feature attribution. The abundance of various AXp’s for a
single data instance (Ignatiev et al., 2019), e.g. see Example 2, exacerbates this issue as it becomes
unclear for a user which of the AXp’s to use to make an informed decision in a particular situation.

On the other hand, non-formal feature attribution in general is known to be susceptible to out-of-
distribution sampling (Lakkaraju and Bastani, 2020; Slack et al., 2020) while SHAP has been recently
shown to fail to effectively approximate Shapley values (Huang and Marques-Silva, 2023). Quite
surprisingly, (Huang and Marques-Silva, 2023) also argued that even the use of exact Shapley values
may be inadequate as a measure of feature importance. Namely, they used the concept of formal
feature relevancy, i.e. a feature is said to be relevant for a given prediction c = κ(v) iff it appears in
at least one AXp for the prediction Huang et al. (2023), and practically showed that (i) irrelevant
features may have non-zero Shapley values while (ii) relevant features may be assigned zero Shapley
values. Our results below confirm that both LIME and SHAP often report attributions inconsistent
with relevant features for the corresponding predictions in a number of practical scenarios.

To address the above limitations, we propose the concept of formal feature attribution (FFA). (An
insight on this was also given in (Huang and Marques-Silva, 2023).) Let us denote the set of all
formal AXp’s for a prediction c = κ(v) by Aκ(v, c). Then formal feature attribution of a feature
i ∈ F can be defined as the proportion of abductive explanations where it occurs. More formally,
Definition 1: (FFA). The formal feature attribution ffaκ(i, (v, c)) of a feature i ∈ F to an instance
(v, c) for machine learning model κ is as follows: ffaκ(i, (v, c)) = |{X | X∈Aκ(v,c),i∈X )|/|Aκ(v,c)|.

3Given a set of sets S, a hitting set of S is a set H such that ∀S ∈ S, S ∪H 6= ∅, i.e. H “hits” every set in S.
A hitting set H for S is minimal if none of its strict subsets is also a hitting set.
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Formal feature attribution has some nice properties. First, it has a strict and formal definition, i.e. we
can, assuming we are able to compute the complete set of AXp’s for an instance, exactly define it for
all features i ∈ F . Second, it is fairly easy to explain to a user of the classification system, even if
they are non-expert. Indeed, it is the percentage of (formal abductive) explanations that make use
of a particular feature i. Third, as we shall see later, even though we may not be able to compute
all AXp’s exhaustively, we can still get good FFA approximations fast. Fourth, since it is based on
formal explanations, it is immune from out-of-distribution sampling problems.
Example 3. Recall Example 2. As there are 2 AXp’s for instance v, the prediction can be attributed
to the 3 features with non-zero FFA shown in Figure 2d. Also, observe how both LIME and SHAP
(see Figure 2a and Figure 2b) assign non-zero attribution to the feature Relationship, which is in fact
irrelevant for the prediction, but overlook the highest importance of feature Education.

One criticism of the above definition is that it does not take into account the length of explanations
where the feature arises. Arguably if a feature arises in many AXp’s of size 2, it should be considered
more important than a feature which arises in the same number of AXp’s but where each is of size 10.
An alternate definition, which tries to take this into account, is the weighted formal feature attribution
(WFFA), i.e. the average proportion of AXp’s that include feature i ∈ F . Formally,
Definition 2: (WFFA). The weighted formal feature attribution wffaκ(i, (v, c)) of a feature i ∈ F to
an instance (v, c) for machine learning model κ is wffaκ(i, (v, c)) =

∑
X∈Aκ(v,c),i∈X |X |

−1
/|Aκ(v,c)|.

Note that these attribution values are not on the same scale although they are convertible:∑
i∈F

ffaκ(i, (v, c)) =

∑
X∈Aκ(v,c) |X |
|Aκ(v, c)|

×
∑
i∈F

wffaκ(i, (v, c)).

Although WFFA in theory better reflects feature importance than FFA, our practical results suggest
that the size of AXp’s is tightly clustered around the mean, which makes the values of FFA and
WFFA almost indistinguishable. For this reason and due to simplicity of the unweighted variant
from a user’s perspective, our experimental results focus solely on FFA (the appendix details WFFA
results).

Importantly, both FFA and WFFA, by definition, respect feature relevancy (Huang et al., 2023) as
feature i ∈ F is relevant for prediction c = κ(v) if and only if ffaκ(i, (v, c)) > 0. Furthermore,
Proposition 1. Given a feature i ∈ F and a prediction c = κ(v), deciding whether ffaκ(i, (v, c)) >
ω, ω ∈ (0, 1], is at least as hard as deciding whether feature i is relevant for the prediction. ut

This means that computing exact FFA values may be expensive in practice. For example and in light
of (Huang et al., 2023), the decision version of the problem is ΣP

2-hard in the case of DNF classifiers.

Using the relation between FFA and feature relevancy above, we can also note that the decision
version of the problem is in ΣP

2 as long as deciding the validity of (1) is in NP, which in general is the
case. (Deciding (1) may be simpler, e.g. for decision trees Izza et al. (2022).) The following result is
a simple consequence of the membership result for the feature relevancy problem Huang et al. (2023).
Proposition 2. Deciding whether ffaκ(i, (v, c)) > 0 is in ΣP

2 if deciding (1) is in NP. ut

4 APPROXIMATING FORMAL FEATURE ATTRIBUTION

It may be challenging in practice to compute exact FFA due to the general complexity of the problem.
Although some ML models admit efficient formal encodings and reasoning procedures, effective
principal methods for FFA approximation seem necessary. This section proposes one such method.

Normally, formal explanation enumeration is done by exploiting the MHS duality between AXp’s and
CXp’s and the use of MARCO-like (Liffiton et al., 2016) algorithms aiming at efficient exploration of
minimal hitting sets of either AXp’s or CXp’s (Liffiton and Malik, 2013; Previti and Marques-Silva,
2013; Liffiton et al., 2016; Ignatiev et al., 2020). Depending on the target type of formal explanation,
MARCO exhaustively enumerates all such explanations one by one, each time extracting a candidate
minimal hitting set and checking if it is a desired explanation. If it is then it is recorded and blocked
such that this candidate is never repeated again. Otherwise, a dual explanation is extracted from the
subset of features complementary to the candidate (Ignatiev et al., 2019), gets recorded and blocked
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Algorithm 1 MARCO-like Anytime Explanation Enumeration
1: procedure XPENUM(κ, v, c)
2: (A,C)← (∅, ∅) . Sets of AXp’s and CXp’s to collect.
3: while true do
4: Y ← MINIMALHS(A,C) . Get a new MHS of A subject to C.
5: if Y = ⊥ then break . Stop if none is computed.
6: if ∃(x ∈ F).

