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ABSTRACT

The Neural ODE family has shown promise in modeling complex systems but of-
ten assumes consistent data quality, making them less effective in real-world ap-
plications with irregularly sampled, incomplete, or multi-resolution data. Current
methods, such as latent ODEs, aim to address these issues but lack formal per-
formance guarantees and can struggle with highly evolving dynamical systems.
To tackle this, we propose a novel approach that leverages parameter manifolds
to improve robustness in system dynamical modeling. Our method utilizes the
orthogonal group as the underlying structure for the parameter manifold, facil-
itating both quality alignment and dynamical learning in a unified framework.
Unlike previous methods, which primarily focus on empirical performance, our
approach offers stronger theoretical guarantees of error convergence thanks to the
well-posed optimization with orthogonality. Numerical experiments demonstrate
significant improvements in interpolation and prediction tasks, particularly in sce-
narios involving high- and low-resolution data, irregular sampling intervals, etc.
Our framework provides a step toward more reliable dynamics learning in chang-
ing environments where data quality cannot be assumed.

1 INTRODUCTION

Learning accurate dynamical models for decision-making, control, and Reinforcement Learning
(RL) in complex systems has emerged as a key challenge, particularly in environments where data
is of inconsistent quality and system dynamics are subject to continuous adaptation. Most existing
approaches fail to maintain robust performance due to their reliance on high-quality data (Nagabandi
et al., 2018). Real-world scenarios, such as power grids, healthcare, and transportation networks,
often produce heterogeneous data with varying resolutions, incomplete observations, and inconsis-
tent sampling rates, complicating the modeling task (Tuballa & Abundo, 2016; Zhu et al., 2018).
For instance, in smart grids, Phasor Measurement Units (PMUs) provide high-resolution data, while
lower-resolution sensors like Remote Terminal Units (RTUs) are used to reduce communication and
infrastructure costs (Li et al., 2024b).

In control and engineering systems, the most severe and persistent issue is data incompleteness,
referring to missing values in datasets, which can be categorized into: (1) Low-Resolution (LR)
measurements, caused by LR sensors (Li et al., 2024a) or downsampling to meet communication
constraints (Willett et al., 2011); (2) Periodic data losses due to communication or sensor failures,
external events, etc. (Gill et al., 2011); (3) Random data losses (e.g., irregular sampling (Kidger
et al., 2020; Chen et al., 2024)), arising from sensor configurations, data corruption, or human errors
(Kundu & Quevedo, 2021). These scenarios are illustrated in Appendix A. Our study focuses on ad-
dressing data incompleteness. Other data quality issues, such as data inaccuracy and inconsistency,
can often be addressed using established techniques (Chen & Abur, 2006), effectively removing bad
data and reducing them to data incompleteness. Also, we restrict our analysis to systems with low
nonlinearity and limited noise, prioritizing the challenge of handling significant missing data.

While data imputation techniques and sequence models, such as Recurrent Neural Networks (RNN),
have been proposed, they often lack performance guarantees and struggle in highly dynamic envi-
ronments (Kong et al., 2013). A better option is to leverage Ordinary Differential Equation (ODE)
solvers for continuous-time evaluations, e.g., the family of Neural ODEs (Chen et al., 2018; Kidger
et al., 2020; Rubanova et al., 2019). These methods still face limitations in providing robust guaran-
tees when data quality is inconsistent. This gap calls the need for a more structured and theoretically
grounded approach that can directly address the problem of mixed-quality data in evolving systems.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To this end, we propose G-AlignNet, a novel framework that leverages parameter geometry on the
orthogonal group to enhance learning dynamics and provide robust performance guarantees. Un-
like traditional data manifold approaches (Li & Zhao, 2021; Li et al., 2024b) that are sensitive to
different data quality issues, G-AlignNet operates on a parameter manifold, ensuring adaptability
and alignment between high- and low-quality data through geometric optimization. The orthogo-
nal group structure not only enables continuous adaptation using analytical Lie algebra (Helgason,
1978) but also provides tight theoretical guarantees for error convergence, which is better than other
manifold-based signal recovery (Chen et al., 2010). In particular, the built-in orthogonality in G-
AlignNet brings a well-posed on-manifold optimization that leads to globally optimal solutions for
aligning high- and low-quality data (Banica & Speicher, 2009; Choromanski et al., 2020a). This
ensures stable learning even in the presence of many missing data or highly irregular sampling rates.

In summary, our contributions are as follows:

• Introducing G-AlignNet: A novel geometric framework that unifies the modeling of high- and
low-quality data through parameter manifolds, offering robust adaptation and data imputation
capabilities. G-AlignNet is applicable to many base models, such as RNNs, Implicit Neural Rep-
resentations (INRs), and Physics-Informed Neural Networks (PINNs).

• Performance Guarantees: We establish theoretical convergence guarantees for interpolation
tasks, demonstrating significant improvements over existing methods.

• Empirical Validation: We demonstrate that G-AlignNet outperforms state-of-the-art models
across multiple domains, particularly in settings with mixed-resolution data, missing observations,
and varying sampling rates.

G-AlignNet sets a new direction in the field of neural ODEs by introducing a principled, geometry-
based approach that addresses the critical issue of data quality in complex systems, offering a more
reliable foundation for decision-making and control in evolving environments.

2 RELATED WORK

Neural ODEs and Irregular Data. Neural ODE families have gained widespread attention for
modeling continuous-time dynamics in deep learning frameworks (Chen et al., 2018). These mod-
els have been applied across various domains due to their flexibility in handling time series data.
Extensions such as Latent ODEs (Rubanova et al., 2019), Neural Controlled Differential Equations
(Neural CDEs) (Kidger et al., 2020), and stochastic Neural ODEs (Li et al., 2020) have addressed
irregular sampling. However, this doesn’t necessarily mean that all data incompleteness issues in the
above categories (1) ∼ (3) can be fully addressed. Significant data losses, such as low-resolution
data, inherently lead to insufficient dynamic information for learning. For example, as shown in our
theoretical analysis in Section 3.3, learning ODE dynamics can be analyzed through the framework
of perturbed IVPs (Hillebrecht & Unger, 2022) with the accumulation of truncation and round-off
errors, which is large with significant data losses.

Data Imputation to Pre-Process Low-Quality Data. To address this information gap, data impu-
tation techniques are employed to enhance data quality before using Neural ODE-based methods.
These techniques leverage prior knowledge, explicit assumptions about the system’s behavior, or
relevant high-quality data streams to reconstruct the missing information and enhance the learning
process. Model-based methods, such as multidimensional interpolation (Habermann & Kindermann,
2007) and physical model-based estimations (Sacchi et al., 1998), rely on explicit assumptions about
system behavior. Optimization-based techniques, including Compressed Sensing (Donoho, 2006),
matrix completion, and Bayesian methods (Yi et al., 2023), frame imputation as minimizing a loss
function by assuming low-rank or sparsity structures. Signal processing and machine learning mod-
els offer data-driven solutions that can adapt to complex patterns (Fukami et al., 2021; Li et al.,
2024a), yet these often overlook domain-specific structures. Despite their utility, many existing ap-
proaches are inconsistent with the underlying data structure, as they rely on simplifying assumptions
that fail to capture the intrinsic dynamics of complex systems.

Manifold Learning for Dynamical Systems. Manifold learning has long been used to represent
high-dimensional data on lower-dimensional structures, allowing models to learn the intrinsic ge-
ometry of the data (Tenenbaum et al., 2000; Roweis & Saul, 2000). Common methods include
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discrete graph-based approximations (Wang et al., 2018b;a; Li & Zhao, 2021) and continuous flows
(Cui et al., 2014; Li et al., 2024b). The latter is well-suited for dynamical modeling, especially for
continuous systems. For example, several methods based on Neural ODE have been employed to
capture the dynamical data flows (Asikis et al., 2022; Legaard et al., 2023; Koenig et al., 2024; Chi,
2024). However, Neural ODEs are unsuitable for adaptive systems with complex data manifolds.

Hence, recent methods model a relatively simple parameter manifold of a DL model and allow the
parameters to adapt across different time intervals. Specifically, (Du et al., 2021) uses parameter
graph for approximation, while (Chalvidal et al., 2020; Yin et al., 2022; Choromanski et al., 2020b;
Cho et al., 2024) leverage another Neural ODE to generate on-manifold parameter flows. However,
their flow generations, without any restrictions, are sensitive to the quality of data. (Choromanski
et al., 2020b) is the most relevant work to ours and introduces an orthogonal group to improve
training stability. We give a more generalized framework to process sequential measurements and
link this representation to geometric optimizations, providing provable quality alignment guarantees.
This model with well-structured geometry properties has significant potential for domains like on-
manifold RL (Liu et al., 2022; 2024; Ammar et al., 2015).

