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Abstract

Most recent self-supervised learning methods learn visual representation by con-
trasting different augmented views of images. Compared with supervised learning,
more aggressive augmentations have been introduced to further improve the di-
versity of training pairs. However, aggressive augmentations may distort images’
structures leading to a severe semantic shift problem that augmented views of
the same image may not share the same semantics, thus degrading the transfer
performance. To address this problem, we propose a new SSL paradigm, which
counteracts the impact of semantic shift by balancing the role of weak and ag-
gressively augmented pairs. Specifically, semantically inconsistent pairs are of
minority, and we treat them as noisy pairs. Note that deep neural networks (DNNs)
have a crucial memorization effect that DNNs tend to first memorize clean (ma-
jority) examples before overfitting to noisy (minority) examples. Therefore, we
set a relatively large weight for aggressively augmented data pairs at the early
learning stage. With the training going on, the model begins to overfit noisy pairs.
Accordingly, we gradually reduce the weights of aggressively augmented pairs. In
doing so, our method can better embrace aggressive augmentations and neutralize
the semantic shift problem. Experiments show that our model achieves 73.1%
top-1 accuracy on ImageNet-1K with ResNet-50 for 200 epochs, which is a 2.5%
improvement over BYOL. Moreover, experiments also demonstrate that the learned
representations can transfer well for various downstream tasks. Code is released at:
https://github.com/tmllab/RSA.

1 Introduction

A golden law in the context of computer vision is utilizing tremendous annotated data to learn good
visual representations [58, 26]. Unfortunately, collecting annotated data with accurate labels is
generally laborious, expensive [52, 56], and even infeasible [22]. To this end, various approaches
have been proposed to learn such representations from unlabelled visual data, usually by performing
visual pretext tasks. Among them, self-supervised learning methods [6, 7, 46, 9] based on contrastive
loss have recently shown great promise, achieving state-of-the-art performance.

Representative contrastive methods are generally trained by maximizing agreement between dif-
ferently augmented views of the same image (positive pairs), and increasing the distance between
augmented views from different images (negative pairs) [49, 6, 17]. Compared with supervised
learning, these works highlight the role of data augmentation for SSL and design more aggressive
augmentation operations. Here, we refer aggressive augmentations as the operations that can possibly
change the semantics of images, such as grayscale, color jitter, and Gaussian blur. Other used
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(a) Noisy samples from ImageNet-1K [25] (b) Noisy samples from CIFAR-100 [24]

Figure 1: The first row is the original images (ImageNet-1K images are resized to squares) and noisy
samples from aggressive augmentation are in the second row. From the first three images of (a), we
can observe that Color jitter operation makes the image too bright or too dark that covers the details
of images; and in the fourth and fifth columns of (a), Grayscale and Gaussian blur operation leads
images to be hardly distinguished from the background; and the same augmentation strategy from
ImageNet-1K leads to more vague images for CIFAR-100 shown in (b).

augmentations are referred as weak augmentations. It should be noted that the random cropping
operation can also change the semantic information, however, this issue can be properly addressed by
exploiting object detection techniques [40, 35]. Therefore, we do not include the random cropping
operation as an aggressive augmentation. Although the aggressive augmentations can help to further
improve the model performance, they also bring a severe semantic shift problem for training images.
As illustrated in Figure 1, the first row shows original images from ImageNet [25] and CIFAR-100
[24] datasets. And the second row presents the corresponding augmented views with the widely
used composition of augmentations [7, 6]. We can see that the augmented views can be hardly
recognized as semantically consistent with their original versions. Pushing these images to have
similar representations can adversely affect the model training, so we consider the semantically
inconsistent pairs as noisy pairs. However, due to the diversity of training images and the randomness
of augmentation, it is difficult to accurately measure the quality of augmented pairs. Attempting to
roughly remove noisy pairs may result in a decrease in performance since they are mixed with clean
(semantic consistent) pairs.