∧
i 6∈Y(xi = vi) ∧ (κ(x) 6= c) then . Check CXp condition (2) for Y .

7: C← C ∪ {Y} . Y appears to be a CXp.
8: else . There must be a missing AXp X ⊆ F \ Y .
9: X ← EXTRACTAXP(F \ Y, κ,v, c) . Get AXp X by iteratively checking (1).

10: A← A ∪ {X} . Collect new AXp X .
return A, C

so that it is hit by each future candidate. The procedure proceeds until no more hitting sets of the
set of dual explanations can be extracted, which signifies that all target explanations are enumerated.
While doing so, MARCO also enumerates all the dual explanations as a kind of “side effect”.

One of the properties of MARCO used in our approximation approach is that it is an anytime
algorithm, i.e. we can run it for as long as we need to get a sufficient number of explanations. This
means we can stop it by using a timeout or upon collecting a certain number of explanations.

The main insight of FFA approximation is as follows. Recall that to compute FFA, we are interested
in AXp enumeration. Although intuitively this suggests the use of MARCO targeting AXp’s, for the
sake of fast and high-quality FFA approximation, we propose to target CXp enumeration with AXp’s
as dual explanations computed “unintentionally”. The reason for this is twofold: (i) we need to get a
good FFA approximation as fast as we can and (ii) according to our practical observations, MARCO
needs to amass a large number of dual explanations before it can start producing target explanations.
This is because the hitting set enumerator is initially “blind” and knows nothing about the features
it should pay attention to — it uncovers this information gradually by collecting dual explanations
to hit. This way a large number of dual explanations can quickly be enumerated during this initial
phase of grasping the search space, essentially “for free”. Our experimental results demonstrate the
effectiveness of this strategy in terms of monotone convergence of approximate FFA to the exact FFA
with the increase of the time limit. A high-level view of the version of MARCO used in our approach
targeting CXp enumeration and amassing AXp’s as dual explanations is shown in Algorithm 1.

5 EXPERIMENTAL EVIDENCE

Here, we assess FFA for gradient boosted trees (Chen and Guestrin, 2016) on multiple widely used
images and tabular datasets and compare it with LIME (Ribeiro et al., 2016), TreeSHAP (Lundberg
et al., 2020), and KernelSHAP (Lundberg and Lee, 2017).4 (The appendix also showcases the use of
FFA in a real-world scenario of Just-in-Time (JIT) defect prediction (Pornprasit et al., 2021).)

Setup and Prototype Implementation. All experiments were performed on an Intel Xeon 8260
CPU running Ubuntu 20.04.2 LTS. An FFA computation prototype implementing Algorithm 1 was
developed in Python and builds on (Ignatiev et al., 2022). As the FFA and WFFA values turn out to be
almost identical (subject to normalization) in our experiments, here we report only (unweighted) FFA.

Datasets and Machine Learning Models. The well-known MNIST dataset (Deng, 2012; Paszke
et al., 2019) of hand-written digits 0–9 is considered, with two concrete binary classification tasks
created: 1 vs. 3 and 1 vs. 7. We also consider PneumoniaMNIST (Yang et al., 2023), a binary
classification dataset to distinguish X-ray images of pneumonia from normal cases. To demonstrate
extraction of exact FFA values for the above datasets, we also examine their downscaled versions, i.e.
reduced from 28× 28× 1 to 10× 10× 1. Furthermore, we examine the CIFAR-10 image dataset,
and the detailed results for this dataset can be found in the appendix. We also consider 11 tabular
datasets often applied in the area of ML explainability and fairness (Olson et al., 2017; Dua and
Graff, 2017; Schmidt and Witte, 1988; Angwin et al., 2016; FairML; Friedler et al., 2015). All the

4LIME, TreeSHAP, and KernelSHAP are sampling-based feature attribution methods. LIME and Ker-
nelSHAP are model-agnostic while TreeSHAP is specifically designed to effectively address tree-based models.
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Figure 3: Explanations for a randomly selected instance of the Compas dataset.

Table 1: LIME, TreeSHAP, and KernalSHAP versus FFA on tabular data.

Dataset adult appendicitis australian cars compas heart-statlog hungarian lending liver-disorder pima recidivism
(|F|) (12) (7) (14) (8) (11) (13) (13) (9) (6) (8) (15)

Approach Error
LIME 4.48 2.25 5.13 1.53 3.28 4.48 4.56 1.39 2.39 2.72 4.73

TreeSHAP 4.47 2.01 4.49 1.40 2.67 3.71 4.14 1.44 2.28 3.00 4.76
KernelSHAP 4.32 2.13 4.60 0.83 2.59 3.55 4.02 1.34 2.23 2.95 4.81

Kendall’s Tau
LIME 0.07 0.11 0.22 -0.11 -0.11 0.17 0.04 -0.36 -0.22 0.17 0.05

TreeSHAP 0.03 0.12 0.27 -0.10 -0.10 0.17 0.20 -0.39 -0.21 0.07 0.12
KernelSHAP 0.04 0.19 0.17 -0.06 -0.10 0.21 0.14 -0.34 -0.19 0.09 0.08

RBO
LIME 0.54 0.66 0.49 0.63 0.55 0.56 0.41 0.59 0.66 0.68 0.39

TreeSHAP 0.49 0.67 0.55 0.66 0.59 0.52 0.49 0.61 0.67 0.63 0.44
KernelSHAP 0.57 0.69 0.56 0.63 0.57 0.55 0.56 0.61 0.68 0.64 0.45

considered datasets are randomly split into 80% training and and 20% test data. For images, 15 test
instances are randomly selected in each test set for explanation while all tabular test instances are
explained. For all datasets, gradient boosted trees (BTs) are trained by XGBoost (Chen and Guestrin,
2016), where each BT consists of 25 trees of depth 3 per class.5

5.1 EXACT FORMAL FEATURE ATTRIBUTION

Here we consider examples where we can compute the exact FFA values by computing all AXp’s. To
compare FFA with feature attribution produced by LIME, TreeSHAP and KernelSHAP, we take the
absolute values of their feature attribution and normalize the values into [0, 1]. The error is measured
as Manhattan distance, i.e. the sum of absolute differences across all features. We also compare
feature rankings according to the competitors (again using absolute values for LIME, TreeSHAP and
KernelSHAP) using Kendall’s Tau (Kendall, 1938) and rank-biased overlap (RBO) (Webber et al.,
2010) metrics.6 Kendall’s Tau and RBO are measured on a scale [−1, 1] and [0, 1], respectively. A
higher value in both metrics indicates better agreement or closeness between a ranking and FFA.

