
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MERGING FEED-FORWARD SUBLAYERS FOR
COMPRESSED TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the rise and ubiquity of larger deep learning models, the need for high-quality
compression techniques has been growing in order to deploy these models widely.
The sheer parameter count of some models makes it difficult to fit them into the
memory constraints of different hardware. In this work, we present a novel ap-
proach to model compression by merging similar parameter groups within a model,
rather than pruning away less important parameters. Specifically, we propose a
straightforward method for selecting, aligning, and merging separate feed-forward
sublayers in Transformer models, and test our method on a language modeling task,
image classification, and machine translation. With our method, we demonstrate
performance comparable to the original models across our three diverse tasks while
combining more than a third of model feed-forward sublayers. For instance, we can
remove over 21% of total parameters from a Vision Transformer, while maintaining
99% of its original performance. Additionally, we observe that some feed-forward
sublayers often exhibit regions of high similarity between their activations, which
may help explain their surprising mergeability. 1

1 INTRODUCTION

Recent advances in deep learning have been marked by a stark increase in model size in order to
achieve state-of-the-art performance. With this trend towards increasing model parameter count
to improve results, there is a need for more high-quality compression techniques that balance
compression effectiveness with model capability. These techniques can help facilitate the use of these
models across a variety of inference settings, depending on hardware availability.

Much of the prior work in model compression has built upon on distillation, quantization, and
pruning techniques (Hinton et al., 2015; Fiesler et al., 1990; LeCun et al., 1989). Regarding pruning,
prior work has introduced many approaches that identify regions of prunable parameters that can
be removed from the model without drastically changing performance. These techniques can target
individual neurons or general regions of a model—like attention heads, blocks from layers, or
even entire layers. (Voita et al., 2019; Lagunas et al., 2021; Sajjad et al., 2023). However, while
“unimportant” features have been important to identify for pruning techniques, we can also exploit the
notion of “redundant” features as a compression target. There has been far less focus on compression
methods that target potentially redundant features within a model.

When targeting redundant features for compression, we can turn to merging sets of similar parameters
rather than pruning them. Relatedly, a line of recent work has explored merging parameters from
two or more separate models in order to combine their functionalities into a single model (Goddard
et al., 2024; Yang et al., 2024a). In our case, we can imagine extending parameter merging to merge
sublayers within one model, rather than separate models, in order to achieve model compression.

To this end, we propose a novel compression method that aligns and merges several feed-forward
sublayers within Transformer architectures (Vaswani et al., 2017). We target feed-forward sublayers
in particular due to their large parameter count and easy mergeability. With a small amount of
recovery fine-tuning, our models quickly regain competitive performance at reduced parameter counts.
Through our testing, we find that these groups of feed-forward sublayers are notably compressible

1Toolkit and all experiments will be available at code_link_forthcoming

1

code_link_forthcoming


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

WoutWinWoutWin

MHA Win Wout
0 0 0

MHA Win Wout
1 1 1

MHA Win Wout
2 2 2

MHA Win Wout
0 * *

MHA
1 * *

MHA
2 * *

P1 P1
T

P2 P2
T

Apply transformations

Merge FF parameters

Tie merged weights

Figure 1: Overview of the feed-forward alignment and merging algorithm used to compress models
in an example three layers of a Transformer. Multi-headed attention is abbreviated to MHA, feed-
forward sublayers are depicted with W in and W out weights, and Add&Norm operations are depicted
with

⊕
, connected by arrows indicating residual connections.2 Permutation transformation matrices

are shown as Pi. Our method includes a permutation finding step, applying the transformations,
merging transformed parameters, and finally tying the merged parameters. By merging and tying k
feed-forwards, we can reduce the model size by k − 1 feed-forward sublayers.

via merging, giving rise to a simple and surprisingly effective framework, applicable to a wide variety
of already-existing models.

We highlight the contributions of our work:

1. We propose a novel model compression method inspired by recent work in model merging.
This approach is orthogonal to popular compression methods like quantization and pruning.

2. Across three different Transformer-based models, namely GPT-2, ViT, and a machine
translation model, we show that merging over one-third of feed-forward sublayers and
fine-tuning the resulting model can achieve performance comparable to the original models.

3. To explore the surprising effectiveness of merging, we compute similarity measures be-
tween feed-forward sublayers within the same model, and find regions with highly similar
activations. These same patterns do not occur in attention sublayers.

2 RELATED WORK

In this section, we review work related to weight sharing for reduced parameter models, and prior work
related to pruning and redundancy in models. We also summarize popular compression techniques in
Table 1, and compare them to our merging-based compression approach.

2.1 WEIGHT SHARING FOR SMALLER MODELS

Prior work on weight sharing has largely focused on training models from scratch with specific sharing
schemes. Sharing input and output embedding layers has been widely used to help cap total parameter
count, but more importantly to provide important gradient sharing patterns for better generalization
for many language tasks (Press & Wolf, 2017; Inan et al., 2017). In the case of non-embedding
Transformer layers, prior work has explored numerous weight tying patterns for training new models
(Dehghani et al., 2019; Reid et al., 2021; Takase & Kiyono, 2023). Liu et al. (2024) use heavy weight
sharing at initialization between Transformer layers to achieve state-of-the-art sub-billion parameter
language models. Pires et al. (2023) specifically tie feed-forward sublayers at initialization and train

2This diagram shows a Post-LN Transformer, but our method easily applies to Pre-LN Transformers as well.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

machine translation models that can outperform standard Transformer architectures, when training at
large enough tied feed-forward widths. In this work, we instead start from a pre-trained model, and
then use weight sharing as a tool to reduce the overall parameter count.

