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ABSTRACT

In the image acquisition process, various forms of degradation, including noise,
blur, haze, and rain, are frequently introduced. These degradations typically arise
from the inherent limitations of cameras or unfavorable ambient conditions. To
recover clean images from their degraded versions, numerous specialized restora-
tion methods have been developed, each targeting a specific type of degradation.
Recently, all-in-one algorithms have garnered significant attention by addressing
different types of degradations within a single model without requiring the prior
information of the input degradation type. However, most methods purely operate
in the spatial domain and do not delve into the distinct frequency variations inherent
to different degradation types. To address this gap, we propose an adaptive all-in-
one image restoration network based on frequency mining and modulation. Our
approach is motivated by the observation that different degradation types impact
the image content on different frequency subbands, thereby requiring different treat-
ments for each restoration task. Specifically, we first mine low- and high-frequency
information from the input features, guided by the adaptively decoupled spectra of
the degraded image. The extracted features are then modulated by a bidirectional
operator to facilitate interactions between different frequency components. Fi-
nally, the modulated features are merged into the original input for a progressively
guided restoration. With this approach, the model achieves adaptive reconstruction
by accentuating the informative frequency subbands according to different input
degradations. Extensive experiments demonstrate that the proposed method, named
AdaIR, achieves state-of-the-art performance on different image restoration tasks,
including image denoising, dehazing, deraining, motion deblurring, and low-light
image enhancement. Our code and models will be made publicly available.

1 INTRODUCTION

Image restoration is the task of generating a clean image by removing degradations (e.g., noise, haze,
blur, rain) from the original input Ahn et al. (2024). It serves as a vital component in numerous
downstream applications across diverse domains, including image/video content creation, surveillance,
medical imaging, and remote sensing. Given its inherently ill-posed nature, effective image restoration
demands learning strong image priors from large-scale data. To this end, deep neural network-based
image restoration approaches (Zamir et al., 2020a; Tsai et al., 2022b; Nah et al., 2022) have emerged
as preferable choices over the conventional handcrafted algorithms (He et al., 2010; Kim & Kwon,
2010; Michaeli & Irani, 2013). Deep-learning methods learn image priors either implicitly from
data (Ren et al., 2021; Nah et al., 2022; Dong et al., 2020a), or explicitly by incorporating task-
specific knowledge into the network architectures (Tu et al., 2022; Wang et al., 2022; Zamir et al.,
2021; 2022a; 2020b; Chen et al., 2022). Despite promising results on individual restoration tasks,
these approaches are either not generalizable beyond the specific degradation types and levels which
hinders their broader application, or require training separate copies of the same network on different
degradation types, which is computationally expensive and tedious procedure, and maybe infeasible
solution for deployment on resource-constraint edge-devices. Therefore, there is a need to develop an
all-in-one image restoration method that can handle images with different degradation types, without
requiring prior information regarding the corruption present in the input images.
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Figure 1: Left, from top to bottom: degraded images, ground truth, and Fourier spectra of residual
images obtained by subtracting the degraded images from the ground truth. The images are obtained
from LOL-v1 (Wei et al., 2018), SOTS (Li et al., 2018), Rain100L (Li et al., 2018), GoPro (Nah
et al., 2017), and BSD68 (Martin et al., 2001) with different noise factors, respectively. Right, the
sub-graph illustrates the mean values of Fourier spectra on the square of length shown on the x-axis,
across five tasks. The spectra are all resized to 320× 320 for comparisons. As seen, different tasks
pay different attention to different frequency subbands. For example, there are larger discrepancies in
low frequency between degraded and target pairs of the low-light image enhancement and dehazing
datasets. In contrast, the frequency differences are generally evenly distributed for image denoising.

Denoise
Derain
Dehaze

AirNet U-WADN PromptIR Ours

Figure 2: The t-SNE results of intermediate features produced
by the three-task all-in-one models. Our model is better at
learning discriminative degradation contexts.

Recently, an increasing number
of attempts have been made (Ma
et al., 2023; Shi et al., 2024; Gao
et al., 2023) to address multiple
degradations with a single model.
These include using a degradation-
aware encoder in the restoration net-
work learned via contrastive learning
paradigm (Li et al., 2022); designing
a two-stage framework IDR (Zhang
et al., 2023), where the first stage is dedicated to task-oriented knowledge collection based on
underlying physics characteristics of degradation types, and the second stage is responsible for
ingredients-oriented knowledge integration that progressively restores the image; or developing
prompt-learning strategies (Potlapalli et al., 2023; Ma et al., 2023) inspired from their success in
the natural language processing (Brown et al., 2020). Nonetheless, most existing approaches purely
operate in the spatial domain and do not consider frequency information. However, as shown in Fig. 1,
we observe that different degradations may impact the image content on different frequency subbands.
For instance, on the one hand, noisy and rainy images are contaminated with high-frequency content,
while on the other hand, low-light and hazy images are dominated by low-frequency degraded content,
thus indicating the need to treat each restoration task on its own merits.

In this paper, we propose an adaptive all-in-one image restoration framework based on frequency
mining and modulation. Specifically, the frequency mining module extracts different frequency
signals from the input features, guided by an adaptive spectra decomposition of the degraded input
image. The extracted features are then refined using a bidirectional module, which facilitates the
interactions between different frequency components by exchanging complementary information.
Finally, these modulated features are used to transform the original input features via an efficient
transposed cross-attention mechanism. With the proposed key design choices, our method can learn
discriminative degradation context more effectively than other competing approaches, as shown in
Fig. 2. Overall, the following are the main contributions of our work.

• We propose an adaptive all-in-one image restoration framework that leverages both spatial
and frequency domain information to effectively decouple degradations from the desired
clean image content.

• We introduce the Adaptive Frequency Learning Block (AFLB), which is a plugin block
specifically designed for easy integration into existing image restoration architectures. The
AFLB performs two sequential tasks: firstly, through its Frequency Mining Module (FMiM),
it generates low- and high-frequency feature maps via guidance obtained from the spectra
decomposition of the original degraded image; secondly, the Frequency Modulation Module
(FMoM) within the AFLB calibrates these features by enabling the exchange of information
across different frequency bands to effectively handle diverse types of image degradations.
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• Extensive experiments demonstrate that our AdaIR algorithm sets new state-of-the-art
performance on several all-in-one image restoration tasks, including image denoising,
dehazing, deraining, motion deblurring, and low-light image enhancement.