Tabular Data. Figure 3 exemplifies a comparison of FFA, LIME, TreeSHAP and KernelSHAP on
a randomly selected instance of the Compas dataset (Angwin et al., 2016). While FFA and LIME
agree on the most important feature, “Asian”, TreeSHAP gives it very little weight. None of LIME,
TreeSHAP and KernelSHAP agree with FFA, though there is clearly some similarity.

Table 1 details the comparison conducted on 11 tabular datasets, including adult, compas, and recidi-
vism datasets commonly used in XAI. For each dataset, we calculate the metric for each individual
instance and then average the outcomes to obtain the final result for that dataset. As can be observed,
the errors of LIME’s feature attribution across these datasets span from 1.39 to 5.13. TreeSHAP and
KernelSHAP demonstrate errors within a range [1.40, 4.76] and [0.83, 4.81], respectively. These three
approaches also exhibit comparable performance in relation to the two ranking comparison metrics.
The values of Kendall’s Tau for LIME (resp. TreeSHAP and KernelSHAP) range from −0.36 to 0.22
(resp. −0.39 to 0.27 and −0.34 to 0.21). Regarding the RBO values, LIME exhibits values between

5Test accuracy for MNIST digits is 0.99, while it is 0.83 for PneumoniaMNIST. This holds both for the 28 ×
28 and 10 × 10 versions of the datasets. The average accuracy across the 11 selected tabular datasets is 0.80.

6Kendall’s Tau and RBO measure the similarity between two ranked lists. The former is a correlation
coefficient assessing the ordinal association while the latter accounts for the order and the depth of the overlap.
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Table 2: Comparison on 10× 10 Images of FFA versus competitors and FFA approximations.

Dataset LIME TreeSHAP KernelSHAP FFA10 FFA30 FFA60 FFA120 FFA600 FFA1200

(|F| = 100) Error
10×10-mnist-1vs3 11.50 10.07 10.43 5.74 5.33 4.97 4.62 3.37 2.67
10×10-mnist-1vs7 12.64 8.28 8.27 4.16 3.58 2.94 2.50 1.42 1.01

10×10-pneumoniamnist 17.32 17.90 18.15 5.37 4.32 3.78 3.39 2.22 1.64

Kendall’s Tau
10×10-mnist-1vs3 -0.15 0.48 0.14 0.49 0.57 0.62 0.65 0.74 0.80
10×10-mnist-1vs7 -0.33 0.47 0.17 0.52 0.63 0.70 0.77 0.85 0.89

10×10-pneumoniamnist -0.02 0.24 0.01 0.58 0.71 0.79 0.80 0.89 0.92

RBO
10×10-mnist-1vs3 0.20 0.50 0.53 0.61 0.65 0.69 0.74 0.81 0.84
10×10-mnist-1vs7 0.19 0.58 0.53 0.73 0.77 0.81 0.86 0.90 0.90

10×10-pneumoniamnist 0.21 0.37 0.47 0.61 0.70 0.73 0.77 0.83 0.87

LIME T-SHAP K-SHAP FFA10 FFA30 FFA120 FFA1.2k FFA3.6k FFA7.2k

Figure 4: 28 × 28 MNIST 1 vs. 3. The prediction is digit 3. The plasma gradient is used ranging
from deep purple for the least important features to vibrant yellow for the most important features.

Table 3: Comparison on 28 × 28 Images of FFA7200 versus competitors and FFA approximations.

Dataset LIME TreeSHAP KernelSHAP FFA10 FFA30 FFA120 FFA1200 FFA3600

(|F| = 784) Error
28×28-mnist-1vs3 49.66 22.77 26.42 9.44 7.61 6.81 3.13 2.69
28×28-mnist-1vs7 55.10 24.92 28.93 11.78 9.58 6.94 3.30 2.18

28×28-pneumoniamnist 62.94 31.55 41.92 8.17 7.81 5.69 3.77 3.10

Kendall’s Tau
28×28-mnist-1vs3 -0.80 0.42 -0.40 0.44 0.62 0.69 0.86 0.87
28×28-mnist-1vs7 -0.79 0.34 -0.53 0.40 0.56 0.72 0.87 0.92

28×28-pneumoniamnist -0.66 0.24 -0.65 0.34 0.50 0.67 0.80 0.87

RBO
28×28-mnist-1vs3 0.03 0.40 0.32 0.43 0.50 0.61 0.83 0.88
28×28-mnist-1vs7 0.03 0.34 0.30 0.40 0.45 0.58 0.83 0.93

28×28-pneumoniamnist 0.03 0.23 0.25 0.31 0.35 0.42 0.66 0.83

0.39 and 0.68, whereas TreeSHAP demonstrates values ranging from 0.44 to 0.67 and KernelSHAP
yields results between 0.45 and 0.69. Overall, as Table 1 indicates, neither LIME, nor TreeSHAP, nor
KernelSHAP agree with FFA and so neither of them capture feature relevancy well enough.

10× 10 Digits. We now compare the results on 10× 10 downscaled MNIST digits and Pneumoni-
aMNIST images, where it is feasible to compute all AXp’s. Table 2 compares LIME’s, TreeSHAP’s,
KernelSHAP’s feature attribution and approximate FFA. Here, we run AXp enumeration for a number
of seconds, which is denoted as FFA∗, ∗ ∈ R+. The runtime required for each image by LIME and
TreeSHAP is less than one second, whereas KernelSHAP takes 33.26s per image on average. The
results show that the errors of our approximation are small, even after 10 seconds it beats LIME,
TreeSHAP and KernelSHAP, and decreases as we generate more AXp’s. The results for the orderings
show again that after 10 seconds, FFA∗ ordering gets closer to the exact FFA than LIME, TreeSHAP
and KernelSHAP. Observe how LIME is particularly far away from the exact FFA ordering.

Summary. Exact FFA may be efficiently approximated without exhaustively computing all AXp’s.
While feature attribution determined by LIME, TreeSHAP and KernelSHAP is not meant to approxi-
mate FFA, the observed disagreement demonstrates that they fail to capture the true feature relevancy
and so may be unable to provide a human-decision maker with useful insights, despite being fast.
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LIME TreeSHAP K-SHAP FFA10 FFA30 FFA120 FFA1.2k FFA3.6k FFA7.2k

Figure 5: 28 × 28 MNIST 1 vs. 7. The prediction is digit 7.

LIME T-SHAP K-SHAP FFA10 FFA30 FFA120 FFA1.2k FFA3.6k FFA7.2k

Figure 6: 28 × 28 PneumoniaMNIST. The prediction is normal.