2.2 PRUNING AND REDUNDANCY

Prior work has explored different aspects of redundancy patterns between adjacent Transformer
components, and suggested several techniques to reduce or exploit this phenomenon. Dalvi et al.
(2020) use CKA to track layer redundancy in BERT and XLNet and correlation clustering to find
redundant sets of neurons. Using the discovered clusters, they remove redundant neurons for fewer
total parameters. Men et al. (2024); Gromov et al. (2024) show that by removing entire Transformer
layers in decoder-only models, very deep language models can achieve inference speedups without
sacrificing major performance. Li et al. (2024) propose a compression method applicable to sparsely-
activated mixture-of-expert models (SMoEs) that similarly draws from model merging work to
compress experts in large SMoE models. Our method extends a similar approach to a much wider set
of compressible models.

Table 1: A summary and comparison of different compression methods, including merging.

Motivation Training Required Run Time Savings

Quantization reduce precision No No3

Pruning remove unimportant parameters generally fine-tuning Depends
Distillation train smaller student from teacher Yes Yes
Merging combine redundant parameters fine-tuning No

3 MERGING FEED-FORWARD SUBLAYERS

In this section, we discuss choosing feed-forward sublayers as our merging target, review necessary
background for permutation-based neuron alignment, and then describe our compression method.

3.1 FEED-FORWARD SUBLAYERS AS A MERGING TARGET

We focus our interest on Transformer feed-forward (FF) sublayers for several reasons. The first,
and most simple, is that these sublayers generally constitute around two-thirds of non-embedding
parameters Transformer encoder or decoder models. Compressing these parameters can constitute
substantial overall savings in a model. Secondly, as we consider merging these parameters, we
note that the parameterization of FF sublayers is far simpler than the other major sub-block of a
Transformer layer, namely multi-headed attention (MHA). This structural simplicity makes it a good
candidate for merging-based approaches for compression.

Beyond practical considerations, prior work has also established several properties of Transformer FF
sublayers that make them good candidates for compression via merging. Prior work on FF sublayers
has shown that they can be very sparsely activated (Li et al., 2023), where non-zero percentages of
FF activations can be as low as 3-5%. Additionally, another work has demonstrated evidence that
combining LayerNorm and feed-forwards, in both Post- and Pre-LN architectures, results in some
weakening effects of the contextualization effects of FF sublayers (Kobayashi et al., 2024). The
authors allude to redundancy in the Transformer’s processing due to this interaction. Finally, Pires
et al. (2023) train Transformer-based translation models with only one feed-forward sublayer in the
encoder, tied across each layer. Their models, when trained with extended FF widths, can outperform
base transformers at the same parameter budget.

3Quantization can improve batch throughput during inference, which can result in run time savings, but it
generally does not improve inference speed at a constant batch size.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 BACKGROUND ON PERMUTATION-BASED NEURON ALIGNMENT

We propose a merging technique that combines several similar sublayers into a single parameter
set. Our merging technique is inspired by prior work in permutation symmetries of neurons (Li
et al., 2015). This type of prior work has been widely used in studying convergent learning between
models, as well as performing model merging between two or more separate models (Tatro et al.,
2020; Entezari et al., 2022; Ainsworth et al., 2023).

Permutation-based neuron alignment techniques seek to find a superior ordering of neurons in one
layer in order to more closely match the ordering of neurons from another layer. Given two layers
with neurons we wish to align, we compute a forward pass through both of these layers using relevant
data in order to collect features. The layers are generally corresponding parameters from two different
models. We collect these sets of activations, Xα, Xβ ∈ Rn×d, from the output of the two parameter
sets, where n is the number of tokens or patches processed in the forward pass, and d is the feature
dimension.

To determine corresponding features from these activation sets, we compute cross-correlation C, in
line with prior work (Li et al., 2015). µ represents mean vectors, and σ standard deviation vectors.

C = corr(Xα, Xβ) =
E
[
(Xα − µ(Xα))

T
(Xβ − µ(Xβ))

]
σ(Xα)σ(Xβ)

(1)

The resulting matrix C ∈ Rd×d reflects how each feature j in Xα correlates with each feature k in
Xβ . Now, to find the mapping of features from Xα to Xβ that maximize overall correlation, we solve
the following optimization problem, where Πd is the space of all permutations of length d (Li et al.,
2015; Tatro et al., 2020):

π∗ = max
π∈Πd

d∑
j=1

C(j, π(j)) (2)

This problem is a case of the Linear Assignment Problem (LAP), and we solve for π∗ using the
Jonker-Volgenant algorithm implementation provided by scipy (Crouse, 2016).

3.3 COMBINING FEED-FORWARD SUBLAYERS

Now, with the appropriate background, we describe our compression method. For our method, we
first assume that we have some predetermined number of feed-forward sublayers k that we want
to merge. This number can be inferred if given a goal overall parameter reduction ratio, or set
otherwise. In summary, our compression method aligns the ordering of the neurons between the two
feed-forward sublayers in order to merge them.