2 RELATED WORK

Single-Task Image Restoration. Image restoration aims to reconstruct a clean image from its
degraded counterpart. Since it is a highly ill-posed problem, many conventional methods have
been proposed that utilize hand-crafted features to reduce the solution space (Berman et al., 2016;
He et al., 2010). Such solutions, though perform well on some datasets, may not generalize well
to complicated real-world images (Zhang et al., 2022). Recently, with the rapid advancements in
deep learning, a great number of convolutional neural network (CNN) based methods have been
proposed and attained superior performance over traditional methods on various image restoration
tasks, such as image denoising (Zhang et al., 2017a; 2018), dehazing (Qin et al., 2020; Ren et al.,
2016), deraining (Jiang et al., 2020; Ren et al., 2019), and motion deblurring (Cho et al., 2021; Cui
et al., 2023d). To model long-range dependencies, Transformer models have been introduced to
low-level tasks and significantly advanced state-of-the-art performance (Guo et al., 2022; Song et al.,
2023; Tsai et al., 2022a). Despite the obtained promising performance, these task-specific methods
lack generalization beyond certain degradation types and levels. For general image restoration, several
network design-based approaches are proposed, which perform favorably on different restoration
tasks (Wang et al., 2022; Liang et al., 2021; Li et al., 2023; Zamir et al., 2022a). Although these
networks demonstrate robust performance on various restoration tasks, they require training separate
copies on different datasets and tasks. Furthermore, applying a separate model for each possible
degradation is resource-intensive, and often impractical for deployment, especially on edge devices.

All-in-One Image Restoration. All-in-one image restoration methods address numerous degrada-
tions within a single model (Yang et al., 2024; Jiang et al., 2023; Chen & Pei, 2023). Early unified
models (Chen et al., 2021b; Li et al., 2020) employ distinct encoder and decoder heads to attend
to different restoration tasks. However, these non-blind methods need prior knowledge about the
degradation involved in the corrupted image in order to channelize it to the relevant restoration head.
To achieve blind all-in-one restoration, AirNet (Li et al., 2022) learns the degradation representation
from the corrupted images using contrastive learning, and the learned representation is then used
to restore the clean image. The subsequent method, IDR (Zhang et al., 2023), models different
degradations depending on the underlying physics principles and achieves all-in-one image restora-
tion in two stages. Zhu et al. (Zhu et al., 2023) formulates an efficient unified model by learning
weather-general and weather-specific features in two stages. Recently, several prompt-learning-based
schemes have been proposed (Ma et al., 2023; Conde et al., 2024; Ai et al., 2024). For instance,
PromptIR (Potlapalli et al., 2023) presets a series of tunable prompts to encode discriminative infor-
mation about degradation types, which involve a large number of parameters. Different from most
methods, which operate only in the spatial domain Park et al. (2023), this paper presents an all-in-one
image restoration algorithm that exploits information both in spatial and frequency domains.

Frequency Networks. Frequency processing has become a prevalent technique in the field of
image restoration. For example, several works (Zhou et al., 2024; Cui et al., 2023c;b) employ
adaptive convolutions and softmax mechanisms to decouple features. However, these methods
operate exclusively in the spatial domain, limiting their ability to capture a broad spectrum of
frequencies and diminishing their effectiveness in frequency learning. Furthermore, their use of
concatenation or channel attention for frequency interactions fails to exploit the unique properties of
different frequency bands. Other approaches (Kong et al., 2023; Mao et al., 2023; 2024) leverage
frequency transformation techniques, such as Fourier or Wavelet transforms, to map spatial features
into the frequency domain, followed by convolutions or learnable parameters for spectral refinement.
However, these methods lack explicit frequency interactions, and their parameters remain fixed
after training, hindering adaptability to diverse degradation types. Zheng et al (Zheng et al., 2021)
employ a deep CNN block to learn bandpass filters for image demoireing. In the context of all-
in-one image restoration, a few methods (Gao et al., 2023; Shi et al., 2024) employ manual or
non-adaptive approaches for feature separation and execute frequency interactions without accounting
for the distinct characteristics of different frequency components. Unlike the above algorithms, our
approach explicitly operates in the frequency domain and realizes adaptability to various degradations.
Furthermore, we employ distinct attention mechanisms to facilitate frequency interactions, leveraging
the unique characteristics of different frequency bands to enable more effective frequency learning.
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Figure 3: (a) The overall pipeline of AdaIR. It is a Transformer-based encoder-decoder architecture,
employing TB (Zamir et al., 2022a) and a novel Adaptive Frequency Learning Blocks (AFLB). Each
AFLB contains (b) Frequency Mining Module (FMiM) that extracts different frequency components
from input features guided by the adaptively decoupled spectra of the degraded input image, and (c)
Frequency Modulation Module (FMoM) that exchanges the complementary information between
different frequency features. (d) Cross Attention (CA) (Zamir et al., 2022a). (e) Mask Generation
Block (MGB) that yields a frequency boundary for spectra decomposition. (f) H-L unit (Woo
et al., 2018) delivers high-frequency attention maps to enrich Low-frequency features. (g) L-H unit
enhances high-frequency features by complementing them with low-frequency features. FFT and
IFFT denote the Fast Fourier Transform and its inverse operator, respectively.

3 METHOD

3.1 OVERALL PIPELINE

Fig. 3 presents the pipeline of AdaIR. The overall goal of our AdaIR framework is to learn a unified
model M that can recover a clean image Î from a degraded image I, without any prior information of
degradation type D present in the input image I. Formally, given a degraded image I ∈ RH×W×3,
AdaIR first extracts shallow features Y0 ∈ RH×W×C using a 3× 3 convolution; where H ×W
denotes the spatial size and C represents the number of channels. Next, these features Y0 are
processed through a 4-level encoder-decoder network. Each level of the encoder employs multiple
Transformer blocks (TBs) (Zamir et al., 2022a), where the number of blocks gradually increases from
the top level to the bottom level, facilitating a computationally efficient design. The encoder takes
high-resolution features Y0 as input, and progressively transforms them into a lower-resolution latent
representation Yl ∈ RH

8 ×W
8 ×8C . On the decoder side, the latent features Yl are processed with

interleaved Adaptive Frequency Learning Block (AFLB) and TBs to progressively reconstruct high-
resolution clean output. Particularly, between every two levels of the decoder, we insert the AFLB that
adaptively segregates the degradation content from the clean image content in the frequency domain,
and subsequently assists in refining features in the spatial domain for effective image restoration.

Since different types of degradations affect image content at different frequency bands (as shown in
Fig. 1), we specifically design the Adaptive Frequency Learning Block (AFLB) that extracts low-
and high-frequency components from the input features and then modulate them to accentuate the
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corresponding informative subbands for each degradation. Next, we describe the two key components
of AFLB: (1) Frequency Mining Module (FMiM) and Frequency Modulation Module (FMoM).

3.2 FREQUENCY MINING MODULE (FMIM)
As shown in Fig. 3(b), given as inputs both the degraded image I and the intermediate features X ∈
RH×W×C , FMiM mines different frequency representations from X with the guidance of adaptively
decoupled spectra of I. Primarily, FMiM consists of three steps, i.e.,, domain transformation, mask
generation, and feature extraction.

