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Abstract

Inverse reinforcement learning (IRL) seeks to infer a cost function that explains
the underlying goals and preferences of expert demonstrations. This paper presents
receding-horizon inverse reinforcement learning (RHIRL), an IRL algorithm for
high-dimensional, noisy, continuous systems with black-box dynamic models.
RHIRL addresses two key challenges of IRL: scalability and robustness. To han-
dle high-dimensional continuous systems, RHIRL matches the induced optimal
trajectories with expert demonstrations locally in a receding horizon manner and
“stitches” together the local solutions to learn the cost; it thereby avoids the “curse
of dimensionality”. This contrasts with earlier algorithms that match with expert
demonstrations globally over the entire high-dimensional state space. To be ro-
bust against imperfect expert demonstrations and control noise, RHIRL learns a
state-dependent cost function “disentangled” from system dynamics under mild
conditions. Experiments on benchmark tasks show that RHIRL outperforms several
leading IRL algorithms in most instances. We also prove that the cumulative error
of RHIRL grows linearly with the task duration.

1 Introduction

Reinforcement learning (RL) has made exciting progress in a range of complex tasks, including
real-time game playing [24], visuo-motor control of robots [35], and many other works. The success,
however, often hinges on a carefully crafted cost function [17, 25], which is a major impediment to
the wide adoption of RL in practice. Inverse reinforcement learning (IRL) [26] addresses this need by
learning a cost function that explains the underlying goals and preferences of expert demonstrations.
This work focuses on two key challenges in IRL, scalability and robustness.

Classic IRL algorithms commonly consist of two nested loops. The inner loop approximates the
optimal control policy for a hypothesized cost function, while the outer loop updates the cost
function by comparing the behavior of the induced policy with expert demonstrations. The inner
loop must solve the (forward) reinforcement learning or optimal control problem, which is in itself a
challenge for complex high-dimensional systems. Many interesting ideas have been proposed for
IRL, including, e.g., maximum entropy learning [39, 41], guided cost learning [7], and adversarial
learning [8]. See Figure 1 for illustrations. They try to match a globally optimal approximate policy
with expert demonstrations over the entire system state space or a sampled approximation of it. This is
impractical for high-dimensional continuous systems and is a fundamental impediment to scalability.
Like RL, IRL suffers from the same “curse of dimensionality”. To scale up, receding-horizon IRL
(RHIRL) computes locally optimal policies with receding horizons rather than a globally optimal
policy and then matches them with expert demonstrations locally in succession (Figure 1d). The
local approximation and matching substantially mitigate the impact of high-dimensional space and
improve the sample efficiency of RHIRL, at the cost of a local rather than a global solution. So
RHIRL trades off optimality for scalability and provides an alternative to current approaches.
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Figure 1: A comparison of RHIRL and selected IRL algorithms. They all try to match the policy
induced by the learned cost with expert demonstrations. (a) MaxEnt matches the exact feature count
over the entire system state space. (b) REIRL, GCL, and GAN-GCL match the approximate feature
count over sampled state trajectories globally over the entire task duration. (c¢) GAIL, AIRL, ...
discriminate the sampled state or state-action distributions. (d) RHIRL matches control sequences
locally along demonstrated trajectories in a receding horizon manner.

Another important concern of IRL is noise in expert demonstrations and system control. Human
experts may be imperfect for various reasons and provide good, but still suboptimal demonstrations.
Further, the system may fail to execute the commanded actions accurately because of control noise.
We want to learn a cost function that captures the expert’s intended actions rather than the imperfectly
executed actions. While earlier work has investigated the question of learning from sub-optimal or
failed demonstrations [3, 31, 38], there is a subtle, but critical difference between (i) demonstrations
intended to be suboptimal and (ii) optimal demonstrations corrupted by noise. The existing work
[3, 31, 38] addresses (i); RHIRL addresses (ii). To learn the true intentions from the noise corrupted
demonstrations, RHIRL relies on a simplifying assumption: the cost function is linearly separable
with two components, one state-dependent and one control-dependent. Many interesting systems in
practice satisfy the assumption, at least, approximately [28]. RHIRL then learns the state-dependent
cost component, which is disentangled from the system dynamics [8] and agnostic to noise.

