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Abstract003

Decomposition-based multi-hop retrieval meth-004
ods rely on many autoregressive steps to break005
down complex queries, which breaks end-006
to-end differentiability and is computation-007
ally expensive. Decomposition-free methods008
tackle this, but current decomposition-free ap-009
proaches struggle with longer multi-hop prob-010
lems and generalization to out-of-distribution011
data. To address these challenges, we introduce012
GRITHopper-7B1, a novel multi-hop dense013
retrieval model that achieves state-of-the-art014
performance on both in-distribution and out-of-015
distribution benchmarks. GRITHopper com-016
bines generative and representational instruc-017
tion tuning by integrating causal language mod-018
eling with dense retrieval training. Through019
controlled studies, we find that incorporating020
additional context after the retrieval process,021
referred to as post-retrieval language model-022
ing, enhances dense retrieval performance. By023
including elements such as final answers dur-024
ing training, the model learns to better con-025
textualize and retrieve relevant information.026
GRITHopper-7B offers a robust, scalable, and027
generalizable solution for multi-hop dense re-028
trieval, and we release it to the community for029
future research and applications requiring com-030
plex reasoning and retrieval capabilities.031

1 Introduction032

Large Language Models (LLMs) have demon-033

strated remarkable capabilities in reasoning034

(Huang and Chang, 2023), reflection, and decom-035

position, making them indispensable tools for a036

wide range of natural language processing tasks.037

Their generative abilities have been successfully038

leveraged to solve open-domain multi-hop prob-039

lems, where complex questions are broken into040

smaller sub-questions to retrieve supporting evi-041
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Figure 1: Out-of-distribution Multi-Hop Retrieval Per-
formance on the MultiHop-RAG Benchmark (Tang and
Yang, 2024). GRITHopper substantially outperforms
previous state-of-the-art multi-hop retrieval models on
out-of-distribution Benchmarks on deep hops.

dence and reflect on them (Asai et al., 2024; Shao 042

et al., 2023; Guan et al., 2024) in a step-by-step 043

manner. However, such decomposition-based ap- 044

proaches require multiple autoregressive steps and 045

discrete intermediate outputs, which breaks the 046

end-to-end differentiability of the retrieval pipeline 047

and increases computational overhead. 048

Decomposition-free approaches, such as Multi- 049

Hop Dense Retrieval (MDR) (Xiong et al., 2021), 050

and cross-encoder-based methods like Beam Re- 051

triever (Zhang et al., 2024a), enable end-to-end 052

differentiability by not requiring discrete decom- 053

positions, but both suffer from significant lim- 054

itations. MDR offers an efficient and scalable 055

dense retrieval framework by concatenating the 056

query with passages and encoding them into a sin- 057

gle vector representation in one model call per 058

iteration. However, it struggles with more com- 059

plex datasets like MuSiQue (Trivedi et al., 2022), 060

more hops than 2, and performs poorly on out-of- 061

distribution benchmarks. On the other hand, Beam 062

Retriever achieves state-of-the-art in-distribution 063

performance by leveraging cross-encoder architec- 064

tures. Unlike bi-encoders, which independently 065
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Figure 2: Comparison of decomposition-based approaches like (Guan et al., 2024; Shao et al., 2023) to our
encoder-only approach with GRITHopper. While decomposition-based approaches require many auto-regressive
steps to decompose questions, extract answers, and a different model for retrieval, our encoder-only approach only
requires a single forward pass per hop to compute the next dense vector. Example is from (Trivedi et al., 2022).