For the domain transformation, FMiM applies a 3× 3 convolution on the degraded image I to expand
the channel capacity to align with that of the input features X. These output features are transformed
into spectral domain representation F ∈ RH×W×C via the Fast Fourier Transform (FFT).

Since we want to adaptively extract different frequency parts from the input features X, we design
a lightweight Mask Generation Block (MGB) to generate a 2D mask that serves as a frequency
boundary to separate the spectra of input image I. The cutoff frequency boundary adaptively changes
according to the type of degradation present in the image. As illustrated in Fig. 3(e), the projected
feature map P is first mapped into a vector using a global average pooling operator and then passes
through two 1× 1 convolution layers with the GELU activation function in between to produce two
factors ranging from 0 to 1, which define the mask size by multiplying with the width and height of
the spectra. The mask generation process can be formally expressed as:

[α, β] = δ
(
W 1×1

2

(
σ
(
W 1×1

1 (GAPs (P))
)))

(1)

where GAPs denotes spatial global average pooling, σ is the GELU activation, and δ indicates the
Sigmoid function. The convolution W1 and W2 have the reduction ratios of r1 and C

2r1
, respectively,

progressively downsampling the channel dimensions to 2. Subsequently, the binary mask Ml ∈
{0, 1}H×W for extracting low frequency can be obtained by setting Ml[

H
2 −αH

k : H
2 +αH

k ,
W
2 −βW

k :
W
2 + βW

k ] = 1, where k is set to a small value of 128, as the curve junction is relatively small in
Fig. 1. Accordingly, the mask for high frequency Mh is obtained by setting the values within the
remaining region as 1. Subsequently, we can obtain the adaptively decoupled features by applying the
learned masks to the spectra via element-wise multiplication and using the inverse Fourier transform.

Next, we adapt the multi-dconv head transposed cross attention (Fig. 3(d)) (Zamir et al., 2022a; Chen
et al., 2021a) to mine the different feature parts from the input features with the guidance of Fl and
Fh. Overall, the feature extraction process is defined as:

X∗ = softmax
(

QK⊤/α
)

V, where, (2)

Q = DW 1

(
W 1×1

3 (F∗)
)
,K = DW 2

(
W 1×1

4 (X)
)
,V = DW 3

(
W 1×1

5 (X)
)
,where, (3)

F∗ = F−1 (M∗ ⊙ F) , (4)

where ∗ ∈ {l, h} is an indicator for low/high frequency, DW represents a 3× 3 depth-wise convolu-
tion, ⊙ is element-wise multiplication, F−1 indicates the inverse fast Fourier transform, Q, K and V
are query, key and value projections, respectively, which are separately generated with a sequential
application of 1× 1 convolution and 3× 3 depth-wise convolution, and α is a learnable scaling factor
to control the magnitude of the dot product result of Q and K before using the softmax function.

3.3 FREQUENCY MODULATION MODULE (FMOM)

We devise FMoM to facilitate the cross interaction between low-frequency mined features and high-
frequency mined features (see Fig. 3(c)). The goal is to cross complement one type of mined features
with the other. For instance, high-frequency features contain edges and fine texture details, and
thus we use this information to enrich low-frequency mined features via a super-lightweight spatial
attention unit (H-L) (Fig. 3(f)). Similarly, the global information present in low-frequency features is
passed to the high-frequency branch through the channel attention unit (L-H), illustrated in Fig. 3(g).

H-L Unit: This unit computes the spatial attention map from high-frequency mined features that are
used to complement features of the low-frequency branch. The H-L unit (Woo et al., 2018) uses two
different channel-wise pooling techniques in parallel to produce two single-channel spatial feature
maps, each of size H ×W × 1. These maps are then concatenated along the channel dimension. The
concatenated features are further refined with a 7× 7 convolution, followed by a sigmoid operation
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to generate the final spatial attention map, which is then used to obtain the modulated low-frequency
features via element-wise multiplication. Overall, the process of the H-L Unit is given by:

X̂l = Xl ⊙ AH−L, where, (5)

AH−L = δ
(
W 7×7

6 ([GAPc(Xh),GMPc(Xh)])
)
, (6)

where W6 has a channel reduction ratio of 2. δ is the sigmoid function. GAPc and GMPc are the
channel-wise global average pooling and max pooling, respectively. [·, ·] indicates concatenation.

L-H Unit: It is a dual branch module that processes incoming low-frequency mined features,
yielding a feature descriptor that is subsequently used to attend to the high-frequency mined features.
Specifically, given the mined low-frequency features Xl ∈ RH×W×C , the top branch of the L-H unit
applies global average pooling along spatial dimension to obtain a feature vector of size 1× 1× C,
followed by two convolutional layers with the ReLU activation function in between. The bottom
branch of the L-H unit employs the same structure, with the only difference of Max pooling at the
head. The results of the two branches are added together, on which the sigmoid function is applied
to produce the final attention descriptor AL−H ∈ R1×1×C , which is used to modulate the mined
high-frequency features Xh. The process of the L-H Unit is expressed by:

X̂h = Xh ⊙ AL−H , where, (7)

AL−H = δ
(
W 1×1

8

(
γ
(
W 1×1

7 (GAPs(Xl)))
)
+W 1×1

10

(
γ(W 1×1

9 (GMPs(Xl))
)))

, (8)

where δ is the sigmoid function, X̂h is the modulated high-frequency features, GAPs and GMPs

represent the global average pooling and max pooling along the spatial dimensions, respectively. γ
indicates the ReLU activation function. W7 and W9 have a reduction ratio of r2 for the channel
adjustment, while W8 and W10 have an increasing ratio of r2. The parameters are shared among W7

and W9, W8 and W10 for computational efficiency.

Subsequently, the modulated high-frequency features X̂h and low-frequency features X̂l are aggre-
gated and processed via a 1× 1 convolution to obtain Xm, which is merged into the original input
X using the cross-attention unit, where the query Q tensor is produced from X while Xm yields
the key K and value V tensors. By using FMiM and FMoM, the high-frequency and low-frequency
contents of the input features are separately and adaptively modulated according to the degradation
type present in the corrupted input image, leading to adaptive all-in-one image restoration.

4 EXPERIMENTS

To validate the efficacy of the proposed AdaIR, we conduct experiments by strictly following previous
state-of-the-art works (Potlapalli et al., 2023; Li et al., 2022) under two different settings: (1) All-
in-One, and (2) Single-task. In the All-in-One setting, a unified model is trained to perform image
restoration across multiple degradation types. Whereas, within the Single-task setting, separate
models are trained for each specific restoration task. We provide single-task results, additional
ablation experiments, visual examples, and more details on the architecture in the Appendix. In tables,
the best and second-best image fidelity scores (PSNR and SSIM (Wang et al., 2004)) are highlighted
in red and blue, respectively.