Geometric Optimization on Orthogonal Groups. Geometric optimization has become a valuable
tool in machine learning, particularly for ensuring stability and optimizing over structured spaces
like the orthogonal group (Boumal, 2020; Choromanski et al., 2020a). This optimization, which is
well-studied in Lie group theory (Helgason, 1978) and Riemannian geometry (Absil et al., 2009), al-
lows for the preservation of critical geometric properties such as orthogonality and invariance, which
lead to more robust learning. Applications in deep learning, including orthogonalization techniques
for stable training (Huang et al., 2018), provide inspiration for our method, which leverages these
properties to ensure globally optimal solutions for aligning high- and low-quality data. Our approach
builds on these methods to offer a closed-form solution with guaranteed performance improvements.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We aim to devise a model that can learn from both high-quality (HQ) and low-quality (LQ) data,
aligning their quality and making accurate predictions. Let s(ti) represent the state of the system
at time ti. A learning model fΘ(s(ti)), parameterized by Θ, predicts the future state s(ti+1). The
model can be generalized to a probabilistic model p̂Θ(·) with a focus on the geometry of Θ.

Let {x(ti)}i∈Nx
represent HQ measurements and {y(ti)}i∈Ny

represent LQ measurements, where
x ∈ Rdx , y ∈ Rdy , and s = [x,y] ∈ Rdx+dy . For a fixed time interval, LQ data has the incom-
pleteness issue, illustrated in Section 1, implying that Ny ⊂ Nx = {0, 1, 2, · · · , |Nx| − 1}, where
| · | is the cardinality of the set. In many practical settings, Ny can be a small fraction of Nx, for
example, in power systems, |Ny| ≈ 0.05× |Nx| (Li et al., 2024b).

Our framework generates an interpolated dataset {ỹ(ti)}i∈Nx\Ny
to align LQ data with HQ data.

This process ensures that LQ data is brought up to the same standard as HQ data, significantly
improving the training of fΘ(s(ti)). By doing so, our model facilitates high-resolution predictions
for LQ variables during online testing.

3.2 A UNIFIED GEOMETRIC REPRESENTATION

Weight Matrix Flow-based Geometric Representation: To capture complex and adaptive dynam-
ics in real-time systems, we represent the parameters Θ(t) as time-dependent weight matrices. Prior
work has shown that modeling the flow of a neural network’s weight matrix can capture the most
important parameters for learning dynamic systems (Choromanski et al., 2020b; Cho et al., 2024).
Building on this idea, we propose a geometric representation that decomposes the parameter space
based on HQ and LQ outputs, allowing for optimal data alignment.

x̃(ti) = f{Θx(ti)∪Θ0}
(
ŝ(ti−1)

)
ỹ(ti) = f{Θy(ti)∪Θ1}

(
ŝ(ti−1)

)
Θ = Θ0 ∪Θ1 ∪Θx ∪Θy

Θx(ti),Θy(ti) ∈M,

(1)
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Here, ŝ(ti) represents either the true measurements, which are a combination of HQ and LQ
data [x(ti),y(ti)] (∀i ∈ Ny), or a combination of HQ measurements and interpolated LQ data
[x(ti), ỹ(ti)] (∀i ∈ Nx \ Ny). The weight matrices Θx(t) and Θy(t) represent the dynamics of
HQ and LQ data, respectively, and are modeled within a shared manifoldM. Θ0 and Θ1 are static
subsets of Θ, e.g., bias vectors. By decomposing the parameter space, we can explore correlations
between HQ and LQ representations, leading to more accurate predictions. We make the following
assumption to guide the alignment process:

Assumption 1. Assume a system with low nonlinearity and limited measurement noise. The HQ
and LQ states of the system, x(t) and y(t), exhibit high similarity. Therefore, the flows of Θx(t) and
Θy(t) share the same shape but occupy different locations on the manifoldM.

Assumption 1 is valid under data incompleteness and when there is limited random noise that may
destroy similarity. Then, we hypothesize that the similarity can be geometrically interpreted as the
same shape of Θx(t) and Θy(t). Numerically, section 4.2 illustrates that aligned shape can help
G-AlignNet effectively capture the similarity and make accurate predictions.

Geometric Optimization for Optimal Data Quality Alignment. A key challenge in aligning HQ
and LQ data is matching their underlying geometric structure. This ”shape matching” ensures that
the parameters associated with HQ data can guide the alignment of LQ data, allowing for accurate
interpolation. To formalize this, we define a shape-matching optimization problem:

Q∗ = argmin
Q⊤Q=I, Θx(t),Θy(t)∈M

1

|Ny|
∑
i∈Ny

∣∣∣∣Θy(ti)−Θx(ti)Q
∣∣∣∣2
F
, (2)

where the goal, by Proposition 1, is to find an orthogonal matrix Q∗ ∈ Rn×n that best aligns HQ
flow Θx(ti) with LQ flow Θy(ti). The Frobenius norm || · ||F is used to measure the difference
between the aligned matrices.
Proposition 1 (Shape Preservation via Orthogonal Matrix). If Q ∈ Rn×n is an orthogonal matrix,
the flow between Θx(t) and Θx(t)Q is the same.

This property is crucial because orthogonal transformations preserve the Euclidean norm, ensuring
that the relative positions of points in the parameter space remain unchanged. It guarantees that the
length and angle between any two points on the flow are preserved, as shown in Appendix C.1.

Figure 1 illustrates how HQ and LQ param-
eters are aligned. The dark blue and green
points represent the parameters Θx(ti) and
Θy(ti) at times ti ∈ Ny , where we have
both HQ and LQ measurements. These
points can be trained effectively. How-
ever, for times ti ∈ Nx \ Ny , represented
by the light green points, we rely on the
shape-preserving transformation to inter-
polate the LQ parameters. The optimal so-
lution Q∗ generates interpolated parame-
ters {Θ̃y(ti)}i∈Nx\Ny

, resulting in inter-
polated states {ỹ(ti)}i∈Nx\Ny

.

Construct geometric 
shape-matching 
optimization for 
quality alignment

Designate orthogonal 
group as a manifold for 
globally optimal solution

HQ parameter

LQ parameter

Time t
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Figure 1: A unified geometric perspective for quality
alignment and dynamical modeling.

This approach avoids the need to approximate complex data manifolds and instead focuses on learn-
ing within a simpler parameter manifold. For example, in Section 3.3, we will show that parameter
flows are easy to learn with limited approximation error, and the interpolation error has fast con-
vergence. To ensure that the interpolation process achieves global optimality, we need to select an
appropriate manifoldM. We show that the orthogonal group O(n) = {W ∈ Rn×n|W⊤W = In},
where In is the identity matrix, provides the best solution.
Proposition 2 (Globally Optimal Solution). Suppose matrices Θx(t),Θy(t) ∈ O(n). The opti-
mization problem in (2) has a global minimizer Q∗ = UV ⊤, where 1

|Ny|
∑

i∈Ny
Θx(ti)

⊤Θy(ti) =

UΣV ⊤ is the Singular Value Decomposition.
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This result, proven in Appendix C.2, shows that we can achieve a globally optimal alignment by
solving the shape-matching problem. Furthermore, to maintain the orthogonality of Θx(t) and
Θy(t) throughout the learning process, we analyze the evolution of Θx(t). Ensuring orthogonal-
ity is crucial because it preserves the geometric structure of the parameter space, which is necessary
for accurate quality alignment. Specifically, we derive the following ODE by differentiating the
orthogonality condition Θ⊤

x Θx = In:

Θ̇x(t) = Θx(t)Ωx(t), (3)

where Ωx(t) is a skew-symmetric matrix. As shown in (Choromanski et al., 2020b), this ODE
ensures that Θx(t) remains within the orthogonal group O(n) during the learning. To model this
dynamic evolution, we use a Neural ODE (Chen et al., 2018), which generates the orthogonal matrix
flow via a neural network that outputs skew-symmetric matrices. Specifically, we define the neural
network as: gΨx

(t) =
∑

i ai
(
g
Ψ

(i)
x
(t)− g⊤

Ψ
(i)
x

(t)
)
, where ai are learnable coefficients, and g

Ψ
(j)
x
(·) :

R → Rn×n are sub-neural networks that output random matrices. The neural network gΨx
(t) is

always skew-symmetric, ensuring that the flow Θx(t) remains in O(n). This guarantees that:

Θx(t) = ODESolve(Θx(t0), gΨxΘx(t), t) = Θx(t0) +

∫ t

t0

gΨx(t)Θx(t)dt, (4)

where an ODE solver is used to compute the integral over time. By generating orthogonal matrix
flows through the Neural ODE, we ensure that the quality alignment between HQ and LQ data can
be maintained consistently throughout the learning process.

Zero-error Shape Matching with Global Optimality. To further improve the alignment process,
we propose the following corollary, based on Proposition 2, which guarantees global optimality with
zero error under specific conditions.