Fortunately, recent works [2, 57, 16, 21, 30] show that deep neural networks (DNNs) have a crucial
memorization effect that DNNs tend to first memorize clean (majority/semantically consistent)
examples before overfitting noisy (minority/semantically inconsistent) examples. Motivated by this,
we propose a method called Reducing Semantic shift from Aggressive augmentation (RSA) by
dynamically adjusting the weights of clean and noisy pairs. Specifically, we introduce aggressive-
weak augmented pairs as relatively clean pairs because weak augmentation has a low probability of
causing the semantic shift problem, and set a relatively large weight for the aggressively augmented
data pairs at the beginning of training to fully exploit all the training examples. As the training goes
on, the model begins to overfit semantically inconsistent data. Therefore we gradually decrease the
weight of aggressive augmented pairs and increase the weight of aggressive-weak augmented pairs to
reduce semantically inconsistent impact.

Empirical results on multiple benchmark datasets show that our method can outperform state-of-the-
art methods in various settings with a large margin. For instance, with 200 epochs of pre-training, our
method achieves 73.1% Top-1 accuracy on ImagetNet-1K [25] linear evaluation protocol, which is
2.5% higher than BYOL [15]. Experiments on MS COCO [29] also show that our pre-trained model
can continually improve the performance for multiple downstream tasks.

2 Related Works

Self-supervised learning (SSL) has attracted great attention to capture universal representations [20,
60, 38, 48, 5, 12, 61]. The core of SSL is designing agent tasks, which allow us to learn representations
from large-scale unlabeled data via pseudo labels instead of using any human annotations. To this
end, many proposals devise different solutions for constructing pseudo labels, including predicting
the rotation of images [13], putting pieces of images together [36], or recovering color from grayscale
images [59]. Particularly, Wu et al. [49] propose an instance-level classification, which regards images
augmented from the same image as a positive pair and others as negative examples. SimCLR [6]
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improves performance by inserting the projection network and introducing aggressive augmentation.
He et al. [17, 7] store negative representations in a queue to reduce the memory requirement. BYOL
[15] enhances the power of SSL by removing the dependence on negative examples, which also
addresses the problem of false negative examples [9]. Despite these methods having proved their
effectiveness based on aggressive augmentation, they ignore the semantic shift problem from it.

Noisy samples in aggressive augmentation. Recent studies [47, 40, 35, 39] have discovered that
aggressive augmentation may generate noisy samples in the positive pairs. To alleviate this issue,
ContraCAM [35] proposes a two-step approach to reduce the issue of random cropping, which
seeks objects first and then crops images based on their locations. In addition, Gansbeke et al. [45]
conduct experiments on scene-centric datasets (e.g., COCO) containing multiple objects in images
and argue that SSL can overcome the issue of random cropping. Since the issue of random cropping
has been well studied, our work focuses on other types of augmentations, which can be viewed as a
complement to previous studies.

Learning with noisy labels. Reducing the semantic shift problem in SSL is similar to another
well-studied topic in machine learning, learning with noisy labels [31, 51, 54, 50, 53]. In this field,
many state-of-the-art methods use the memorization effect to select confident examples in the early
learning phase [37, 41, 27]. Specifically, Co-teaching [16] uses the early stopping trick and the
small-loss strategy to choose confident examples. PES [3] finds examples with noisy labels have more
detrimental effects on the latter layers, and improves the early stopping trick by progressively training
each part of DNNs. However, directly using the early stopping trick is difficult in SSL because noisy
pairs are randomly generated by aggressive augmentations over epochs while samples with noisy
labels are fixed in learning with noisy labels. Besides, roughly removing noisy pairs is more likely to
delete many clean pairs by mistake, especially in the low noise rate case.

3 Methodology

Our approach aims to minimize the detrimental impacts of semantically inconsistent (noisy) pairs
from aggressive augmentations while taking advantage of aggressive augmentations. As such, we
first revisit preliminaries on self-supervised learning. Then, we elaborate on the proposed learning
algorithm that counterbalances the noise impacts by utilizing the memorization effect of DNNs.