5.2 APPROXIMATING FORMAL FEATURE ATTRIBUTION

Since the problem of formal feature attribution is computationally expensive to solve, it is not
surprising that computing FFA may be challenging in practice. Table 2 suggests that our approach
gets good FFA approximations even if we only collect AXp’s for a short time. Here we compare
the fidelity of our approach versus the approximate FFA computed after 2 hours (7200s). Figures 4,
5, and 6 depict feature attribution generated by LIME, TreeSHAP, KernelSHAP and FFA∗ for the
three selected 28 × 28 images. The comparison between LIME, TreeSHAP, KernelSHAP and the
approximate FFA computation is detailed in Table 3. The LIME and TreeSHAP processing time
for each image is less than one second, where KernelSHAP requires 98.56s to process on average.
The average findings detailed in Table 3 are consistent with those shown in Table 2. Namely, FFA
approximation yields better errors, Kendall’s Tau and RBO values, outperforming LIME, TreeSHAP
and KernelSHAP after 10 seconds. Furthermore, the results demonstrate that after 10 seconds our
approach places feature attribution closer to FFA7200 compared to LIME, TreeSHAP and KernelSHAP
hinting on the features that are truly relevant for the prediction.

6 LIMITATIONS

Despite the rigorous guarantees provided by formal feature attribution and high-quality of the result
explanations, the following limitations can be identified. First, our approach relies on formal reasoning
and thus requires an ML model of interest to admit a representation in some fragments of first-order
logic, and the corresponding reasoner to deal with it (Marques-Silva and Ignatiev, 2022). Second,
the complexity of computing exact FFA demands the development of effective methods of FFA
approximation. Finally, though our experimental evidence suggests that FFA approximations quickly
converge to the exact values of FFA, whether or not this holds in general remains an open question.

7 CONCLUSIONS

Most approaches to XAI are heuristic methods that are susceptible to unsoundness and out-of-
distribution sampling. Formal approaches to XAI have so far concentrated on the problem of feature
selection, detecting which features are important for justifying a classification decision, and not on
feature attribution, where we can understand the weight of a feature in making such a decision. In
this paper we define the first formal approach to feature attribution (FFA) we are aware of, using the
proportion of abductive explanations in which a feature occurs to weight its importance. We show
that we can compute FFA exactly for many classification problems, and when we cannot we can
compute effective approximations. Existing heuristic approaches to feature attribution do not agree
with FFA. Sometimes they markedly differ, for example, assigning no weight to a feature that appears
in (a large number of) explanations, or assigning (large) non-zero weight to a feature that is irrelevant
for the prediction. Overall, the paper argues that if we agree that FFA is a correct measure of feature
attribution then we need to investigate methods that compute good FFA approximations quickly.

9



Under review as a conference paper at ICLR 2024

REFERENCES

ACM. Fathers of the deep learning revolution receive ACM A.M. Turing award. http://tiny.
cc/9plzpz, 2018.

L. Amgoud and J. Ben-Naim. Axiomatic foundations of explainability. In L. D. Raedt, editor, IJCAI,
pages 636–642, 2022.

J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias. http://tiny.cc/dd7mjz,
2016.

M. Arenas, D. Baez, P. Barceló, J. Pérez, and B. Subercaseaux. Foundations of symbolic languages
for model interpretability. In NeurIPS, 2021a.

M. Arenas, P. Barceló, L. E. Bertossi, and M. Monet. The tractability of SHAP-score-based expla-
nations for classification over deterministic and decomposable Boolean circuits. In AAAI, pages
6670–6678. AAAI Press, 2021b.

M. Arenas, P. Barceló, L. E. Bertossi, and M. Monet. On the complexity of SHAP-score-based
explanations: Tractability via knowledge compilation and non-approximability results. CoRR,
abs/2104.08015, 2021c.

M. Arenas, P. Barceló, M. A. R. Orth, and B. Subercaseaux. On computing probabilistic explanations
for decision trees. In NeurIPS, 2022.

G. Audemard, F. Koriche, and P. Marquis. On tractable XAI queries based on compiled representa-
tions. In KR, pages 838–849, 2020.

G. Blanc, J. Lange, and L. Tan. Provably efficient, succinct, and precise explanations. In NeurIPS,
2021.

R. Boumazouza, F. C. Alili, B. Mazure, and K. Tabia. ASTERYX: A model-Agnostic SaT-basEd
appRoach for sYmbolic and score-based eXplanations. In CIKM, pages 120–129, 2021.

L. Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In KDD, pages 785–794, 2016.

A. Darwiche and A. Hirth. On the reasons behind decisions. In ECAI, pages 712–720, 2020.

A. Darwiche and P. Marquis. On quantifying literals in Boolean logic and its applications to
explainable AI. J. Artif. Intell. Res., 72:285–328, 2021.

L. Deng. The MNIST database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

D. Dua and C. Graff. UCI machine learning repository, 2017. http://archive.ics.uci.
edu/ml.

FairML. Auditing black-box predictive models. http://tiny.cc/6e7mjz, 2016.

J. Ferreira, M. de Sousa Ribeiro, R. Gonçalves, and J. Leite. Looking inside the black-box: Logic-
based explanations for neural networks. In KR, page 432–442, 2022.

S. Friedler, C. Scheidegger, and S. Venkatasubramanian. On algorithmic fairness, discrimination and
disparate impact. http://fairness.haverford.edu/, 2015.

N. Gorji and S. Rubin. Sufficient reasons for classifier decisions in the presence of domain constraints.
In AAAI, pages 5660–5667, 2022.

X. Huang and J. Marques-Silva. The inadequacy of Shapley values for explainability. CoRR,
abs/2302.08160, 2023.

X. Huang, M. C. Cooper, A. Morgado, J. Planes, and J. Marques-Silva. Feature necessity & relevancy
in ML classifier explanations. In TACAS (1), pages 167–186, 2023.

10

http://tiny.cc/9plzpz
http://tiny.cc/9plzpz
http://tiny.cc/dd7mjz
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://tiny.cc/6e7mjz
http://fairness.haverford.edu/


Under review as a conference paper at ICLR 2024

L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-complete. Inf. Process.
Lett., 5(1):15–17, 1976. URL https://doi.org/10.1016/0020-0190(76)90095-8.

A. Ignatiev. Towards trustable explainable AI. In IJCAI, pages 5154–5158, 2020.

A. Ignatiev, N. Narodytska, and J. Marques-Silva. Abduction-based explanations for machine learning
models. In AAAI, pages 1511–1519, 2019.

A. Ignatiev, N. Narodytska, N. Asher, and J. Marques-Silva. From contrastive to abductive explana-
tions and back again. In AI*IA, pages 335–355, 2020.