Given a window of k adjacent feed-forward sublayers, we compute a forward pass using a subset of
data in order to compute features for each feed-forward hidden state. In other words, for Transformer
FF sublayer xout = W outϕ(W inxin + bin) + bout, we obtain features just before the ϕ activation. We
consider only the neurons just after W in because prior work has shown that to reorder the input to
W in and output of W out requires permuting many additional weights due to the residual connections
in order to maintain functional equivalence (Verma & Elbayad, 2024). For each of the k feed-forward
sublayers, we collect features Xi ∈ Rn×d i ∈ [0, k − 1], where n is the number of tokens or patches
processed, and d is the feed-forward dimension.4

We designate the first feed-forward sublayer of the set to be our “anchor”, and we compute the
permutation finding algorithm on each pair of feed-forwards where the first item is always the anchor.
In other words, for each sublayer i ∈ [1, k − 1], we have inputs X0 and Xi, and find πi using the
permutation finding algorithm from Section 3.2.

After converting function πi to its corresponding permutation matrix Pi, we can apply them to each
of the corresponding k− 1 feed-forward sublayers. We then average the transformed weight matrices,
and replace each of the k feed-forwards with their average, as in Equation sets 3 and 4. Finally, we tie
these weights so that in memory they appear as just one sublayer, effectively removing the parameters

4The layer indices reflect local index within the set of k versus global layer index.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

from k − 1 feed-forward sublayers.

W in∗ =
1

k

(
W in

0 +

k−1∑
i=1

PiW
in
i

)
bin∗ =

1

k

(
bin
0 +

k−1∑
i=1

Pib
in
i

)
(3)

W out∗ =
1

k

(
W out

0 +

k−1∑
i=1

W out
i PT

i

)
bout =

1

k

(
k−1∑
i=0

bout
i

)
(4)

3.4 SELECTING SUBLAYERS TO MERGE

In selecting the k adjacent feed-forward sublayers to merge, we take a sliding window approach. For
all starting layer indices from 0 to (Nlayers − 1) − k, we apply the method outlined in Section 3.3,
and evaluate the resulting compressed model on a validation set.

In reality, although we propose to test each potential window, the cost of computing permutations
and parameter arithmetic is low. The largest cost each iteration is computing features and testing
candidates. However, we only compute features once despite testing Nlayers − k models, because one
forward pass through the exemplar data is sufficient for creating all necessary correlation matrices.
We test these potential candidates and choose the one with best starting evaluation score. We note
that there may be other possible selection heuristics in this setting.

Finally, we follow our merging procedure with recovery fine-tuning to quickly heal performance on
the downstream task. We include an algorithm for our selection method in Algorithm 1.

Algorithm 1 Feed-Forward Sublayer Merge

Input: Model parameters θinput, collected features {Xi}
Nlayers−1
i=0 , batched fine-tuning data Dft

Input constants: k, Nlayers, MAXUPDATES
Initialize: θselected, BESTSCORE← 0 // Assuming a maximized score
for i = 0 to (Nlayers − 1)− k do
θmerged ← COMPRESS(θinput, {Xi}

Nlayers−1
i=0 , k)

if EVAL(θmerged) > BESTSCORE then
θselected ← θmerged

end if
end for
for i = 0 to MAXUPDATES do
θselected ← UPDATE(θselected, Dft(i)) // Fine-tuning step

end for
Output: θselected

4 EXPERIMENTAL SETUP

For testing the extensibility of our method, we test our compression method on several different
Transformer-based models. Specifically, we use GPT-2 (Radford et al., 2019), the Vision Transformer
(ViT) (Dosovitskiy et al., 2020), and a Transformer-based machine translation model from OPUS-MT
(Tiedemann & Thottingal, 2020). We use this variety of models in order to cover a diversity of model
types (decoder-only, encoder, encoder-decoder) and different modalities.

For each setting, we list the exact model used, the data used to compute example features for
correlations, and finally the data used for recovery fine-tuning and evaluation. Additional fine-tuning
hyperparameters are included in Appendix B.

4.1 LANGUAGE MODELING

For our experiments, we use the large release of GPT-2, which has 36 layers and a feed-forward
dimension of 5120. For computing feed-forward features, we use 10k tokens from the validation set
of the Wikitext103 dataset (Merity et al., 2017). Finally, we use the train and test sets from the same
Wikitext103 for fine-tuning and evaluation, respectively.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Unlike the other two tasks, the pre-training data for GPT-2 is not publicly available, so we use
Wikitext103 training data for fine-tuning. Due to this discrepancy, our uncompressed GPT-2 baseline
is also fine-tuned on Wikitext103 train in order to make a fair comparison. Because we have access to
the training data for the machine translation and ViT models, we do not provide a fine-tuned baseline
for those as the data we use already appears in their original training data.

We fine-tune our GPT-2 models for up to 100k steps with a batch size of 2. We pack batches to the
context length of 1024 after tokenization with the GPT-2 tokenizer. We select the best model based
on validation perplexity and report average test perplexity with a sliding window of 512 tokens.