encode questions and passages to compute simi-066

larity, cross-encoders process both as a single se-067

quence, resulting in linear scaling with respect to068

the number of passages. This makes them only069

suited as a retriever for a few hundred passages070

but not open book retrieval. Despite its strengths,071

it shares MDR’s generalization issues while intro-072

ducing scalability challenges due to its computa-073

tional overhead, making it impractical for large-074

scale open retrieval tasks. These limitations un-075

derscore the need for a scalable and generalizable076

multi-hop retrieval framework that can perform077

well on both in-distribution and out-of-distribution078

benchmarks in open-domain retrieval scenarios.079

To address these challenges, we introduce080

GRITHopper-7B, the first decoder-based end-to-081

end multi-hop dense retrieval model trained on an082

unprecedented scale of multi-hop datasets span-083

ning both question-answering and fact-checking084

tasks. GRITHopper-7B achieves state-of-the-085

art performance across out-of-distribution bench-086

marks (see Figure 1) while preserving the simplic-087

ity and scalability of encoder-only paradigms like088

MDR (see Figure 2). The foundation of GRITHop-089

per lies in GRITLM (Muennighoff et al., 2025),090

a Mistral-7B-based model that integrates causal091

language modeling with dense retrieval training.092

GRITLM’s design sparked a critical debate in the093

field: Does joint optimization of generative and094

retrieval tasks enhance dense embedding quality?095

While GRITLM initially demonstrated state-of-the-096

art results in retrieval while achieving strong perfor-097

mance in generation, subsequent studies (?) show098

that contrastive-only approaches, using the same099

Mistral-7B backbone, outperform GRITLM on key 100

benchmarks such as BEIR (Thakur et al., 2021) and 101

MTEB (Muennighoff et al., 2023). 102

This raises fundamental questions about the util- 103

ity of generative objectives in retrieval and sets the 104

stage for a deeper exploration of their role. Build- 105

ing upon a shared data foundation for both the 106

retrieval and generation objective, we incremen- 107

tally add information to the generative component 108

without altering the embedding component. This 109

strategy allows us to assess whether incorporating 110

external information (beyond the retrieval chain) 111

into the generative training can improve dense re- 112

trieval performance. We refer to this approach as 113

post-retrieval language modeling, where we in- 114

clude elements such as final answers and judge 115

the retrieved paragraphs after the retrieval chain. 116

Through this controlled experimental setup, we 117

systematically explore how post-retrieval language 118

modeling influences dense embedding quality, of- 119

fering new insights into their roles in enhancing 120

multi-hop retrieval performance. Our experiments 121

create a novel ReAct style (Yao et al., 2023) end- 122

to-end multi-hop dense retrieval that can conduct 123

neural search via bi-directional attention and con- 124

trol itself (stop the search, answer, or rerank) via 125

causal language modeling. 126

The following research questions guide our 127

study: 128

RQ1: How do decomposition-free approaches 129

compare to decomposition-based approaches? 130

RQ2: How does GRITHopper generalize on the 131

out-of-distribution benchmarks compared to exist- 132

ing methods? 133

2



RQ3: What is the effect of combining genera-134

tive and embedding training in multi-hop dense135

retrieval compared to embedding-only training?136

RQ4: If generative training improves dense re-137

trieval performance, does post-retrieval language138

modeling during training further enhance it?139

2 Related Work140

2.1 Multi-Hop Retrieval and Reasoning141

Multi-hop question answering requires models to142

retrieve and integrate information from multiple143

documents to answer complex queries (Trivedi144

et al., 2022; Ho et al., 2020). Decomposition-145

based methods address this by breaking down com-146

plex questions into simpler sub-questions. Wolf-147

son et al. (2020) introduced the Break It Down148

(Break) method, which decomposes questions into149

a sequence of simpler queries. Other methods ex-150

tended decompositions with extensive reasoning151

(Shao et al., 2023; Khot et al., 2023; Yao et al.,152

2023). However, these methods require multi-153

ple autoregressive steps and generate intermedi-154

ate outputs, leading to increased computational155

overhead and disrupting end-to-end differentiabil-156

ity. Decomposition-free approaches have been pro-157

posed to overcome these limitations.158

2.2 Decomposition-Free Multi-Hop Retrieval159

Multi-Hop Dense Retrieval (MDR) (Xiong et al.,160

2021) introduced an approach where the query is161

concatenated with previously retrieved passages,162

and the combined text is encoded into a single163

vector representation using a bi-encoder architec-164

ture. Other works have extended MDR, such as165

BeamDR by adding beam search and Ma et al.166

(2024) by extending MDR multi-hop problems167

longer than 2 hops. While MDR allows for efficient168

and scalable retrieval but has limitations in han-169

dling complex multi-hop queries that require more170

hops than 2 and generalizing to unseen datasets.171

Multi-Hop cross-encoder models (Asai et al.,172

2020), like the BeamRetriever (Zhang et al.,173

2024a), achieve state-of-the-art performance on174

in-distribution datasets by modeling the retrieval175

process by encoding the question with each para-176

graph together. Despite their effectiveness, these177

models face scalability issues due to high compu-178

tational costs, making them less practical for large-179

scale open-domain retrieval tasks. Furthermore,180

we will show that these methods suffer from over-181

fitting and fail to generalize on out-of-distribution182

benchmarks. 183

2.3 Causal Language Modeling and Reward 184

Modeling 185

While Causal language modeling (CLM) is pri- 186

marily used for generation tasks (Radford et al., 187

2019), recent research has combined it with dense 188

retrieval, specifically GRITLM Muennighoff et al. 189

(2025), integrating causal language modeling with 190

contrastive learning by simply adding the next to- 191

ken and contrastive loss. While the method trained 192

on two distinct datasets for retrieval and generation, 193

it leaves much room for exploration on how these 194

two losses work together. 195

In language models, reward modeling can guide 196

the generation process towards more accurate or 197

contextually appropriate responses. Zelikman et al. 198

(2022) and Huang and Chang (2023) explored how 199

self-taught reasoning and reflection can improve 200

reasoning capabilities in language models, which 201

could be beneficial for retrieval tasks that require 202

complex reasoning. To distinguish positive from 203

negative passages, we adopt the approach from 204

(Zhang et al., 2024b) that has shown that language 205

models can employ reward learning through sim- 206

ple next-token prediction. This comes especially 207

handy for GRITLM’s joint generative and embed- 208

ding objective. 209

3 Problem Statement & Evaluation 210

3.1 Problem Definition 211

In the context of multi-hop retrieval, given a fixed 212

corpus of paragraphs P and a multi-hop-question 213

q, the task is to identify a sequence of paragraphs 214

[p1, p2..., pn] where pi ∈ P , that collectively an- 215

swer q (Trivedi et al., 2022; Ho et al., 2020). 216

Decomposition-free methods (Xiong et al., 2021; 217

Zhang et al., 2024a) concatenate the multi-hop 218

question together with previously retrieved para- 219

graphs [q, p1, p2, .., pn] on the word level and feed 220

them as a single string into an Encoder model E to 221

retrieve the next paragraph as: 222

E(q, p1, p2, . . . , pn)→ E(pn+1) (1) 223

where all candidate passages pn+1 ∈ P are 224

pre-computed offline. Apart from question an- 225

swering, we also adapt fact-checking retrieval as 226

[claim, p1, p2, .., pn] where paragraphs can either 227

be supporting or refuting paragraphs. 228
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3.2 Datasets229

We use a range of datasets to evaluate our approach.230

We train all models on MuSiQue (Trivedi et al.,231

2022), HotpotQA (Yang et al., 2018), 2WikiMulti-232

HopQA (Ho et al., 2020), Explainable Fever (Ma233

et al., 2024), and HoVer (Jiang et al., 2020). These234

datasets encompass question-answering and fact-235

checking tasks with varying levels of complexity236

and hop depths. For out-of-distribution evaluation,237

we use the MultiHopRAG Benchmark (Tang and238

Yang, 2024) and MoreHopQA (Schnitzler et al.,239

2024).240

3.3 Evaluation241

To demonstrate the performance of all approaches242

at different hop depths, we calculate Hits@k at243

each hop. This metric considers a hop successful244

if the relevant passage is retrieved within the top-k245

results. Importantly, the evaluation only continues246

to the next hop if the previous hop was success-247

ful. This allows us to analyze the performance248

across varying hop depths, highlighting the ability249

of models to retrieve relevant passages in a sequen-250

tial multi-hop setup.251

4 Methods252

Our central objective is to understand how inte-253

grating causal language modeling (CLM) with254

dense embedding training impacts multi-hop re-255

trieval (RQ3), and whether adding post-retrieval256

signals (e.g., final answers, judging hard negatives)257

can further improve performance (RQ4). Unlike258

prior work, (Muennighoff et al., 2025), which com-259

bined generative and embedding training on dif-260

ferent datasets, we investigate their interplay un-261

der a unified, controlled setup. This allows us to262

isolate the influence of the generative objective263

on embedding quality. Previous research in lan-264

guage model pretraining has shown that combining265

masked language modeling (MLM) with embed-266

ding training on the same dataset often improves267

downstream representations (Devlin et al., 2019;268

Wu et al., 2020).269

4.1 A Shared Dataset for a Controlled Setup270

To critically evaluate how CLM and embedding271

objectives affect each other, we start from a shared272

dataset, where both objectives consume identical273

tokens. Concretely, consider a multi-hop question274

q and the sequence of previously retrieved para-275

graphs [p1, p2, . . . , pn]. The embedding model276

Figure 3: Highlighting the joint training objective (gen-
erative and contrastive) of GRITHopper. Both objec-
tives consume the exact same tokens, except for the
post-retrieval added information to the generative loss
in purple. Note that if the model is used like MDR
without stopping condition (shown as MDR Inference),
we keep one forward pass per hop as all action tokens
are only prompt tokens (not output tokens). Only if
we want to use the framework end-to-end by control-
ling when to stop/conduct reranking do we have to do
one/two additional causal forward passes.