2 Related Work

IRL can be viewed as an indirect approach to imitation learning. It learns a cost function, which
induces an optimal policy whose behavior matches with expert demonstrations. In contrast, behavior
cloning (BC) is a direct approach. It assumes independence among all demonstrated state-action
pairs and learns a policy that maps states to actions through supervised learning of state-action pairs
from expert demonstrations. The simplicity of BC is appealing. However, it typically requires large
amounts of data to learn well and suffers from covariate shift [30]. IRL is more data-efficient. Further,
it produces a cost function, which explains the expert demonstrations and potentially transfers to
other systems with different dynamics. These benefits, however, come at the expense of greater
computational complexity.

Classic IRL algorithms learn a cost function iteratively in a double-loop: the outer loop updates a
hypothesized cost function, and the inner loop solves the forward RL problem for an optimal policy
and matches it with expert demonstrations. Various methods have been proposed [1, 7, 39, 41],
but they all seek a globally optimal solution over the entire state space (Figure 1a) [39, 41] or the
entire task duration (Figure 1b) [1, 7]. As a result, they face significant challenges in scalability and
must make simplifications, such as locally linear dynamics [7]. Recent methods use the generative
adversarial network (GAN) [10] to learn a discriminator that differentiates between the state or
state-action distribution induced by the learned cost and that from expert demonstrations [5, 8, 9, 13,
14, 18, 21, 27, 29]. We view this global matching as a major obstacle to scalability. In addition, GAN
training is challenging and faces difficulties with convergence.

RHIRL stands in between BC and the aforementioned IRL algorithms by trading off optimality for
scalability. BC performs local matching at each demonstrated state-action pair, treating all of them
independently. Most existing IRL algorithms perform global matching over the entire state space
or sampled trajectories from it. RHIRL follows the standard IRL setup. To tackle the challenge of
scalability for high-dimensional continuous systems, RHIRL borrows ideas from receding horizon
control (RHC) [19]. It solves for locally optimal control sequences with receding horizons and learns
the cost function by “stitching” together a series of locally optimal solutions to match the global
state distribution of expert demonstrations (Figure 1d). Earlier work has explored the idea of RHC
in IRL [23], but relies on handcrafted reward features and is limited to discrete, low-dimensional
tasks. More recent work learns reward features automatically [20]. However, it focuses on lane
navigation for autonomous driving, exploting a known analytic model of dynamics and noise-free,



perfect expert demonstrations. RHIRL aims at general high-dimensional continuous tasks with noisey
expert demonstrations.

Another challenge to IRL is suboptimal expert demonstrations and system control noise. Several
methods learn an auxiliary score or ranking to reweigh the demonstrations, in order to approximate
the underlying optimal expert distribution [4, 5, 38]. RHIRL does not attempt to reconstruct the
optimal expert demonstrations. It explicitly models the human errors in control actions as additive
Gaussian noise and matches the noisy control with expert demonstrations, in order to learn from the
intended, rather than the executed expert actions. Modelling the human error as additive Gaussian
noise is a natural choice technically [22, 34, 40], but compromises on realism. Human errors in
sequential decision making may admit other structural regularities, as a result of planning, resource
constraints, uncertainty, or bounded rationality[15]. Studying the specific forms of human errors
in the IRL context requires insights beyond the scope of our current work, but forms a promising
direction for future investigation.

3 Receding Horizon Inverse Reinforcement Learning

3.1 Overview
Consider a continuous dynamical system:

Tt41 :f($t7vt)7 (D

where x; € R" is the state, v; € R™ is the control at time ¢, and the initial system state at £ = 0
follows a distribution p.. To account for noise in expert demonstrations, we assume that v, is a random
variable following the Gaussian distribution N (v¢|u;, 32), with mean u; and covariance Y. We can
control u; directly, but not v;, because of noise. The state-transition function f captures the system
dynamics. RHIRL represents f as a black-box simulator and does not require its analytic form. Thus,
we can accommodate arbitrary complex nonlinear dynamics. To simplify the presentation, we assume
that the system dynamics is deterministic. We sketch the extension to stochastic dynamics at the end
of the section, the full proof is given in Appendix C.