3.1 Preliminaries on Self-supervised Learning

Self-supervised learning methods based on contrastive learning generally require learning an embed-
ding space that can easily separate different examples. Let D be a set of images, and an image xi

is uniformly drawn from D. Denote t and t′ as two different instances from the same distribution
of image augmentation T. v and v′ are two augmented views of the image xi with v = t(xi) and
v′ = t′(xi), which are regarded as a pair of positive examples. Then, v and v′ will separately feed
through an encoder fθ and a projector gθ to embed z and z′, which are required to be close to each
other via a contrastive loss function, e.g., InfoNCE [44] can be expressed as,

LNCE = − log
exp(z · z′/γ)

exp(z · z′/γ) +
∑

n∈N exp(z · n/γ)
, (1)

where γ is a temperature parameter, and N is a set of negative example vectors. The embeddings of
positive and negative examples are l2-normalized. To stabilize the training process, some state-of-
the-art methods [17, 61, 23] employ an asymmetric framework, including an online network and a
target network. For the online and target networks, they have the same network structure but different
weights of encoder fξ, and projector gξ, whose parameters ξ are updated by the online parameters θ
with the exponential moving average method.

Recently, BYOL [15] found negative examples are not necessary and added a predictor qθ in the
online network to avoid collapsed solutions, e.g., all images have the same vector. And, the loss
function can be simplified to,

Lmse = 2− 2 ∗ ⟨z, z′⟩
∥z∥2 ∗ ∥z′∥2

. (2)
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Figure 2: The illustration of our proposed method (RSA). We utilize an asymmetric-style framework,
including an online network and a target network. The online network is optimized by gradients,
and the target network is updated with the exponential moving average strategy. We first adopt the
weak augmentation to generate two views (vw, v′w), then adopt the aggressive augmentations to
further generate another two views (va, v′a). Subsequently, we make aggressive-augmented views to
keep consistent with their corresponding weak- and aggressive-augmented views in the embedding
space. On the right of the image, we compare RSA with classical SSL methods. RSA forces learned
representations to a balance between weak- and aggressive-augmented views. (Best viewed in color)

3.2 Description of RSA

As discussed in Introduction, noisy pairs from aggressive augmentations will lead to a severe semantic
shift problem, which damages the generalization on downstream tasks. However, most of the sample
pairs generated from aggressive augmentations are beneficial for the model performance, and what
precise degree of distortion would cause bias remains unknown, so it is hard to distinguish between
clean pairs and noisy pairs in SSL. Instead of separating noise from training data, we employ weak
augmentation to generate sample pairs as relatively clean pairs.

To this end, we propose an efficient method to reduce semantic shift from aggressive augmenta-
tions, dubbed RSA. Envisioned by the memorization effect, DNNs will first fit clean pairs (major-
ity/semantically consistent) of training data in the early learning phase and then overfit to noisy pairs
(minority/semantically inconsistent). Noisy pairs account for the minority, so we assume that the
noise impacts will be small and then increases as the training process. We give different weights to
clean and noisy pairs, and gradually reduce the weights of noisy pairs against raised noise impacts.

However, simply introducing clean pairs will significantly increase computation, and SSL has known
that more computation will increases performance, which makes it difficult to fairly compare with
other baselines. To limit computation, we meet two problems. First, generating more augmented
instances, especially double instances, commonly means expensive computation, largely burdening
CPU and hard disk, which leads to slow data processing down and low efficiency of GPU [6]. Second,
more instances require more back-propagation times, which results in more processing time for GPU.