4.2 IMAGE CLASSIFICATION WITH VIT

We use a vision transformer (ViT) for our image classification experiments, with resolution of
224x224, and patch size of 16x16.. ViT is a 12-layer Transformer Encoder architecture that is
pre-trained on ImageNet-21k, and subsequently fine-tuned on ImageNet-1k. ImageNet-1k is a
classification task where images belong to one of 1000 categories (Russakovsky et al., 2015). For
computing feed-forward features, we use 10k patches from the ImageNet-1k validation set. Evaluation
results are computed on original validation labels.

We fine-tune our ViT models on ImageNet-1k train for up to 50k steps with a batch size of 128, and
report accuracy scores.

4.3 MACHINE TRANSLATION

For our experiments on machine translation, we use a Chinese-English model from the OPUS-MT
release (Tiedemann & Thottingal, 2020). It is a 12-layer encoder-decoder Transformer with cross-
attention. For computing feed-forward features, we use 10k tokens from the Tatoeba validation set,
counted on the source side (Tiedemann, 2020). For fine-tuning, we use the original training data
released by the Tatoeba translation challenge, sourced from OPUS (Tiedemann, 2012). We apply our
method to both the encoder and decoder separately, constituting two anchors. However, we search
windows in sync, meaning that the same window from the encoder and decoder are merged.

We fine-tune our translation models for up to 100k steps with a batch size of 64. We use sacrebleu
to compute BLEU scores for evaluation (Papineni et al., 2002; Post, 2018).

4.4 LAYER PRUNING BASELINE

Recent work on structured pruning of Transformers has been marked by a large number of methods
presenting ways to remove adjacent layers from models and then optionally fine-tune the compressed
model (Men et al., 2024; Gromov et al., 2024; Yang et al., 2024b). We focus on structured pruning
baselines as many unstructured pruning baselines do not necessarily lead to smaller memory require-
ments unless they achieve 1) high sparsity ratios and 2) use specialized sparse libraries to store sparse
model weights. Our method, on the other hand, is realized memory-wise as a smaller model due to
shared weights only being stored once.

Many layer-pruning methods rely on a similarity technique to choose a subset of adjacent and similar
layers to prune. However, in our baseline, we forgo any specific similarity techniques to choose
a subset, and instead choose the best possible subset, much like our own technique, via a sliding
window. After selecting the best window after evaluation, we then fine-tune the model with the
same specifications as our method. In all, this encapsulates a strong, structured pruning baseline that
generalizes many layer-pruning based techniques.

5 RESULTS

5.1 MERGING FEED-FORWARD SUBLAYERS ACROSS COMPRESSION RATIOS

We evaluate our compression method on image classification using ViT, language modeling using
GPT-2, and machine translation using an OPUS-MT zh-en model, and report our results in Figure
2. We report results at 1/3, 1/2 and (n− 1)/n feed-forward sublayers removed, in order to test our

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

method at different overall compression ratios.5 We also report results from our compression method
without the permutation step, as seen as “Vanilla” in the figure.

0 10 20 30 40 50 60
% Parameter Reduction

30

40

50

60

70

80
Im

ag
eN

et
-1

k 
Ac

cu
ra

cy
 0 FFs 4 FFs 6 FFs

11 FFs

Vanilla FF Merge
Permute FF Merge

(a) ViT

0 10 20 30 40 50 60
% Parameter Reduction

14
16
18
20
22
24
26
28

PP
L 

on
 W

ik
ite

xt
-1

03
 

0 FFs
12 FFs

18 FFs

35 FFs

Vanilla FF Merge
Permute FF Merge

(b) GPT-2

0 5 10 15 20 25 30
% Parameter Reduction

28
30
32
34
36
38
40

Ta
to

eb
a 

zh
-e

n 
BL

EU

0 FFs

4 FFs 6 FFs

11 FFs

Vanilla FF Merge
Permute FF Merge

(c) OPUS-MT

Figure 2: Results across all three tasks depicting compression versus performance results. We
include results from our main method, labeled as Permute FF Merge, as well as our method without
permutation alignment, depicted as Vanilla FF Merge. We note that our method retains almost
complete performance at one-third of feed-forward sublayers removed, across all tasks, and continues
to retain high performance at one-half of FF sublayers removed.

From our results, we see that even up to 1/2 of feed-forward sublayer parameters removed, which
is over 30% in parameter reduction for ViT and GPT-2,6 our method can retain high performance,
similar to the base model. At 1/3 of feed-forward sublayers removed, performance is almost identical,
resulting in only a 1% accuracy drop in ViT, 1 PPL increase in GPT-2, and 2 BLEU drop in the
translation model. Full numerical results can be found in Appendix A. We note that in this sub-billion
parameter regime, prior work has shown that smaller models are more difficult targets of compression
methods (Ashkboos et al., 2024), as well as dense models versus models with natural sparsity patterns
(i.e. Mixture-of-Expert models).

Our findings also hold across all three of our tasks tested, suggesting that our method generalizes
to different types of Transformer-based models. Additionally, we can notice that permutation-
based compression is consistently better compared to vanilla averaging compression, demonstrating
the effectiveness of aligning features within feed-forward sublayers before merging them. This
effectiveness is more pronounced at larger numbers of feed-forward sublayers removed. In summary,
our results show that 1) post-training weight sharing is a simple and effective compression method and
2) permutation-based alignment of these shared weights can improve final compression performance.