learns to represent [q, p1, . . . , pn] so that it can 277

retrieve the next relevant paragraph pn+1, while 278

the generative model predicts the next tokens on 279

the same sequence in a causal manner. This con- 280

trolled baseline ensures that any retrieval improve- 281

ment upon adding the generative loss cannot be at- 282

tributed to extraneous factors like domain shifts or 283

additional training data. Instead, it must arise from 284

the generative objective itself, addressing RQ3: 285

does integrating CLM with embedding training, 286

under controlled conditions, enhance retrieval? 287

Starting from this shared dataset, we then in- 288

crementally enrich the generative model’s input 289

with post-retrieval information while keeping the 290

embedding input fixed. This step-by-step strategy 291

ensures that each addition’s impact on retrieval 292

is transparent and attributable solely to the newly 293

introduced elements, addressing RQ4. 294

1. Adding Final Answers: We append the final 295

answer ans to the retrieval chain: 296

[q, p1, p2, . . . , pn, ans]. 297

The embedding objective gets the exact same to- 298

kens [q, p1, . . . , pn] as the generative objective, 299

while the generative objective now additionally 300

predicts the ans. 301

2. Adding Hard Negatives: We further augment 302

the generative training by introducing an irrelevant 303
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passage pir, marked as such:304

[q, p1, p2, . . . , pn−1, pir, Irrelevant].305

The model learns to label the irrelevant para-306

graph causally via next-token prediction (Zhang307

et al., 2024b). If retrieval benefits from this, it308

indicates that contrasting positive and negative evi-309

dence in a generative framework helps refine the310

embedding space. This incremental approach, start-311

ing from a pure shared dataset and progressively312

adding final answers and negatives, provides a pre-313

cise experimental lens. We directly measure how314

each augmentation in the generative domain influ-315

ences the embedding model’s retrieval capabilities.316

4.2 ReAct-Style Instruction Tuning for317

End-to-End Multi-Hop Retrieval318

To incorporate these different actions to represent319

the entire multi-hop retrieval as a coherent textual320

sequence, we adapt the ReAct framework (Yao321

et al., 2023). Each retrieval hop, document evalua-322

tion, and final answer production is expressed as a323

short instruction or “action” phrase (see Figure 3).324

All these actions are represented as textual325

strings and integrated into the same sequences used326

by both the embedding and generative objectives.327

Their exact formatting for all multi-hop datasets328

(see §3.2) is described in Algorithm 1 in Appendix329

D. Because these augmented sequences include330

both the retrieval chain (i.e., [q, p1, . . . ]) and the331

action strings, we maintain the shared data dataset332

principle for both embedding and generative train-333

ing. This ReAct adaptation allows us to combine334

everything, final answers, negative passages, and335

retrieval steps, into a single, end-to-end system.336

Crucially, this framework allows the model to:337

• Decide if a retrieved document is relevant or338

not. (Eval in Figure 3)339

• Stop the search early if it encounters an irrel-340

evant paragraph. (after (Eval: Irrelev.) in341

Figure 3)342

• Continue retrieving until all necessary infor-343

mation is gathered (retrieve next in Figure344

3)345

• Finally, produce the answer. (Final Answer:346

in Figure 3)347

In other words, the ReAct-style instruction tun-348

ing not only aligns with our controlled experimen-349

tal design but also yields a system capable of au-350

tonomously handling the retrieval pipeline end-to-351

end. The model can determine how many steps352

to take and when to stop while providing a real- 353

istic and comprehensive testbed for studying the 354

interplay of CLM and embedding objectives in 355

multi-hop retrieval. 356

4.3 Hard Negative Mining 357

de Souza P. Moreira et al. (2024) have shown 358

that mining difficult hard negatives is essential for 359

achieving good dense retrieval performance. We 360

employ the strongest GRITHopper model from 361

our preliminary experiments, which has only been 362

trained with distractors as hard negatives, to search 363

via dense search the most difficult examples across 364

the entire dataset for our final training run. For 365

datasets like MuSiQue that provide entire decom- 366

positions (sub-questions with sub-answers for each 367

hop), we filter distractors that contain the sub- 368

answer. For other datasets where we are not able 369

to filter this way, we filter negatives that have a 370

cosine similarity higher than 0.95 to the positive 371

paragraph. We select 10 hard negatives for the con- 372

trastive loss for each positive sample and add the 373

most difficult one to our generative loss. We find 374

that this is essential for making the causal reward 375

learning work. 376

5 Experimental Setup 377

We train GRITHopper in two different setups. First, 378

we explore our ablations by fine-tuning one dataset, 379

MuSiQue (Trivedi et al., 2022). As we explain in 380

section 4.3, MuSiQue offers decomposition steps 381

with which we can ensure highly qualitative hard 382

negatives and is the most difficult multi-hop ques- 383

tion answering dataset in our dataset collection 384

according to Trivedi et al. (2022). The most com- 385

petitive models from these experiments are then 386

trained on a large collection of multi-hop datasets 387

(described in §3.2) on two seeds. We explore in 388

appendix C how we adapt each dataset in detail. 389

5.1 Training 390

GRITHopper-7B is trained on 8 × A100-80GB 391

GPUs with a contrastive batch size of 2048 using 392

GradCache (Luyu Gao, 2021) and a 256 batch size 393

for the generative loss, like GRITLM. We train all 394

models for 5 epochs and select the best checkpoint 395

via dense retrieval performance in the distractor 396

setting. 397
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Model Hits@1 Hits@5 Hits@10

1 2 3 4 Avg 1 2 3 4 Avg 1 2 3 4 Avg

MuSiQue
GRITHopper (ours) 94.25 76.13 55.45 32.10 76.42 99.59 96.32 85.92 57.04 93.18 99.79 98.59 91.07 69.63 95.85
GRITLM 91.15 57.51 22.32 5.43 60.51 99.50 91.31 65.49 35.56 86.18 99.96 96.61 83.26 51.85 92.61
MDR 81.75 45.18 - - 63.47 94.37 71.04 - - 82.71 96.73 78.82 - - 87.77
Beam Retriever 88.75 60.70 30.73 12.84 62.80 95.45 85.40 65.84 41.48 82.85 97.02 90.44 77.25 51.60 88.07
Qwen 2.5 32B + GRITLM decomposition 82.62 45.72 13.91 1.48 51.06 95.45 76.25 36.05 13.09 72.19 96.69 82.91 46.61 17.78 77.39
GPT4o + GRITLM decomposition 81.96 48.53 13.39 1.98 51.81 95.82 79.19 33.39 9.63 72.74 97.35 85.35 42.23 14.81 77.58

Explainable Fever
GRITHopper (ours) 96.88 92.20 85.38 - 93.02 99.79 99.29 98.72 - 99.40 99.94 99.53 99.13 - 99.63
GRITLM 91.13 54.88 17.28 - 63.83 99.47 82.89 41.89 - 82.99 99.79 88.47 51.98 - 87.12
MDR 92.93 77.16 - - 85.13 99.08 94.11 - - 96.62 99.44 95.97 - - 97.72
Qwen 32B + GRITLM decomposition 63.24 29.88 11.93 - 40.90 83.74 55.14 31.87 - 63.27 88.96 63.61 40.14 - 70.34