Implementation Details. Our AdaIR presents an end-to-end trainable solution without the necessity
for pretraining any individual component. The architecture of AdaIR employs a 4-level encoder-
decoder structure, with varying numbers of Transformer blocks (TB) at each level, specifically [4, 6,
6, 8] from level-1 to level-4. We integrate one AFLB block between every two consecutive decoder
levels, amounting to a total of three AFLBs in the overall network.

For training, we adopt a batch size of 32 in the all-in-one setting, and a batch size of 8 in the
single-task setting. The network optimization is achieved through an L1 loss function, employing the
Adam optimizer (β1 = 0.9 and β2 = 0.999), with a learning rate of 2e−4, over the course of 150
epochs. During the training process, cropped patches sized at 128× 128 pixels are provided as input,
with additional augmentation applied via random horizontal and vertical flips. All experiments are
conducted on NVIDIA Tesla A100 40G GPUs using PyTorch.

Datasets. In preparing datasets for training and testing, we closely follow prior works (Potlapalli
et al., 2023; Li et al., 2022). For single-task image dehazing, we use SOTS (Li et al., 2018) dataset that
comprises 72,135 training images and 500 testing images. For single-task image deraining, we utilize
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Table 1: Comparisons under the three-degradation all-in-one setting: a unified model is trained on a
combined set of images obtained from all degradation types and levels. On Rain100L (Yang et al.,
2019) for image deraining, AdaIR yields 0.7 dB gain over ArtPromptIR (Wu et al., 2024).

Dehazing Deraining Denoising on BSD68
Method on SOTS on Rain100L σ = 15 σ = 25 σ = 50 Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM Params

BRDNet (Tian et al., 2020) 23.23 0.895 27.42 0.895 32.26 0.898 29.76 0.836 26.34 0.693 27.80 0.843 1.11M
LPNet (Gao et al., 2019) 20.84 0.828 24.88 0.784 26.47 0.778 24.77 0.748 21.26 0.552 23.64 0.738 2.84M
FDGAN (Dong et al., 2020b) 24.71 0.929 29.89 0.933 30.25 0.910 28.81 0.868 26.43 0.776 28.02 0.883 -
MPRNet (Zamir et al., 2021) 25.28 0.955 33.57 0.954 33.54 0.927 30.89 0.880 27.56 0.779 30.17 0.899 20.1M
DL (Fan et al., 2019) 26.92 0.931 32.62 0.931 33.05 0.914 30.41 0.861 26.90 0.740 29.98 0.876 2.09M
AirNet (Li et al., 2022) 27.94 0.962 34.90 0.968 33.92 0.933 31.26 0.888 28.00 0.797 31.20 0.910 8.93M
Restormer Zamir et al. (2022a) 27.78 0.958 33.78 0.958 33.72 0.930 30.67 0.865 27.63 0.792 30.75 0.901 26.13M
PromptIR (Potlapalli et al., 2023) 30.58 0.974 36.37 0.972 33.98 0.933 31.31 0.888 28.06 0.799 32.06 0.913 32.96M
U-WADN (Xu et al., 2024) 29.21 0.971 35.36 0.968 33.73 0.931 31.14 0.886 27.92 0.793 31.47 0.910 6M
ArtPromptIR (Wu et al., 2024) 30.83 0.979 37.94 0.982 34.06 0.934 31.42 0.891 28.14 0.801 32.49 0.917 33M

AdaIR (Ours) 31.06 0.980 38.64 0.983 34.12 0.935 31.45 0.892 28.19 0.802 32.69 0.918 28.77M

7.84 dB 23.09 dB 25.30 dB 30.80 dB PSNR

10.82 dB 27.49 dB 28.75 dB 31.68 dB PSNR
Input AirNet PromptIR AdaIR Reference

Figure 4: Image dehazing comparisons on SOTS (Li et al., 2018) between all-in-one methods.
Compared to other algorithms, our method is more effective in haze removal.

the Rain100L (Yang et al., 2019) dataset, which contains 200 clean-rainy image pairs for training and
100 pairs for testing. For single-task image denoising, we combine images of BSD400 (Arbelaez
et al., 2010) and WED (Ma et al., 2016) datasets for model training; the BSD400 encompasses 400
training images, while the WED dataset consists of 4,744 images. Starting from these clean images
of BSD400 (Arbelaez et al., 2010) and WED (Ma et al., 2016), we generate their corresponding noisy
versions by adding Gaussian noise with varying levels (σ ∈ {15, 25, 50}). Denoising task evaluation
is performed on the BSD68 (Martin et al., 2001) and Urban100 (Huang et al., 2015) datasets. Finally,
under the all-in-one setting, we train a single model on the combined set of the aforementioned
training datasets, and directly test it across multiple restoration tasks.

4.1 ALL-IN-ONE RESULTS: THREE DISTINCT DEGRADATIONS

We evaluate the performance of our all-in-one AdaIR on three different restoration tasks, including
image dehazing, deraining, and denoising. We compare AdaIR against various general image
restoration methods (BRDNet (Tian et al., 2020), LPNet (Gao et al., 2019), FDGAN (Dong et al.,
2020b), MPRNet (Zamir et al., 2021), and Restormer (Zamir et al., 2022a)), as well as specialized all-
in-one approaches (DL (Fan et al., 2019), AirNet (Li et al., 2022), PromptIR (Potlapalli et al., 2023),
U-WADN (Xu et al., 2024), and ArtPromptIR (Wu et al., 2024)). Table 1 shows that AdaIR provides
consistent performance gains over the other competing approaches. When averaged across various
restoration tasks and settings, our AdaIR obtains 0.2 dB PSNR gain over the recent best method
ArtPromptIR (Wu et al., 2024), and 0.63 dB improvement over the recent algorithm PromptIR (Potlapalli
et al., 2023). Specifically, compared to ArtPromptIR (Wu et al., 2024), AdaIR yields a substantial boost
of 0.7 dB on the deraining task, and 0.23 dB on the dehazing task. We provide visual examples in
Fig. 4 for dehazing, Fig. 5 for deraining, and Fig. 6 for denoising. These examples show that our
AdaIR is effective in removing degradations, and generates images that are visually closer to the
ground truth than those of the other approaches (Potlapalli et al., 2023; Li et al., 2022). Particularly,
in the restored images, our method preserves better structural fidelity and fine textures.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

23.16 dB 31.12 dB 33.64 dB 38.66 dB PSNR

27.49 dB 35.53 dB 39.25 dB 44.90 dB PSNR
Input AirNet PromptIR AdaIR Reference

Figure 5: Image deraining results on Rain100L (Yang et al., 2019) between all-in-one methods.
AdaIR yields high-fidelity rain-free images with structural fidelity and without streak artifacts.

