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ABSTRACT

Social dilemmas are situations where gains from cooperation are possible but
misaligned incentives make it hard to find and stabilize prosocial joint behavior. In
such situations selfish behaviors may harm the social good. In spatiotemporally
complex social dilemmas, the barriers to cooperation that emerge from misaligned
incentives interact with obstacles that stem from spatiotemporal complexity. In this
paper, we propose a multi-agent reinforcement learning algorithm which aims to
find cooperative resolutions for such complex social dilemmas. Agents maximize
their own interests while also helping others, regardless of the actions their co-
players take. This approach disentangles the causes of selfish reward from the
causes of prosocial reward. Empirically, our method outperforms multiple baseline
methods in several complex social dilemma environments.

1 INTRODUCTION

Individuals often have their own desires which do not align with their group’s objectives. This kind of
misalignment is common in practical situations. For example, in economic cooperation, participants
could gain by investing in trust and rule compliance to ultimately enhance market efficiency and
growth, but must avoid the temptation to chase short-term gains by deceit or rule evasion. When
this kind of scenario also contains spatial and temporal complexity it is called a Sequential Social
Dilemmas (SSD) Leibo et al. (2017). The reason SSDs pose challenging environments for learning
agents is that their spatial and temporal complexity can interact with the strategic complexity arising
from the agents’ misaligned incentives.

For example, in one classic SSD game, called Cleanup (Hughes et al., 2018), players are rewarded
by collecting apples from an orchard whose growth is restricted by the accumulation of pollution
in a nearby river. Apples stop growing unless players contribute to the public good by cleaning
the river, a task which involves navigating to a specific location and executing multi-step action
sequences. The cleaner the river, the faster the apples grow. However, since the river and orchard are
geographically separated, players cannot eat and clean at the same time, and must also spend time
walking between the two locations. Selfish players who never clean benefit more from a clean river
than do altruistic players who perform all the work of cleaning, since the altruists lose time cleaning
and walking between the river and orchard. Cleaning the river promotes higher long-term collective
return (it is prosocial), but it requires necessary sacrifice on the part of the individuals who spend
their time cleaning rather than eating. The cooperation between “cleaners” and “eaters” in Cleanup is
an example of division of labor where some roles are remunerated less than other roles, a common
though unfair arrangement in real life (Yaman et al., 2023).

Owing to their real-world significance, sequential social dilemmas have recently attracted much
attention from researchers. Many works attempt to promote cooperation behaviors by learning
relationships between agents’ actions. Algorithms such as LOLA (Foerster et al., 2017) promote co-
operation by modeling opponents’ behaviors. Jaques et al. (2019) investigate the causal relationships
between the actions of agents. Modeling the relationships between actions might lead to reciprocation
behaviors, as such methods could end up capturing spurious correlations between behaviors while
failing to identify real causal relationships between actions and outcomes. In another line of work
(Hughes et al., 2018; McKee et al., 2020; Wang et al., 2019; Lupu & Precup, 2020; Kwon et al.,
2023), agents are encouraged to intrinsically maximize the welfare of others to promote cooperation
behavior among the group. The Gifting mechanism (Lupu & Precup, 2020) allocates a portion of
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agents’ individual rewards to their co-players, encouraging collaboration by decreasing the cost of
self-sacrifice; LIO (Yang et al., 2020) promotes cooperative paradigms by learning to incentivize
other agents using agent’s own rewards. Furthermore, there are also methods like (Kwon et al., 2023)
that attempt to automatically align agents’ incentives with global incentives. These approaches design
altruistic rewards to promote cooperation behaviors, but fail to capture the reward generation process,
which may lead to spurious prediction of the true team incentives.

In this work, we aim to establish a reinforcement learning algorithm using counterfactual regret to
align incentives in a group of agents through maximizing both the agent’s individual outcome and
other agents’ outcomes. In SSDs, naively using individual for each agent might not always align
with the group’s objective. Because the agents might be rewarded for some selfish behaviors when
other agents cooperate (e.g. by exploiting them). Such entanglement of the agents’ policies would
bring bias to the estimation of their contributions to the society. Furthermore, such entanglement
may cause spurious prediction on the real cause of the agents’ reward. Observing that, we utilize a
causal model to mimic the generation process of the individual rewards for all other agents in the
group. Counterfactual regret has been used to solve problems under single agent’s scenarios (Brown
et al., 2019). Based on that model, we could define the counterfactual regret in multi-agent setting as
the difference between the maximum counterfactual reward for other agents and the other agents’
actual reward. More specifically, we calculate the maximum expected outcome for all other agents by
predicting their maximum expected rewards under multiple counterfactual scenarios, then subtract
the current other agents’ reward to construct counterfactual regret. Minimizing such counterfactual
regret could guide each individual agent to additionally consider other agents’ reward, which would
eventually lead to better cooperation paradigm. As the basis of method, we utilize a causal model
to describe the generative process within the Partially Observable Markov Games and guide the
counterfactual reasoning. Assisted by such a causal model, we aim to capture the real cause of reward
generation, reducing the risk of learning spurious relationships and generating counterfactual rewards
by intervening on the actions of agents. Theoretically, we prove that under faithfulness assumption
and Markov condition, we can identify the real cause in the generation of individual rewards, which
enable us to reason the counterfactual rewards of agents. Furthermore, we demonstrate that our
method surpass the baseline methods in most of the sequential social dilemma environments through
empirical results.