Corollary 1 (Zero-error Shape Matching). Suppose the skew-symmetric matrix Ω(t) ≡ Ωy(t) ≡
Ωx(t), as defined in Equation (3). The optimization problem in Equation (2) has a unique global
minimizer Q∗, and the corresponding objective value is zero.

This result, proven in Appendix C.3, highlights that when Ωx(t) and Ωy(t) evolve in the same way,
the shape-matching optimization achieves zero error. This occurs because the flow of both Θx(t)
and Θy(t) remains perfectly aligned, leading to an optimal solution.

Achieving Built-in Optimal Quality Alignment via Architecture Design. Corollary 1 suggests
that by using a single Neural ODE, parameterized by Ψ (i.e., Ψ ≡ Ψx ≡ Ψy), we can generate
orthogonal matrix flows for both Θx and Θy . The Neural ODE ensures that the parameter flows are
aligned in shape, even if their starting points differ. As long as Θx(t0) ̸= Θy(t0), their flows will
occupy different locations on O(n), preserving their relative alignment.

We refer to this architecture as G-
AlignNet: a Quality-Aligned Geometric
Network. The architecture is designed to
search for two parameter flows with the
same shape, optimizing Ψ to best fit the
output data at times {ti}i∈Ny

and implic-
itly solving the shape-matching optimiza-
tion in Equation (2). This allows us to an-
alyze the error between the two flows in
terms of shape differences, as discussed
in Section 3.3. Figure 2 illustrates the
G-AlignNet architecture, where the base
model can vary depending on the target
system, such as RNNs or INRs.
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ỹ(ti)

Figure 2: The framework of the proposed G-AlignNet.

Shaping the RNN Weight Flow. For Recurrent Neural Networks (RNNs), we design time-
dependent cells to incorporate the adaptive behavior of the system. Let hi ∈ Rn denote the hidden
state at time ti. The RNN cell is defined as:

hi = σ
(
Θx(ti)hi−1 +W ŝ(ti−1) + b

)
, (5)
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where σ(·) is the nonlinear activation function, Θx(ti) and W are weight matrices for hidden states
and inputs, respectively, and b is a bias term. The matrix Θx(t) processes the temporal dependencies
in hi−1, continuously adapting the model to evolving systems.

Shaping the INR Weight Flow. For Implicit Neural Representations (INRs) (Yin et al., 2022) and
PINNs (Cho et al., 2024), the core is a fully-connected neural network that processes hidden features
hi (Fathony et al., 2020; Sitzmann et al., 2020). We propose the following time-dependent version:

h1 = σ(Wt+ b1),hj = σ(Θ(j)
x (t)hj−1 + bj), (6)

where time t is the input for predicting values of x(t), j is the layer index, and {Θ(j)
x (t)}j are the

time-dependent weight flows for each layer.

End-to-end G-AlignNet Training. The training loss is calculated using the Mean Square Error
(MSE), which can be minimized using gradient-based optimization methods. Since Θx(t) and Θy(t)
are generated by the Neural ODE in Equation (4), the only parameters that require updates are
{Θ0,Θ1,Ψ}, making this approach sample-efficient compared to traditional methods that require
optimization of Θx(t) and Θy(t) independently.

3.3 THEORETICAL ANALYSIS FOR OPTIMALITY AND ERROR BOUNDS

In this section, we analyze two primary sources of error that affect the accuracy of HQ and LQ
data alignment: (1) measurement noises, which causes random distortions in the true parameter
flows, and (2) approximation error from the Neural ODE, which leads to deviations between the
true and learned parameter flows. These error sources play a crucial role in determining the overall
performance of G-AlignNet when aligning HQ and LQ data. To model these errors, we assume the
following relationships:

Θ̄y(ti) = Θ̄x(ti)Q̄(In + Ei), Θ̄x(ti) = Θx(ti) +Di, (7)

where Ei ∼ N (0, σ2
01) represents Gaussian noise for shape distortions, and Di ∈ Rn×n represents

biased deviations at time ti. Here, σ0 is the standard deviation, and 1 is an all-one matrix. The
first equation models the impact of shape distortion using a multiplicative error, while the second
captures approximation errors in the learned flow.
Proposition 3 (Interpolation Error Bound). Given the error model in Equation (7), training G-
AlignNet approximates the true parameters by solving the following optimization:

Q∗∗ = arg min
Q⊤Q=I

1

|Ny|
∑
i∈Ny

∥∥Θ̄y(ti)− Θ̄x(ti)Q
∥∥2
F
. (8)

This leads to an estimation error for matrix Q∗∗, relative to the true transformation matrix Q̄:

E
∥∥Q∗∗ − Q̄

∥∥
F
≤ n

3
2σ0/

√
|Ny|, (9)

and an interpolation error for the parameter Θ̃y(ti) = Θx(ti)Q
∗∗, i ∈ Nx\Ny:

Ei∈Nx\Ny

∥∥∥Θ̃y(ti)− Θ̄y(ti)
∥∥∥
F
≤ n2σ0/

√
|Ny|+ n

1
2 ε0, (10)

where ε0 = 1
|Nx|

∑
i∈Nx

∥Di∥F represents the average approximation error due to the Neural ODE.

The detailed proof can be found in Appendix C.4. Intuitively, these bounds show that the estimation
error for matrix Q∗∗ converges at a rate ofO( 1√

|Ny|
), which is consistent with state-of-the-art results

in compressed sensing (Iwen et al., 2021; Wang et al., 2017). The error bound from noise indicates
that our model is robust to Gaussian noise with low variance. We need further investigations into
the model’s performance under high noise levels. Next, we analyze the error induced by the Neural
ODE model.
Proposition 4 (Neural ODE Approximation Error). The average approximation error for the Neural
ODE model can be bounded as follows (Hillebrecht & Unger, 2022; Soetaert et al., 2012):

ε0 ≤ O
(

1

|Nx|
∥∥Θx(t0)− Θ̄x(t0)

∥∥
F

1− βeαT

1− βe
αT

|Nx|
+

hp+1

|Nx|
TeαT/|Nx| + hp+1

K−1∑
k=0

eadj
k

)
, (11)
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where T = t|Nx| is the end time for HQ data, β > 1 is a constant, and α is the largest signal
value of all matrices Ω(ti), i ∈ Nx. h and p are the step size and the order of the Neural ODE
solver, respectively. For the adjoint method, K is the number of discretized points in forward/reverse
integration (Zhuang et al., 2020). eadj

k > 0 represents the reverse inaccuracy factor in the adjoint
method. eadj

k = 0 in the naive method or Adaptive Checkpoint Adjoint (ACA) (Zhuang et al., 2020).

The proof, provided in Appendix C.5, is based on analyzing the perturbed initial value problem for
the ODE system (Soetaert et al., 2012). By leveraging the linearity of the ODE in Equation (3), we
relate the solution’s Lipschitz constant to the largest singular value α. In our model, α is kept small
through normalization, which ensures a faster convergence rate for the error.

Proposition 4 demonstrates that for a fixed time horizon T , the error convergence rate is approx-
imately O( 1

|Nx| ), significantly outperforming manifold-based methods with convergence rates of
O( 1

log |Ny| ) (Iwen et al., 2021). This faster convergence is a result of the efficient use of HQ data in
the Neural ODE, combined with the representational power of the G-AlignNet framework.

4 EXPERIMENTS

4.1 SETTINGS

G-AlignNet is applicable to diverse systems, including: (1) Residential Electricity Consumption.
We gather real-world electricity data, public available at (Pacific Gas and Electric Company, 2024).
Forecasting this data is crucial for planning in power markets (Xu et al., 2018). (2) Photovoltaic
System. We introduce a publicly available Photovoltaic (PV) dataset (Boyd, 2016) for solar power
generations, adaptive to the movement of the sun and the wind. (3) Power System Event Measure-
ments. The synchrophasor measurements are sampled during a power grid transient process after a
three-phase fault (Li et al., 2019), which is a high-order and time-dependent ODE system. (4) Air
Quality System. UCI Repository provides measurements of metal oxide chemical sensors in air
quality monitoring system (Vito, 2008). (5) Synthetic 2-D Spiral Dataset. We test a continuous
ODE system to demonstrate the model’s capacity to understand the true structures for extrapolations.
The data generation process is in Appendix D.1. System dimensions are shown in Appendix D.4.
Our test systems have moderate nonliearity and no measurement noise. However, the available data
amount largely varies to create data incompleteness.

To test our systems, we consider interpolation (Sections 4.2 and 4.3), extrapolation (Section 4.3),
and control tasks (Appendix D.5). They are important to evaluate the performance of the learned
dynamic model in real-world systems. Moreover, we conduct sensitivity analysis in Section 4.4 to
evaluate the model robustness to data quality levels, and give intuitive visualization in Section 4.5.