A. Ignatiev, Y. Izza, P. J. Stuckey, and J. Marques-Silva. Using MaxSAT for efficient explanations of
tree ensembles. In AAAI, pages 3776–3785, 2022.

Y. Izza, A. Ignatiev, and J. Marques-Silva. On tackling explanation redundancy in decision trees. J.
Artif. Intell. Res., 75:261–321, 2022. URL https://doi.org/10.1613/jair.1.13575.

M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science,
349(6245):255–260, 2015.

Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi. A Large-Scale
Empirical Study of Just-In-Time Quality Assurance. IEEE Transactions on Software Engineering
(TSE), 39(6):757–773, 2013.

M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller. Predicting Faults from Cached History.
In ICSE, pages 489–498, 2007.

R. Kohavi. Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In KDD, pages
202–207, 1996.

H. Lakkaraju and O. Bastani. "How do I fool you?": Manipulating user trust via misleading black
box explanations. In AIES, pages 79–85, 2020.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.

M. H. Liffiton and A. Malik. Enumerating infeasibility: Finding multiple MUSes quickly. In CPAIOR,
pages 160–175, 2013.

M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva. Fast, flexible MUS enumeration. Con-
straints An Int. J., 21(2):223–250, 2016.

D. Lin, C. Tantithamthavorn, and A. E. Hassan. The impact of data merging on the interpretation of
cross-project just-in-time defect models. IEEE Transactions on Software Engineering, 2021.

Z. C. Lipton. The mythos of model interpretability. Commun. ACM, 61(10):36–43, 2018.

S. M. Lundberg and S. Lee. A unified approach to interpreting model predictions. In NeurIPS, pages
4765–4774, 2017.

S. M. Lundberg, G. G. Erion, H. Chen, A. J. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb,
N. Bansal, and S. Lee. From local explanations to global understanding with explainable AI for
trees. Nat. Mach. Intell., 2(1):56–67, 2020.

E. L. Malfa, R. Michelmore, A. M. Zbrzezny, N. Paoletti, and M. Kwiatkowska. On guaranteed
optimal robust explanations for NLP models. In IJCAI, pages 2658–2665, 2021.

J. Marques-Silva and A. Ignatiev. Delivering trustworthy AI through formal XAI. In AAAI, pages
12342–12350. AAAI Press, 2022.

J. Marques-Silva, T. Gerspacher, M. C. Cooper, A. Ignatiev, and N. Narodytska. Explanations for
monotonic classifiers. In ICML, pages 7469–7479, 2021.

11

https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1613/jair.1.13575


Under review as a conference paper at ICLR 2024

S. McIntosh and Y. Kamei. Are fix-inducing changes a moving target? A longitudinal case study of
Just-in-Time defect prediction. IEEE Transactions on Software Engineering (TSE), pages 412–428,
2017.

T. Miller. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell., 267:
1–38, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529, 2015.

C. Molnar. Interpretable Machine Learning. Leanpub, 2020. http://tiny.cc/6c76tz.

R. Olson, W. L. Cava, P. Orzechowski, R. Urbanowicz, and J. H. Moore. PMLB: a large benchmark
suite for machine learning evaluation and comparison. BioData Min., 10(1):36:1–36:13, 2017.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance deep
learning library. In NeurIPS, pages 8024–8035, 2019.

C. Pornprasit and C. Tantithamthavorn. JITLine: A Simpler, Better, Faster, Finer-grained Just-In-Time
Defect Prediction. In MSR, pages 369–379, 2021.

C. Pornprasit, C. Tantithamthavorn, J. Jiarpakdee, M. Fu, and P. Thongtanunam. PyExplainer:
Explaining the predictions of Just-In-Time defect models. In ASE, pages 407–418, 2021.

A. Previti and J. Marques-Silva. Partial MUS enumeration. In AAAI. AAAI Press, 2013.

R. Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95, 1987.

M. T. Ribeiro, S. Singh, and C. Guestrin. "Why should I trust you?": Explaining the predictions of
any classifier. In KDD, pages 1135–1144, 2016.

M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-agnostic explanations. In
AAAI, pages 1527–1535, 2018.

R. L. Rivest. Learning decision lists. Mach. Learn., 2(3):229–246, 1987.

C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nat. Mach. Intell., 1(5):206–215, 2019.

P. Schmidt and A. D. Witte. Predicting recidivism in North Carolina, 1978 and 1980. Inter-University
Consortium for Political and Social Research, 1988.

L. S. Shapley. A value of n-person games. Contributions to the Theory of Games, 2(28):307–317,
1953.

A. Shih, A. Choi, and A. Darwiche. A symbolic approach to explaining Bayesian network classifiers.
In IJCAI, pages 5103–5111, 2018.

D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. Fooling LIME and SHAP: adversarial
attacks on post hoc explanation methods. In AIES, pages 180–186, 2020.

D. Slack, A. Hilgard, S. Singh, and H. Lakkaraju. Reliable post hoc explanations: Modeling
uncertainty in explainability. In NeurIPS, pages 9391–9404, 2021.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. In ICLR (Poster), 2014.

S. Wäldchen, J. MacDonald, S. Hauch, and G. Kutyniok. The computational complexity of under-
standing binary classifier decisions. J. Artif. Intell. Res., 70:351–387, 2021.

W. Webber, A. Moffat, and J. Zobel. A similarity measure for indefinite rankings. ACM Transactions
on Information Systems (TOIS), 28(4):1–38, 2010.

J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni. MedMNIST v2-a large-scale
lightweight benchmark for 2D and 3D biomedical image classification. Scientific Data, 10(1):41,
2023.

12

http://tiny.cc/6c76tz


Under review as a conference paper at ICLR 2024

Appendices
These supplementary materials repeat the above experiments for weighted formal feature attribution
and detail the corresponding experimental results. They also demonstrate the use of FFA and WFFA
in the case of CIFAR-10 images as well as showcase the use of both unweighted and weighted formal
feature attribution in a real-world scenario of Just-in-Time (JIT) defect prediction (Pornprasit et al.,
2021) where post-hoc explanations are saught.

A EXACT WEIGHTED FORMAL FEATURE ATTRIBUTION

In this appendix, we once again limit our analysis to instances where we can calculate the exact WFFA
values for the instance of interest by enumerating all AXp’s. Also, the settings used in Section 5
are applied here, i.e. we take the absolute values of feature attribution assigned by LIME (Ribeiro
et al., 2016), TreeSHAP (Lundberg et al., 2020) and KernelSHAP (Lundberg and Lee, 2017), and
normalize them within the range of [0, 1]. Just like in the main text of the paper, we then compare
these approaches with normalized WFFA values in terms of errors, Kendall’s Tau (Kendall, 1938)
and rank-biased overlap (RBO) (Webber et al., 2010).