14.95 dB 33.11 dB 32.91 dB 34.02 dB PSNR

15.63 dB 26.73 dB 26.18 dB 27.12 dB PSNR
Input AirNet PromptIR AdaIR Reference

Figure 6: Image denoising comparisons on BSD68 (Martin et al., 2001) between all-in-one methods.
The image reproduction quality of our AdaIR is more visually faithful to the ground truth.

Table 2: Comparisons for five-degradation all-in-one restoration. Denoising results are reported for
the noise level σ = 25. The top super-row methods denote the general image restoration approaches,
and the rest are specialized all-in-one approaches. On SOTS (Yang et al., 2019) for dehazing, AdaIR
attains a remarkable gain of 3.43 dB over InstructIR (Conde et al., 2024).

Dehazing Deraining Denoising Deblurring Low-Light
Method on SOTS on Rain100L on BSD68 on GoPro on LOL Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM Params

NAFNet (Chen et al., 2022) 25.23 0.939 35.56 0.967 31.02 0.883 26.53 0.808 20.49 0.809 27.76 0.881 17.11M
HINet (Chen et al., 2021c) 24.74 0.937 35.67 0.969 31.00 0.881 26.12 0.788 19.47 0.800 27.40 0.875 -
MPRNet (Zamir et al., 2021) 24.27 0.937 38.16 0.981 31.35 0.889 26.87 0.823 20.84 0.824 28.27 0.890 20.1M
DGUNet (Mou et al., 2022) 24.78 0.940 36.62 0.971 31.10 0.883 27.25 0.837 21.87 0.823 28.32 0.891 17.33M
MIRNetV2 (Zamir et al., 2022b) 24.03 0.927 33.89 0.954 30.97 0.881 26.30 0.799 21.52 0.815 27.34 0.875 5.86M
SwinIR (Liang et al., 2021) 21.50 0.891 30.78 0.923 30.59 0.868 24.52 0.773 17.81 0.723 25.04 0.835 0.91M
Restormer (Zamir et al., 2022a) 24.09 0.927 34.81 0.962 31.49 0.884 27.22 0.829 20.41 0.806 27.60 0.881 26.13M

DL (Fan et al., 2019) 20.54 0.826 21.96 0.762 23.09 0.745 19.86 0.672 19.83 0.712 21.05 0.743 2.09M
Transweather (Valanarasu et al., 2022) 21.32 0.885 29.43 0.905 29.00 0.841 25.12 0.757 21.21 0.792 25.22 0.836 37.93M
TAPE (Liu et al., 2022) 22.16 0.861 29.67 0.904 30.18 0.855 24.47 0.763 18.97 0.621 25.09 0.801 1.07M
AirNet (Li et al., 2022) 21.04 0.884 32.98 0.951 30.91 0.882 24.35 0.781 18.18 0.735 25.49 0.846 8.93M
IDR (Zhang et al., 2023) 25.24 0.943 35.63 0.965 31.60 0.887 27.87 0.846 21.34 0.826 28.34 0.893 15.34M
PromptIR (Potlapalli et al., 2023) 26.54 0.949 36.37 0.970 31.47 0.886 28.71 0.881 22.68 0.832 29.15 0.904 32.96M
Gridformer (Wang et al., 2024) 26.79 0.951 36.61 0.971 31.45 0.885 29.22 0.884 22.59 0.831 29.33 0.904 34.07M
InstructIR (Conde et al., 2024) 27.10 0.956 36.84 0.973 31.40 0.887 29.40 0.886 23.00 0.836 29.55 0.907 15.80M
AdaIR (Ours) 30.53 0.978 38.02 0.981 31.35 0.889 28.12 0.858 23.00 0.845 30.20 0.910 28.77M

4.2 ADDITIONAL ALL-IN-ONE RESULTS: FIVE DISTINCT DEGRADATIONS

Following the recent work of IDR (Zhang et al., 2023), we further verify the effectiveness of AdaIR
by performing experiments on five restoration tasks: dehazing, deraining, denoising, deblurring, and
low-light image enhancement. For this, we train an all-in-one AdaIR model on combined datasets
gathered for five different tasks. These include datasets from the aforementioned three-task setting as
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Table 3: Image denoising results of directly applying the pre-trained model under the five-degradation
setting to the Urban100 (Huang et al., 2015), Kodak24 (Rich, 1999) and BSD68 (Martin et al., 2001)
datasets. The results are PSNR scores. On Urban100 (Huang et al., 2015) for the noise level σ = 25,
AdaIR produces a significant performance gain of 0.39 dB PSNR over IDR (Zhang et al., 2023).

Urban100 Kodak24 BSD68
Method σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 Average

DL (Fan et al., 2019) 21.10 21.28 20.42 22.63 22.66 21.95 23.16 23.09 22.09 22.04
TAPE (Liu et al., 2022) 32.19 29.65 25.87 33.24 30.70 27.19 32.86 30.18 26.63 29.83
AirNet (Li et al., 2022) 33.16 30.83 27.45 34.14 31.74 28.59 33.49 30.91 27.66 30.89
IDR (Zhang et al., 2023) 33.82 31.29 28.07 34.78 32.42 29.13 34.11 31.60 28.14 31.48

AdaIR (Ours) 34.10 31.68 28.29 34.89 32.38 29.21 34.01 31.35 28.06 31.55

Table 4: Ablation studies for the proposed components. Fixed
uses a fixed square mask with sides of 10. FLOPs are measured
on the patch size of 256× 256× 3.

FMiM FMoM Overhead
Net Baseline Fixed MGB L-H H-L PSNR SSIM Params. FLOPs

(a) ! 28.21 0.966 26.13M 141.24G
(b) ! ! 29.79 0.969 27.73M 145.09G
(c) ! ! ! 30.37 0.975 28.74M 147.44G
(d) ! ! ! ! 30.52 0.976 28.74M 147.44G
(e) ! ! ! ! 31.24 0.978 28.77M 147.45G

Table 5: Spectra decomposition.
Adaptive uses adaptive methods
following (Zhou et al., 2024).
Method Pool GaussianAdaptive Ours

PSNR 30.59 30.22 30.25 31.24

Table 6: Degradation sources.
Method Embedding Ours

PSNR 29.29 30.52
SSIM 0.969 0.976

well as additional datasets: GoPro (Nah et al., 2017) for motion deblurring, and LOL-v1 (Wei et al.,
2018) for low-light image enhancement.

Table 2 shows that AdaIR achieves a 0.25 dB gain compared to the recent best method Instruc-
tIR (Conde et al., 2024), when averaged across five restoration tasks. Particularly, the performance
improvement is over 3 dB on dehazing. Table 3 reports denoising results on three different datasets
with various noise levels. It can be seen that our method performs favorably well compared to the
other competing approaches.

4.3 ABLATION STUDIES

In this section, we conduct ablation studies to test the impact of various individual components to the
overall performance of AdaIR. All ablation experiments are performed on the image dehazing task
by training models for 20 epochs.