To address the first problem, we propose a novel data augmentation pipeline, called multi-stage
augmentation, which can generate double instances with nearly the same resources. Specifically,
data augmentation generates image variants by mixing different types of image transformation and
arranging them into a queue. For a transformation, it receives an image from the result of the previous
transformation and transforms the image based on pre-defined probability, and then passes it to
the next transformation, taug(x) = ta(tw(x)), where ta and tw are two subsets of taug. Based on
this process, we can separate it into two child processes. Namely, tw includes weak augmentation
operations while ta conducts aggressive augmentation operations based on tw. This process can be
described as,

vw = tw(x) v′w = t′w(x),

va = ta(vw) v′a = t′a(v
′
w).

(3)
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Algorithm 1: RSA: Reducing semantic shift
Input: Neural network fθ and fξ. Projector gθ and gξ. Predictor qθ. A batch of samples x. An
image set D. Total number of training steps K. Weak augmentation function tw. Aggressive
augmentation function ta. Hyper-parameter βbase.
for k ← 1 to K do

x← D // Sample a batch of images
vw ← tw(x) and v′w ← t′w(x) // Multi-stage augmentation
va ← ta(vw) and v′a ← t′a(v

′
w)

za ← qθ(gθ(fθ(va))) and zw ← gξ(fξ(vw)) // Embedding for four views
z′a ← qθ(gθ(fθ(v

′
a))) and z′w ← gξ(fξ(v

′
w))

L ← (1− β)Lmse(za, z
′
w) + βLmse(za, z

′
a) + (1− β)Lmse(z

′
a, zw) + βLmse(z

′
a, za)

β ← βbase × 1
2 (cos(π

k
K ) + 1) // Decreasing β

Update fθ, gθ and qθ with L
Update fξ and gξ by slowly momentum updating with fθ and gθ

Output: The trained network fθ

For the second problem, we send aggressive augmented views to the online network and weak
augmented views to the target network, which means each instance only forwards once. Accordingly,
RSA requires back-propagation twice, which is equal to many state-of-the-art SSL methods with a
symmetrized loss [6, 8, 15, 5].

za = qθ(gθ(fθ(va))) zw = gξ(fξ(vw)),

z′a = qθ(gθ(fθ(v
′
a))) z′w = gξ(fξ(v

′
w)).

(4)

After obtaining four representations, we group them into four pairs and make each aggressive-
augmented view to keep consistent with their corresponding weak- and aggressive-augmented views
in the embedding space. For the corresponding aggressive-augmented views, rather than encoding
them on the target network, we use the representations from the online network with a stop-gradient
operation. The total loss is summarized as,

L = (1− β)Lmse(za, z
′
w) + βLmse(za, z

′
a)

+(1− β)Lmse(z
′
a, zw) + βLmse(z

′
a, za),

(5)

where β is a calculated parameter to re-weight the losses from weak- and aggressive-augmented
views. This loss function forces networks to learn representations that achieve a balance between
weak- and aggressive-augmented views, which reduces overfitting to noisy pairs while avoiding a
simple solution. As the training goes on, the noisy impacts will increase. We further offset it by using
the memorization effect, which decreases β with a cosine decay equation,

β = βbase ×
1

2
(cos(π

k

K
) + 1), (6)

where βbase is a given number at the training beginning, and k and K are the current training steps
and the total training steps.

4 Experiments

4.1 Datasets and Implementation Details

Datasets: We assess the proposed method on six image datasets, from small to large. We choose
CIFAR-10/100 [24] for small datasets, and STL-10 [10] and Tiny ImageNet [1] for medium datasets,
and ImageNet-100 [42] and ImageNet-1K [25] for large datasets. Note, ImageNet-100 contains 100
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Table 1: Analysis of the multi-stage augmentation and the memorization effect. We run methods on
small and medium datasets for 200 epochs, and on ImageNet-100 for 100 epochs. The mean and
standard deviation are computed over three trials. Note that two augmented instances with aggressive
augmentation are referred to as AA, instances with one aggressive and one weak augmentation as
AW, and instances with multi-stage augmentation as MA.