A.1 TABULAR DATA

A comparison of WFFA, LIME, TreeSHAP and KernelSHAP on a randomly selected instance
(for illustrativity, the instance is the same as the one shown earlier in Figure 3) of the Compas
dataset (Angwin et al., 2016) is exemplified in Figure 7. We can observe the patterns similar to those
depicted in Figure 3. The feature that WFFA considers most important is “Asian” while this viewpoint
is shared by LIME but disputed by TreeSHAP and KernelSHAP. However, none of LIME, TreeSHAP
and KernelSHAP fully align with WFFA, although there is evident similarity between them. As with
FFA, these observations can be generalized to the other instances of Compas, as discussed below.

Table 4 presents a comparison of WFFA against LIME, SHAP and KernelSHAP on the 11 selected
tabular datasets as in Table 1, demonstrating similarities in the findings observed for WFFA and
FFA for these datasets. The average runtime for generating the exact WFFA in a dataset varies
between 0.18 and 1.89 seconds while the average number of AXp’s per instance to explain and
so to compute exact WFFA in a dataset ranges from 1.40 to 33.33. LIME exhibits errors ranging
from 1.37 to 4.96 across these datasets while TreeSHAP shows similar errors spanning from 1.36
to 4.67 and KernelSHAP displays errors between 0.79 and 4.42. Besides errors, LIME, TreeSHAP
and KernelSHAP yield comparable outcomes in terms of the two ranking comparison metrics. The
values of Kendall’s Tau for LIME are between −0.35 and 0.25, whereas the values for TreeSHAP
and KernelSHAP range from −0.38 to 0.31 and −0.33 to 0.31, respectively. Regarding RBO values,
LIME (resp. TreeSHAP and KernelSHAP) demonstrates values ranging from 0.38 to 0.69 (resp. 0.43
to 0.67 and 0.43 to 0.71). Overall and consistent with the FFA findings shown earlier in Table 1,
Table 4 indicates that LIME, TreeSHAP and KernelSHAP fail to achieve close enough agreement
with WFFA.

A.2 10 × 10 DIGITS

Table 5 provides a comprehensive comparison of approximate WFFA against feature attribution
reported by LIME, TreeSHAP and KernelSHAP with respect to the exact WFFA values, conducted on
the downscaled MNIST digists and PneumoniaMNIST images, where exhaustive AXp enumeration
is feasible. The values of feature attribution generated by LIME, TreeSHAP, KernelSHAP and
approximate WFFA∗ for the three selected 10 × 10 images are shown in Figure 11, Figure 12, and
Figure 13. Over time, the number of features included in the AXp’s increases, and the weighted
attribution of each feature changes converging to the exact WFFA. The results shown in Figure 8,
Figure 9, and Figure 10 align with the main finding for FFA approximation shown earlier. Furthermore,
the results shown in Table 5 are also consistent with FFA observations in Table 2. Both LIME and
TreeSHAP can process each image within a runtime of less than one second, while KernelSHAP takes
33.26s per image on average. The average runtime and average number of AXp’s generated for 10 ×
10 MNIST 1 vs 3 (resp. 1 vs 7) are 14264.78s and 15781.87 (resp. 6834.61s and 4028.27), while the
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(a) WFFA
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(b) LIME
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(c) TreeSHAP
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(d) KernelSHAP

Figure 7: Explanations for an instance of Compas v = {#Priors = 3,Score_factor =
1,Age_Above_FourtyFive = 0,Age_Below_TwentyFive = 1,African_American = 1,Asian =
0,Hispanic = 0,Native_American = 0,Other = 0,Female = 0,Misdemeanor = 1} predicted as
Two_yr_Recidivism = true.

Table 4: LIME, TreeSHAP and KernelSHAP versus WFFA on tabular data.

Dataset adult appendicitis australian cars compas heart-statlog hungarian lending liver-disorder pima recidivism
|F| (12) (7) (14) (8) (11) (13) (13) (9) (6) (8) (15)

Approach Error
LIME 4.32 2.06 4.96 1.48 3.26 4.40 4.43 1.37 2.37 2.63 4.66

TreeSHAP 4.29 1.87 4.31 1.36 2.63 3.61 4.00 1.43 2.25 2.91 4.67
KernelSHAP 4.14 1.90 4.42 0.79 2.54 3.43 3.87 1.33 2.20 2.86 4.72

Kendall’s Tau
LIME 0.11 0.17 0.25 -0.08 -0.08 0.22 0.08 -0.35 -0.17 0.25 0.08

TreeSHAP 0.07 0.23 0.31 -0.07 -0.07 0.22 0.26 -0.38 -0.16 0.15 0.16
KernelSHAP 0.08 0.31 0.20 -0.03 -0.07 0.25 0.21 -0.33 -0.14 0.16 0.11

RBO
LIME 0.53 0.65 0.48 0.64 0.56 0.56 0.40 0.59 0.65 0.69 0.38

TreeSHAP 0.48 0.67 0.55 0.66 0.59 0.52 0.49 0.61 0.67 0.64 0.43
KernelSHAP 0.55 0.71 0.54 0.63 0.57 0.53 0.54 0.61 0.68 0.64 0.43

values in 10 × 10 PneumoniaMNIST are 8656.18s and 8802.87, respectively. Similarly to the results
in Table 2, Table 5 indicates that our approximation yields small errors. Even after 10 seconds, it
outperforms LIME, TreeSHAP and KernelSHAP, and the errors continue to decrease as we compute
more AXp’s. Once again, the results of the orderings demonstrate that after 10 seconds, the ordering
of WFFA∗ approaches closer to the exact WFFA compared to LIME, TreeSHAP and KernelSHAP,
and converges to the exact WFFA ordering with the growth of the number AXp’s enumerated. As can
also be seen, LIME exhibits a substantial distance from the exact WFFA ordering.

A.3 SUMMARY

The findings of this section again indicate that we can confidently obtain valuable approximations
of the exact WFFA values without the need to exhaustively enumerate all AXp’s for a given data
instance. Similarly to the main results shown in Section 5, it is once again worth noting that feature
attribution determined by LIME, TreeSHAP and KernelSHAP is inconsistent with WFFA and its
approximations, and hence does not capture formal feature relevancy, despite being computationally
fast.