Impact of individual architecture modules. Table 4 summarizes the performance benefits of
individual architectural contributions. Table 4(b) demonstrates that the proposed frequency mining
mechanism (FMiM) brings gains of 1.58 dB PSNR over the baseline model, using only a fixed mask
to decompose the spectra of input images. Furthermore, the L-H unit boosts the performance to
30.37 dB PSNR; see Table 4(c). It can be seen in Table 4(d) that we use both L-H and H-L units, and
the performance reaches 30.52 dB PSNR. Finally, Table 4(e) shows that the overall AdaIR brings
3.03 dB improvement over the baseline, while incurring a small computational overhead of 2.64M
parameters and 6.21 GFlops. These results corroborate the effectiveness of our design.

Strategies for spectral decomposition. We carry out this ablation to test different strategies to
segregate low- and high-frequency representations from the degraded input images. We compare
the proposed mask-guided adaptive frequency decomposition approach with the Average pooling,
Gaussian filtering, and Adaptive (Zhou et al., 2024) strategies. Results are provided in Table 5.
Following (Cui et al., 2023a), we use average pooling to obtain the low-frequency features which are
then subtracted from the input features to obtain the high-frequency features. This strategy provides
PSNR of 30.59 (see column 1 in Table 5), which is 0.65 dB lower than our method. Similarly, when
we switch to the Gaussian filter of size 5× 5, the model achieves only 30.22 dB PSNR (second
column). Moreover, our method is superior to the alternative (Zhou et al., 2024) that uses dynamic
spatial convolutions for spectral decomposition. Our method of applying a flexible mask for Fourier
spectra decomposition performs the best, yielding 31.24 dB.
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Table 7: Results on the unseen desnowing task
with the CSD (Chen et al., 2021d) dataset.

Method AirNet PromptIR Ours

PSNR 19.32 20.47 20.54
SSIM 0.733 0.7638 0.7643

Table 8: Results on mixed degradations,
Rain100L with the Gaussian noise σ = 50.

Method AirNet PromptIR Ours

PSNR 27.25 27.34 27.51
SSIM 0.790 0.791 0.799

Blurry 0.00016 0.00099 0.00257 0.00046 0.00561 0.00801 0.00234 0.00288 0.04374

AH−L 0.72464 0.34558 0.89120 0.81372 0.80288 0.92845 0.59886 0.95265 0.93757

Figure 7: First column shows the blurry image and the spatial attention map in AH−L. Others are the
channel-wise features before H-L and the corresponding attention scores in AL−H .

Frequency representation mining at image-level vs. feature-level. Each AFLB block in AdaIR
decoder receives the original degraded image as input, on which FMiM applies the procedure of
spectra decomposition. To verify the efficacy of this design, we switch to using the input embedding
features X (rather than degraded image) for frequency representation. This ablation result in Table 6
shows a performance drop from 30.52 dB to 29.29 dB, indicating that the raw input image offers
better discriminative information about the degradation for effective spectra separation.

Generalization to out-of-distribution degradations. To show the generalization ability of our
AdaIR, we take the all-in-one model trained on the three-task setting, and directly test it under two
different scenarios: (1) unseen degradation type, and (2) multi-degraded images. Table 7 shows that,
on the unseen task of image desnowing, AdaIR provides more favorable results than other approaches.

We create a mixed degradation dataset by adding Gaussian noise (level σ = 50) to the rainy images of
Rain100L (Yang et al., 2019). Table 8 depicts that our method is more robust in the mixed degradation
scenes than PromptIR (Potlapalli et al., 2023) and AirNet (Li et al., 2022).

Mechanism of FMoM. In FMiM, we extract different frequency components from input features.
These features are then categorized into low- and high-frequency groups using the dynamic, learn-
able module MGB, which adaptively adjusts the cutoff frequency boundary based on the specific
degradation observed in the image. Once the low- and high-frequency features are segregated, they
are processed by the FMoM. This module is responsible for either suppressing or allowing specific
frequency components to pass through, depending on the nature of the degradation, effectively
enhancing the restoration process. To better illustrate the interaction between frequency features,
we visualize the attention weights generated by the High-to-Low (H-L) and Low-to-High (L-H)
modules in Fig. 7. The high-frequency features, rich in spatial signals, assist the low-frequency
branch in focusing on and effectively addressing severely impacted regions, such as the girl in the
image. Conversely, the low-frequency features, which provide a global view, help the high-frequency
features to avoid overemphasizing those challenging regions.

5 CONCLUSION

This paper introduces AdaIR, an all-in-one image restoration model capable of adaptively removing
different kinds of image degradations. Motivated by the observation that different degradations
affect distinct frequency bands, we have developed two novel components: a frequency mining
module and a frequency modulation module. These modules are designed to identify and enhance
the relevant frequency components based on the degradation patterns present in the input image.
Specifically, the frequency mining module extracts specific frequency elements from the image’s
intermediate features, guided by an adaptive decomposition of the input’s spectral characteristics that
reflect the underlying degradation. Subsequently, the frequency modulation module further refines
these elements by facilitating the exchange of complementary information across different frequency
features. Incorporating the proposed modules into a U-shaped Transformer backbone, the proposed
network achieves state-of-the-art performance on a range of image restoration tasks.
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APPENDIX

This appendix provides generalization evaluation (Sec. A), more experimental results under the
single-task setting (Sec. B), additional ablation studies (Sec. C), computational comparisons (Sec. D),
visualization for FMiM (Sec. E), architectural details of the transformer block (Sec. F), and additional
visual results (Sec. G).

More qualitative comparisons on different datasets are provided in the supplementary material.

A GENERALIZATION EVALUATION

We assess the generalization capability of our model on additional out-of-distribution degradations
and compare the results against state-of-the-art all-in-one algorithms. As presented in Table 9, our
method demonstrates superior performance on two previously unseen degradation types: defocus
deblurring and raindrops. Additionally, we evaluate our approach on the real-world UAVDT (Du
et al., 2018) dataset, which consists of images captured by UAVs at varying altitudes and exhibiting
diverse levels of hazy degradation.

Table 9: Generalization evaluation of all-in-one algorithms. The models are trained under the three-
task setting and directly applied to the DPDD Abuolaim & Brown (2020) and AGAN Qian et al.
(2018) datasets for defocus deblurring and raindrop removal, respectively.

DPDD (Abuolaim & Brown, 2020) AGAN (Qian et al., 2018)
Method PSNR SSIM PSNR SSIM

AirNet 20.17 0.662 22.09 0.822
PromptIR 21.76 0.661 22.98 0.827
Ours 22.93 0.711 23.14 0.826

Hazy Images AirNet PromptIR AdaIR

Figure 8: Visual comparisons on the UAVDT (Du et al., 2018) dataset.