In summary, our contributions are threefold. Firstly, we exploit a generative model to explicitly
capture the generation process of individual rewards in SSDs. It provides a guidance for the further
counterfactual reasoning from the causal view. Secondly, we infer the counterfactual regret based
on our learned causal model to mimic the expected outcome of other agents. Combining this
counterfactual regret with the original individual rewards guides our agents to learn and respond
to the social incentives embedded in their environment. Lastly, we evaluate our algorithm on four
sequential social dilemma tasks, along with their respective variants, to assess its performance
comprehensively. The experimental results demonstrate the superior performance of our algorithm in
fostering cooperation and enhancing overall collective reward.

2 RELATED WORK

Below we review the related work on intrinsic reward design methods and causality-facilitated
reinforcement learning methods.

In the SSD setting, intrinsic motivation methods allow agents to actively care about the welfare of
others intrinsically, or modify the extrinsic rewards of other agents. In scenarios where environmental
rewards are misleading, relying solely on external rewards provided by the environment may not
be sufficient for effective learning. Social learning is incredibly important for humans and has been
linked to our ability to achieve unprecedented progress and coordination on a massive scale (Henrich,
2015; Harari, 2014; Laland, 2017; Van Schaik & Burkart, 2011; Herrmann et al., 2007). While some
previous work has investigated intrinsic social motivation for reinforcement learning under sequential
social dilemma setting, e.g., Sequeira et al. (2011); Hughes et al. (2018); Peysakhovich & Lerer
(2017), these approaches rely on hand-crafted rewards specific to the environment, or allowing agents
to view the rewards obtained by other agents (Durugkar et al., 2020). Methods like D3C (Gemp
et al., 2020) and Auto-aligning multi-agent incentives (Kwon et al., 2023) take further steps to align
agents’ incentives automatically by modifying agents’ incentives online to achieve a new goal. This
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could help decentralized agents automatically modify their incentives based on the preset incentives
online to achieve a new goal. However minimizing the Price of anarchy directly results in increased
inequality (Gemici et al., 2018). Achieving coordination among agents in sequential social dilemmas
still remains a difficult problem. Prior work in this domain, e.g., Foerster et al. (2016; 2018),
often resorts to centralized training to ensure that agents learn to coordinate. While communication
among agents could help with coordination, training emergent communication protocols also remains
a challenging problem; recent empirical results underscore the difficulty of learning meaningful
emergent communication protocols, even when relying on centralized training e.g. Cao et al. (2018);
Forestier & Oudeyer (2017).

Causality is used to address many RL problems like improving the transfer ability of RL agents(Huang
et al., 2021; Feng et al., 2022), model-based RL Zhang & Bareinboim (2016); Liu et al. (2023). (Hu
et al., 2023a; Pitis et al., 2022; Hu et al., 2023b) unveil the causal structures within the MDP generative
process and exploit those causal lenses to facilitate policy learning. More recently, causality-inspired
methods are proposed to address MARL problems (Grimbly et al., 2021; Jaques et al., 2019; Li
et al., 2021). Li et al. (2021) introduce counterfactual Shapley value in the credit assignment setting.
(Zhou et al., 2022) attempted to use counterfactual prediction in the value decomposition field.
Despite the significant contributions of prior research, a common oversight has been the neglect of
self-interest settings, where individual interests may not necessarily align with team goals. Even
in studies that acknowledge this aspect, there’s often an incomplete capture of each individual’s
incentives, potentially leading the algorithms to converge to suboptimal solutions. In contrast, our
work delves into the causal mechanisms underlying the generation of agents’ individual rewards,
facilitating a more effective alignment of individual interests with the collective objectives. Moreover,
by employing counterfactual reasoning, we mitigate the influence of other agents’ actions, leading to
a more stable and precise estimation of the overall incentives.

3 PRELIMINARY

Partially Observable Markov Game (POMG) is defined by the tuple ⟨N,S,O, T,A,R⟩, in which
multiple agents are trained to independently maximize their own individual reward; The environment
state is given by s ∈ S. At each timestep t, each agent i ∈ N chooses an action ait ∈ A. The actions
of all N agents are combined to form a joint action at = [a1t , · · · , aNt ], which produces a transition
in the environment T (st+1|at, st), according to the state transition T . We consider a partially
observable setting in which the i-th agent can only view a portion of the true state, represented as
individual observation oit. We denote all agents’ observation as the joint observation ot. Each agent i
seeks to maximize its own total expected discounted future reward, Ri =

∑∞
t=0 γ

trit, where γ is the
discount factor. Each agent i then receives its own reward ri(at, st), which depends on the actions of
other agents.