In RL, we are given a cost function and want to find a control policy that minimizes the expected total
cost over time under the dynamical system. In IRL, we are not given the cost function, but instead, a
set D of expert demonstrations. Each demonstration is a trajectory of states visited by the expert over
time: 7 = (x9, 21, X2, ..., Tr_, ) for a duration of T steps.

We assume that the expert chooses the actions to minimize an unknown cost function and want to
recover this cost from the demonstrations. Formally, suppose that the cost function is parameterized
by 0. RHIRL aims to learn a cost function that minimizes the loss £(6; D), which measures the
difference between the demonstration trajectories and the optimal control policy induced by the cost
function with parameters 6.

RHIRL performs this minimization iteratively, using the gradient 9.L/06 to update 6. In iteration ¢,
let x4 be the system state at time ¢ and D; be the set of expert sub-trajectories starting at time ¢ and
having a duration of maximum K steps. We use the current cost to perform receding horizon control
(RHC) at z;, with time horizon K, and then update the cost by comparing the resulting state trajectory
distribution with the demonstrations in D;. Earlier IRL work requires the simulator to reset to the
states from the initial state distribution [1, 6, 7, 8, 13, 18]. To perform receding horizon optimization,
RHIRL requires a simulator to reset to the initial state z; for the local control sequence optimization
at each time stept = 0,...7 — 1, a common setting in optimal control (e.g., [36, 37, 20]). See
Algorithm 1 for a sketch.

First, sample M control sequences, each of length K (line 6). We assume that the covariance X
is known. If it is unknown, we set it to be identity by default. For our experiment results reported
in Table 1 and Table 2, ¥ is unknown and is approximated by a constant factor of the identity
matrix (grid search is performed to determine this constant factor). We show through experiments
that the learned cost function is robust over different noise settings (Section 4.3). Next, we apply
model-predictive path integral (MPPI) control [37] at ;. MPPI provides an analytic solution for the
optimal control sequence distribution and the associated state sequence distribution, which allow
us to estimate the gradient L/00 efficiently through importance sampling (lines 7-8) and update
cost function parameters 6 (line 9). Finally, we execute the computed optimal control (line 10-12)



Algorithm 1 RHIRL

1: Initialize 6 randomly.

2: fori=1,2,3,...do

3 Sample xo from p.

4 Initialize control sequence U of length K to (0,0, ...).

5: fort=0,1,2,....,T —1do

6: Sample M control sequences V; for j = 1,2, ... M, according to N (V|U, X).

7 Compute the importance weight w; for each Vj, using the state cost S(VJ , x¢; 0). See equation (11).
8

9

Compute 39['(0 Dy, z¢) using Dy and V; with weight wj, for j = 1,2, ..., M. See equation (12).
: 0 0—ak
10: U 300wV
11: Sample v from N (v|u, ¥), where w is the first element in the control sequence U.
12: T4l f(CCt,Ut).
13: Remove u from U. Append O at the end of U.
14: end for
15: end for

and update the mean control input for the next iteration (line 13). We would like to emphasize that
we only use the simulator to sample rollouts and evaluate the current cost function. Fixed expert
demonstrations D are given upfront. Unlike DAgger, we do not query the expert online during
training.

Our challenge is to uncover a cost function that captures the expert’s intended controls
(ug,u1,...,ur_1), even though they were not directly observed, because of noise, and do so in a
scalable and robust manner for high-dimensional, noisy systems.

We develop three ideas: structuring the cost function, matching locally with expert demonstrations,
and efficient computation of the gradient 9L /06, which are described next.

3.2 Robust Cost Functions

To learn a cost function robust against noise, we make a simplifying assumption that linearly separates
the one-step cost into two components: a state cost g(x; ) parameterized by 6 and a quadratic control
cost uT X~ 1u. Despite the simplification, this cost function models a wide variety of interesting
systems in practice [28]. It allows RHIRL to learn a state cost g(x; 6), independent of control noise
(Section 3.4), and thus generalize over different noise distributions (Section 4.3).