Method Aug. β CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet ImageNet-100
BYOL AA – 90.2±0.0 63.9±0.5 91.3±0.1 49.5±0.1 80.9
BYOL AW – 90.5±0.2 66.1±0.3 90.7±0.0 51.1±0.3 81.2
RSA MA Fixed 91.3±0.2 66.5±0.0 92.8±0.2 53.9±0.2 83.2
RSA MA Decay 92.1±0.0 67.6±0.3 93.0±0.2 54.7±0.3 83.5

classes that are randomly selected from ImageNet-1K [25] and we choose the same classes with [42].
For STL-10, both 5k labeled and 100k unlabeled images are used for the pre-trained model, and only
5k labeled images are used for the linear evaluation.

Augmentation: In this paper, we define "aggressive" augmentation including grayscale, color jitter,
and Gaussian blur, while "weak" augmentation includes random crop and horizontal flip. The hyper-
parameters of the augmentations are following MoCo v2 [7] except for the size of the cropped images
for the small and medium datasets, and we resize images to 32× 32 and 64× 64 for the small and
medium datasets, respectively.

Baselines: For the comparison, we re-implement the state-of-the-art methods, SimCLR [6], MoCo
v2 [7], SimSiam [8], and BYOL [15] based on the public codes. We follow [8] that implements the
MoCo v2 with a symmetrized loss function, and set the exponential moving average factor to 0.99
for all experiments. For BYOL [15] on the small and medium datasets, we follow [15], and set the
channel inner layer of 1024 in the projection and prediction MLP and the output feature is 128. We
initially set the exponential moving average factor as 0.99 and gradually enlarge it to 1.

Network structure and optimization: Our method and reproduced methods are implemented
by PyTorch v1.8 and we conduct all experiments on Nvidia V100. Our method is based on our
reproduced BYOL [15]. For the pre-train stage on the small and medium datasets, we adopt ResNet-
18 [19] as a backbone. For optimization, we use SGD optimizer with a cosine-annealed learning
rate of 0.1 [32], a momentum of 0.9, weight decay of 5 × 10−4, and a batch size of 256. We set
βbase = 0.3 for CIFAR-10/100 and βbase = 0.4 for Tiny ImageNet and STL-10.

For the pre-train stage on large datasets, we adopt a standard ResNet-50 [19] as a backbone. For
ImageNet-100, the network is trained using SGD optimizer with a single cycle of cosine annealing
[32], and an initial learning rate of 0.2, a momentum of 0.9, weight decay of 10−4, and a batch
size of 256. We conduct ImageNet-1K experiments with 8× Nvidia V100 32G with Automatic
Mixed Precision (AMP) package [33]. Specifically, we follow [15], and train a network with a LARS
optimizer [55] with a single cycle of cosine annealing [32], a momentum of 0.9, weight decay of
10−6, and a batch size of 2048. The base learning rate starts from 0.9 and 0.6 for 100 and 200 epochs
respectively, linearly scaled by the times of batch size 256 [14]. We set βbase = 0.4 for ImageNet-100
and ImageNet-1K.

Evaluation: We evaluate the representations of the pre-trained model with the linear evaluation
protocol, which freezes the encoder parameters and trains a linear classifier on top of the pre-trained
model. For the small and medium datasets, we follow the setting in MoCo v2 [7] and train a linear
classifier for 100 epochs with an initial learning rate of 30, no weight decay, and a momentum of 0.9.
The learning rate will be multiplied by 0.1 at the 60 and 80 epochs. For the large datasets, we follow
the evaluation setting in Mean Shift [23], which only requires 40 epochs and a batch size of 256. The
linear classifier is trained with SGD and an initial learning rate of 0.01, weight decay of 10−4, and a
momentum of 0.9. The learning rate will be multiplied by 0.1 at 15, 30, and 40 epochs.