B SINGLE DEGRADATION ONE-BY-ONE RESULTS

Consistent with previous works (Li et al., 2022; Potlapalli et al., 2023), we further evaluate AdaIR
under the single-task experimental protocol. To this end, we train separate copies of the AdaIR model
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for each restoration task. The numerical results on SOTS-Outdoor for image dehazing are presented
in Table 10. Our method significantly outperforms previous state-of-the-art all-in-one approaches,
PromptIR (Potlapalli et al., 2023) and AirNet (Li et al., 2022), by 0.49 dB and 8.62 dB, respectively,
attributed to the adaptive frequency separation and modulation ability for haze degradations of
different densities. Similarly, on the deraining task, Table 11 shows that our AdaIR advances the
state-of-the-art (Potlapalli et al., 2023) by 1.86 dB. Compared to our baseline model (Zamir et al.,
2022a), the accuracy gain is 2.16 dB PSNR, suggesting the efficacy of our designs. Furthermore, we
provide experimental results for image denoising on two datasets with different noise levels. As can
be seen in Table 12, our method yields an average performance gain of 0.13 dB PSNR over the strong
competitor PromptIR. Compared to other methods, our method has more advantages on the Urban100
dataset than BSD68. This phenomenon is probably due to the higher resolution of Urban100 images,
enabling more accurate frequency modulation.

Table 10: Dehazing results in the single-task setting on the SOTS-Outdoor (Li et al., 2018) dataset.
Compared to PromptIR (Potlapalli et al., 2023), our method generates a 0.49 dB PSNR improvement.
Method DehazeNet MSCNN AODNet EPDN FDGAN AirNet Restormer PromptIR AdaIR

PSNR 22.46 22.06 20.29 22.57 23.15 23.18 30.87 31.31 31.80
SSIM 0.851 0.908 0.877 0.863 0.921 0.900 0.969 0.973 0.981

Table 11: Deraining results in the single-task setting on the Rain100L (Yang et al., 2019) dataset. Our
AdaIR obtains a significant performance boost of 1.86 dB PSNR over PromptIR (Potlapalli et al.,
2023).
Method DIDMDN UMR SIRR MSPFN LPNet AirNet Restormer PromptIR AdaIR

PSNR 23.79 32.39 32.37 33.50 33.61 34.90 36.74 37.04 38.90
SSIM 0.773 0.921 0.926 0.948 0.958 0.977 0.978 0.979 0.985

Table 12: Denoising results in the single-task setting on Urban100 (Huang et al., 2015) and
BSD68 (Martin et al., 2001). On Urban100 (Huang et al., 2015) for the noise level 50, AdaIR
yields a 0.31 dB gain over PromptIR (Potlapalli et al., 2023).

Urban100 BSD68
Method σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CBM3D (Dabov et al., 2007) 33.93 0.941 31.36 0.909 27.93 0.840 33.50 0.922 30.69 0.868 27.36 0.763 30.80 0.874
DnCNN (Zhang et al., 2017a) 32.98 0.931 30.81 0.902 27.59 0.833 33.89 0.930 31.23 0.883 27.92 0.789 30.74 0.878
IRCNN (Zhang et al., 2017b) 27.59 0.833 31.20 0.909 27.70 0.840 33.87 0.929 31.18 0.882 27.88 0.790 29.90 0.864
FFDNet (Zhang et al., 2018) 33.83 0.942 31.40 0.912 28.05 0.848 33.87 0.929 31.21 0.882 27.96 0.789 31.05 0.884
BRDNet (Tian et al., 2020) 34.42 0.946 31.99 0.919 28.56 0.858 34.10 0.929 31.43 0.885 28.16 0.794 31.44 0.889
AirNet (Li et al., 2022) 34.40 0.949 32.10 0.924 28.88 0.871 34.14 0.936 31.48 0.893 28.23 0.806 31.54 0.897
PromptIR (Potlapalli et al., 2023) 34.77 0.952 32.49 0.929 29.39 0.881 34.34 0.938 31.71 0.897 28.49 0.813 31.87 0.902

AdaIR (Ours) 34.96 0.953 32.74 0.931 29.70 0.885 34.36 0.938 31.72 0.897 28.49 0.813 32.00 0.903

C ADDITIONAL ABLATION STUDIES

AFLBs in encoder and decoder? We run an experiment to assess the feasibility of employing AFLB
modules on either the encoder side, decoder side, or both. Table 13 shows that utilizing AFLBs in
both the encoder and decoder leads to notable performance degradation compared to AFLBs solely
integrated into the decoder.

Placement of AFLB in the network. Next, we conduct an ablation experiment to study where to
place AFLBs in our hierarchical network. Table 14 demonstrates that employing only one AFLB
(between level 1 and level 2) leads to a deterioration in the network’s performance (29.58 dB in top
row). Conversely, integrating AFLBs between every consecutive level of the decoder yields the best
performance.

Design choices of FMoM. We investigate different choices for the frequency modulation module
(FMoM). As shown in Fig. 9(a), we leverage the commonly used spatial attention (Woo et al., 2018)
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Table 13: Comparisons of image dehazing under the single-task setting: between the use of AFLBs
on either the encoder-side, decoder-side, or both.

Dehazing on SOTS (Li et al., 2018)
Method PSNR SSIM

Encoder+Decoder+AFLB 29.70 0.973
AdaIR (Ours) 30.52 0.976

Table 14: AFLB position. Results are reported on the SOTS (Li et al., 2018) dataset.
Method PSNR SSIM

Level 2 28.58 0.973
Level 2+3 29.83 0.975
Level 2+3+4 30.52 0.976
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(a) Spatial attention, 29.67 dB/0.973 (b) Ours, 30.52 dB/0.976

Figure 9: Different choices for FMoM. (a) Using widely adopted spatial attention (Woo et al., 2018)
to modulate different frequency features, where the attention map is generated without discriminating
different frequency inputs. (b) Using specially designed attention units to exchange complementary
information across different frequency features. GAP and GMP denote the global average pooling
and global max pooling, respectively. The experiments are conducted on image dehazing under the
single-task setting.

to modulate different frequency features without discriminating different inputs. Overall, the process
is formally given by:

X̂ = Xh ⊙ Ah + Xl ⊙ Al, where, (9)

Ah,Al = Split
(
δ(Ã)

)
, where, (10)

Ã = W 7×7 ([GAP([Xh,Xl]),GMP([Xh,Xl])]) (11)

where ⊙ represents element-wise multiplication, Split indicates splitting the features among the
channel dimension, δ is the Sigmoid function, W 7×7 is a 7×7 convolution, and [·, ·] is a concatenation
operator. GAP and GMP are global average pooling and global max pooling among the channel
dimensions, respectively. The experiments are performed on the image dehazing task under the
single-task setting. This variant achieves only 29.67 dB PSNR, which is 0.85 dB lower than our
FMoM, shown in Fig. 9(b), indicating the effectiveness of our design.