Counterfactual Reasoning in our paper refers to reasoning that all individual rewards r would be rcf

if the collective actions a had been acf at the latent state s = s. We exploit the learned causal model
to estimate the latent state variable s and infer the counterfactual reward rcf given counterfactual
action acf. To interpret the phrase: had collective actions a been acf, modify the original model and
replace the equation for a by a constant acf. This replacement permits the constant acf to differ from
the actual value of a without rendering the system of equations inconsistent (Pearl, 2010). In general,
it can be shown (Pearl (2009), Section 3) that, whenever the graph is Markovian (i.e., acyclic with
independent exogenous variables) the post-interventional distribution P (r = rcf|do(a = acf)) is
given by the following expression P (r = rcf|do(a = acf), s) = P (rcf | acf, s)P (s). If there is no
incoming path for a in the causal graph, i.e., a has no causal parents, we have P (r = rcf|do(a =
acf), s) = P (r | acf, s).

4 METHODOLOGY

In this paper, we address the challenge of optimizing collective reward within the framework of
sequential social dilemma (SSD), which strikes a balance between the pursuit of individual rewards
and the achievement of communal benefits. Our objective is to facilitate the policy learning process
of agents to align the agents’ preferences with the collective outcome. To this end, we establish
intrinsic reward for the agents to care more about others’ welfare while maximizing their individual
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Agent 𝒊’s policy learning with counterfactual regret
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Figure 1: The figure pictures the overall training and inference process of a single agent i. Blue
blocks represent the generated process of the actual reward; green blocks denote the counterfactual
reward generation process;red blocks represent the regret calculation process and intrinsic reward
construction process; gray blocks represent two learning process with model parameters Φm and Φπ .

interests. We define the counterfactual regret in multi-agent setting as the difference between the
agents’ optimal prosocial behaviors and its current action. The intrinsic reward could be defined as
the negative of counterfactual regret. Therefore, we could promote agents’ cooperative behaviors by
maximizing the intrinsic reward.

Figure 1 depicts the framwork of agent i’s policy learning process. The joint action at is sampled
from the training data. We intervene agent i’s action to get counterfactual actions(e.g, A2, A3).
The counterfactual action ai,cf

t are input to the causal model Φi
m along with the joint observation

vectors ot and other agents’ actions a−i
t . The output counterfactual rewards r−i,cf

t are summed up to
generate the collective counterfactual reward R−i,cf

t . Such collective counterfactual reward are used
to calculate the counterfactual regret along with actual collective counterfactual reward R−i

t . In order
to minimize such counterfactual regret, we construct the intrinsic reward ri,int as −Regretit. In the
policy learning process, we combine such intrinsic reward rin

t with extrinsic reward rex
t to assist our

agents’ policy learning.

4.1 OVERVIEW

In SSD, each agent act independently in the environment. Therefore, we take agent i as an example
to illustrate our method. Each agent i consists of a generative model Φi

m and a policy model Φi
π.

Generative model Φi
m parameterizes the generation of individual rewards in POMG given the joint

observation ot and joint action at. Policy model Φi
π takes agent i’s individual observation oit as input

and output its individual action ait. We define the overall objective function for agent i as:

Li(Φi
m,Φ

i
π) = Li

m(Φ
i
m) + Li

π(Φ
i
π), (1)

where we define Li
m in Eq. 9 and Li

π in Eq. 10.

We organize the subsections as follows. First, we introduce a Dynamic Bayesian Network in Section
4.2 to model the generation of individual rewards in POMG and provide the theoretical results
of identifiability, which jointly enable us to reason the agents’ contribution towards other agents’
outcome. Second, we elucidate our methodology for estimating agents’ counterfactual regret through
counterfactual reasoning, which are integrally coupled with our innovative intrinsic reward design
paradigm, as comprehensively delineated in Section 4.3. We provide the pseudo-code of our method
in Algorithm 1.
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4.2 CAUSAL MODELING

Causality is usually exploited to model the generative process of variables in diverse systems. In this
subsection, we utilize a causal model to describe the transition, observation and reward functions
in the multi-agent system. The theorical identifiability supports the reliable estimation of unknown
functions in the causal model given the observed data. This is especially valuable in multi-agent
systems, where the complexity arises from the interactions among diverse agents and their collective
impact on the system’s dynamics and outcomes. Above serves as a sandstone for our counterfactual
reasoning of individual rewards while agent i performs the counterfactual actions.

Generative Process in POMG. To denote the generative process within the POMG environments,
we introduce a Dynamic Bayesian Network (DBN) G over a finite number of random variables
[st,at,ot, rt] |Tt=1= [st, [o

i
t,a

i
t, r

i
t]
N
i=1]

T
t=1, where st represents the latent environment state, oi

t, a
i
t

and rit represents the observation, action and reward of an individual agent i at time step t. The
generation process of the agent’s team reward is as follows:

st+1 = f(st,at, ϵs,t) (environment transition function)
rit = gi(st,at, ϵr,i,t) (individual reward function)
oi
t = hi(st,at, ϵo,i,t) (individual observation function)

(2)

where f captures the transition of environmental state; gi and hi denote the generation of i-th agent’
individual reward rit and observation oi

t, respectively. ϵs,t, ϵr,i,t and ϵo,i,t denotes i.i.d random
noise. Without losing generality, we assume that G is time-invariant, which means f , gi, hi are
time-invariant, and there are no unobserved confounders and instantaneous causal effects in G (Huang
et al., 2021). According to the definition of POMG, ot, at, and rt are observable, while st are
unobservable.
Proposition 1. Suppose the observation oi

t, joint action at, joint reward rt are observable while
latent environment state st is unobservable, and they form a POMG, as described in Eq. 2. Under the
global Markov condition and faithfulness assumption, we can identify the causal parents of individual
reward rit, and the individual reward function gi for each agent i.
Remark 1. Proposition 1 establishes the theoretical identifiability of the unknown functions f , gi,
and hi in G, based on the observed variables: observations ot, joint actions at, and rewards rt.
This allows us to estimate the unique reward inference mapping Φm : (ot,at) → st → rt from the
observed data, where s is reward-relevant state components, given the joint observations ot and joint
actions at as inputs. The proof can be found in Appendix B.