The following benchmark methods are used. For interpolation, we have: (1) Linear Spline and
(2) Cubic Spline. This method applies linear and cubic polynomials to approximate the underling
signals. (3) Compressed Sensing. CS explores the manifold data structure by assuming a linear
format for signal recovery (Donoho, 2006). (4) Deep CS. DCS combines the deep generative models
with CS. We utilize a Variational Autoencoder with CS to recover the data streams (Bora et al., 2017;
Wu et al., 2019). (5) Semi-supervised NN. Semi-NN utilizes DNN to map from HQ or past LQ to
current LQ data, and the semi-supervised framework facilitates to use all information (Ma et al.,
2023). (6) Multiplicative Filter Network. MFN is a cutting-edge INR model to map from time to
system states (Fathony et al., 2020). Adaptive filtering is incorporated to make the model capable of
handling time-evolving systems.

For dynamic prediction, we employ: (1) Recurrent Neural Network. RNN sequentially process
data with hidden cells to store past information. (2) ODE-RNN. In ODE-RNN, Neural ODE is
embedded to learn the dynamical function of hidden states between every two arbitrary timestamps
(Rubanova et al., 2019). (3) Neural Controlled Differential Equation. Neural CDE creates a
continuous data path to control the evolution of the state’s ODE flow, suitable for irregularly sampled
data (Kidger et al., 2020). (4) MFN. Described above. (5) Neural ODE + RNN and (6) Neural
ODE + MFN. Similar to our design, Neural ODE can be used to as a hyper-network to control the
flow of RNNs and MFNs. This brings additional adaptivity to the base model (Yin et al., 2022).
As comparisons, we don’t restrict the shape of ODE flows. In general, discrete sequence model
(RNN), continuous models (ODE-RNN, Neural CDEm MFN), and parameter flow-based models
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(Neural ODE + RNN/Neural ODE + MFN) are comprehensively utilized. We use G-AlignNetR and
G-AlignNetI to represent the model with RNN and INR (i.e., MFN) as the base model, respectively.
To evaluate all the methods, we calculate the Mean Absolute Percentage Error (MAPE(%)) and
Mean Square Error (MSE) between the interpolated/forecast and the true measurements.

4.2 EXACT SHAPE-MATCHING TO OPTIMALLY ALIGN DATA QUALITIES

We first validate the effectiveness of shape-matching for Θx(t) and Θy(t) by comparing G-
AlignNetR and Neural ODE + RNN (i.e., no restriction on the RNN parameter flow). These models
are trained on high-resolution (HR) and low-resolution (LR) load data with the data coverage rate
to be 2.5%. To visualize the two flows, we reduce the dimensionality with Principal Component
Analysis (PCA). We also do centralization for the flows to exhibit the shape difference. To make
sure that the two flows have an orthogonal relation, we utilize a checking program in Section D.2.
In each iteration, the orthogonality error is around 10−8.

Figure 3 illustrates the
3-D plot of parameter
flows. As shown in the
left part, G-AlignNetR
can achieve a perfect
match for Θx(t) and
Θy(t), but Neural ODE
+ RNN can’t. As a
result, with limited LR
data in green points,
G-AlignNetR has much
better prediction results
for LR dynamics (green
curves in the right part).
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Figure 3: Exact shape matching leads to better LR predictions.

This observation implies that naive HR-LR information fusion in Neural ODE + RNN is insufficient.
Instead, we use shape matching to fully exploit HR/LR data similarity (i.e., the blue and green solid
curves). Hence, in our model, HR provides much better guidance for LR data interpolation.

4.3 QUALITY ALIGNMENT BOOSTS PERFORMANCES UNDER DIFFERENT QUALITY ISSUES

We evaluate the model performance for LR data (90% data drop rate with a fixed interval), miss-
ing observations (20% data drops with consecutive intervals), and irregularly sampled data (30%
random data drop rate). We present the complete results in interpolation and extrapolation tasks in
Table 1 and 2, respectively. The optimal quality alignment in G-AlignNetR brings superior perfor-
mance for most scenarios. For interpolation, G-AlignNetR gains big improvements for power event
and spiral data with high oscillations. However, such complex dynamics prevent other interpolation
methods. In general, spline and DCS methods can achieve comparable results. Spline works when
the data drop rate is low, and DCS works when HQ and LQ data have the same distribution. For
instance, in photovoltaic (PV) and air quality systems, both HQ and LQ data are typically collected
within the same local region under consistent weather conditions, resulting in similar measurements
for solar generation and air quality. These are special cases when there is a high chance of easily
understanding the data structure. G-AlignNetR doesn’t need this requirement and is generally ap-
plicable due to our efficient abstraction of common knowledge, i.e., the shape of the parameter flow.
Moreover, such knowledge is optimally aligned using our geometric optimization.

For fair comparisons, all extrapolation benchmark methods incorporate the interpolated data from
Cubic Spline, which brings stable and comparable interpolation results in several cases. G-AlignNet
performs best in all test cases. Specifically, RNN as a discrete sequence model is competitive when
the interpolated data is good. MFN doesn’t work well because solely inputting time is insufficient
for test system states. ODE-RNN and Neural CDE have comparable results for load and air quality
data that have cyclic patterns and a relatively simple data structure. Neural ODE + RNN/MFN as
flow-based models can also work well for power event data whose magnitudes are gradually damped
to 0. However, although these two methods have a high adaptation capacity to evolving dynamics,
they perform badly in another adaptive system, i.e., spiral, because their input interpolated data have
errors. Our G-AlignNetR, however, tackles complex structures with the best data quality alignment.
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G-AlignNetI works well in continuous systems like power events, air quality, and spiral datasets
and achieves state-of-the-art performance with around 1% ∼ 10% error reduction compared to G-
AlignNetR methods. However, for systems with more uncertainty, e.g., the load and PV systems, G-
AlignNetI’s performance is not competitive. The main reason is that the INR model is less powerful
than RNN in capturing historical trends and patterns for predictions.

Table 1: Performance (mean ± standard deviation) of the Interpolation Tasks.
Data Scenario Metric Linear Spline Cubic Spline CS DCS Semi-NN MFN G-AlignNetR G-AlignNetI

L
oa

d

LR MSE (10−2) 1.53± 0.23 1.70± 0.26 2.02± 0.30 2.96± 0.44 1.37± 0.21 2.47± 0.37 1.10± 0.16 1.96± 0.37
MAPE (%) 14.71± 1.87 15.57± 2.03 16.55± 1.80 24.68± 3.00 14.56± 2.18 17.99± 2.16 13.16± 1.47 16.23± 1.88

Missing MSE (10−2) 0.80± 0.12 1.14± 0.17 1.34± 0.20 1.79± 0.27 1.07± 0.16 1.80± 0.27 0.72± 0.11 1.05± 0.27
MAPE (%) 8.75± 1.06 12.05± 1.62 12.83± 1.40 16.34± 1.87 9.37± 1.34 12.57± 1.82 7.63± 0.71 10.98± 1.12

Irregular MSE (10−2) 1.24± 0.19 1.70± 0.25 2.06± 0.31 2.96± 0.44 1.37± 0.21 2.47± 0.37 1.10± 0.17 1.22± 0.26
MAPE (%) 13.21± 1.89 13.71± 1.52 15.48± 1.96 19.86± 2.95 14.37± 1.68 15.41± 1.69 12.38± 1.60 13.31± 1.89

PV

LR MSE (10−2) 0.54± 0.08 0.70± 0.11 1.37± 0.20 0.40± 0.10 1.86± 0.28 2.21± 0.63 0.47± 0.07 0.58± 0.13
MAPE (%) 8.52± 1.28 7.95± 1.07 14.19± 1.65 6.52± 0.78 15.06± 2.06 22.89± 3.03 7.39± 0.91 8.56± 1.32

Missing MSE (10−2) 0.24± 0.04 0.33± 0.05 0.69± 0.10 0.28± 0.03 0.93± 0.14 1.81± 0.32 0.22± 0.03 0.24± 0.05
MAPE (%) 5.80± 0.75 5.80± 0.87 11.65± 1.40 5.19± 0.58 12.54± 1.63 17.67± 2.65 5.11± 0.73 5.71± 0.79

Irregular MSE (10−2) 0.35± 0.05 0.44± 0.07 0.89± 0.13 0.45± 0.03 1.40± 0.21 0.86± 0.47 0.31± 0.05 0.34± 0.08
MAPE (%) 7.00± 0.98 7.00± 1.05 13.00± 1.55 8.92± 1.14 14.25± 2.00 9.78± 2.85 6.75± 0.91 6.87± 0.98

Po
w

er
ev

en
t LR MSE (10−2) 0.38± 0.05 0.27± 0.04 0.61± 0.09 0.51± 0.08 0.70± 0.11 1.17± 0.18 0.07± 0.01 0.07± 0.01