0 5 10 15 20 25 30 35
% Parameter Reduction

74

76

78

80

82

84

Im
ag

eN
et

-1
k 

Ac
cu

ra
cy

 Permute FF Merge
Drop baseline

(a) ViT

0 5 10 15 20 25 30
% Parameter Reduction

14
15
16
17
18
19
20
21

PP
L 

on
 W

ik
ite

xt
-1

03
 Permute FF Merge

Drop Baseline

(b) GPT-2

0 5 10 15 20
% Parameter Reduction

31
32
33
34
35
36
37
38

Ta
to

eb
a 

zh
-e

n 
BL

EU

Permute FF Merge
Drop Baseline

(c) OPUS-MT

Figure 3: Results across all three tasks depicting compression versus performance for our method
and a strong layer-dropping baseline method. We perform layer dropping for 1/6 and 1/3 of layers
dropped, and fine-tune the best pre-tuned set of dropped layers for all sliding windows. Across the
parameter reduction range shown, our merging-based compression method outperforms or matches
layer-dropping across the three tasks.

In Figure 3, we compare our method at 1/3 and 1/2 FFs removed to our layer-pruning baseline.
We drop layers to attempt to match the reduction ratios of our own methods, constituting 1/6 and

5We note that the OPUS-MT compression ratios are different due to the additional presence of cross-attention
in enc-dec architectures.

6We include embedding parameters in all % parameter reduction and compression ratio calculations

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1/3 layers dropped for all three models. However, since we cannot match exact ratios, we plot the
exact parameter reduction ratios and performance, and compare. As seen in the figure, our method
consistently matches or outperforms the layer-dropping method. This comparison confirms that
merging is a competitive alternative to strong pruning-based methods for model compression.

5.2 CHOICE OF MERGED SUBLAYERS

In our merging algorithm, we choose which layers to merge by computing performance over a sliding
window of k indices. In doing this, we observe the performance for each set of adjacent feed-forward
groups. For each of our model/task pairs, we plot the performance of the merging algorithm on 1/3 of
feed-forward sublayers before tuning across all groupings, to observe the differences across these
groups. Results are shown in Figure 4. Before tuning, it appears that the choice of layers seems to be
important, resulting in different performance.

0-4 1-5 2-6 3-7 4-8 5-9 6-1
0

7-1
1

FFs Merged

0

10

20

30

40

50

Ac
cu

ra
cy

 o
n 

Im
ag

eN
et

-1
k Vanilla FF Merge

Permute FF Merge

(a) ViT

0-
12

1-
13

2-
14

3-
15

4-
16

5-
17

6-
18

7-
19

8-
20

9-
21

10
-2

2
11

-2
3

12
-2

4
13

-2
5

14
-2

6
15

-2
7

16
-2

8
17

-2
9

18
-3

0
19

-3
1

20
-3

2
21

-3
3

22
-3

4
23

-3
5

FFs Merged

4
5
6
7
8
9

10
11
12

Lo
ss

 o
n 

W
ik

ite
xt

-1
03

Vanilla FF Merge
Permute FF Merge

(b) GPT-2

0-2/0-2
1-3/1-3

2-4/2-4
3-5/3-5

Enc/Dec FFs Merged

0

5

10

15

20

25

BL
EU

 o
n 

Ta
to

eb
a

Vanilla FF Merge
Permute FF Merge

(c) OPUS-MT

Figure 4: Performance curves over different ranges of merged feed-forward sublayers representing
1/3 merged. Across all three tasks, there are clear ranges of merged feed-forward sublayers that retain
more performance when merged.7

However, these differences reduce once recovery fine-tuning is performed. To see this, we randomly
select 3 sets of k consecutive layers for each of our tasks, and apply recovery fine-tuning to these
compressed models. In Table 2, we observe that all models achieve similar performance after fine-
tuning. Nevertheless, the choice of layers might be important if non-adjacent merges are allowed;
this is potential future work.

Table 2: Results comparing our compression method with 1/3 of feed-forward sublayers removed,
but with different sublayer groups. We include three random consecutive selections of sublayers,
excluding the original selection.

Model Metric Best pre-tune Random 1 Random 2 Random 3
ViT Accuracy(%) ↑ 79.2 79.5 78.5 78.9
GPT-2 PPL ↓ 17.3 18.3 17.1 17.3
OPUS-MT BLEU ↑ 33.6 33.9 33.8 33.1

5.3 CHOICE OF ANCHOR LAYER

In addition to analyzing the subset of layers to merge, we also wish to understand the sensitivity of
our merging compression method to the choice of anchor layer for our alignment step. In section
3.3, we choose the first feed-forward sublayer in the sequence to serve as the reference, and compute
permutations aligning the following sublayers to this reference. Here, we additionally consider
using either the last of the sequence, or the middle of the sequence, and report results in our 1/3
feed-forward merge setting in Table 3.

Similarly to the choice of layers, our merging approach is robust to the choice of reference or anchor
layer. This indicates that our method is not overly sensitive to the choice of which sublayer to align
other sublayers to, enhancing the reliability of our permutation-based alignment method to find
corresponding features for a useful merge.