4.3 COUNTERFACTUAL REGRET GENERATION

Reward shaping is widely-used technique to modify the goal of policy learning by adding an intrinsic
reward term. To align with our motivation of minimizing the counterfactual regret for each agent, we
present the process for performing counterfactual reasoning on other agents’ outcomes, along with
the computation of counterfactual regret and the design of intrinsic rewards.

Counterfactual individual rewards. First of all, in order to estimate the agents’ counterfactual
regret, the question we want to tackle is: How much would other agents earn if the agent i takes the
counterfactual action ai,cf

t , instead of ai
t? In SSD, the generation of individual rewards are impacted

by all the agent’s actions and the environment states. Therefore, we utilize the causal model Φi
m to

perform the counterfactual estimation of individual rewards ri,cf
t based on environment state st and

joint action at. The counterfactual prediction of individual rewards in the situation that agent i take
counterfactual actions acf

t and other agents keep their actions at state st can be denoted as,

P (ri,cf
t | st, do(ait = ai,cf

t ),a−i
t ) = P (ri,cf

t | st, ai,cf
t ,a−i

t ), (3)

where a−i
t denotes the actions executed by agents excluding agent i.

As there is no incoming causal path to action ai
t in the causal graph and we can identify an unique

mapping from the observations to the reward-relevant state components, we can estimate the counter-
factual individual rewards for all agents based on joint observation ot,

ri,cf
t = Φi

m(ot, a
i,cf
t ,a−i

t ), (4)
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where ri,cf
t is the predication of all other agents’ individual rewards(For brevity, we use other agents

to denote agents excluding agent i). Therefore, we denote ri,cf
j,t as the j-th element of ri,cf

t , which
represents agent j’s counterfactual individual reward while agent i takes counterfactual action ai,cf

t .

Therefore, other agents would obtain a collective counterfactual reward, which is

R−i,cf
t =

N∑
j ̸=i

ri,cf
j,t =

N∑
j ̸=i

Φi
m,j(ot, a

i,cf
t ,a−i

t ), (5)

where Φi
m,j denotes the j-th element of the output vector of Φm. At time step t, the actual collective

reward other agents obtain is defined as R−i
t =

∑N
j ̸=i Φ

i
m,j(ot, a

i
t,a

−i
t ).

Counterfactual Regret. Building upon the counterfactual reasoning of individual rewards, we could
construct the counterfactual regret, Regretit, for agent i as,

Regretit = max
ai,cf
t

[R−i,cf
t (ot, a

i,cf
t , a−i

t )]−R−i
t (ot, a

i
t, a

−i
t ), (6)

where ai,cf
t ∼ U(A) and U(A) denotes the uniform distribution over the agent i’s action space.

Therefore, the counterfactual regret Regretit measures the difference between the optimal prosocial
behavior and its current behavior based on other agents’ collective reward.

Intrinsic Reward. Recall that we want to promote the prosocial behaviors of the agents by minimizing
their counterfactual regret. Therefore, we could construct the intrinsic rewards for agent i as,

ri,int = −Regretit. (7)

Consequencely, the reward utilized for agent i’s policy learning is the shaped reward r̂it:

r̂it = ri,ex
t + αri,int . (8)

where ri,ex
t is the selfish individual reward from the environment and α is a hyper-parameter that

controls how much the agent care about other agents reward.

4.4 OVERALL OBJECTIVES

In this subsection, we introduce the learning objectives of the generative model and the policy model.

Generative Model Estimation We parameterize the generative model Φm as the individual reward
predictor, which takes as input the joint observation ot and joint action at. We optimize the generative
model Φm for each agent i through minimizing:

Li
m = Eot,at,rt∼D

[
||Φi

m(ot,at)− rex
t ||2

]
. (9)

Policy learning The shaped reward r̂t enables us to train the agents’ policies independently. Using
PPO (Schulman et al., 2015) as the RL backbone, we minimize the following loss for each individual
agent i. Note that the Â in here is the estimated advantage function:

Li
π = Êt

[
min(r̂it(θ)Â

i
t, clip(r̂it(θ), 1− ϵ, 1 + ϵ)Âi

t)
]
, where Âi

t = Qi
t(o

i
t, a

i
t)− V i

t (o
i
t). (10)

Algorithm details In our algorithm, each agent i conducts their own individual policy πi simultane-
ously and gains new observations ot+1. We collect the observation-action pairs {ot,at, rt} for each
agent at each time step t. After an episode ends, the model’s parameters Φi

m and policy parameters
Φπ for each individual agent i will be updated based on the sampled individual observation-action
pairs and individual rewards {oi

t,a
i
t, r

i
t}.