MAPE (%) 5.29± 0.31 4.39± 0.32 7.84± 1.02 7.94± 1.19 7.85± 1.18 11.37± 1.64 3.21± 0.38 3.15± 0.35

Missing MSE (10−2) 0.04± 0.01 0.03± 0.04 0.31± 0.05 0.26± 0.04 0.35± 0.05 0.59± 0.09 0.05± 0.01 0.03± 0.01
MAPE (%) 2.20± 0.30 2.03± 0.28 5.94± 0.89 5.35± 0.80 6.27± 0.94 9.45± 1.41 1.87± 0.28 1.14± 0.11

Irregular MSE (10−2) 0.06± 0.01 0.07± 0.01 0.39± 0.06 0.33± 0.05 0.45± 0.07 0.77± 0.12 0.08± 0.02 0.07± 0.01
MAPE (%) 3.01± 0.45 2.85± 0.43 6.72± 1.01 6.20± 0.93 6.97± 1.05 10.33± 1.55 2.75± 0.41 2.70± 0.40

A
ir

qu
at

lit
y LR MSE (10−2) 0.83± 0.10 0.96± 0.12 1.04± 0.13 0.70± 0.10 0.92± 0.11 0.95± 0.20 0.70± 0.08 0.65± 0.05

MAPE (%) 10.02± 1.33 10.71± 1.17 12.98± 1.81 9.04± 1.02 11.73± 1.58 10.51± 1.26 9.87± 1.21 9.04± 1.04

Missing MSE (10−2) 0.57± 0.07 0.77± 0.10 0.65± 0.08 0.4± 0.10 0.71± 0.09 0.83± 0.40 0.50± 0.06 0.41± 0.09
MAPE (%) 5.76± 0.58 8.34± 1.22 9.01± 1.19 5.21± 0.74 7.71± 1.06 10.30± 1.67 5.31± 0.67 5.28± 0.70

Irregular MSE (10−2) 0.79± 0.10 0.92± 0.12 0.84± 0.10 0.85± 0.16 0.79± 0.10 1.07± 0.44 0.61± 0.07 0.58± 0.06
MAPE (%) 9.95± 1.22 9.16± 0.99 10.57± 1.26 10.03± 1.14 9.57± 1.43 11.61± 1.09 9.14± 1.03 8.39± 1.00

Sp
ir

al

LR MSE (10−2) 1.11± 0.14 1.57± 0.21 4.64± 0.58 3.46± 0.45 1.85± 0.24 2.65± 0.30 0.15± 0.02 0.18± 0.02
MAPE (%) 7.48± 0.75 8.65± 1.21 15.49± 1.76 15.03± 2.04 11.31± 1.13 14.68± 2.35 2.97± 0.35 2.95± 0.35

Missing MSE (10−2) 0.75± 0.10 1.00± 0.13 3.26± 0.42 2.46± 0.32 1.25± 0.16 1.91± 0.20 0.10± 0.01 0.08± 0.01
MAPE (%) 4.77± 0.57 5.87± 0.63 7.96± 0.89 7.78± 1.14 8.63± 1.15 6.19± 0.86 1.71± 0.25 1.65± 0.21

Irregular MSE (10−2) 1.07± 0.14 1.46± 0.19 3.83± 0.50 3.11± 0.40 1.56± 0.20 1.72± 0.20 0.13± 0.02 0.13± 0.01
MAPE (%) 6.59± 0.95 8.11± 1.16 15.13± 1.53 14.17± 1.79 11.11± 1.27 9.25± 1.09 2.83± 0.31 2.55± 0.28

Table 2: Performance (mean ± standard deviation) of the Extrapolation Tasks.
Data Scenario Metric RNN ODE-RNN Neural CDE MFN NODE + RNN NODE + MFN G-AlignNetR G-AlignNetI

L
oa

d

LR MSE (10−2) 1.33± 0.16 1.31± 0.15 1.43± 0.19 2.61± 0.31 1.32± 0.17 1.60± 0.16 1.00± 0.13 1.41± 0.15
MAPE (%) 13.29± 1.88 13.34± 1.57 13.70± 1.83 20.73± 2.64 14.96± 2.09 15.32± 1.83 12.47± 1.40 13.54± 1.48

Missing MSE (10−2) 1.02± 0.14 1.01± 0.12 0.78± 0.10 1.67± 0.20 0.93± 0.13 0.82± 0.12 0.64± 0.07 0.72± 0.07
MAPE (%) 10.58± 1.05 8.45± 0.91 8.30± 0.91 14.39± 1.92 10.54± 1.08 11.65± 1.32 7.96± 1.08 10.63± 1.25

Irregular MSE (10−2) 1.17± 0.14 1.26± 0.16 1.31± 0.14 2.49± 0.26 1.06± 0.14 1.56± 0.22 0.86± 0.09 1.44± 0.21
MAPE (%) 12.61± 1.88 12.20± 1.29 11.70± 1.47 16.90± 1.84 14.91± 2.11 15.13± 1.91 11.64± 1.18 14.98± 2.01

PV

LR MSE (10−2) 0.88± 0.09 1.13± 0.15 1.34± 0.15 2.88± 0.37 2.58± 0.37 2.86± 0.34 0.49± 0.06 1.12± 0.19
MAPE (%) 11.21± 1.39 12.09± 1.26 12.09± 1.33 21.94± 6.02 22.75± 3.15 24.59± 3.55 7.27± 0.85 12.35± 1.28

Missing MSE (10−2) 0.70± 0.08 0.70± 0.10 1.00± 0.11 1.59± 0.21 1.85± 0.20 2.11± 0.22 0.30± 0.04 0.54± 0.06
MAPE (%) 7.23± 0.82 9.44± 0.94 6.59± 0.83 12.27± 0.96 15.12± 1.72 14.91± 1.94 4.20± 0.47 6.3± 1.02

Irregular MSE (10−2) 0.82± 0.10 1.09± 0.15 1.18± 0.13 1.76± 0.38 2.07± 0.24 2.77± 0.33 0.41± 0.05 0.84± 0.41
MAPE (%) 9.61± 1.23 11.53± 1.16 11.96± 1.36 12.69± 1.46 18.73± 2.73 21.47± 3.00 5.97± 0.88 9.88± 1.35

Po
w

er
ev

en
t LR MSE (10−2) 0.89± 0.14 0.84± 0.03 0.91± 0.05 1.51± 0.26 0.75± 0.13 0.61± 0.08 0.29± 0.04 0.25± 0.03

MAPE (%) 6.57± 0.65 5.89± 0.51 6.80± 0.78 10.56± 1.02 6.96± 0.73 5.32± 0.54 3.47± 0.49 3.15± 0.43

Missing MSE (10−2) 0.25± 0.04 0.23± 0.01 0.20± 0.02 1.72± 0.24 0.19± 0.02 0.22± 0.02 0.17± 0.02 0.18± 0.03
MAPE (%) 3.18± 0.41 3.31± 0.48 4.62± 0.54 7.88± 0.86 3.34± 0.48 3.33± 0.38 2.31± 0.24 2.35± 0.24

Irregular MSE (10−2) 0.48± 0.03 0.43± 0.03 0.48± 0.04 0.78± 0.05 0.33± 0.03 0.36± 0.04 0.19± 0.04 0.13± 0.03
MAPE (%) 4.81± 0.52 4.16± 0.46 4.66± 0.69 13.39± 1.40 4.00± 0.60 5.01± 0.57 2.79± 0.37 2.53± 0.30

A
ir

qu
al

ity

LR MSE (10−2) 0.58± 0.08 0.62± 0.09 0.48± 0.06 1.03± 0.26 0.74± 0.10 0.94± 0.12 0.38± 0.10 0.40± 0.13
MAPE (%) 10.81± 1.51 10.70± 1.32 10.18± 1.27 15.01± 1.83 12.52± 1.76 13.56± 1.84 6.86± 0.85 7.17± 0.96

Missing MSE (10−2) 0.62± 0.05 0.79± 0.06 0.66± 0.03 0.81± 0.07 0.64± 0.07 0.64± 0.08 0.51± 0.06 0.50± 0.06
MAPE (%) 10.61± 1.02 11.35± 1.07 9.02± 1.35 11.32± 1.48 10.71± 1.52 11.65± 1.79 8.45± 0.92 8.31± 0.91

Irregular MSE (10−2) 0.77± 0.17 0.82± 0.08 0.73± 0.05 0.72± 0.12 0.68± 0.09 0.65± 0.11 0.50± 0.07 0.34± 0.04
MAPE (%) 11.75± 1.23 12.25± 1.46 11.33± 1.54 11.23± 1.84 11.59± 1.55 10.85± 1.76 8.69± 1.11 6.52± 0.89

Sp
ir

al

LR MSE (10−2) 1.21± 0.15 3.07± 0.39 1.12± 0.14 2.32± 0.57 1.02± 0.16 1.10± 0.39 0.19± 0.02 0.21± 0.03
MAPE (%) 10.43± 1.35 17.17± 2.32 8.84± 1.10 15.12± 3.43 10.11± 1.56 10.29± 1.67 4.70± 0.68 4.88± 0.72