7We display loss on Wikitext-103 for visibility.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Results comparing our compression method with 1/3 of feed-forward sublayers removed,
but with different anchor locations.

Model Metric Anchor First Anchor Middle Anchor Last
ViT Accuracy(%) ↑ 79.2 79.5 79.0
GPT-2 PPL ↓ 17.3 17.4 17.4
OPUS-MT BLEU ↑ 33.6 33.4 33.5

5.4 ADDITIONAL COMPRESSION VIA QUANTIZATION

We are interested in seeing if our method works well in combination with other compression methods.
For example, quantization is an extremely effective method to reduce the memory footprint of a
model by reducing the numerical precision of the parameters. While our compression method focuses
on identifying redundancies to reduce the overall parameter count via parameter sharing, quantization
can help reduce the overall storage needed for a model, and still proves an extremely effective
compression technique. Therefore, we wish to ensure that our method performs orthogonally to
state-of-the-art quantization, so that both methods may be used for additional storage savings.

We experiment with the LLM.int8() quantization method due to its effectiveness and widespread
adoption (Dettmers et al., 2022). In brief, this method extends absmax quantization, but retains 16-bit
precision for outlier values. We quantize our models after removing 1/3 of feed-forward sublayers,
and report scores in Table 4.

Table 4: Compression results across three tasks, before and after additional compression via quantiza-
tion. In this case, compression is measured in terms of total model storage complexity (disk space)
instead of parameter count.

Our Method +LLM.int8()

Model Metric Compression Performance Compression Performance

ViT Accuracy(%) ↑ 78% 79.2 20% 79.2
GPT-2 PPL ↓ 80% 17.3 22% 17.3
OPUS-MT BLEU ↑ 89% 33.6 51% 33.6

Combining our method with quantization provides an even smaller compression ratio, while retaining
high performance. Coupling quantization with additional compression, like our method, helps to
realize compression ratios like 20% when considering total model storage complexity.

5.5 SIMILARITY TRENDS ACROSS FEED-FORWARD SUBLAYERS

So far, we have shown that simply aligning, merging, and tying adjacent feed-forward sublayers is a
simple, yet effective technique for compressing Transformer models. Because of this, we look further
into the similarities between representations computed from different feed-forward sublayers. We are
interested in if these sublayers exhibit signs of redundancy, as eluded to in previous work (Pires et al.,
2023; Kobayashi et al., 2024).

To this end, we compare outputs between feed-forward sublayers within the same models. Across
our three tasks, we use 10k tokens or patches, depending on the model, from task validation sets
to compute a set of output states from all feed-forward sublayers. Then, we use Centered Kernel
Alignment (CKA) to compute their similarity. CKA is a state-of-the-art method for comparing the
similarity between neural network activations (Kornblith et al., 2019). We plot CKA similarity values
for all pairwise interactions between FF sublayers in all three of our model types, shown in Figure 5.

We notice that across all three model/task pairs, clear regions of high similarity can be observed. This
means that the outputs of these feed-forward sublayers are highly similar, despite being interleaved
with multi-headed attention sublayers. We note that similar behavior is not seen in attention sublayers,
as seen in Appendix C. While prior work has shown similarities between the outputs of adjacent
full Transformer layers, this similarity can be explained in part to the residual computations that add

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
Feed-Forward Layer i

0

2

4

6

8

10

Fe
ed

-F
or

wa
rd

 L
ay

er
 j

0.2

0.4

0.6

0.8

1.0

CK
A 

Sc
or

e

(a) ViT

0 10 20 30
Feed-Forward Layer i

0

5

10

15

20

25

30

35

Fe
ed

-F
or

wa
rd

 L
ay

er
 j

0.2

0.4

0.6

0.8

1.0

CK
A 

Sc
or

e

(b) GPT2

0 2 4 6 8 10
Feed-Forward Layer i

0

2

4

6

8

10

Fe
ed

-F
or

wa
rd

 L
ay

er
 j

0.2

0.4

0.6

0.8

1.0

CK
A 

Sc
or

e

(c) OPUS-MT

Figure 5: CKA plots of feed-forward sublayer hidden states across three different models. In all three
settings, we see clear regions of high similarity between different FF layers. We do not compare
between encoder and decoder feed-forward sublayers in the Translation model due the differences in
token inputs.

the prior sublayer output to the current sublayer output (Kornblith et al., 2019; Dalvi et al., 2020).
However, in comparing feed-forward outputs, we isolate this signal from the stream of residual
computations, before the output is added back to the input, making the observed similarity more
surprising due to the greater independence between these computations.

6 CONCLUSION

In this work, we propose a novel compression method that applies to Transformer-based models
via merging and tying adjacent sets of feed-forward blocks. Our method serves as an alternative to
existing compression approaches, and opens possibilities of future methods that examine the use of
parameter merging and weight tying as a post-training compression technique in deep learning. We
demonstrate our method’s extensibility by applying it to several types of Transformer-based models,
namely GPT-2, ViT, and an OPUS-MT translation model. Across these diverse tasks, we show that
our method can maintain almost full performance while removing 1/3 of feed-forward sublayers,
and maintains high performance even after removing 1/2 of all feed-forward sublayers. Finally, we
explore the differences in representation similarity between feed-forward and attention sublayers, and
find regions of high similarity between feed-forward sublayers (despite being separated by attention
sublayers), which may be related to their surprising mergeability found in our experimentation.