5 EXPERIMENT

We conduct experiments over four SSD scenarios to demonstrate the effectiveness of our method
against several baselines.
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Algorithm 1 Multi-Agent Counterfactual Regret Model/Policy Learning
Input: Game environment, Buffer D = ∅
Output: Policy set ΠT for each individual agent, Model set Φm for each individual
agent

1: for Episode k = 0, 1, 2 . . .K do
2: for t = 0, 1, 2 . . . T do
3: For agent i = 1 : N , conduct action ait.
4: Observe new observation ot+1, reward rt
5: Add observation-action pair and individual rewards {ot,at, rt} into buffer D.
6: Predict counterfactual reward ri,cf

t for agents i ∈ N using Φi
m based on Eq. 4.

7: Generate counterfactual regret −Regretit for agents i ∈ N as intrinsic reward via Eq. 6
8: Add intrinsic reward rin

t into buffer D.
9: end for

10: Update model parameters Φm using the state-action pairs and individual rewards {o,a, r}
sampled from buffer D based on Eq. 9.

11: Update policy parameters Φπ using the state-action pairs, individual rewards {o,a, r} and
predicted intrinsic reward rin sampled from buffer D based on Eq. 10.

12: end for

5.1 SETUP

Environments. We estimate our method in four SSD environments, Coin (Lerer & Peysakhovich,
2017), Level-based foraging(LBF) (Christianos et al., 2020), Cleanup (Hughes et al., 2018), and
Common_Harvest (Perolat et al., 2017). Coin is a three-player version of the Coin game in Melting Pot
2.0 (Agapiou et al., 2022), which was itself a version of the game introduced in Lerer & Peysakhovich
(2017). There are coins corresponding to each agent scattered randomly in the environment. Whenever
an agent gets a coin, they receive a reward of +1, but if this is not the corresponding type(e.g, agent 1
eat type 2 coin), the corresponding agent will suffer from −2 penalty(agent 2 will receive −2 penalty).
In addition to the three-player version, we also include the four-player version of Coin in the ablation
studies. In the environment Coin_4_Agents, we introduce one adversarial agent. Such adversarial
agent have no matching coin in the environment. The detail description will be introduced in Sec 5.3.
Level-Based Foraging (LBF is a cooperative three-player edition of level-based foraging Christianos
et al. (2020). Three agents with different levels move in the grid world to consume apples. There are
apples represents different levels (e.g, 1, 2, 3). If the agents eat the apples by themselves, they only
get the original value. But if the agents cooperate and consume an apple, the total reward will be
multiplied by 2 in order to award cooperative behavior. We also include the four-player version of
Level-Based Foraging. In the environment LBF_4_Agents, we fix the same apples number and level
to create a more competitive environment. This is to test if our agents could still maintain cooperate
paradigm in such intensive environment. As for Cleanup and Common_Harvest, we use the same
environments as Jaques et al. (2019). We also include the 7 agents’ edition for the original Cleanup
and Common_Harvest environments.

Baselinses. We compare our method with the following baselines: the individual PPO (Schulman
et al., 2015), inequity aversion (Hughes et al., 2018), SVO (McKee et al., 2020). The detailed
description of the environments and baseline algorithms are deferred to the Appendix C.1.

Metrics. The metrics we adopt in the following experiments are the collective reward and counterfac-
tual regret. Higher collective reward’s value indicates better performance on aligning selfish agents’
incentives with the team objectives. Also, lower counterfactual regret suggests the agents are more
likely to conduct altruistic behaviors. Since its current action is shows more similarity to the optimal
altruistic action.

5.2 MAIN RESULTS

We provide the main results in the Figure 2 and Figure 3, where we could see that our method shows
great performance on Coin, Level-Based Foraging, Cleanup and Common_Harvest. We use Selfish to
denote the individual PPO method, Inequity to denote the inequity aversion method, SVO to denote
the social value orientation method, and CF to denote our method. The reason why our method

7
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performs better than other baseline algorithms is because our method aims to maximize other agents
reward under every circumstances. This would help alleviate the bias from non-related agents while
calculating the total reward. We first demonstrate our results by showing our algorithm’s ability under
heterogeneous agents setting. Coin and Level-Based-Foraging are two simple environments that
allow heterogeneous agents to cooperate in the sequential social dilemma. We also give examples on
how our agents behave in setting that includes more agents.
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Figure 2: Learning curves on the two sequential social dilemma environments tasks(Coin_3_Agents
and Coin_4_Agents) along with their variants(LBF_3_Agents and LBF_4_Agents), based on 5
independent runs with random initialization. The shaded region indicates the standard deviation. The
total training steps would be 2× 107.

In Figure 2, our Counterfactual Regret method consistently outperforms the other three baselines in all
four scenarios. In the Coin_3_Agents and Coin_4_Agents scenarios, our method achieves and main-
tains a significant performance advantage throughout the entire training process. In Coin_4_Agents
scenario, we aim to examine our method’s ability under chaotic environments. In Coin_4_Agents
scenario, we introduce an adversarial agent. Such adversarial agent have no matching coin in the
environment. Therefore whenever it consumes a coin, it receives +1 reward and the corresponding
agent receives −2 reward. Adding the adversarial agent could induce chaos into the system. We could
see that though our method has more variance than 3-agents scenario, it still performs better than
other three baselines. The LBF (Level-Based Foraging) scenarios further underscore the robustness
of our approach. In both 3-agent and 4-agent LBF environments, our method exhibits remarkable
stability and consistently higher collective rewards compared to the baselines. This performance gap
is particularly pronounced in the LBF_4_Agents scenario, where our method maintains a substantial
lead over all other methods from the early stages of training. That is because our agents tend to
consider other agents’ benefit more based on their counterfactual regret. Based on the counterfactual
regret mechanism, our agents demonstrate better ability to cooperate with each other in more agents’
setting.