4.2 Preliminary Analysis

In Table 1, we investigate the effectiveness of the proposed multi-stage augmentation and the
memorization effect. We first compare the linear classification of BYOL with two aggressive
augmentations (AA) and with one aggressive and one weak augmentation (AW) and RSA with
multi-stage augmentation (MA) without memorization effect (fixed β). From the second row, we can
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Table 2: Performance comparison with linear classification on small and medium datasets for 200
and 800 epochs. We adopt a ResNet-18 as a backbone for all experiments. The mean and standard
deviation are computed over three trials.

Method CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
200 ep 800 ep 200 ep 800 ep 200 ep 800 ep 200 ep 800 ep

SimCLR 88.3±0.2 91.1 59.5±0.3 63.8 87.9±0.4 91.0 46.7±0.1 48.4
MoCo v2 87.1±0.2 91.4 60.3±0.4 65.0 88.4±0.3 91.3 47.8±0.4 50.1
SimSiam 86.9±0.1 91.1 55.8±0.9 62.4 85.0±0.4 89.7 41.2±0.3 44.5
BYOL 90.2±0.0 92.7 63.9±0.5 68.2 91.3±0.1 93.4 49.5±0.1 53.0

RSA (Ours) 92.3±0.1 93.7 68.1±0.5 70.4 93.1±0.2 94.0 54.8±0.4 55.5

see that BYOL with AW can largely improve the performance on CIFAR-100 and Tiny ImageNet, and
mildly improve the performance on CIFAR-10 and ImageNet-100, but the network suffers from AW
on STL-10. These inconsistent results suggest that although AW can help against the noise impacts
from aggressive pairs, it reduces the diversity of augmented pairs compared with AA, which may
result in a suboptimal result. In contrast, MA not only outperforms AA and AW but also generally
improves performance across five datasets, suggesting that multi-stage augmentation (MA) can take
advantage of AA and AW at the same time.

According to the memorization effect of DNNs, noise impacts vary at different stages of the training
process and become more apparent at the end. In order to balance the increasing noise impact, we
decay β during the training, which results in rising the weights of aggressive-weak augmented pairs
and reducing the weights of aggressive-aggressive augmented pairs. Improved performance in the
fourth row verifies that we can use the memorization effect of DNNs to further reduce noise impact.
Notably, we set βbase = 0.5 in preliminary experiments, and the performance can be further improved
with a turned βbase in Table 2 and 3.

4.3 Linear Classification

Table 3: Performance comparison with linear clas-
sification on ImageNet-100 for 100 and 200 epochs.
All methods adopt ResNet-50 as a backbone.

Method Batch size 100 ep 200 ep
SimCLR 256 79.1 82.4
MoCo v2 256 80.9 83.9
SimSiam 256 79.7 82.6
BYOL 256 80.9 83.6

RSA (Ours) 256 83.7 85.5

Small and medium datasets. We evaluate our
method on small and medium datasets, with 200
and 800 epochs. We also run three trials for a
short running time to evaluate the stability of
the proposed method. Table 2 illustrates that
the proposed method significantly improves the
performance across the four datasets on short
training time experiments, demonstrating that
RSA can accelerate convergence and the small
standard deviation also shows that the proposed
method has good stability. For the long train-
ing time experiments, outstanding results show
RSA can continue to improve the final performance.

Large datasets. We evaluate the performance of the proposed method on the large datasets, ImageNet-
100 and ImageNet-1K. We reproduce all baselines on ImageNet-100 with batch size 256. The results
on ImageNet-100 and ImageNet-1K are shown in Table 3 and Table 4 respectively. We can see
that RSA outperforms the state-of-the-art methods on ImageNet-100 with a relatively large margin
across 100 and 200 epochs. For results on ImageNet-1K, RSA consistently surpasses baselines,
e.g., the performance of RSA for 100 epochs has already surpassed BYOL training for 200 epochs.
RSA achieves a new state-of-the-art result for 200 epochs, exhibiting a 2.5% improvement over
BYOL. Overall, empirical results on linear evaluation verify that RSA can constantly improve the
generalization in various settings.