REFERENCES

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. In The Eleventh International Conference on Learning Representations,
2023.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In The
Twelfth International Conference on Learning Representations, 2024.

David F. Crouse. On implementing 2d rectangular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679–1696, 2016. doi: 10.1109/TAES.2016.140952.

Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and Yonatan Belinkov. Analyzing redundancy in
pretrained transformer models. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 4908–4926, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.398. URL https://aclanthology.org/2020.emnlp-main.
398.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019.

10

https://aclanthology.org/2020.emnlp-main.398
https://aclanthology.org/2020.emnlp-main.398


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gllm.int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. In International Conference on Learning
Representations, 2022.

Emile Fiesler, Amar Choudry, and H John Caulfield. Weight discretization paradigm for optical
neural networks. In Optical interconnections and networks, volume 1281, pp. 164–173. SPIE,
1990.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint arXiv:2403.13257, 2024.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. stat,
1050:9, 2015.

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: A
loss framework for language modeling. In International Conference on Learning Representations,
2017.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. Analyzing feed-forward blocks
in transformers through the lens of attention maps. In The Twelfth International Conference on
Learning Representations, 2024.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMLR, 2019.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster
transformers. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 10619–10629, 2021.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong
Chen. Merge, then compress: Demystify efficient smoe with hints from its routing policy. In The
Twelfth International Conference on Learning Representations, 2024.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning:
Do different neural networks learn the same representations? In Dmitry Storcheus, Afshin
Rostamizadeh, and Sanjiv Kumar (eds.), Proceedings of the 1st International Workshop on Feature
Extraction: Modern Questions and Challenges at NIPS 2015, volume 44 of Proceedings of
Machine Learning Research, pp. 196–212, Montreal, Canada, 11 Dec 2015. PMLR. URL https:
//proceedings.mlr.press/v44/li15convergent.html.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J Reddi,
Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon: On emergence
of activation sparsity in transformers. In The Eleventh International Conference on Learning
Representations, 2023.

11

https://proceedings.mlr.press/v44/li15convergent.html
https://proceedings.mlr.press/v44/li15convergent.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm: Optimizing
sub-billion parameter language models for on-device use cases. In Forty-first International
Conference on Machine Learning, 2024.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect,
2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp.
311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics.
doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040.

Telmo Pires, António Vilarinho Lopes, Yannick Assogba, and Hendra Setiawan. One wide feed-
forward is all you need. In Philipp Koehn, Barry Haddow, Tom Kocmi, and Christof Monz
(eds.), Proceedings of the Eighth Conference on Machine Translation, pp. 1031–1044, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.wmt-1.98.
URL https://aclanthology.org/2023.wmt-1.98.

Matt Post. A call for clarity in reporting BLEU scores. In Ondřej Bojar, Rajen Chatterjee, Christian
Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes,
Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia
Specia, Marco Turchi, and Karin Verspoor (eds.), Proceedings of the Third Conference on Machine
Translation: Research Papers, pp. 186–191, Brussels, Belgium, October 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-6319. URL https://aclanthology.org/
W18-6319.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, pp. 157–163, 2017.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo. Subformer: Exploring weight sharing
for parameter efficiency in generative transformers. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 4081–4090, Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.344. URL
https://aclanthology.org/2021.findings-emnlp.344.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of
pre-trained transformer models. Computer Speech & Language, 77:101429, 2023.

Sho Takase and Shun Kiyono. Lessons on parameter sharing across layers in transformers. In
Nafise Sadat Moosavi, Iryna Gurevych, Yufang Hou, Gyuwan Kim, Young Jin Kim, Tal Schus-
ter, and Ameeta Agrawal (eds.), Proceedings of The Fourth Workshop on Simple and Effi-
cient Natural Language Processing (SustaiNLP), pp. 78–90, Toronto, Canada (Hybrid), July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.sustainlp-1.5. URL
https://aclanthology.org/2023.sustainlp-1.5.

12

https://aclanthology.org/P02-1040
https://aclanthology.org/2023.wmt-1.98
https://aclanthology.org/W18-6319
https://aclanthology.org/W18-6319
https://aclanthology.org/2021.findings-emnlp.344
https://aclanthology.org/2023.sustainlp-1.5


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Norman Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai. Optimizing
mode connectivity via neuron alignment. Advances in Neural Information Processing Systems, 33:
15300–15311, 2020.

Jörg Tiedemann. Parallel data, tools and interfaces in OPUS. In Nicoletta Calzolari, Khalid
Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion
Moreno, Jan Odijk, and Stelios Piperidis (eds.), Proceedings of the Eighth International Confer-
ence on Language Resources and Evaluation (LREC’12), pp. 2214–2218, Istanbul, Turkey, May
2012. European Language Resources Association (ELRA). URL http://www.lrec-conf.org/
proceedings/lrec2012/pdf/463_Paper.pdf.

Jörg Tiedemann. The Tatoeba Translation Challenge – Realistic data sets for low resource and
multilingual MT. In Proceedings of the Fifth Conference on Machine Translation, pp. 1174–1182,
Online, November 2020. Association for Computational Linguistics. URL https://www.aclweb.
org/anthology/2020.wmt-1.139.