In order to further demonstrate our method’s ability in solving SSD, we use two classic sequen-
tial social dilemma environment(Common_Harvest and Cleanup) along with its scale up ver-
sion(Common_Harvest_7 and Cleanup_7). Common_Harvest exemplifies a classic scenario in
game theory and economics known as the ’tragedy of the commons’. It involves limited common
resources and several homogeneous agents aim to harvest as many resources as possible to maximize
its individual reward. In Figure 3, our counterfactual regret method demonstrates exceptional perfor-
mance in all four scenarios. In all cases, our method achieves and maintains the highest collective
reward throughout the entire training process. This is particularly evident in the Common_Harvest_5
scenario, where our method significantly outperforming all baselines. The Common_Harvest_7
scenario further underscores our method’s scalability, as it maintains its superior performance even
with increased agent complexity. Cleanup is an implementation of a public goods game, where agents
have to sacrifice themselves in order to achieve higher collective reward. Our method continues
to demonstrate the superiority in both Cleanup scenarios. In both Cleanup_5 and Cleanup_7, our
method not only achieves the highest peak performance but also shows remarkable stability and
consistent improvement throughout the training process. Notably, in the Cleanup_7 scenario, our
method demonstrates a steady upward trajectory, showing great performance in cooperative behaviors.
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Figure 3: Learning curves on the two sequential social dilemma environments
tasks(Common_Harvest_5 and Cleanup_5) and their variants(Common_Harvest_7 and Cleanup_7),
based on 5 independent runs with random initialization. The shaded region indicates the standard
deviation. The total training steps would be 2× 107.

5.3 ABLATION RESULTS

In this subsection, we conduct several ablation experiments to illustrate our method’s ability under
different scenarios. The experiments include two parts, first, we experiment our methods under
chaotic variant environments to show our method’s robustness; second, we illustrate our method’s
ability of capturing the correct incentives for cooperative behaviors under multiple environments.
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Figure 4: Learning Curves for Coin_3_Agents, Coin_4_Agents, LBF_3_Agents and LBF_4_Agents
environments, with different α = {1, 2, 5, 10}, based on 5 independent runs with random initialization.
The shaded region indicates the standard deviation. The total training steps would be 2× 107.

In Figure 4, we aim to measure the ability of our method under different hyperparameters α. We
could see that in the four scenarios, the optimal α are 2 for 3 agents setting and 5 for 4 agents setting
respectively. The optimal alpha number indicates to what extent agents should care about other
agents’ reward. The optimal alpha suggests that each agent achieves optimal performance when it
considers the collective reward of all other agents equally to its own. This can be interpreted as a form
of ’fair’ cooperation where an agent values the group’s performance (excluding itself) as much as its
individual performance. Also, this demonstrates a linear scaling of optimal cooperative behavior with
the number of agents. As the system grows more complex with additional agents, the importance of
considering others’ rewards increases proportionally.

We aim to evaluate our method’s capability to capture the correct counterfactual regret and minimize
such counterfactual regret under varying hyperparameters of α. The counterfactual regret of the
agents is defined as the difference between the optimal prosocial behaviors and current behaviors. For
example, in Coin environment, when the agents collecting their corresponding type of coin, it would be
seen as a prosocial behavior, which is a behavior that is beneficial to the whole group. Therefore, as the
counterfactual regret approaching 0, the agents’ are more likely to conduct behaviors that are beneficial
to the whole group. Therefore, in order to illustrate the method’s efficacy in generating appropriate
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Figure 5: Illustration of counterfactual regret for Coin_3_Agents, Coin_4_Agents, LBF_3_Agents
and LBF_4_Agents environments, with different α = {1, 2, 5, 10}, based on 5 independent runs with
random initialization. The shaded region indicates the standard deviation.

counterfactual regret, we utilize four scenarios(Coin_3_Agents, Coin_4_Agents, LBF_3_Agents,
LBF_4_Agents). We set α to {1, 2, 5, 10}. As depicted in Figure 5, agents showed similar trend as
Figure 4. Agents with higher collective reward tend to have lowest counterfactual regret. The agents’
ability to generate correct incentives peaks when the hyperparameter α is set to 2 in the 3 agents
setting and 5 in 4 agents setting. Additionally, it is observed that in simpler games(Coin_3_Agents
and LBF_3_Agents), the performance for each hyperparameters α are similar. However, as the
complexity of the game environment increases (in Coin_4_Agents and Coin_5_Agents), the choice
of hyperparameters becomes increasingly critical, as indicated by the widening gap between the
performance lines.