HoVer
GRITHopper (ours) 95.86 91.56 91.69 92.31 93.88 99.79 99.61 99.43 100.00 99.69 99.95 99.68 99.71 100.00 99.83
GRITLM 95.81 88.09 83.95 88.46 91.81 99.89 99.53 98.28 96.15 99.57 99.89 99.76 98.85 100.00 99.74
MDR 84.77 65.69 - - 77.10 96.60 89.51 - - 93.75 97.98 92.51 - - 95.78
Beam Retriever 98.04 88.96 85.96 76.92 93.42 99.47 97.56 97.71 100.00 98.61 99.73 97.79 97.71 100.00 98.84
Qwen 32B + GRITLM decomposition 75.38 61.44 50.43 46.15 67.69 82.23 74.84 68.19 69.23 78.09 84.24 78.15 72.21 73.08 80.78

Zero-Shot Multi-Hop RAG Benchmark
GRITHopper (ours) 76.98 55.92 27.89 18.59 55.87 98.63 89.22 60.97 51.76 84.80 99.78 94.90 71.43 64.32 90.17
GRITLM 78.23 27.23 4.85 2.51 40.19 98.49 75.21 33.76 16.33 71.98 99.87 91.04 59.86 36.93 84.75
MDR 19.56 2.22 - - 10.89 41.60 9.36 - - 25.48 50.55 15.12 - - 32.84
Beam Retriever 43.24 13.13 5.95 2.76 22.22 60.09 28.47 19.56 14.07 37.52 68.56 37.03 27.89 19.85 45.83
Qwen 32B + GRITLM decomposition 53.30 29.53 11.31 6.78 33.33 79.56 60.27 36.05 28.89 60.68 86.74 71.00 50.09 42.96 70.96
GPT4o + GRITLM decomposition 67.23 47.27 19.81 8.54 46.83 91.18 79.51 49.91 29.15 74.82 96.41 88.12 64.80 47.74 84.04

Zero-Shot MoreHopQA
GRITHopper (ours) 96.96 93.92 - - 95.44 99.91 99.19 - - 99.55 100.00 99.73 - - 99.87
GRITLM 98.75 95.53 - - 97.14 100.00 98.84 - - 99.42 100.00 99.73 - - 99.87
MDR 88.73 75.58 - - 82.16 98.30 90.79 - - 94.54 99.46 93.47 - - 96.47
Beam Retriever 97.85 93.02 - - 95.44 99.82 98.21 - - 99.02 100.00 98.39 - - 99.19
Qwen 32B + GRITLM decomposition 96.24 55.19 - - 75.72 99.55 65.38 - - 82.47 100.00 68.78 - - 84.39

Table 1: Open Retrieval comparison on different hop depths. We compare our best GRITHopper (with Answers but
no reward modeling) to BeamRetriever, GRITLM, MDR, and a decomposition-based approach.

5.2 Baselines398

Our baselines can be split into decomposition-free399

approaches and decomposition-based approaches.400

Starting with decomposition-free approaches, we401

chose GRITLM as our first baseline with the402

prompting formats we utilize for GRITHopper.403

GRITLM has also been trained on multi-hop ques-404

tion answering on HotpotQA and several Fever405

datasets (Thorne et al., 2018) for single-step re-406

trieval. Secondly, we train BeamRetriever (beam407

size 1), the current state-of-the-art method for408

multi-hop retrieval and MDR, on MuSiQue as well409

as our entire dataset collection (see §3.2). How-410

ever, MDR has only been trained on a fixed number411

of 2 hops. Therefore, we remove any additional412

hops after the second hop in our experiments. For413

MDR, we choose RoBerta-Large (Liu et al., 2019),414

and for BeamRetriever and Deberta-v3-Base (He415

et al., 2023), we find that these models perform416

best among Large and XL variations with the cor-417

responding architectures. For more details on how418

we explored different base models for these archi-419

tectures, see appendix A. Besides decomposition-420

free methods like GRITHopper, BeamRetriever,421

and MDR, we add an additional baseline using 422

decompositions. For this, we employ a simple one- 423

step-at-a-time decomposition (like (Guan et al., 424

2024) but with only one try for a fair comparison) 425

method using Qwen 2.5 32B (and GPT4o on two 426

datasets) for decomposing the multi-hop problem 427

into a single sub-question with 4 few-shot samples. 428

In the second step, we use GRITLM to embed the 429

sub-query and retrieve candidates. If a supporting 430

paragraph is retrieved within the top-k range, we 431

continue by asking Qwen/GPT4o to extract the an- 432

swer and use the previously solved sub-questions 433

to decompose the next sub-query. We provide the 434

prompt templates and GPT4o generation outputs 435

in the appendix A.3. 436

6 Experiments and Discussion 437

In this section, we first compare GRITHopper to 438

existing methods (including GRITLM, BeamRe- 439

triever, and a decomposition-based approach) in 440

an open retrieval setting. We then focus specifi- 441

cally on decomposition-based methods (RQ1). Af- 442

terward, we analyze the out-of-distribution gen- 443

eralization capabilities of GRITHopper (RQ2), 444

illustrating its robustness compared to previous 445
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state-of-the-art approaches. Following this, we446