Suppose that V' = (v, v1,...,vx—1) is a control sequence of length K, conditioned on the input
U = (ug,u1,...,ux—1). We apply V to the dynamical system in (1) with start state 2o and obtain a
state sequence 7 = (xg, Z1,...,Tx) Withxg = f(xr—1,v5—1) for k =1,2,..., K. Define the total
cost of V' as

J(V,z0;0) Zg ;0 +Z uLZ 2)

where A > 0 is a constant weighting the relative importance between the state and control costs. For
convenience, define also the total state cost of V' as

V:I;Ov Zg $k7 (3)

While S is defined in terms of the control sequence V/, it only depends on the corresponding state
trajectory 7. This is very useful, as the training data contains state and not control sequences explicitly.

3.3 Local Control Sequence Matching

To minimize the loss £, each iteration of RHIRL applies RHC with time horizon K under the current
cost parameters # and computes locally optimal control sequences of length K. In contrast, classic
IRL algorithms, such as MaxEnt [41], perform global optimization over the entire task duration 7" in
the inner loop. While RHC sacrifices global optimality, it is much more scalable and enables RHIRL



to handle high-dimensional continuous systems. We use the hyperparameter K to trade off optimality
and scalability.

Specifically, we use MPPI [37] to solve for an optimal control sequence distribution at the current start
state x; in iteration ¢. The main result of MPPI suggests that the optimal control sequence distribution
() minimizes the “free energy” of the dynamical system and this free energy can be calculated from
the cost of the state trajectory under (). Mathematically, the probability density p,(V*) can be
expressed as a function of the state cost S(V, z; 6), with respect to a Gaussian “base” distribution
B(Usg, X)) that depends on the control cost:

1 1
pQ(V*‘UJ% 2, x4 9) = EpB(V*|UB7 Z) eXp(_XS(V*7xt; 9))7 “4)

where Z is the partition function. For the quadratic control cost in (2), we have Uz = (0,0, ...) [37].
Intuitively, the expression in (4) says that the probability density of V* is the product of two factors,
one penalizing high control cost and one penalizing high state cost. So controls with large values or
resulting in high-cost states occur with probability exponentially small.

Equation (4) provides the optimal control sequence distribution under the current cost. Suppose
that the control sequences for expert demonstrations D; follow a distribution E. We define the loss
L(0; Dy, x;) as the KL-divergence between the two distributions:

ﬁ(e;Dtaxt) = DKL(pE(V|xt) || pQ(V|U57 27‘7;15; 9))3 (5)

which RHIRL seeks to minimize in each iteration. While the loss £ is defined in terms of control
sequence distributions, the expert demonstrations D provide state information and not control
information. However, each control sequence V' induces a corresponding state sequence 7 for a
given start state zq, and 7 determines the cost of V' according to (2). We show in the next subsection
that 9L/96 can be computed efficiently using only state information from D. This makes RHIRL
appealing for learning tasks in which control labels are difficult or impossible to acquire.

3.4 Gradient Optimization

To simplify notations, we remove the explicit dependency on z; and D, and assume that in iteration
t of RHIRL, all control sequences are applied with x; as the start state and expert demonstrations
come from D;. We have

oL _ o pe(V)
a6 %/p’f(v)log PR TR
10 10
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The first line follows directly from the definition, and the derivation for the second line is available in
Appendix A.

We estimate the two integrals in (6) through sampling. For the first integral, we can use the expert
demonstrations as samples. For the second integral, we cannot sample p, directly, as the optimal
control distribution () is unknown in advance. Instead, we sample from a known Gaussian distribution
with density p(V|U, X) and apply importance sampling so that

Epo(vivss6)[V] = Epvis[w(V)V]. (7)
The importance weight w (V) is given by

pQ(V‘Usz;H) po(V|Ug,%;0)  ps(V|Us, %)
w(V) = = X (8)
V=000 = Vi)~ p(VIT.Y)
To simplify the first ratio in (8), we substitute in the expression for p, from (4):
pe(VIUp, %50) 1 ¢ 1 0
(VU S) 7 e~ (5(V:6)) ©)