6 CONCLUSION

In this paper, we propose a multi-agent reinforcement learning algorithm for addressing social
dilemmas by aligning agents’ self-interests with the interests of others. Our approach encourages
individual agents to minimize their counterfactual regret, estimated by calculating the difference
between each agent’s optimal prosocial behaviors and their current behaviors. This method enables
agents to strike a balance between self-interest and cooperative behavior, effectively disentangling
selfish rewards from prosocial ones. Empirical evaluations show that our approach consistently
outperforms baseline methods in various complex social dilemma environments, demonstrating
its ability to foster cooperation even in the presence of misaligned incentives and environmental
complexity.

Limitations and Future Work While our method has shown a promising ability to guide agents
toward altruistic behavior to maximize social rewards, it presents certain vulnerabilities. Particularly
when interfacing with external agents that may not share the same cooperative motives. Specifically,
the altruistic nature of our agents can lead to exploitation by defectors, potentially undermining the
effectiveness of our approach in competitive or mixed-motive environments. To address this critical
limitation, our future work will focus on developing more robust strategies that not only promote
cooperation among agents with aligned interests but also safeguard against potential exploitation.

Ethic Statement In this study, we have rigorously adhered to the ICLR Code of Ethics, carefully
addressing potential ethical concerns throughout our research process. Our ethical considerations
encompassed three key areas: impact on human subjects, data privacy protection, and fairness in
algorithmic decision-making. Robust security measures were implemented to safeguard personal
information and prevent unauthorized access. We remain committed to transparency and open
dialogue regarding any limitations or ethical considerations arising from our work, inviting peer
review to further strengthen the ethical foundation of our research and its broader implications.
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A BROADER IMPACT

The research presented in this paper tackles complex social dilemmas by developing a multi-agent
reinforcement learning algorithm that aligns individual agent preferences with counterfactual collec-
tive rewards. This innovative approach represents a significant advancement in the fields of artificial
intelligence and multi-agent systems. By ensuring that agents’ actions are optimized not just for
individual gains but for the collective good, our method has the potential to revolutionize various
sectors. Societally, it can enhance cooperative behavior in automated systems, leading to more
harmonious human-machine interactions. Economically, it can optimize resource allocation and
decision-making processes in markets and organizations. In education, this algorithm can be used to
foster collaborative learning environments and enhance adaptive learning systems. Environmentally,
it holds promise for improving strategies in sustainability efforts, such as resource management and
conservation initiatives. Overall, our research not only contributes to the theoretical foundations of
AI but also offers practical solutions with far-reaching implications across multiple domains.

B DETAILS ON PROOFS

Given the joint observations oi
t, ∀i ∈ [1, . . . N ], joint action at, we prove that, reward-relevant

sit is identifiable, as well as the unknown functions. Our generative model in Eq. 2, denoted by
a Dynamic Bayesian Network (DBN) G, is constructed over the variables {oi

t, s
i
t,a

i
t, r

i
t}N,T in

Partially Observable Markov Game.

Proof. According to (Pearl, 2010), we can do counterfactual reasoning if we know all the causal
parents of the variable rit. Therefore, the goal is to show that we can identify an agent i’s reward-
relevant set of state components sr

i

t which have a direct path to the individual rewards rit.
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Below we show that the components sit in sr
i

t has a direct path to rit if and only if sjt ̸⊥⊥ rit | at, s
r̂i

t ,
where sr̂

i

t := {sjt , ∀s
j
t /∈ sr

i

t }:

We prove it by contradiction. Suppose that sjt is independent of ri given at, sr̂
i

t and Rt. Then
according to the faithfulness assumption, we can see that sjt does not have a directed path to rit,
which contradicts the assumption, because, otherwise, at and sr̂

i

cannot break the paths between si,t
and rit which leads to the dependence.

Remark 2. According to the proof, we can identify the individual-reward-relevant state components
from the observed data, i.e., we can extract such components from the observation and learn a
mapping from the observation to the individual rewards.

C ADDITIONAL DETAILS ON EXPERIMENTS

C.1 EXPERIMENT DESCRIPTION

Level-based Foraging:

(a) LBF_3_Agents (b) LBF_4_Agents

Agents are placed in the grid world, and each is assigned a random level. Food positions are
determined in each episode, each having a level on its own(no more than 3). Agents can navigate the
environment and can attempt to collect food placed next to them. The collection of food is successful
only if the sum of the levels of the agents involved in loading is equal to or higher than the level of
the food. Finally, agents are awarded points equal to the level of the food they helped collect(two
times if they are cooperating), divided by their contribution (their level).

Coin:

(c) Coin_3_Agents (d) Coin_4_Agents

The reward for an individual agent in the environment at each time step under every scenario:

1. -4: other two agents get current agent’s coin, while this agent does not get coin
2. -3: other two agents get current agent’s coin, this agent gets a coin
3. -2: another agent get current agent’s coin, this agent does not get coin
4. -1: another agent get current agent’s coin, this agent gets a coin
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5. 0: this agent do not get coin, other agents’ do not get its coin

6. 1: this agent gets a coin

when the environment only contains two coins or one coin, the reward position of the missing reward
would be (0,0), the type would also be (0). Let Ci be the coin type of agent i. ri(t) equals to the
instantaneous reward of agent i at time step t. S(t) equals to the set of all coin types in time step t.