Missing MSE (10−2) 0.79± 0.11 1.84± 0.23 0.91± 0.12 0.83± 0.17 0.89± 0.14 0.95± 0.27 0.14± 0.02 0.14± 0.02
MAPE (%) 6.12± 0.82 9.55± 1.22 7.19± 1.02 8.77± 1.56 7.03± 1.46 8.25± 1.73 3.56± 0.51 3.88± 0.53

Irregular MSE (10−2) 1.03± 0.14 2.56± 0.33 1.09± 0.13 1.69± 0.29 1.75± 0.36 1.89± 0.38 0.16± 0.02 0.21± 0.04
MAPE (%) 8.24± 1.10 12.75± 1.89 8.13± 1.23 9.67± 1.54 10.29± 1.87 11.79± 2.08 4.09± 0.57 4.77± 0.89
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4.4 SENSITIVITY ANALYSIS: LIMITED RESOLUTIONS ARE USEFUL

In this subsection, we conduct a sensitivity analysis using the Load datasets and vary different LQ
data coverage rates. The interpolation and extrapolation results are in the left and the right part of
Figure 4. As the rate increases, all methods consistently improve their performances for interpo-
lation. Cubic and linear splines have almost the same error-decreasing ratio as G-AlignNet, about
O( 1

|Ny| ) in Equation (10). CS and DCS’s convergence rate is higher because they have additional
manifold approximation errors for the data manifold, which is around O( 1

log |Ny| ). For extrapola-
tion, although all baselines have improvements with more data, there is still a gap between their
results to G-AlignNet, which suggests that 20% is still insufficient for tackling LQ data.

M
A

PE
 (%

)

 LQ data coverage rate (%)  LQ data coverage rate (%)

Figure 4: Results of sensitivity analysis. Left: Interpolation. Right: Extrapolation.

4.5 GEOMETRIC MODELING TO EXPLORE ODE STRUCTURES WITH SCARCE DATA

We present a visualization for the spiral datasets to demonstrate the capacity of approximating the
underlying ODEs with limited data. Figure 5 presents the result of the three best methods. More
details can be seen in Appendix D.1. The problem is challenging with scarce data (blue points) and
the time-dependent magnitude for the 2-D signals. It can be found that only G-AlignNet has the
ability to maintain a spiral structure and roughly learned the magnitude-increasing trend.

G-AlignNetR RNN Neural CDE

Ground Truth

Extrapolation
Interpolation

LR Samples

G-AlignNetR RNN Neural CDE

Figure 5: 2D visualization of extrapolation tasks for spiral dataset.

5 CONCLUSION, LIMITATION, AND FUTURE WORK

Engineering systems, due to expanding ranges, usually lack system-wide HQ data for capturing the
adaptive dynamics. In this paper, we propose G-AlignNet, a unified framework designed to align
LQ with HQ data while learning system dynamics. The core innovation lies in representing sys-
tem dynamics through parameter flows on an orthogonal group, transforming the quality-alignment
problem into a well-posed on-manifold optimization. This approach ensures global optimality and
delivers superior error convergence performance. The geometric representation in G-AlignNet is
fundamental, as it’s linked to a broad range of on-manifold problems to meet systems demands. For
instance, in the future, we will apply this representation to model system dynamics that adapt to
sudden changes, which could be interpreted as a jump of a flow in Figure 1. Additionally, we will
extend Optimization (2) to robust geometric optimization for highly-nonlinear systems with noisy
measurements. We will also test more advanced base models like Transformers (Vaswani et al.,
2017) and Mamba (Gu & Dao, 2023). A potential limitation of G-AlignNet is the longer training
time compared to methods that don’t use ODE solvers. However, due to the linearity of our target
ODE in Equation (3), we can use a larger step size and threshold while still attaining comparable per-
formance. For example, in our experiments, we set the relative/absolute tolerance to be 10−3/10−4,
whereas the default values are 10−5/10−6. This configuration increases the training speed by a
factor of 20. Appendix D.3 shows that our methods have relatively lower training time than other
ODE-based methods.
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A DATA QUALITY DEFINITION AND VISUALIZATION

In Figure 6, the four subfigures visualize the key data incompleteness issues addressed by our
G-AlignNet framework. The top left subfigure illustrates high-quality data with continuous high-
resolution (HR) measurements. The dataset is represented using both a line plot and scatter points,
demonstrating the precision and consistency of HR data without incompleteness.

The top right subfigure presents low-resolution (LR) data, where measurements are sampled at fewer
intervals due to LR sensors or downsampling to meet communication constraints (Li et al., 2024a;
Willett et al., 2011). This highlights the challenges associated with sparse data acquisition. The
bottom left subfigure showcases periods of data loss and communication failure caused by external
events or sensor malfunction (Gill et al., 2011). These intervals are marked by gaps, visually em-
phasizing the absence of data over significant time periods. The bottom right subfigure illustrates
random data losses, representing irregular sampling with a 30% data drop rate. Such losses often
arise from sensor misconfigurations, data corruption, or human errors (Kidger et al., 2020; Chen
et al., 2024; Kundu & Quevedo, 2021).

This visualization effectively categorizes and demonstrates the types of data incompleteness that
G-AlignNet is designed to address, as discussed in Section 1 and 3.1.
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Figure 6: Visualization of different data qualities.

B VISUALIZATION OF DATA SIMILARITY FOR ASSUMPTION 1

Assumption scope. We focus on data incompleteness, the severe, common, and persistent issue in
engineering and control systems. Within this study scope (i.e., data incompleteness) and assume the
system has small measurement noise and low nonlinearity, Assumption 1 holds. The data property
described in Assumption 1 can be affected by noise. When there are significant random factors
such as sensor noise, Assumption 1 may not hold since the data similarity is reduced. In Section
3.3, we quantify the error caused by a type of noise, which demonstrates the certain robustness of
our G-AlignNet. However, for more complicated noise, we need more investigations. In addition,
noise can be reduced by employing more precise sensors or noise filtering techniques in engineering
systems (Segovia et al., 2014).
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Figure 7: Data similarity for different systems.

Assumption justification. Our target is engineering and control systems with weakly nonlinearity
and uncertainty. We assume the system is not highly nonlinear and the noise is limited. For these
systems, Assumption 1 states that the high data correlations between HQ and LQ data can lead to
parameter flow with the same shape but different locations on a manifold, where the shape captures
similar patterns between HQ and LQ data. We have the following justifications for the validity of
Assumption 1: (1) The data similarity stems from the spatial-temporal correlations and physical
correlations for the system, which significantly exist in engineering systems. For example, the
visualization in Fig. 7 shows that weakly nonlinear and uncertain engineering systems still have
strong data correlations and similarities. (2) Under a probabilistic setting, HQ and LQ variables
within a local region in the system can have high similarity due to spatial-temporal and physical
correlations in both mean and variance. Then, Θx(t) and Θy(t) in our learning framework, as long
as being well-trained to extract patterns of this similarity, can maintain the same shape. (3) With
external forces the HQ/LQ measurements in systems usually still contain high spatial-temporal and
physical correlations. For instance, when an event happens to power systems, system states (i.e.,
nodal voltage) have similar behaviors because of network constraints (Mai et al., 2024). The left
in Fig. 7 illustrates the voltage fluctuations after an event. The PV systems or residential loads,
affected by weather such as wind movements and temperature, have similar data patterns within a
local region, shown in the middle and the right in Fig. 7. This is because that in a local region, the
external environments are almost the same. In general, our result is very beneficial since with our
methods, we only need to guarantee each local region can contain a small number of HQ sensors
and can boost the quality of all LQ sensors in the region.

When the noise is limited, Assumption 1 holds for a nonlinear system because it only states the
data correlations and similarity in response to disturbances between HQ and LQ data. Then, the
high data correlations between HQ and LQ data can lead to parameter flow with the same shape but
different locations on a manifold, where the shape captures similar patterns between HQ and LQ
data. As shown in Fig. 7, weakly nonlinear and uncertain engineering systems still have strong data
correlations and similarities.

Assumption limitation The data property described in Assumption 1 can be affected by noise.
When there are significant random factors such as sensor noise, Assumption 1 may not hold since
the data similarity is reduced. In Section 3.3, we quantify the error caused by a type of noise, which
demonstrates the certain robustness of our G-AlignNet. However, for more complicated noise, we
need more investigations. In addition, noise can be reduced by employing more precise sensors or
noise filtering techniques in engineering systems (Segovia et al., 2014).

Also, when the system is highly nonlinear, Assumption 1 may cause a model incapable of represent-
ing the complicated dynamics. Under this condition, we need more investigations.
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C DETAILED PROOFS

C.1 PROOF OF PROPOSITION 1

Proposition 1 (Shape Preservation via Orthogonal Matrix). If Q ∈ Rn×n is an orthogonal matrix,
the flow between Θx(t) and Θx(t)Q is the same.