We then simplify the second ratio, as both are Gaussian distributions with the same covariance

matrix >:
K—1

pB(V|UBﬂ E) ( B -1 )
— i X exXp | — (up —ug)TE o) ), (10)
p(V|U, %) kzzo :



where uy and v, k = 0,1, ..., K—1 are the mean controls and the sampled controls from p(V'|U, ),
respectively. Similarly, u;, k = 0,1,..., K — 1 are the mean controls for the base distribution, and
they are all O in our case. Substituting (9) and (10) into (8), we have

K-1

w(V) o exp(fi (S(V; 0)+ A Z uzzl’vk> (1D

k=0

For each sampled control sequence V', we evaluate the expression in (11) and normalize over all
samples to obtain w(V).

To summarize, we estimate L /06 through sampling:

S

0 119 1 =1 0

—L(6;D ~— ——S(Vi,x4;0) — — —w(V;)==S(V;, 24 0), 12

g6~ P vy) N 2~ 50 (Vi, @13 6) szl)\w( ) gSVirai), (12)
where V;,i = 1,..., N are the control sequences for the expert demonstrations in D; and V;, j =

1,2,..., M are the sampled control sequences. Equation (12) connects L/90 with 95/96. The
state cost function S is represented as a shallow neural network, and its derivative can be obtained
easily through back-propagation. To evaluate %S (V;, x4; 6), we do not actually use the expert control
sequences, as they are unknown. We use the corresponding state trajectories in D; directly, as the
state cost depends only on the visited states. See equation (3).

Finally, we approximate the optimal mean control sequence according to (7):

M
U=Epovivpse0V] ~ Zw(vj)vj. (13)

Jj=1

The first element in the control sequence U is the chosen control for the current time step t. We
remove the first element from U and append zero at the end. The new control sequence is then used
as the mean for the sampling distribution in the next iteration.

3.5 Analysis

Since RHIRL performs local optimization sequentially over many steps, one main concern is error
accumulation over time. For example, standard behavior cloning has one-step error € and cumulative
error O(T?¢) over T steps, because of covariate shift [30]. The DAgger algorithm reduces the error
to O(Te) by querying the expert repeatedly during online learning [30]. We prove a similar result
for RHIRL, which uses offline expert demonstrations only. In iteration ¢ of RHIRL, let p, (V;|x:)
be the K -step expert demonstration distribution and p,, (V;|Ug, X, z; 0) be the computed K -step
optimal control distribution for some fixed cost parameters . RHIRL minimizes the KL-divergence
between these two distributions in each iteration. Let ps(z) be the state marginal distribution of
expert demonstrations and pgyc(; 6) be the state marginal distribution of the computed RHC policy
under 6 over the entire task duration 7". Intuitively, we want the control policy under the learned cost
to visit states similar to those of expert demonstrations in distribution. In other words, pryc(x; 0) and
pg(x) are close.

Theorem 3.1. If Dy, (ps(Vi|z:) || po(VilUs, S, 34;0)) < € forallt = 0,1,..,T — 1, then
DTV(pE(x)apRHC(:E; 9)) < Tm

The theorem says that RHIRL’s cumulative error, measured in total variation distance D,, between
pe(x) and pgyc(x; 0), grows linearly with T'. The proof consists of three steps. First, in each iteration
t, if the KL-divergence between two control sequence distributions are bounded by ¢, so is the
KL-divergence between the two corresponding state distributions induced by control sequences. Next,
we show that the KL-divergence between the state distributions over two successive time steps are
bounded by the same e. Finally, we switch from KL-divergence to total variation distance and apply
the triangle inequality to obtain the final result. Note that our local optimization’s objective is defined
in KL divergence, while the final error bound is in TV distance. We switch the distance measures
to get the best from both. Minimizing the KL divergence leads to strong local optimization result,
but KL itself is not a proper metric. Therefore, we further bound the KL divergence by TV distance
to obtain a proper metric bound for the final result. The full proof is given in Appendix B. Since
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Figure 2: Benchmark tasks. |S| and |.A| denote the dimensions of the state space and the action space,
respectively. T' denotes the task horizon.