4.4 Transfer Learning

We further verify the quality of representation learned by RSA on more downstream tasks. For object
detection and instance segmentation, we follow [43], and adopt Mask R-CNN [18] with FPN [28] to
fine-tune our pre-trained ResNet-50 model on COCO train2017 with 1 × schedule and 2 × schedule,
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Table 4: Performance comparison with linear classification on ImageNet-1K. All methods use a
standard ResNet-50 as a backbone without a multi-crop strategy.

Method Neg. pairs Batch Size Epochs Top-1 Linear
Supervised 256 100 76.2
InstDis [49] ✓ 256 200 56.5
PIRL [34] ✓ 256 200 63.6

SimCLR [6] ✓ 4096 1000 69.3
MoCo v2 [7] ✓ 256 200 67.5

JCL [4] ✓ 256 200 68.7
ReSSL [61] ✓ 256 200 69.6

InfoMin Aug. [43] ✓ 256 200 70.1
W-MSE 4 [12] 4096 400 72.6
SimSiam [8] 256 200 70.0

SwAV [8] 4096 200 69.1
BYOL [8] 4096 100 66.5
BYOL [8] 4096 200 70.6
BYOL [15] 2048 300 72.4
RSA (Ours) 2048 100 71.4
RSA (Ours) 2048 200 73.1

Table 5: Transfer learning on downstream tasks: object detection, instance segmentation. All
models were pre-trained on ImageNet-1K for 200 epochs and fine-tuned on MS COCO with 1 ×
schedule. Object detection and instance segmentation results are from [43].

Method Object detection Instance segmentation
AP bb AP bb

50 AP bb
75 APmk APmk

50 APmk
75

random init. 32.8 50.9 35.3 29.9 47.9 32.0
supervised 39.7 59.5 43.3 35.9 56.6 38.6

InstDis [49] 38.8 58.4 42.5 35.2 55.8 37.8
PIRL [34] 38.6 58.2 42.1 35.1 55.5 37.7
MoCo [17] 39.4 59.1 42.9 35.6 56.2 38.0

MoCo V2 [7] 40.1 59.8 44.1 36.3 56.9 39.1
InfoMin Aug. [43] 40.6 60.6 44.6 36.7 57.7 39.4

RSA (Ours) 41.1 61.4 45.1 37.3 58.6 40.1

Table 6: Transfer learning on downstream tasks: object detection, and instance segmentation. All
models were pre-trained on ImageNet-1K for 200 epochs and fine-tuned on MS COCO with 2 ×
schedule. Baseline results are from [43].

Method Object detection Instance segmentation
AP bb AP bb

50 AP bb
75 APmk APmk

50 APmk
75

Random 38.4 57.5 42.0 34.7 54.8 37.2
Supervised 41.6 61.7 45.3 37.6 58.7 40.4
InstDis [49] 41.3 61.0 45.3 37.3 58.3 39.9
PIRL [34] 41.2 61.2 45.2 37.4 58.5 40.3
MoCo [17] 41.7 61.4 45.7 37.5 58.6 40.5

MoCo v2 [7] 41.7 61.6 45.6 37.6 58.7 40.5
InfoMin Aug. [43] 42.5 62.7 46.8 38.4 59.7 41.4

RSA (Ours) 42.7 62.9 47.1 38.5 60.0 41.4

and evaluate performance on COCO val2017. We set the initial learning rate as 0.02 and 0.03 for the
1 × schedule and 2 × schedule experiments respectively.