delve into the application of GRITHopper on open447

retrieval scenarios and distractor setting evalua-448

tion on MuSiQue, examining how contrastive-only449

training and GRIT training, including final answers450

and reward modeling in the generative objective,451

affect retrieval performance. We discuss the infer-452

ence compute in Appendix E and training time in453

Appendix F.454

6.1 Comparison to Existing Methods on Open455

Retrieval456

Table 1 summarizes the performance of var-457

ious models on both in-distribution and out-458

of-distribution benchmarks across different hop459

depths. We compare GRITHopper to GRITLM,460

BeamRetriever, MDR, and Qwen 32B / GPT4o +461

GRITLM with decompositions.462

Across all evaluated tasks, GRITHopper consis-463

tently outperforms all other techniques, including464

the state-of-the-art model Beam-Retriever while465

being significantly more efficient as we explore466

in appendix E. For example, on the most diffi-467

cult dataset, the out-of-distribution MultiHopRAG468

benchmark, GRITHopper, achieves a significant469

improvement in Hits@1 at deeper hops. GRITLM,470

a previous generative-retrieval hybrid model, per-471

forms well for the first hop but struggles with472

deeper hops. BeamRetriever, despite demonstrat-473

ing strong performance in in-distribution tasks,474

exhibits a substantial performance drop when475

tested on the out-of-distribution MultiHopRAG476

benchmark, highlighting its tendency to overfit477

on datasets it was trained on. Similarly, while478

GRITLM is strong in certain scenarios, it cannot479

match GRITHopper’s robustness across multiple480

datasets and more complex multi-hop problems. In481

contrast, GRITHopper maintains strong retrieval482

quality even when encountering unseen data (RQ2).483

MDR degrades in the scenario the most.484

6.2 Decomposition-Based Approaches (RQ1)485

We now turn our focus to decomposition-based486

methods. The Qwen 32B + GRITLM decom-487

position approach breaks a complex multi-hop488

query into sub-questions. While this can simplify489

the reasoning steps, it introduces a notable trade-490

off in retrieval specificity. As shown in Table 1,491

the decomposition-based approach demonstrates a492

larger gap between Hits@1 and Hits@5 compared493

to other methods. Specifically, the average gap494

from Hits@1 to Hits@5 for the decomposition ap- 495

proach is 13.95, which is significantly higher than 496

GRITHopper’s 7.44, BeamRetriever’s 6.57, and 497

GRITLM’s 8.45. 498

This substantial gap suggests that generated sub- 499

queries often underspecify the necessary context, 500

causing initial retrieval inaccuracies. While rel- 501

evant passages appear among the top-k retrieved 502

documents, the first-ranked results are more likely 503

to be off-target. By contrast, GRITHopper’s end-to- 504

end differentiability preserves the full complexity 505

of the query, yielding more specific embeddings 506

that ensure relevant passages appear at the top, re- 507

ducing the need for multiple autoregressive steps. 508

6.3 Evaluating Generative Objectives and 509

Post-Retrieval Information (RQ3, RQ4) 510

Having established GRITHopper’s superiority over 511

previous models in both in-distribution and out-of- 512

distribution, we now turn to our final two research 513

questions, RQ3 & RQ4, and how we derive the 514

GRITHopper from our ablations. 515

To address these questions, we first conduct a 516

series of controlled experiments on the MuSiQue 517

dataset under the distractor setting (see Table 2). 518

This scenario allows us to isolate and compare the 519

effects of different generative strategies (with and 520

without final answers) and reward modeling before 521

deploying the chosen configurations in the more 522

challenging open retrieval environment. 523

In the distractor setting, our best-performing 524

GRITHopper variant uses both final answers and 525

reward modeling, achieving a Hits@1 score of 526

82.32. Even without reward modeling, adding the 527

final answer results in a still-impressive Hits@1 528

score of 82.08. Compared to a purely contrastive 529

approach without generative signals (78.02), these 530

findings demonstrate that causal language mod- 531

eling on the same dataset (80.78) improves per- 532

formance (RQ3). Building on that, the inclusion 533

of final answers (part of RQ4) substantially im- 534

proves retrieval accuracy (82.08) and is essential 535

for outperforming BeamRetriever in distribution 536

on MuSiQue (81.78). The final answer during 537

training provides a clearer retrieval target, guid- 538

ing the model to select more relevant passages at 539

each hop. However, when scaling these ablations 540

to all datasets (Table 3), reward modeling, while 541

effective in the distractor setting, led to overfitting 542

in open retrieval. Specifically, the GRITHopper 543

observing negatives causally during training (cross- 544
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encoder training) caused a 7.32% drop in Average545

Hits@1 when transitioning from the distractor set-546

ting to open retrieval on MuSiQue, compared to a547

milder 5.09% drop for its counterpart (only with548

Answers), averaged over two seeds. This is even549

more extreme with BeamRetriever, which excels550

under conditions closely matching its training dis-551

tribution (distractor setting in Table 2) but struggles552

to generalize on the same dataset in open retrieval553

(Table 1). Here, the DeBerta Large version, while554

achieving the strongest results under distractors555

(see Table 2), performs worse than the base variant556

in open retrieval; we explore this further in Ap-557

pendix A.1. These findings suggest that learning558

difficult negatives causally can improve discrim-559

ination on difficult distractors but hinder broader560

generalization in dense retrieval. By contrast, Grad-561

Cache’s large in-batch negatives provide a more562

robust discriminative learning signal while having563

a slight disadvantage of “hand-crafted” distractor564

discrimination. Thus, while both generative train-565

ing and final answers prove beneficial (answering566

RQ3 and partially RQ4 affirmatively), reward mod-567

eling offers only limited gains and at a considerable568

cost to generalization. Furthermore, we compare569

the end-to-end performance of the models to stop570

after the correct amount of hops; BeamRetriever571

can do so by comparing the scores from the cur-572

rent and the previous hop; if it decreases, it stops573

(see (Zhang et al., 2024a) Appendix C). However,574

we find that these scores are biased to decrease575

after the first hop, often leading to premature stop-576

ping. GRITHopper seems to be more robust in this577

scenario (see Table 2). However, we find a slight578

misalignment in the causal and dense retrieval per-579

formance, which we explore in Appendix B.2.580

7 Conclusion581

We introduced GRITHopper-7B, a novel multi-582

hop dense retrieval model that achieves state-of-583

the-art performance across both in-domain and out-584

of-distribution datasets. By training on extensive585

multi-hop datasets in question-answering and fact-586

checking, GRITHopper-7B outperforms previous587

decomposition-based methods while maintaining588

the efficiency of dense encoders. Our study demon-589

strated that decomposition-free approaches like590

GRITHopper surpass decomposition-based meth-591

ods in multi-hop retrieval tasks due to better query592

specificity and reduced computational overhead.593

GRITHopper generalizes exceptionally well on594

Model Average Hits@1

Dense Retrieval

GRITHopper (Answers & Reward) 82.32
GRITHopper (Answers) 82.08
GRITHopper (no post lm) 80.78
GRITHopper (Contrastive Only) 78.02

Cross Encoder

BeamRetriever Large (all datasets) 85.10
BeamRetriever (all datasets) 81.78
BeamRetriever (MuSiQue Only) 80.98
GRITHopper ReRank∗ 59.04

End-to-End Retrieval

GRITHopper end-to-end∗ 75.00
BeamRetriever end-to-end 38.21

Table 2: MuSiQue distractor-setting dense retrieval per-
formance. All GRITHopper models are trained only on
the MuSiQue dataset. ∗ Uses GRITHopper (Answers &
Reward). No post lm stands for causal modeling only
on the retrieval chain

Dataset Avg. Hits@1 for GRITHopper with:

Ans + Rew Ans No Post

In Distribution
ExFever 87.10 91.81 89.69
MuSiQue 76.16 75.95 75.22
Hover 93.34 94.29 94.36

Zero-Shot Benchmarks
MoreHopQA 96.14 95.80 94.68
MultiHopBench 51.74 54.03 51.13

Table 3: GRITHopper trained on all datasets in open
retrieval performance. Results are averaged over two
seeds. Ans includes the final answer in the generative
samples. Rew includes reward modeling to distinguish
negatives from positives, while No Post does not in-
clude post-retrieval language modeling.

out-of-distribution benchmarks, confirming its ro- 595

bustness across diverse datasets. We found that 596

integrating causal language modeling with embed- 597

ding training substantially enhances dense retrieval 598

performance compared to embedding-only train- 599

ing. Additionally, incorporating post-retrieval lan- 600

guage modeling by including final answers further 601

improves the model’s ability to retrieve relevant 602

passages, while causal negatives lead to stronger 603

distractor but worse open retrieval performance. 604

We have demonstrated how its generative training 605

enables GRITHopper for end-to-end retrieval, out- 606

performing previous state-of-the-art methods. We 607

release GRITHopper-7B to the community as a 608

resource for future research in natural language 609

processing tasks requiring complex reasoning and 610

retrieval capabilities. 611
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8 Limitations612