RHC performs local optimization in each iteration, we cannot guarantee global optimality. However,
the theorem indicates that unlike standard behavior cloning, the cumulative error of RHIRL grows
linearly and not quadratically in 7". This shows one advantage of IRL over behavior cloning from the
theoretical angle.

Given a control policy V with the resulting state marginal distribution p, (x), we can calculate the
expected total cost of V' by integrating the one-step cost over p,.. Now suppose that the one-step cost
is bounded. Theorem 3.1 then implies that the regret in total cost, compared with the expert policy,
also grows linearly in 7.

3.6 Extension to Stochastic Dynamics

Suppose that the system dynamics is stochastic: x;11 = f(z¢, vt, wt ), where w; is a random variable
that models the independent system noise. RHIRL still applies, with modifications. We redefine
the total cost functions J(V, zo;0) and S(V, zo;6) by taking expectation over the system noise
distribution. When calculating the importance weight w(V') in (11), we sample over the noise
distribution to estimate the expected total state cost. Finally, we may need more samples when
estimating the gradient in (12), because of the increased variance due to the system noise. The full
derivation of the extension to stochastic dynamics is given in Appendix C. The experiments in the
current work all have deterministic dynamics. We leave experiments with the extension to future
work.

4 Experiments

We investigate two main questions. Does RHIRL scale up to high-dimensional continuous control
tasks? Does RHIRL learn a robust cost function under noise?

4.1 Setup

We compare RHIRL with two leading IRL algorithms, namely AIRL [8] and f-IRL [27], and one
imitation learning algorithm, GAIL [13]. In particular, f-IRL is a recent algorithm that achieves
leading performance on high-dimensional control tasks. We use the implementation of AIRL,
GAIL, and f-IRL from the f-IRL’s official repository along with the reported hyperparameters [27],
whenever possible. We also perform hyperparameter search on a grid to optimize the performance of
every method on every task. The specific hyperparameter settings used are reported in Appendix D.2.

Our benchmark set consists of six continuous control tasks (Figure 2) from OpenAl Gym [2], with
increasing sizes of state and action spaces. For the most complex task, CarRacing, the input consists
of 96 x 96 raw images, resulting in an enormous state space that poses great challenges [11]. To our
knowledge, RHIRL is the first few IRL algorithms to attempt such a high-dimensional space. For fair
comparison, we customize all tasks to the fixed task horizon settings (Figure 2. See Appendix D.2 for
details on task parameter settings.

We use WorldModel [11] to generate expert demonstration data for CarRacing and use SAC [12]
for the other tasks. We add Gaussian noise to the input controls and collect expert demonstrations
at different control noise levels. The covariance of the control noise is unknown to all methods,
including, in particular, RHIRL.
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Drive in the center of the lane. Adjust the direction at a sharp  Choose the shortest path to make  Align to the lane center after the
turn. the turn. turn.

Figure 3: Driving behaviors learned by RHIRL for CarRacing-v0, with pixel-level raw image input.

To measure the performance of the learned cost function and policy, we score its induced optimal
policy using the ground-truth cost function. For ease of comparison with the literature, we use negated
cost values, i.e., rewards, in all reported results. Higher values indicate better performance. Each
experiment is repeated 10 times to estimate the performance variance.

4.2 Scalability

We compare RHIRL
with other methods, first
in noise-free environ-
ments (Figure 4) and
then with increasing

Table 1: Performance comparison of RHIRL and other methods. The per-
formance is reported as the ratio of the learned policy’s average return and
the expert’s average return. The absolute average returns and the standard
deviations are reported in Appendix D.4. Negative ratios are clipped to
0. The two numbers under the name of each environment indicate the

noise levels (Table 1).

Figure 4 shows the learn-

dimensions of the state space and the action space, respectively.