Proof. We consider two arbitrary transpose row vectors wi ∈ Rn from Θx(ti) and wj ∈ Rn from
Θx(tj). By the orthogonality of Q ∈ Rn×n, we can show

• Length preservation: ∥Qw∥2 = ∥w∥2.

• Angle preservation: (Qwi)
⊤(Qwj) = w⊤

i (Q
⊤Q)wj = w⊤

i wj .

• Distance preservation: ∥Qwi −Qwj∥ =
√
(wi − wj)⊤(Q⊤Q)(wi − wj) = ∥wi − wj∥.
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C.2 PROOF OF PROPOSITION 2

Proposition 2 (Closed-form Global Optimal Solution). Suppose matrices Θx(t),Θy(t) ∈ O(n), the
optimization (2) has a global minimizer Q∗ = UV ⊤, where 1

|Ny|
∑

i∈Ny
Θx(ti)

⊤Θy(ti) = UΣV ⊤

is the Singular Value Decomposition.

Proof. For the optimization in Equation (2), we have:

Q∗ = arg min
Q⊤Q=I

1

|Ny|
∑
i∈Ny

∥Θy(ti)−Θx(ti)Q∥2F (12)

= arg min
Q⊤Q=I

1

|Ny|
∑
i∈Ny

[
∥Θy(ti)∥2F + ∥Θx(ti)Q∥2F − 2tr

(
Q⊤Θx(ti)

⊤Θy(ti)
)]

(13)

= arg min
Q⊤Q=I

1

|Ny|
∑
i∈Ny

−2tr
(
Q⊤Θx(ti)

⊤Θy(ti)
)

(14)

= arg max
Q⊤Q=I

1

|Ny|
∑
i∈Ny

tr
(
Q⊤Θx(ti)

⊤Θy(ti)
)

(15)

= arg max
Q⊤Q=I

tr

Q⊤ 1

|Ny|
∑
i∈Ny

Θx(ti)
⊤Θy(ti)

 . (16)

Suppose 1
|Ny|

∑
i∈Ny

Θx(ti)
⊤Θy(ti) = UΣV ⊤ is the Singular Value Decomposition, we have

Q∗ = arg max
U⊤U=I

tr
(
Q⊤UΣV ⊤) (17)

= arg max
U⊤U=I

tr
(
V ⊤Q⊤UΣ

)
(18)

= arg max
Z⊤Z=I

tr (ZΣ) (19)

= arg max
Z⊤Z=I

n∑
j=1

Zjjσj , (20)

where we let Z = V ⊤Q⊤U be another orthogonal matrix. Thus, we have
∑n

j=1 Zjjσj ≤∑n
j=1 Zjj ≤ n. The equality holds when Z∗ = In, leading to Q∗ = UV ⊤.
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C.3 PROOF OF COROLLARY 1

Corollary 1 (Zero-error Shape Matching). Suppose the skew-symmetric matrix Ωy(t) ≡ Ωx(t),
defined in Equation (3), Optimization (2) has a unique global minimizer Q∗ defined in Proposition
2. The corresponding objective equals to 0.

Proof. Based on the ODE Θ̇x(t) = Θx(t)Ωx(t) and Θ̇y(t) = Θy(t)Ωy(t) where we de-
note Ωx(t) ≡ Ωy(t) := Ω(t), the parameter matrices can be represented as Θx(t) =

exp(
∫ t

t0
Ω(τ)dτ)Θx(t0) and Θy(t) = exp(

∫ t

t0
Ω(τ)dτ)Θy(t0). Thus, we have

∥Θx(ti)∥2F = trace
(
Θx(ti)

⊤Θx(ti)
)

(21)

= trace
(
Θx(t0)

⊤ exp(

∫ t

t0

Ω(τ)dτ)⊤ exp(

∫ t

t0

Ω(τ)dτ)Θx(t0)

)
(22)

= ∥Θx(t0)∥2F ,∀i (23)

since Ω(t) is a skew-symmetric matrix and thus exp(
∫ t

t0
Ω(τ)dτ) ∈ O(n) is an orthogonal ma-

trix according to Lie algebra (Lee & Lee, 2012). Similar results apply to parameters Θy(ti) as
∥Θy(ti)∥2F = ∥Θy(t0)∥2F ,∀i. Substituting the optimizer of Optimization (2) from Proposition 2,
we have

1

|Ny|
∑
i∈Ny

∥Θy(ti)−Θx(ti)Q
∗∥2F (24)

=
1

|Ny|
∑
i∈Ny

[
∥Θy(ti)∥2F + ∥Θx(ti)Q

∗∥2F − 2tr
(
Q∗⊤Θx(ti)

⊤Θy(ti)
)]

(25)

=
1

|Ny|
∑
i∈Ny

[
∥Θy(t0)∥2F + ∥Θx(t0)∥2F − 2tr

(
Q∗⊤Θx(t0)

⊤Θy(t0)
)]

(26)

= ∥Θy(t0)∥2F + ∥Θx(t0)∥2F − 2tr
(
Q∗⊤Θx(t0)

⊤Θy(t0)
)
= 0. (27)
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C.4 PROOF OF PROPOSITION 3

Proposition 3 (Interpolation Error Bound). Assume Equation (7) holds for the true parameters
Θ̄x(ti) and Θ̄y(ti). Training G-AlignNet approximates these true parameters, thus implicitly solving
the following optimization:

Q∗∗ = arg min
Q⊤Q=I

1

|Ny|
∑
i∈Ny

∥∥Θ̄y(ti)− Θ̄x(ti)Q
∥∥2
F
. (28)

This leads to an estimation error of matrix Q∗∗, compared to true transformation matrix:

E
∥∥Q∗∗ − Q̄

∥∥
F
≤ n

3
2σ0/

√
|Ny|, (29)

and an interpolation error on Θ̃y(ti) = Θx(ti)Q
∗∗, i ∈ Nx\Ny:

Ei∈Nx\Ny

∥∥∥Θ̃y(ti)− Θ̄y(ti)
∥∥∥
F
≤ n2σ0/

√
|Ny|+ n

1
2 ε0, (30)

where ε0 = 1
|Nx|

∑
i∈Nx

∥Di∥F is the average approximation error from Neural ODE modeling.

Proof. Following the conclusion in Proposition 2, we have Q∗∗ = U ′V ′⊤ where the Singular Value
Decomposition is given by

U ′Σ′V ′⊤ =
1

|Ny|
∑
i∈Ny

Θ̄x(ti)
⊤Θ̄y(ti) (31)

=
1

|Ny|
∑
i∈Ny

Θ̄x(ti)
⊤Θ̄x(ti)Q̄(In + Ei) (32)

=
1

|Ny|
∑
i∈Ny

Q̄(In + Ei). (33)

since Θ̄x(ti) ∈ O(n). Denoting E = 1
|Ny|

∑
i∈Ny

Ei, it satisfies that E ∼ N (0,
σ2
01

|Ny| ) due to the
independence of Gaussian noise. Thus, the expected estimation error of matrix Q∗∗ compared to the
true case Q̄ is

E
∥∥Q∗∗ − Q̄

∥∥
F
= E

∥∥∥∥∥∥ 1

|Ny|
∑
i∈Ny

Q̄(In + Ei)− Q̄

∥∥∥∥∥∥
F

(34)

= E
∥∥Q̄(I + E)− Q̄

∥∥
F

(35)

= E
∥∥Q̄E

∥∥
F

(36)

≤
∥∥Q̄∥∥

F
· E ∥E∥F = n

1
2 · nσ0/

√
|Ny|. (37)

The expected interpolation error on Θ̃y(ti) = Θx(ti)Q
∗∗, i ∈ Nx\Ny is

E
∥∥∥Θ̃y(ti)− Θ̄y(ti)

∥∥∥
F
= E

∥∥Θx(ti)Q
∗∗ − Θ̄x(ti)Q̄

∥∥
F

(38)

= E
∥∥Θx(ti)(Q̄+ Q̄E)− (Θx(ti) +Di)Q̄

∥∥
F

(39)

= E
∥∥Θ∗

x(ti)Q̄E −DiQ̄
∥∥
F

(40)

≤ E
∥∥Θ∗

x(ti)Q̄E
∥∥
F
+ E

∥∥DiQ̄
∥∥
F

(41)

≤ n
1
2 · n 1

2 · nσ0/
√
|Ny|+ n

1
2 · ε0 (42)

≤ n2σ0/
√
|Ny|+ n

1
2 ε0. (43)
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C.5 PROOF OF PROPOSITION 4

Proposition 4 (Data Sufficiency for Neural ODE Approximation). The averaged approximation
error in the Neural ODE model satisfies (Hillebrecht & Unger, 2022; Soetaert et al., 2012)

ε0 ≤ O
(∥∥Θx(t0)− Θ̄x(t0)

∥∥
F
· 1

|Nx|
· 1− βeαT

1− βe
αT

|Nx|

)
, (44)

where T = t|Nx| is the end time for HQ data, β > 1 is a constant, and α is the largest signal
value of all matrices Ω(ti), i ∈ Nx. h and p are the step size and the order of the Neural ODE
solver, respectively. For the adjoint method, K is the number of discretized points in forward/reverse
integration (Zhuang et al., 2020). eadj

k > 0 represents the reverse inaccuracy factor in the adjoint
method. eadj

k = 0 in the naive method or Adaptive Checkpoint Adjoint (ACA) (Zhuang et al., 2020).