Despite its state-of-the-art performance,613

GRITHopper-7B has several limitations:614

• Scalability Challenges for Large Corpora:615

While GRITHopper efficiently handles open-616

domain multi-hop retrieval, the reliance on617

pre-computed dense embeddings limits its618

scalability for extremely large corpora. The619

computational cost of creating and maintain-620

ing dense representations for frequent updates621

remains for a 7B model significant.622

• Dependency on High-Quality Hard Nega-623

tives: GRITHopper relies on effective hard624

negative mining to train contrastive objectives.625

This dependency may limit its applicability626

in domains or datasets lacking high-quality627

distractor annotations or the ability to mine628

suitable negatives. This is something we espe-629

cially observe in reward learning, where there630

are substantial performance drops on datasets631

where we lack information on answers and632

sub-questions (like Fact-Checking) to deter-633

mine which makes a passage irrelevant or rel-634

evant.635

• Computational Overhead for Training:636

The integration of both embedding and gen-637

erative objectives requires substantial GPU638

resources (e.g. 8 × A100-80GB GPUs). This639

makes GRITHopper less accessible for re-640

search groups with limited computational re-641

sources.642

• Sensitivity to Dataset Characteristics:643

GRITHopper performs exceptionally well on644

multi-hop tasks with well-defined retrieval645

chains (e.g., MuSiQue, HoVer). However,646

its performance on tasks with noisier or less647

structured retrieval chains (e.g., conversa-648

tional QA) remains untested, highlighting po-649

tential brittleness to dataset variability.650

• Multi-Hop Dense Retrieval Model Since,651

in contrast to GRITLM, we do not train on652

(retrieval-independent) instruction datasets in653

parallel, we do not expect that the model654

will perform well on generation on other655

tasks. Thus, our model is intended only for656

decomposition-free multi-hop dense retrieval.657

• Limited Exploration of End-to-End Re- 658

trieval Dynamics: While GRITHopper en- 659

ables end-to-end retrieval with generative out- 660

puts, its ability to reliably optimize retrieval 661

dynamics is not yet at the optimum. For e.g., 662

the best stopping performance is achieved at 663

75%, but since we focus on selecting the best 664

dense retriever, the stopping performance is 665

at 71.22%. This choice ensures the best gen- 666

eralization in embedding performance, which 667

typically differs from the optimal generative 668

performance. Future work should explore 669

whether scaling the dataset further can help 670

close this gap between causal language mod- 671

eling and dense retrieval. 672

9 Ethics 673

The development and deployment of 674

GRITHopper-7B raise two key ethical con- 675

siderations. First, the model’s reliance on 676

large-scale datasets introduces the risk of propa- 677

gating biases present in the training data (Prakash 678

and Lee, 2023; Schramowski et al., 2022), 679

potentially leading to skewed retrieval outcomes 680

or amplification of misinformation. Additionally, 681

the open-domain nature of the retrieval task 682

heightens the risk of retrieving sensitive or 683

harmful content, which could pose challenges 684

in privacy and content moderation. Second, 685

GRITHopper’s decomposition-free approach 686

reduces interpretability compared to methods that 687

produce intermediate outputs, making it harder 688

to explain and trust its decisions in high-stakes 689

scenarios. 690
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A Baselines 886

A.1 Beam Retriever 887

The Beam Retriever (Zhang et al., 2024a) em- 888

ploys a cross-encoder architecture and relies on 889

beam search to determine the number of steps 890

required for retrieving multi-hop evidence. Un- 891

like methods that have a predetermined number 892

of computations, the Beam Retriever dynamically 893

expands or shrinks the retrieval process, which 894

is why the authors train with a Batch Size of 1. 895

Because large-scale parallelization on GPUs re- 896

quires a uniform number of computations, this 897

variability makes batching and distributed training 898

for the model infeasible. Attempting to scale the 899

Beam Retriever beyond DeBERTa-Base results in 900

both performance degradation in open-retrieval and 901

over-fitting on the distractor setting while facing 902

dramatically increased training times. We tested 903

ModerdBert Large (Warner et al., 2024), DeBerta 904

Large, DeBerta XL and the DeBerta base variant 905

of the original paper. As highlighted in Table 4, we 906

find that larger models, while achieving substantial 907

performance improvements in the distractor set- 908

ting, drop in performance in open retrieval on the 909

same dataset. Showcasing the overfitting tendency 910

to only train on distractors. 911

Model MuSiQue
Distractor Open Retrieval

DeBERTa Base 81.78 62.80
DeBERTa Large 85.10 61.90
DeBERTa XL 72.36 58.24
ModernBert Large 74.53 60.06

Table 4: BeamRetriever Performance on MuSiQue Dis-
tractor vs. MuSiQue Open Retrieval

A.2 MDR 912

Multi-Hop Dense Retrieval (MDR) (Xiong et al., 913

2021) is natively designed for exactly two-hop re- 914
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trieval. Efforts to extend MDR to more than two915