. No Noise Mild Noise High Noise
ing curve of each meth- =0 2 =02 =05
ods in noise-free en- Pendulum  Expert  -154.69 £ 67.61  -156.50 £70.72  -168.54 + 80.89
; 3,1 RHIRL 1.06 1.07 1.08
vironments. Overall, FIRL 107 106 003
RHIRL converges faster AIRL 1.05 0.94 091
and achieves higher re- GAIL 088 089 0.80
turn, especially for tasks Lunarlander Expert  232.00 % 86.12 222.65 =+ 56.35 164.52 £ 16.79
ith higher state space 52 ];]}I}IszL 0% 06 071
wi - ) X .
dimensions. This im- AL P oL P
roved performance sug-
p p g Hopper Expert 322248 4£390.65  3159.72 4 520.00  2887.72 - 483.93
gests that the benefit 11,3 RHIRL 0.95 0.98 0.96
At f-IRL 0.96 0.82 0.43
of local optimization LRL 001 001 0o
adopted by RHIRL out- GAIL 0.82 0.50 0.24
weighs its potential lim- Walker2d ~ Expert  4999.47 5599 450043 + 11448  3624.48 + 95.05
itations 17,6 RHIRL 0.99 0.99 0.95
: f-IRL 0.99 0.82 0.78
AIRL 0.00 0.00 0.00
Table 1 shows the fi- GAIL 0.50 0.64 0.51
nal performance of all Ant Expert 575922 + 173.57 325737 £ 50195  252.62 + 91.44
methods at various noise 111, 8 RHIRL 0.86 0.93 0.91
-IRL .87 ) .
levels. RHIRL clearly ,{IRL g'?7 8.22 8.(7)(8)
outperforms AIRL and GAIL 0.48 0.40 0.00
GAIL in all experiments. CarRacing  Expert 903.25 4 0.23 702.01 + 0.3 281.12 + 0.34
. 96 x 96,3 RHIRL 0.40 0.29 0.19
So we focus our discus- ’
! ! . f-IRL 0.09 0.03 0.00
sion on comparison with AIRL 0.00 0.00 0.00
GAIL 0.00 0.01 0.00

f-IRL. In noise-free en-
vironments, RHIRL and

f-IRL perform comparably on most tasks. On CarRacing, the most challenging task, RHIRL per-
forms much better. RHIRL manages to learn the critical driving behaviors illustrated in Figure 3,
despite the high-dimensional image input. However, RHIRL does not manage to learn to drive fast
enough. That is the main reason why it under-performs the expert. In comparison, f-IRL only learns
to follow a straight lane after a large number of environment steps, and still fails to make a sharp turn
after 3.0 x 107 environment steps. In the noisy environments, the advantage of RHIRL over f-IRL
is more pronounced even on some of the low-dimensional tasks, because RHIRL accounts for the
control noise explicitly in the cost function.
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Figure 4: Learning curves for RHIRL and other methods.

4.3 Robustness

Next we evaluate RHIRL and other
methods for robustness under noise.
A robust cost function encodes the
expert’s true intent. It is expected to
yield consistent performance over dif-
ferent noise levels, regardless of noise
in expert demonstrations.

For each task, a cost function is
learned in a noise-free environment
and is then used to re-optimize a pol-
icy in the corresponding noisy en-
vironments. Specifically for GAIL,
since it learns a policy and does not
recover the associated cost function,
we directly apply the learned policy in
noisy environments.

Table 2 shows that noise causes per-
formance degradation in all methods.
However, RHIRL is more robust in
comparison. For simple tasks, Pendu-
lum and Lunarlander, RHIRL and f-
IRL perform consistently well across
different noise levels, while GAIL and
AIRL fail to maintain their good per-
formance, when the noise level in-
creases. For the more challenging
tasks, Hopper and Walker, RHIRL’s
performance degrades mildly, and f-
IRL suffers more significant perfor-
mance degradation. It is worth noting
that the expert demonstrations used to
train the transferred cost function are
from the perfect system. Therefore,

some expert actions and states may no longer be optimal or feasible in a highly noisy environment.

Table 2: Robustness of RHIRL and other methods under

noise. The performance is measured as the ratio between the

average return of an re-optimized policy in a noisy environ-

ment and the expert’s average return in the corresponding
noise-free environment. The absolute average returns and
the standard deviations are reported in Appendix D.4. The
negative ratios are clipped to 0.