B APPROXIMATE WEIGHTED FORMAL FEATURE ATTRIBUTION

As argued in Section 3, the exact WFFA computation can be difficult in practice, due to the complexity
of the problem. But as Table 5 indicates, our approach can yield decent WFFA approximations even
with a short duration of collecting AXp’s. Here we assess the fidelity of our approach in contrast
to the approximate WFFA computed after a duration of 2 hours (7200s). WFFA∗ and the values
of feature attribution generated by LIME, TreeSHAP and KernelSHAP for the three considered 28
× 28 images are depicted in Figure 14, 15, and 16. As time progresses, the accumulated AXp’s
incorporate an increasing number of features, and as a result the value of weighted attribution for each
feature can change. Table 6 details the comparison between LIME, TreeSHAP, KernelSHAP and the
approximate WFFA. Both LIME and TreeSHAP process each image in under one second, whereas
KernelSHAP, on average, requires 98.56s to process. The average results presented in Table 6 are
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Table 5: Comparison on 10 × 10 Images of WFFA versus LIME, TreeSHAP, KernelSHAP and WFFA
approximations.

Dataset LIME TreeSHAP KernelSHAP WFFA10 WFFA30 WFFA60 WFFA120 WFFA1200

|F| = 100 Error
10×10-mnist-1vs3 11.28 9.81 10.15 5.52 5.12 4.83 3.32 2.61
10×10-mnist-1vs7 12.46 8.11 8.09 4.07 3.47 2.83 1.34 0.97

10×10-pneumoniamnist 17.25 17.84 18.08 5.33 4.29 3.76 2.20 1.63

Kendall’s Tau
10×10-mnist-1vs3 -0.14 0.48 0.15 0.53 0.60 0.64 0.75 0.81
10×10-mnist-1vs7 -0.33 0.47 0.17 0.58 0.65 0.73 0.86 0.90

10×10-pneumoniamnist -0.02 0.24 0.01 0.67 0.74 0.80 0.90 0.92

RBO
10×10-mnist-1vs3 0.20 0.50 0.53 0.63 0.67 0.70 0.81 0.84
10×10-mnist-1vs7 0.19 0.58 0.53 0.73 0.77 0.81 0.90 0.91

10×10-pneumoniamnist 0.21 0.37 0.46 0.63 0.70 0.74 0.82 0.87

LIME T-SHAP K-SHAP FFA10 FFA30 FFA60 FFA120 FFA1.2k FFA

Figure 8: 10 × 10 MNIST 1 vs. 3. Competitors and FFA∗. The prediction is 3.

Table 6: Comparison on 28 × 28 Images of WFFA7.2k versus LIME, TreeSHAP , KernelSHAP and
WFFA approximations.

Dataset LIME TreeSHAP KernelSHAP WFFA10 WFFA30 WFFA120 WFFA1200 WFFA3600

|F| = 784 Error
28,28-mnist-1,3 49.28 22.33 25.97 9.22 7.50 6.69 3.08 2.75
28,28-mnist-1,7 54.78 24.39 28.39 11.53 9.40 7.00 3.33 2.29

28,28-pneumoniamnist 62.88 31.46 41.80 8.17 7.74 5.67 3.75 3.08

Kendall’s Tau
28,28-mnist-1,3 -0.80 0.42 -0.40 0.49 0.64 0.70 0.86 0.88
28,28-mnist-1,7 -0.79 0.34 -0.53 0.43 0.57 0.72 0.87 0.92

28,28-pneumoniamnist -0.66 0.24 -0.65 0.37 0.57 0.69 0.81 0.88

RBO
28,28-mnist-1,3 0.03 0.40 0.32 0.45 0.54 0.63 0.84 0.89
28,28-mnist-1,7 0.03 0.34 0.29 0.41 0.47 0.60 0.81 0.91

28,28-pneumoniamnist 0.03 0.23 0.24 0.30 0.35 0.43 0.65 0.81

Table 7: Just-in-time Defect Prediction comparison of WFFA versus LIME, TreeSHAP and Ker-
nelSHAP.

Approach openstack (|F| = 13) qt (|F| = 16)

Error Kendall’s Tau RBO Error Kendall’s Tau RBO
LIME 4.79 0.08 0.56 5.60 -0.07 0.45

TreeSHAP 5.01 0.02 0.54 5.17 -0.11 0.44
KernelSHAP 5.06 -0.33 0.64 5.19 -0.44 0.69

consistent with those illustrated in Table 5 and the FFA results depicted in Table 2 and Table 3.
Table 6 demonstrates that after only 10 seconds, our WFFA approximation outperforms both LIME,
TreeSHAP and KernelSHAP in terms of errors, Kendall’s Tau, and RBO values. Additionally, after 10
seconds our approach produces weighted feature attributions, which is closer to WFFA7200 compared
to LIME, TreeSHAP and KernelSHAP. This suggests that our approach effectively identifies the
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LIME T-SHAP K-SHAP FFA10 FFA30 FFA60 FFA120 FFA1.2k FFA

Figure 9: 10 × 10 MNIST 1 vs. 7. Competitors and FFA∗. The prediction is 7.

LIME T-SHAP K-SHAP FFA10 FFA30 FFA60 FFA120 FFA1.2k FFA

Figure 10: 10 × 10 PneumoniaMNIST. Competitors and FFA∗. The prediction is pneumonia.

Table 8: JIT Defect Prediction comparison of FFA versus LIME, TreeSHAP and KernelSHAP.

Approach openstack (|F| = 13) qt (|F| = 16)

Error Kendall’s Tau RBO Error Kendall’s Tau RBO
LIME 4.84 0.05 0.55 5.63 -0.08 0.45

TreeSHAP 5.08 0.00 0.53 5.22 -0.13 0.44
KernelSHAP 5.06 -0.33 0.64 5.19 -0.44 0.69

features that are genuinely relevant for the prediction, which is in stark contrast to LIME, TreeSHAP
and KernelSHAP.

C APPLICATION IN JUST-IN-TIME DEFECT PREDICTION

Modern software companies often engage in the rapid and frequent release of software products
in short cycles. Because of the exponential growth of highly complex source code, such rapid-
release software development presents significant challenges for under-resourced Software Quality
Assurance (SQA) teams. Developers are unable to thoroughly ensure the highest quality of all newly
developed code commits or pull requests within the limited time and resources available, due to the
time-consuming and costly nature of various SQA activities, e.g. code review. To address this issue,
a recent approach called Just-in-Time (JIT) defect prediction (Kim et al., 2007; Kamei et al., 2013;
Pornprasit and Tantithamthavorn, 2021; Lin et al., 2021) has been proposed. This approach aims to
predict whether a commit will introduce software defects in the future such that development teams
can prioritize their limited SQA resources on the riskiest commits or pull requests.