Furthermore, we conducted experiments to evaluate the impact of using different attention strategies
in the two branches. As shown in Table 15, employing the same attention mechanism in both
branches results in lower performance compared to our approach. This highlights the effective-
ness of performing frequency interactions tailored to the distinct properties of different frequency
components.

Combinations of different degradations. We investigate the influence of various combinations of
degradation types on model performance, as presented in Table 16. As expected, including more
degradation types make it increasingly difficult for the model to perform restoration. Notable, hazy
images in a combined dataset lead to a larger performance drop than rainy or noisy images. One
reason could be that the aim of the restoration model in deraining and denoising tasks is to focus
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Table 15: Comparisons between different attention types.
Unit Attention Type PSNR

(a) H-L/L-H Channel/Channel 30.10
(b) H-L/L-H Spatial/Spatial 30.36
(c) H-L/L-H (Ours) Spatial/Channel 30.52

more on restoring high-frequency content (noise, rain), whereas, in the dehazing task the goal is to
focus on removing low-frequency (hazy) content.

Table 16: Ablation studies on the combinations of degradations for the three-task setting. Results are
presented in the form of PSNR (dB)/SSIM.

Degradation Denoising on BSD68 Deraining on Dehazing
Noise Rain Haze σ = 15 σ = 25 σ = 50 on Rain100L on SOTS

! 34.36/0.938 31.72/0.897 28.49/0.813 - -
! - - - 38.90/0.985 -

! - - - - 31.80/0.981
! ! 34.31/0.938 31.67/0.896 28.42/0.811 38.22/0.983 -
! ! 34.11/0.935 31.48/0.892 28.19/0.802 - 30.89/0.980

! ! - - - 38.44/0.983 30.54/0.978
! ! ! 34.12/0.935 31.45/0.892 28.19/0.802 38.64/0.983 31.06/0.980

D COMPUTATIONAL COMPARISONS

Table 17 shows that the proposed AdaIR strikes a better tradeoff between accuracy and complexity
than other all-in-one competing methods.

Table 17: Computational comparisons of all-in-one methods under the three-degradation setting. The
average PSNR across three tasks is reported here (see Table 1 of the main paper for more detailed
results). FLOPs are measured on the patch size of 256× 256× 3.

Params. FLOPs PSNR
Method (M) (G)

AirNet (Li et al., 2022) 8.93 311 31.20
PromptIR (Potlapalli et al., 2023) 35.59 158.4 32.06
AdaIR 28.77 147.45 32.69

E VISUALIZATION FOR FMIM

Figure 10 visualizes the FMiM process, illustrating how various frequency components are separated
from the input image and extracted from the features. Specifically, MGB produces a mask to decouple
the input image into different frequencies ( 2⃝, 3⃝). Next, the obtained spectra are used to extract
corresponding features from the input features ( 4⃝), as shown in 5⃝ and 6⃝, which then interact in
FMoM. The visualizations demonstrate the efficacy of our design. Additional examples of frequency
decomposition for low-light image enhancement and dehazing tasks are provided in Figure 11.
As shown, our model adaptively decouples images into different frequency bands. Furthermore,
Figure 12 illustrates comparisons of features obtained before and after our AFLB module. The results
demonstrate that our module effectively generates sharper features, contributing to high-fidelity
reconstruction.
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Figure 10: Visualizations for intermediate features and spectra. Our modules can decouple the
image/features into different frequencies as expected. Attention weights in 7⃝ and 8⃝ are shown in
Fig. 7 of the main paper.

Degraded Image Reference 2⃝ FFT( 2⃝) 3⃝ FFT( 3⃝)

Figure 11: Visualizations of frequency decoupling. The two images are obtained from the LOL-
v1 Wei et al. (2018) and SOTS Li et al. (2018) datasets for low-light image enhancement and dehazing,
respectively.

F TRANSFORMER BLOCK IN THE ADAIR FRAMEWORK

In the AdaIR framework, we use Transformer Blocks (TB) based on the design proposed in (Zamir
et al., 2022a). Fig. 13 presents its architectural details. It consists of two successive components,
multi-dconv head transposed attention (MDTA) and gated-dconv feed-forward network (GDFN).

MDTA first normalizes the input X ∈ RH×W×C using a layer normalization operator (Ba et al., 2016),
and then generates the query (Q∈ RH×W×C), key (K∈ RH×W×C), and value (V∈ RH×W×C)
projections using combinations of 1× 1 convolution and 3× 3 depth-wise convolution layers. The
transposed-attention map of size C×C is yielded by applying the Softmax function to the dot-product

Before AFLB After AFLB Before AFLB After AFLB

Figure 12: Feature comparisons based on the two images in Figure 11. Our module generates sharper
features.
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Figure 13: Architectural details of the Transformer Block (TB) (Zamir et al., 2022a) used in the
AdaIR framework. TB involves two elements: multi-dconv head transposed attention (MDTA) and
gated-dconv feed-forward network (GDFN).

results of the reshaped query and key projections. Overall, the process of MDTA is given by:

X̂ = W 1×1
1 Attention

(
Q′,K′,V′)+ X, where, (12)

Attention
(
Q′,K′,V′) = V′ · Softmax

(
K′ · Q′/α

)
, (13)

where X̂ is the output of MDTA. W 1×1
1 denotes a 1× 1 convolution. α is a learnable factor to control

the magnitude of the dot product result of K and Q. Q′, K′ and V′ are obtained by reshaping tensors
from the original size RH×W×C .

Similarly, GDFN first applies a layer normalization operator to normalize the input X ∈ RH×W×C .
The result then passes through two branches, each including a 1× 1 convolution with a factor γ to
expand channels, followed by a 3× 3 depth-wise convolution layer. Two branches converge using
element-wise multiplication after activating one branch via a GELU function. Overall, the GDFN
process is formally expressed as:

X̂ = W 1×1
2 Gating(X) + X, where, (14)

Gating(X) = ϕ
(
DW 3×3

1

(
W 1×1

3 (LN(X))
))

⊙DW 3×3
2

(
W 1×1

4 (LN(X))
)
, (15)

where LN is the layer normalization, ⊙ denotes element-wise multiplication, DW 3×3 represents a
3× 3 depth-wise convolution, and ϕ indicates the GELU non-linearity.

G ADDITIONAL VISUAL RESULTS

In this section, we provide the t-SNE result of our method under the five-degradation setting in
Fig. 14. It can be seen that our method is capable of discriminating degradation contexts for five
different degradation types. It is worth noting that the cluster for low-light image enhancement is
closer to the dehazing cluster than others, suggesting the effectiveness of our model, since these two
degradation types mainly impact the image content on low-frequency components.
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Figure 14: The t-SNE result of our model under the five-degradation setting.
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