Proposition 4 indicates that for a fixed time horizon T = t|Nx|, the approximation error ε∗0 decreases
as the volume of HQ data |Nx| increases.

Proof. According to (Hillebrecht & Unger, 2022; Soetaert et al., 2012), the approximation error
between true variables Θx(ti) and the learned variables Θ̄x(ti) satisfies

∥Di∥F =
∥∥Θx(ti)− Θ̄x(ti)

∥∥
F

(45)

≤ β

(
e

αT
|Nx|

∥∥Θx(ti−1)− Θ̄x(ti−1)
∥∥
F
+

∫ T/|Nx|

0

eα(T/|Nx|−s)δ(s)ds

)
(46)

where T = t|Nx| is the time horizon of HQ data. α is the largest signal value of all matrices
Ω(ti), i ∈ Nx, and β > 1 is a constant. δ(t) : R → R is a continuous function such that∥∥∥Θ̇x(t)− Ω(t)Θ̄x(t)

∥∥∥
F

=
∥∥∥Ḋi

∥∥∥
F
≤ δ(t). In practice, the magnitude of δ(t) is primarily deter-

mined by the truncation error of the solver used for the Neural ODE model. Since we employ the
Runge-Kutta 4 (RK4) solver, a fourth-order method, the total truncation error is of order O(hp+1),
where h represents the step size, and p = 4 is the order of the ODE solver. Consequently, we can
bound the magnitude of δ(t) as |δ(t)| ≤ O(hp+1) where h ∈ [10−4, 10−2] in our implementation.

Notably, if we train Neural ODE with the memory-efficient adjoint method, we may come across
an additional numerical error due to the mismatch of the forward/reverse hidden state trajectory
(Zhuang et al., 2020). Specifically, let K be the number of discretized points in the forward/reverse
integration. Let eadj

k > 0 represent the factor of numerical error introduced by the adjoint method,
as shown in Equation (20) and (21) in (Zhuang et al., 2020). We derive the following error:

ε0 =
1

|Nx|
∑
i∈Nx

∥Di∥F︸ ︷︷ ︸
Average ODE global error

+O
(
hp+1 1

|Nx|
∑
i∈Nx

K−1∑
k=0

eadj
k

)
︸ ︷︷ ︸

Numerical error from adjoint method

(47)

≤ 1

|Nx|
∑
i∈Nx

β

(
e

αT
|Nx|

∥∥Θx(ti−1)− Θ̄x(ti−1)
∥∥
F
+

∫ T/|Nx|

0

eα(T/|Nx|−s)δ(s)ds

)

+O
(
hp+1

K−1∑
k=0

eadj
k

)
(48)

≤ O
(

1

|Nx|
·
[∑
i∈Nx

(
βe

αT
|Nx|

)i−1
]
·
∥∥Θx(t0)− Θ̄x(t0)

∥∥
F

)
+O

(
hp+1

|Nx|
· TeαT/|Nx|

)

+O
(
hp+1

K−1∑
k=0

eadj
k

)
(49)

= O
(

1

|Nx|
·
∥∥Θx(t0)− Θ̄x(t0)

∥∥
F
· 1− βeαT

1− βe
αT

|Nx|
+

hp+1

|Nx|
· TeαT/|Nx| + hp+1

K−1∑
k=0

eadj
k

)
.

(50)
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While the last term in Equation (50) is irreducible in the adjoint method, we can utilize the naive
method or more efficient methods like Adaptive Checkpoint Adjoint (ACA) (Zhuang et al., 2020) to
remove this error.
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D MORE EXPERIMENTS

D.1 EXPERIMENTS: SPIRAL

A spiral can be the solution of an ordinary differential equation (ODE). A common example of an
ODE that has a spiral as its solution is the system of linear differential equations representing a
damped harmonic oscillator or a rotational system with damping. Here’s a general form of such an
ODE system:


dx

dt
= ax− by

dy

dt
= bx+ ay

, (51)

where a and b are constants.

The solutions to these equations describe spirals if the real part of the eigenvalues of the correspond-
ing coefficient matrix is negative (causing a decay towards the origin) while the imaginary part is
non-zero (leading to oscillations or circular motion). For instance, for the system above, a typical
solution might take the form:

x(t) = eαt (cos(ωt) + i sin(ωt)) , (52)

where α governs the rate of spiral decay or growth, and ω represents the frequency of oscillation.
When α < 0, the solution represents a spiral inward, and when α > 0, it represents a spiral outward.

We define a specific format of the spiral as follows: Let t represent the time variable, uniformly
distributed between 0 and 20π. The coordinates x(t) and y(t) of the spiral are generated as functions
of time:

t ∈ [0, 20π] (53)

The parametric equations for the spiral in polar coordinates are given by:
x(t) =

t cos(t)

20π
+ 1

y(t) =
t sin(t)

20π
+ 1

(54)

Where:

• t is the time variable.

• The normalization factor 20π ensures that both x(t) and y(t) are scaled appropriately.

We generate low-resolution time series data, with 20 points being uniformly selected from the high-
resolution dataset, containing 1000 data points.

ODE-RNN MFN NCDE-RNN

Ground Truth

Extrapolation

Interpolation

LR Samples

Figure 8: 2D visualization of extrapolation tasks for spiral dataset.
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D.2 ORTHOGONALITY CHECK

To validate the orthogonality of the matrix Q used in our experiments, we implemented the following
procedure. The function computes the deviation from orthogonality by comparing the product Q⊤Q
with the identity matrix.

Algorithm 1 Orthogonality Check

Require: Qoptimal (matrix to be checked)
Ensure: Boolean result indicating whether Q is orthogonal

1: Compute approximate identity matrix:

Iapprox ← Q⊤ ·Q
2: Compute the difference between Iapprox and the true identity matrix:

difference← norm(Iapprox − I)

3: Check orthogonality by verifying if Iapprox ≈ I:

is orthogonal← allclose(Iapprox, I, atol = 10−5)

▷ allclose is a function from the NumPy library used to compare two arrays element-wise and
determine if they are equal within a specified tolerance.

4: if is orthogonal then
5: Output: ”Matrix is orthogonal”
6: else
7: Output: ”Matrix is not orthogonal”
8: end if

This procedure evaluates whether Q satisfies the orthogonality condition within a specified tolerance
(10−6). The results are reported in terms of the deviation from the identity matrix and a boolean flag
indicating orthogonality.

D.3 TRAINING TIME

We have included the training costs in the following table. The results show that our methods, with
a Runge-Kutta 4 (RK4) ODE solver and a relatively high tolerance, can achieve relatively moderate
training time and the best model performance.

Table 3: Training time (minutes) for different systems and models.

System RNN ODE-RNN Neural CDE MFN NODE+RNN NODE+MFN G-AlignNetR G-AlignNetI

Power event 0.47 18.88 6.39 4.19 34.13 26.51 17.42 13.86
PV 1.10 53.89 14.85 9.73 79.31 62.18 42.71 30.23
Load 0.66 25.20 8.91 5.84 47.59 37.30 22.02 20.17
Air quality 0.70 27.61 9.46 6.19 50.47 36.79 24.04 18.71
Spiral 0.63 24.68 8.47 5.55 45.23 32.94 23.30 16.82

D.4 SYSTEM DIMENSION DESCRIPTION

Our experiments were conducted on multiple systems, including the Load dataset, PV dataset, Power
event dataset, Air quality dataset, and spiral dataset. The input dimension for each system is 10, 10,
6, 8, and 2. Moreover, we split HQ/LQ dimensions to be 2/8, 2/8, 1/5, 2/6, and 1/1, respectively.
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D.5 INTERPOLABLE CONTROL: STABILIZE MISSING DYNAMICS

The learned load dynamics enable us
to conduct control tasks, where power
generations are tuned to meet the load
changes and maintain voltage stabil-
ity. When there are no control actions,
the teal curve shows that the fluctu-
ations in loads can affect the voltage
to exceed the safe range [0.95, 1.05].
When 15min/sample data is available,
the brown curve shows the best stability,
close to 1.0. G-AlignNet uses 1h data to
do interpolation but obtain comparable
results, shown in the blue curve.

Time (h)

Vo
lta

ge
 (p

.u
.)

Figure 9: Stabilizing voltage using load data.
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