hops by adapting the loss function, as suggested916

by Ma et al. (2024), led to instabilities in our ex-917

periments, including scenarios where the model’s918

embeddings collapse. Since MDR’s loss is com-919

puted at the sample level, adapting it for varying920

hop lengths becomes non-trivial. These complex-921

ities, combined with the need to maintain large922

batch sizes for good generalization, hindered scal-923

ing to larger models or additional hops.924

We train MDR on 8 × A100-80GB GPUs and925

find that batch size must decrease as model size926

grows. For instance, we can use a batch size of927

16× 8 for base models, 8× 8 for roberta/deberta928

large ones, and only 2 × 8 for the largest vari-929

ant (DeBerta XL). This reduction in batch size930

likely impacts the model’s generalization capabil-931

ities. Table 5 in the main paper shows that even932

scaling MDR to RoBERTa-Large yields only mi-933

nor improvements, and attempts to go beyond this934

configuration or handle more than two hops fail935

due to the aforementioned instabilities. To remain936

fair to the original authors, we report MDR re-937

sults that remain as close as possible to their origi-938

nal setup. Bringing MDR up to today’s standards939

would likely involve adopting modern embedding940

objectives with techniques like gradient caching941

and instruction-tuned LLM backbones approaches942

we have integrated in our ablations with GRITHop-943

per, where combining generative and embedding944

training yields superior performance compared to945

contrastive-only baselines (like MDR).946

A.3 Decompostion based approach947

As discussed in Section 5.2, our decomposition-948

based baseline uses a step-by-step query decompo-949

sition approach. Each complex multi-hop question950

is decomposed into simpler sub-questions, and at951

each step we retrieve supporting paragraphs and952

extract the relevant answer.953

We employ four prompt templates for decompo-954

sition:955

1. First-Hop Sub-Question Generation: Gen-956

erates the initial sub-question from the origi-957

nal multi-hop question.958

2. Second-Hop (Next) Sub-Question Genera-959

tion: Generates the next sub-question given960

the original question and the previously an-961

swered sub-questions.962

3. Third-Hop (Next) Sub-Question Genera-963

tion: Similar to second-hop but for the third964

hop. 965

4. Fourth-Hop (Next) Sub-Question Genera- 966

tion: Similar to above, for the fourth hop. 967

Finally, we have an Answer Extraction 968

Prompt, used after retrieving paragraphs, to ex- 969

tract the answer snippet. 970

Note on Evaluation Fairness: We evaluate re- 971

trieval performance at each hop by checking if the 972

correct evidence appears within the top-k retrieved 973

paragraphs. This evaluation is independent of the 974

sub-questions order. Thus, regardless of how a 975

model decomposes the problem, the evaluation re- 976

mains fair and consistent across all methods. 977

Transparency of GPT4o experiments We pro- 978

vide the code for our GPT4o experiments and 979

GPT4o generations as part of our anonymous 980

GitHub Repository. 981

Evaluation. For evaluation, we follow a stan- 982

dard hits@k metric at each hop. We compare all 983

models on their ability to retrieve the correct ev- 984

idence at hop 1, then at hop 2, and so forth. To 985

ensure a fair comparison, we do not rely on the 986

self-correctness of decomposition-based methods 987

as they inherently involve autoregressive genera- 988

tion, which allows multiple retries. In contrast, our 989

decomposition-free approach computes a single 990

dense embedding per step, making it significantly 991

more efficient. While self-correction could im- 992

prove performance, it introduces additional ineffi- 993

ciencies, contradicting the goal of comparing meth- 994

ods under the most efficient setting. Importantly, 995

decomposition-based methods already require sep- 996

arate models for generation and embedding, further 997

increasing computational cost. 998

B Training of GRITHopper 999

In this section, we describe how GRITHopper was 1000

trained and how we derived the used training setup. 1001

B.1 Hard Negative Mining and Curriculum 1002

Learning 1003

Initially, we employed a curriculum learning ap- 1004

proach: after each epoch, we used the current 1005

model’s predictions to mine new negatives for the 1006

subsequent epoch. However, longer training (be- 1007

yond two or more epochs) led to overfitting and 1008

hindered out-of-distribution performance. We also 1009

tried taking the model checkpoints from one epoch 1010

to mine negatives, and then re-initializing a fresh 1011

model with those mined negatives. This approach 1012
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Model Hits@1 Hits@5 Hits@10

1 2 3 4 Avg 1 2 3 4 Avg 1 2 3 4 Avg

Comparison to other models on MuSiQue
GRITHopper (ours) 93.09 74.93 55.19 32.10 75.48 99.75 95.86 86.44 58.02 93.22 99.88 97.77 93.05 71.36 96.03
GRITLM 91.15 57.51 22.32 5.43 60.51 99.50 91.31 65.49 35.56 86.18 99.96 96.61 83.26 51.85 92.61
Beam Retriever 88.75 60.70 30.73 12.84 62.80 95.45 85.40 65.84 41.48 82.85 97.02 90.44 77.25 51.60 88.07
Qwen 32B + GRITLM decomposition 82.62 45.72 13.91 1.48 51.06 95.45 76.25 36.05 13.09 72.19 96.69 82.91 46.61 17.78 77.39

MDR on MuSiQue
DeBerta Base 62.43 20.60 - - 41.52 79.98 40.67 - - 60.32 85.52 49.28 - - 67.40
Deberta Large 74.35 32.06 - - 53.21 85.97 52.25 - - 69.11 89.78 59.95 - - 74.87
XL DeBerta 87.05 48.37 - - 67.71 96.07 75.42 - - 85.75 97.60 82.75 - - 90.17
Roberta Large 86.06 50.19 - - 68.12 95.32 76.71 - - 86.02 96.40 82.42 - - 89.41

MDR on all Datasets
Roberta Large 81.75 45.18 - - 63.47 94.37 71.04 - - 82.71 96.73 78.82 - - 87.77

Table 5: MDR ablations on different backbone architecturs

Prompt B.1: Decomposition of next Sub-
Question

You are given a multi-hop question and the answers
to previous sub-questions. Given this information,
break down the multi-hop question into the next
smaller sub-question that can be answered by re-
trieving information via a search engine.
(Few-shot Examples: Multi-hop question +
previous answers)
Input:
Multi-hop Question: {multi_hop_question}
Previous Sub-Questions and Answers: {history}

Output:
Next Sub-Question: {generated_sub_question}

Prompt B.2: Answer Extraction

You are given a question and a paragraph that con-
tains the answer. Extract the relevant part of the
paragraph that answers the sub-question. Ensure that
the answer is as concise and accurate as possible.
(Few-shot Examples: Question + Retrieved
Paragraph)
Input:
Question: {sub_question}
Retrieved Paragraph: {retrieved_paragraph}

Output:
Answer: {extracted_answer}

Figure 4: Decomposition and Answer Extraction Prompt Templates. Few-shot examples include similar multi-hop
problems with previously answered sub-questions and answers, demonstrating a consistent step-by-step structure.
We provide a custom decomposition instruction for the first hop and provide custom 4 few-shot samples for each
additional hop.

did prove beneficial and improved 4% on MusiQue1013

in preliminary experiments.1014

B.2 Causal vs Dense Retrieval Performance1015

We find that when training on all datasets, the1016

peek performance on causal performance is only1017

reached after 3 times longer training than for op-1018

timal embedding performance, leading to overfit-1019

ting. To not sacrifice embedding generalization,1020

GritHopper on all datasets has, therefore, a slightly1021

weaker end-to-end performance at 71.22 than its1022

MuSiQue Only version at 75. We observe this1023

also in the re-ranking performance which is sig-1024

nificantly lower at 59.04, and although extended1025

training improves re-ranking to up to 76.78, it still1026

does not surpass the embedding performance while1027

leading to overfitting on the dense retrieval task.1028

C Detailed Dataset adaptations 1029

We first discuss the evaluation dataset specifics for 1030

evaluation and then our Training Dataset construc- 1031

tion. 1032

C.1 Detailed dataset statistics for Evaluation 1033

We show the evaluation dataset statistics in Table 7. 1034

We use all paragraphs used for solving the multi- 1035

hop problems as negatives for our open retrieval 1036

setting. We do not add even more examples as 1037

this would make a comparison to the current state- 1038

of-the-art model BeamRetriever impossible. This 1039

gives us a candidate pool between 2000 samples for 1040

MoreHopQA and up to 20000 samples in Explain- 1041

able Fever in our experiments. This already can 1042

lead to BeamRetriever requiring up to 400 hours 1043

to solve one dataset as we discuss in Appendix E. 1044
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C.1.1 Training Dataset1045

We use the entire dataset of MuSiQue, HotpotQA1046

as well as Hover. In Hover and ExFever, however,1047

we find that not all hops are multi-hop if we remove1048

duplicated evidence in the same sample, resulting1049

in some 1-hop problems. The 2WikiMultiHopQA1050

consist of only 2 hop and 4 hop problems, as we1051

have a large amount from 2 hop problems already1052

from HotpotQA, we only take 4 hop problems from1053

there to not further unbalance the length of hops.1054

While the post-retrieval information for MultiHop1055

Question answering is clear, for fact-checking, we1056

adapt whether the claim is supportive or unsupport-1057

ive as the final answer. From Hover, we only use1058

supporting paragraphs as it has no refuted label,1059

making incomplete/irrelevant as positives unsuit-1060

able for contrastive learning.