Jörg Tiedemann and Santhosh Thottingal. OPUS-MT – building open translation services for
the world. In André Martins, Helena Moniz, Sara Fumega, Bruno Martins, Fernando Batista,
Luisa Coheur, Carla Parra, Isabel Trancoso, Marco Turchi, Arianna Bisazza, Joss Moorkens,
Ana Guerberof, Mary Nurminen, Lena Marg, and Mikel L. Forcada (eds.), Proceedings of the
22nd Annual Conference of the European Association for Machine Translation, pp. 479–480,
Lisboa, Portugal, November 2020. European Association for Machine Translation. URL https:
//aclanthology.org/2020.eamt-1.61.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017. URL https://api.semanticscholar.org/CorpusID:13756489.

Neha Verma and Maha Elbayad. Merging text transformer models from different initializations, 2024.
URL https://arxiv.org/abs/2403.00986.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen,
David Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 5797–5808, Florence, Italy, July 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P19-1580. URL https://aclanthology.org/P19-1580.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities,
2024a. URL https://arxiv.org/abs/2408.07666.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024b.

13

http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://api.semanticscholar.org/CorpusID:13756489
https://arxiv.org/abs/2403.00986
https://aclanthology.org/P19-1580
https://arxiv.org/abs/2408.07666


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A FULL RESULTS AT VARYING COMPRESSION RATIOS

Table 5: Full numerical results on compression results at 1/3 FF sublayers removed, 1/2 FF sublayers
removed, and (n− 1)/n FF sublayers removed. Original, uncompressed models are included in the
first row of results for each model, indicated by 0 FFs removed and no merged indices.

Model Metric Merged Indices FFs Removed Vanilla Permute

ViT Accuracy (%) ↑
– 0/12 80.3 80.3
3-7 4/12 77.8 79.2
4-10 6/12 75.3 76.3
0-11 11/12 39.0 58.1

GPT-2 PPL ↓
– 0/36 16.16 16.16
22-34 12/36 17.39 17.27
16-34 18/36 19.01 18.66
0-35 35/36 23.02 21.31

OPUS-MT BLEU ↑
– 0/12 35.8 35.8
2-4/2-4 4/12 33.3 33.6
0-3/0-3 6/12 32.8 33.2
0-5/0-5 11/12 29.3 30.1

B FINE-TUNING DETAILS

B.1 GPT-2

Table 6: Hyperparameters used for GPT-2 fine-tuning

Hyperparameter Value

Start LR 5e-5
LR Schedule inv_sqrt
fp16 True
batch size 2
n_steps 100K

B.2 VIT

Table 7: Hyperparameters used for ViT fine-tuning

Hyperparameter Value

Start LR 5e-5
LR Schedule lin_decay with min
decay_steps 20K
Min LR 1e-6
fp16 True
batch size 128
n_steps 50K

B.3 MACHINE TRANSLATION

We select our best model using validation BLEU, computed on a 2000 instance subset of the full
Tatoeba validation set.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 8: Hyperparameters used for OPUS-MT fine-tuning

Hyperparameter Value

Start LR 5e-5
LR Schedule inv_sqrt
fp16 True
bsz 64
n_steps 100K

C ATTENTION LAYER SIMILARITY

We compute CKA similarity between all attention sublayer pairs, using the same 10k tokens or
patches from our CKA results on FF sublayers. The features are from the output of the linear layer
just after the dot-product attention computation.

0 2 4 6 8 10
Feed-Forward Layer i

0

2

4

6

8

10

Fe
ed

-F
or

wa
rd

 L
ay

er
 j

0.2

0.4

0.6

0.8

1.0

CK
A 

Sc
or

e

(a) ViT

0 10 20 30
Feed-Forward Layer i

0

5

10

15

20

25

30

35

Fe
ed

-F
or

wa
rd

 L
ay

er
 j

0.2

0.4

0.6

0.8

1.0

CK
A 

Sc
or

e

(b) GPT2

0 2 4 6 8 10
Feed-Forward Layer i

0

2

4

6

8

10

Fe
ed

-F
or

wa
rd

 L
ay

er
 j

0.2

0.4

0.6

0.8

1.0

CK
A 

Sc
or

e

(c) OPUS-MT

Figure 6: CKA plots of multi-headed self-attention sublayer activations across three different trained
models. Attention activations are largely dissimilar from each other across model types. We do not
compare between encoder and decoder attention sublayers in the translation model due the differences
in token inputs.

15


	Introduction
	Related Work
	Weight sharing for smaller models
	Pruning and redundancy

	Merging Feed-Forward Sublayers
	Feed-forward sublayers as a merging target
	Background on permutation-based neuron alignment
	Combining feed-forward sublayers
	Selecting sublayers to merge

	Experimental Setup
	Language modeling
	Image classification with ViT
	Machine translation
	Layer pruning baseline

	Results
	Merging feed-forward sublayers across compression ratios
	Choice of merged sublayers
	Choice of anchor layer
	Additional compression via quantization
	Similarity trends across feed-forward sublayers

	Conclusion
	Full Results at varying compression ratios
	fine-tuning details
	GPT-2
	ViT
	Machine Translation

	Attention Layer Similarity