Noise Level 3

0.0 0.2 0.5

Pendulum Expert -154.69 + 67.61 - -
3,1 RHIRL 1.06 1.07 106
f-IRL 1.08 090 0.85
AIRL 1.05 0.79  0.67
GAIL 0.88 071  0.62

LunarLander  Expert 232.00 £ 86.12 - -
8,2 RHIRL 1.05 089 0.76
f-IRL 0.76 053 044
AIRL 0.74 0.14  0.10
GAIL 0.72 0.44 034

Hopper Expert  3222.48 £ 390.65 - -
11,3 RHIRL 0.95 0.80 0.67
f-IRL 0.96 0.65  0.62
AIRL 0.01 0.01  0.00
GAIL 0.82 0.07  0.06

Walker Expert 4999.47 £ 55.99 - -
17,6 RHIRL 0.99 0.80 0.69
f-IRL 0.99 0.60 0.22
AIRL 0.00 028  0.36
GAIL 0.50 0.02  0.02

Ant Expert  5759.22 + 173.57 - -
111,8 RHIRL 0.86 055  0.15
f-IRL 0.87 035 0.08
AIRL 0.17 0.15  0.00
GAIL 0.48 0.00  0.00

CarRacing Expert 903.25 £ 0.23 - -
96 x 96, 3 RHIRL 0.40 029 0.12
f-IRL 0.09 0.02  0.00

AIRL 0.00 - -

GAIL 0.00 - -




Moreover, the cost function trained in the perfect system cannot reason about the long-term conse-
quences of an action in a high noise environment. Therefore, it is challenging for the learned cost
function to be robust to a highly noisy environment, as capturing the true intention of the expert is
difficult.

4.4 Effect of Receding Horizon K

RHIRL uses the receding horizon K to trade off optimal- 5o
ity and efficiency. We hope to ablate the effect of K on 20001
Hopper-v2 to show how different K's affect the final per- 2500
formance and sample complexity. The task horizon for 200/
Hopper-v2 is 1000 steps, i.e. 7' = 1000. We run RHIRL
with the receding horizon K € {5,20,100}. The results 10/

Reward

1500 -

are illustrated in Figure 5. When K is small, RHIRL w00 | o
improves its performance quickly but converges to the o Kl
suboptimal solution. For K = 5, RHIRL’s performance —_—
shoots up after the first few iterations to 1000, then it B e e

quickly converges to a final score of 1100. When K in-
creases, though the performance improves slightly slower
than K = 5, it can continue to learn and reach a score of
3071.68. At K = 20, it takes fewer than 1e6 env steps to
stabilize to a score greater than 3000. However, when K
is too large, the learning becomes much slower. When K = 100, it takes more than 1e7 env steps to
stabilize to a score larger than 3000, which is 10 times more than when K = 20. On the other hand,
K = 100 can achieve a final score of 3083, which is slightly more than that of K = 20. This ablation
study shows that our receding horizon K can tradeoff optimality and efficiency: using a smaller K
allows us to learn faster at the expense of a sub-optimal solution, while using a large KX may make the
learning inefficient. Seeking a suitable K can balance the requirement for optimality and efficiency.

Figure 5: The effect of receding horizon
K on the performance of RHIRL on the
Hopper-v2 task.

5 Conclusion

RHIRL is a scalable and robust IRL algorithm for high-dimensional, noisy, continuous systems. Our
experiments show that RHIRL outperforms several leading IRL algorithms on multiple benchmark
tasks, especially when expert demonstrations are noisy.

RHIRL’s choice of local rather than global optimization is an important issue that deserves further
investigation. Overall, we view this as an interesting trade-off between scalability and optimality.
While this trade-off is well known in reinforcement learning, optimal control, and general optimization
problems, it is mostly unexplored in IRL. Further, local optimization may tie the learned cost with
the optimizer. It would be interesting to examine whether the learned cost transfers easily to other
domains with different optimizers. We are keen to investigate these important issues and their
implications to IRL as our next step.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section ??.

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] , code is
included in the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [IN/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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