Dataset Total Samples Samples Per Hop
Hop 1 Hop 2 Hop 3 Hop 4

MuSiQue 19,938 0 14,376 4,387 1,175
HoVer 10,280 3,762 5,579 883 56
HotpotQA 90,447 0 90,447 0 0
ExFever 28,774 1,272 17,444 10,058 0
2WikiMultiHopQA 34,942 0 0 0 34,631
Total 184,070 5,034 127,846 15,328 35,862

Table 6: Training dataset statistics, including the to-
tal number of samples and the distribution of samples
across different hop depths for each dataset. The final
row shows the aggregate totals, providing an overview
of the dataset scale when training across all datasets.

1061

C.1.2 Open Evaluation statistics1062

Dataset total Samples Per Hop
1 2 3 4

MoreHopQA 1,118 0 1,118 0 0
ExFever 8,038 166 4,671 3,201 0
MuSiQue 2,417 0 1,252 760 405
MultiHopBench 2,556 0 1,079 778 398
Hover 1,885 617 919 323 26

Table 7: Dataset statistics for the open retrieval evalua-
tion setup. The table includes the number of multi-hop
problems and the distribution of samples across differ-
ent hop depths for each dataset.

In this section, we compare the computational 1063

complexity of a cross-encoder-based multi-hop 1064

retriever (e.g., Beam Retriever) and a dense bi- 1065

encoder-based multi-hop retriever (e.g., GRITHop- 1066

per and MDR) under the scenario where both must 1067

consider the entire corpus of P passages at each 1068

retrieval hop. This corresponds directly to the set- 1069

ting in our experiments, where the Beam Retriever 1070

processes all P passages at every hop without a 1071

first-stage filter, resulting in prohibitively long run- 1072

times. 1073

D Algorithm Dataset formatting 1074

Algorithm 1 Dataset Construction for Multi-Hop
Retrieval
Input: Multi-hop dataset D = {(q,P, a)}, where
q is the question, P is the set of paragraphs,
Ps ⊆ P are supporting paragraphs, and a is the
final answer.
Output: Generative samples Sg, Contrastive sam-
ples Sr.

1: Initialize Sg ← ∅, Sr ← ∅
2: Set instructions InstQ, InstD, and actions
3: for (q,P, a) ∈ D do
4: P ← InstQ + q
5: ▷ Initialize retrieval prompt
6: Sneg ← ∅
7: for i = 1 to |Qd| do
8: ▷ Iterate through decomposition steps Qd

9: P ← Qd[i]
10: Dneg ← mine_negative(P,P)
11: Dpos ← Ps[i]
12: Sr ← Sr ∪ (P,Dpos, Dneg)
13: Pneg ← P + Document: Dneg

14: Pneg ← Pneg + Eval(neg)
15: Sneg ← Sneg ∪ Pneg

16: ▷ next continue with positive chain
17: P ← P + Document: Dpos

18: P ← P + Eval(pos)
19: if i ̸= |Qd| then ▷ Final step
20: P ← P + Retr
21: end if
22: end for
23: Pfinal ← P + Answer: a
24: Sg ← Sg ∪ Pfinal

25: Sg ← Sg ∪ random_select(Sneg)
26: ▷ to balance positive and negatives
27: end for
28: return Sg,Sr
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E Complexity Analysis1075

Notation:1076

• Q: Number of queries.1077

• H: Average number of hops per query.1078

• P : Total number of passages in the corpus.1079

• Lq: Length (in tokens) of the query plus pre-1080

viously retrieved context.1081

• Lp: Length (in tokens) of a passage.1082

• Cmodel(L): Compute cost of a single forward1083

pass on an input of length L.1084

• Csearch(P ): Compute cost of searching P pre-1085

encoded embeddings (sub-linear in P using1086

ANN indexes).1087

E.1 Cross-Encoder (Beam Retriever)1088

The cross-encoder must re-encode each passage1089

together with the query at every hop. Without any1090

pre-retrieval pruning, it compares against all P1091

passages each time:1092

O(Q ·H · P · Cmodel(Lq + Lp)).1093

Since every passage is processed through the cross-1094

encoder at every hop, runtime grows linearly with1095

P and H . For large P , this becomes extremely1096

time-consuming (e.g., hundreds of hours).1097

E.2 Dense Bi-Encoder (GRITHopper)1098

Dense retrieval encodes all P passages once of-1099

fline:1100

O(P · Cmodel(Lp)).1101

At inference time, each hop only requires encoding1102

the query and performing a vector search over P :1103

O(Q ·H · [Cmodel(Lq) + Csearch(P )]).1104

Because the passages are already encoded, the cost1105

per hop is dominated by a single query encoding1106

and efficient similarity search. This typically takes1107

orders of magnitude less time than re-encoding P1108

passages at every hop.1109

E.3 Discussion1110

Under identical conditions, considering all P pas-1111

sages at each hop, the Beam Retriever’s complexity1112

grows as O(Q ·H · P ) with a high per-pass token1113

cost, resulting in very long runtimes (e.g., over 4001114

hours in our ExFever open-retrieval experiments).1115

In contrast, GRITHopper amortizes passage encod-1116

ing and relies on fast search structures, completing1117

the same task in 8 minutes and 20 seconds. This1118

substantial practical difference in runtime reflects1119

the asymptotic advantage of dense retrieval for 1120

large-scale, multi-hop scenarios. 1121

F Training Time Comparison 1122

See Table 8. 1123
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Model Trained Epochs Best Perf. Epoch # GPUs Training Time (h) Total GPU Hours

GritHopper (7B) 5 1-2 8 181 1448

BeamRetriever DeBERTa XL 10 (default: 20) -∗ 1 452 452
BeamRetriever DeBERTa Large 20 14 1 289 289
BeamRetriever DeBERTa Base 20 7 1 112 112

Table 8: Training time comparison of different retrieval models trained on all datasets. The table shows the base
model, the number of trained epochs, the best performance epoch, the number of GPUs used, the total training time
in hours, and the total GPU hours (number of GPUs × training time). -∗ performance plateau was not reached.
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