δCi,T =

{
1 Ci = T
0 otherwise

Therefore, the instantaneous reward of the agent i at time step t is:

ri(t) =
∑

T∈S(t)

δCi,T − 2 ·
∑
j ̸=i

δCj ,T


In the four-agent setting of Coin, we introduce an adversarial agent by giving it a disruptive role. This
agent has no matching coin type in the environment. Its primary function shifts to disturbing the
dynamics of the game, potentially interfering with other agents’ actions. The optimal prosocial policy
for this modified agent would be to remain stationary and abstain from coin consumption, effectively
minimizing its disruptive impact. This alteration creates a more complex strategic landscape, forcing
the other three agents to adapt their behaviors in the presence of a potential adversary. The scenario
now balances individual coin-collecting goals against the challenge of navigating an environment with
an unpredictable, disruptive element, providing a richer context for studying multi-agent interactions
and conflict resolution strategies.

Cleanup (Hughes et al., 2018):

(e) Cleanup_5 (f) Cleanup_7

In Cleanup, all agents are equipped with a fining beam which administers −1 reward to the user and
−50 reward to the individual that is being fined. There is no penalty to the user for unsuccessful
fining. In Cleanup each agent is additionally equipped with a cleaning beam, which allows them to
remove waste from the aquifer. Eating apples provides a reward of 1. There are no other extrinsic
rewards. In Cleanup, waste is produced uniformly in the river with probability 0.5 on each timestep,
until the river is saturated with waste, which happens when the waste covers 40% of the river. For a
given saturation x of the river, apples spawn in the field with probability 0.125x. Initially the river is
saturated with waste, so some contribution to the public good is required for any agent to receive a
reward.

We also provide the 7 agents edition for Cleanup. In the 7-agent edition of Cleanup, we expand the
original environment to accommodate a larger group of participants, intensifying the complexity
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of social dynamics and resource management. The core mechanics remain unchanged: agents can
clean waste from the river, collect apples that spawn based on river cleanliness, and use fining
beams to penalize others. However, the increased number of agents creates a more crowded and
competitive space, amplifying the tension between individual and collective interests. This expanded
setting challenges agents to develop more sophisticated strategies for balancing personal reward
maximization with the need for cooperative cleaning efforts. The larger group size also allows for the
emergence of more complex social structures, such as temporary alliances or collective punishment
of free-riders. Ultimately, this 7-agent version provides a more sophisticated experimental framework
for investigating how prosocial behaviors and effective resource management strategies scale in larger
multi-agent systems.

Common_Harvest (Hughes et al., 2018):

(g) Common_Harvest_5 (h) Common_Harvest_7

In Common_Harvest, all agents are equipped with a fining beam which administers −1 reward to
the user and −50 reward to the individual that is being fined. There is no penalty to the user for
unsuccessful fining. Eating apples provides a reward of 1. There are no other extrinsic rewards.

In Common_Harvest, apples spawn relative to the current number of other apples within an l1 radius
of 2. The spawn probabilities are 0, 0.005, 0.02, 0.05 for 0, 1, 2 and ≥ 3 apples inside the radius
respectively. The initial distribution of apples creates a number of more or less precariously linked
regions. Sustainable policies must preferentially harvest denser regions, and avoid removing the
important apples that link patches.

We also provide the 7-agents edition for the Common_Harvest environment. The 7-agent edition
of Common_Harvest expands the original environment to create a more complex and challenging
scenario for multi-agent cooperation and resource management. This version maintains the core
mechanics of apple spawning based on local density and the use of fining beams, but introduces
a larger group of agents competing for limited resources. The increased number of participants
intensifies the challenge of maintaining sustainable harvesting practices, particularly in preserving the
crucial links between apple patches. Agents must develop more sophisticated strategies to balance
individual rewards with collective sustainability, navigating a more intricate social landscape where
fining decisions and harvesting behaviors have broader implications. This expanded setting provides
a richer platform for studying how sustainable resource management strategies scale with group size,
the emergence of implicit social norms, and the potential for diverse role specialization among agents.
Ultimately, the Common_Harvest_7 offers deeper insights into complex multi-agent dynamics in
shared resource scenarios, mirroring real-world challenges in environmental and economic systems.

In the Common_Harvest and Cleanup, agents use partially observed graphics observation, which
contains a grid of 15× 15 centered on themselves. Therefore, we could construct the environment as
the POMG.

C.2 ALGORITHM DETAILS

We utilized PPO algorithm in stable-baselines3 (Hill et al., 2018) to implement the baselines and our
methods, with all the agents using separated policy parameters for every experiments. For SVO, we
modify the individual reward to be ri − α(1− arctan

(∑
j,j ̸=i rj

ri

)
like in the original paper (McKee

et al., 2020) .

The hyper-parameters for PPO training are as follows.

• The learning rate is 1e-4

• The PPO clipping factor is 0.2.
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• The value loss coefficient is 1.
• The entropy coefficient is 0.001.
• The γ is 0.99.
• The total environment step is 1e7
• The environment episode length is 1000.
• The grad clip is 40.

C.3 COMPUTATIONAL RESOURCES

All experiments were conducted on an HPC system equipped with 128 Intel Xeon processors operating
at a clock speed of 2.2 GHz and 40 gigabytes of memory.
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