However, the JIT defect prediction approach has frequently been criticized for being opaque and
lacking explainability for practitioners. Model-agnostic explainability methods, e.g. LIME, Tree-
SHAP and KernelSHAP, fail to respect the actual feature relevancy and so can hardly guarantee
accurate feature attribution, as discussed earlier in this appendix and Section 5). Here, we apply the
computation of both FFA and WFFA in the setting of JIT defection prediction and demonstrate that
they can represent a viable approach to addressing practical explainability challenges.

In particular, where we use logistic regression models built on two widely-used large-scale open-
source datasets, namely Openstack and Qt, which are commonly used in JIT defect prediction
studies (Pornprasit et al., 2021). The property of monotonicity in logistic regression allows us to
enumerate explanations efficiently, following the approach of (Marques-Silva et al., 2021). By
leveraging this method, we can enumerate all abductive explanation for each instance within one
second and hence compute both exact FFA and exact WFFA. Table 8 details the comparison between
exact FFA values and feature attribution by the other competitors in terms of the three selected metrics
while the comparison of WFFA, LIME, TreeSHAP and KernelSHAP is provided in Table 7. Similar
to all the other findings above (see Table 1, Table 2, Table 3, Table 4, Table 5, and Table 6), LIME,
TreeSHAP and KernelSHAP misalign with unweighted and weighted formal feature attribution,
although there are some similarities between them.
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LIME T-SHAP K-SHAP WFFA10 WFFA30 WFFA60 WFFA120 WFFA1.2k WFFA

Figure 11: 10 × 10 MNIST 1 vs. 3. Competitors and WFFA∗. The prediction is 3.

LIME T-SHAP K-SHAP WFFA10 WFFA30 WFFA60 WFFA120 WFFA1.2k WFFA

Figure 12: 10 × 10 MNIST 1 vs. 7. Competitors and WFFA∗. The prediction is 7.

Table 9: Comparison on CIFAR Images of FFA7200 versus LIME, TreeSHAP and KernelSHAP and
FFA approximations.

Dataset LIME TreeSHAP KernelSHAP FFA30 FFA60 FFA120 FFA600 FFA1200 FFA3600

(|F| = 1024) Error

32,32-cifar-10-ship,truck

222.15 104.22 89.33 40.14 7.06 5.22 3.48 3.21 1.76

Kendall’s Tau
-0.75 -0.75 -0.81 -0.28 0.25 0.37 0.65 0.71 0.85

RBO
0.02 0.16 0.39 0.43 0.51 0.55 0.69 0.74 0.84

Table 10: Comparison on CIFAR Images of WFFA7200 versus LIME, TreeSHAP and KernelSHAP
and WFFA approximations.

Dataset LIME TreeSHAP KernelSHAP FFA30 FFA60 FFA120 FFA600 FFA1200 FFA3600

(|F| = 1024) Error

32,32-cifar-10-ship,truck

222.14 104.19 89.29 40.12 7.05 5.21 3.45 3.19 1.76

Kendall’s Tau
-0.75 -0.75 -0.91 -0.39 0.17 0.35 0.75 0.79 0.88

RBO
0.02 0.11 0.27 0.24 0.35 0.41 0.60 0.65 0.76

D CIFAR-10 IMAGES

The appendix presents the results of the well-known CIFAR-10 image dataset, which consists of
32 × 32 color images in 10 classes. We create a concrete binary classification task within this
dataset: ship vs. truck, where 5000 and 1000 images for each class are included in the training and
test data, respectively. For this dataset, 15 test instances are randomly selected in the test set for
evaluation. We applied XGBoost (Chen and Guestrin, 2016) to train gradient boosted trees (BTs) on
this dataset, where each BT consists of 50 trees of maximum depth of 3 per class and the test accuracy
is 0.87. As discussed in Section 5.2, it is not surprising that computation of exact FFA/WFFA may be
challenging in practice, as the problem of formal (weighted) feature attribution “lives” in ΣP

2. Table 2
and Table 5 demonstrate that our approach yields good FFA/WFFA approximations even when we
only collect AXp’s for a short time. In this appendix, we compare the fidelity of our approach with
the approximate FFA and WFFA computed after 2 hours (7200s).

The comparisons between LIME, TreeSHAP, KernelSHAP and the approximate FFA/WFFA compu-
tation are detailed in Table 9 and Table 10. Figures 17 and 18 present feature attributions generated
by LIME, TreeSHAP, KernelSHAP, FFA∗ and WFFA∗ for the dataset. The TreeSHAP processing
time for each image is less than one second, where LIME and KernelSHAP 5.50s and 188.98s to
process on average. The average findings detailed in Figures 17 and 18 align with those presented in
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LIME T-SHAP K-SHAP WFFA10 WFFA30 WFFA60 WFFA120 WFFA1.2k WFFA

Figure 13: 10 × 10 PneumoniaMNIST. Competitors and WFFA∗. The prediction is pneumonia.

LIME T-SHAP K-SHAP WFFA10 WFFA30 WFFA120 WFFA1.2k WFFA3.6k WFFA7.2k

Figure 14: 28 × 28 MNIST 1 vs. 3. Competitors and WFFA∗. The prediction is digit 3.

LIME T-SHAP K-SHAP WFFA10 WFFA30 WFFA120 WFFA1.2k WFFA3.6k WFFA7.2k

Figure 15: 28 × 28 MNIST 1 vs. 7. Competitors and WFFA∗. The prediction is digit 7.

LIME T-SHAP K-SHAP WFFA10 WFFA30 WFFA120 WFFA1.2k WFFA3.6k WFFA7.2k

Figure 16: 28 × 28 PneumoniaMNIST. Competitors and WFFA∗. The prediction is normal.

LIME T-SHAP K-SHAP FFA30 FFA60 FFA120 FFA1.2k FFA3.6k FFA7.2k

Figure 17: 32 × 32 CIFAR Ship vs. Truck. Competitors and FFA∗. The prediction is truck.

LIME T-SHAP K-SHAP WFFA30 WFFA60 WFFA120 WFFA1.2k WFFA3.6k WFFA7.2k

Figure 18: 32 × 32 CIFAR Ship vs. Truck. Competitors and WFFA∗. The prediction is truck.

Figures 2, 3, 5 and 6. Namely, in terms of (unweighted) FFA, its approximation yields superior errors,
Kendall’s Tau and RBO values, surpassing LIME, TreeSHAP and KernelSHAP after 30 seconds. This
observation also holds for WFFA approximation. Furthermore, the results demonstrate that after 30
seconds our approach provides feature attributions closer to FFA7200 and WFFA7200 compared with
LIME, TreeSHAP and KernelSHAP, indicating the features that are truly relevant for the prediction.
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