Table 5 and Table 6 report the results of object detection and instance segmentation. We can observe
that RSA outperforms all baselines on object detection and instance segmentation tasks, especially,
showing superior over the strong baseline InfoMin Aug. [43] that adopts more advanced augmentation,
RandAugment [11]. Strong performance on downstream tasks demonstrates that RSA can improve
the general quality of learned representations.
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Table 7: Training time comparison with BYOL on three datasets

Method CIFAR-100 STL-10 ImageNet-100
BYOL 11.3h 77.6h 9.5h
RSA 11.5h 79.6h 10.4h

(a) CIFAR-100 [24] (b) STL-10 [10] (c) ImageNet-100 [25]

Figure 3: Sensitivity analysis for the hyper-parameter βbase. We conduct experiments on CIFAR-100
and STL-10 for 800 epochs, and ImageNet-100 for 100 epochs, respectively. Note that the green dash
line is the result with β = 0.

4.5 Training Time Comparison

We compare the running time between our method and reproduced BYOL. We conduct experiments
on CIFAR-100 and STL-10 for 800 epochs with a single Nvidia V100, and ImageNet-100 for 200
epochs with 4× Nvidia V100, respectively. For ImageNet-100, we use Automatic Mixed Precision
package [33] to speed up the training process and save GPU memory. Note that since we do not have
enough GPUs to run a standard BYOL with a batch size of 4096 on ImageNet, we use ImageNet-100
instead of ImageNet-1K, which has similar processing efficiency but ten times the data.

Although our method uses double instances in the loss function 5, each instance in RSA only passes
into the network one time. Therefore, the number of forward and backward passes keeps the same
with BYOL. In addition, thanks to the efficient multi-stage augmentation, where we generate double
instances using the nearly same resources. The main burden training time part of our proposed
method may come from two more vector multiplication in our loss function 5. From Table 7, we can
see that our method is as efficient as BYOL, and the differences between the two methods are less
than 9% across three datasets.

4.6 Ablation Studies

In this section, we investigate the importance of the hyper-parameter βbase in Eq 6, which controls
the initial weights of aggressive-aggressive and aggressive-weak augmented pairs in Eq 5. Figure 3
reports the results with linear classification on three datasets. First of all, we can observe that βbase

makes remarkable contribution for the improvements compared with βbase = 0, with +0.4% (total
increments +0.6%) for STL-10 and +0.7% (total increments +2.2%) for CIFAR-100. This suggests
that removing aggressive-aggressive augmented pairs with βbase = 0 will limit the full exploration of
the diversity of aggressive augmentation. However, if βbase is too large, aggressive-weak augmented
pairs will make less contribution against noisy impacts.

4.7 Adaptability Studies

To evaluate the adaptability, we implement the proposed method based on SimSiam [8], termed
SimSiam + RSA. Specifically, we change the same similarity function from mean square error to
negative cosine similarity and adopt the same settings for all the hyper-parameters mentioned in
Section 4.1. As illustrated in Table 8, we observe that the proposed Simsiam + RSA achieves better
transfer performance than SimSiam on three datasets. For instance, RSA significantly raises the
accuracy of linear probing from 55.8% to 63.7% (+7.9%) on the CIFAR-100 dataset. Therefore, the
proposed method does not rely on the momentum network, demonstrating the adaptability of RSA.
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Table 8: Performance comparison with linear classification for 200 epochs. The mean and standard
deviation are computed over three trials.

Method CIFAR-100 STL-10 ImageNet-100
SimSiam 55.8±0.9 85.0±0.4 82.6

Simsiam + RSA 63.7±0.5 89.2±0.5 84.0

5 Conclusion

In this paper, we first empirically demonstrate that two positive instances generated by the aggressive
augmentations can cause the semantic shift issue, which introduces noisy pairs and degrades the
quality of learned representation. To alleviate this issue, we propose a novel method RSA, which
dynamically adjusts the weights of clean and noisy pairs based on the memorization effects. Experi-
mental results show that our proposed method achieves state-of-the-art results on various datasets
and consistently improves the generalization on a series of downstream tasks.

The main limitation of this paper is that, although we know there is noise from aggressive augmenta-
tions, the specific conditions under which noise occurs and how much DNNs will suffer from it are
still unknown. We leave it as the future research direction.
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