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ABSTRACT

We study the problem of sample efficient reinforcement learning, where prior data
such as demonstrations are provided for initialization in lieu of a dense reward
signal. A natural approach is to incorporate an imitation learning objective, either as
regularization during training or to acquire a reference policy. However, imitation
learning objectives can ultimately degrade long-term performance, as it does not
directly align with reward maximization. In this work, we propose to use prior
data solely for guiding exploration via noise added to the policy, sidestepping the
need for explicit behavior cloning constraints. The key insight in our framework,
Data-Guided Noise (DGN)), is that demonstrations are most useful for identifying
which actions should be explored, rather than forcing the policy to take certain
actions. Our approach achieves up to 2-3x improvement over prior reinforcement
learning from offline data methods across seven simulated continuous control tasks.

1 INTRODUCTION

Progress in deep reinforcement learning (RL) has led to considerable success in a wide range
of complex domains from games such as Go (Silver et al., |2016) to large-scale language model
alignment (Ouyang et al., [2022). However, applying RL to real-world continuous control tasks
remains difficult due to poor sample efficiency and the challenge of sparse rewards. One attractive
framework for addressing these issues is to leverage information from an offline dataset consisting of
previously collected data such as expert demonstrations.

Existing methods that leverage demonstrations in online RL often either underuse or overconstrain
with them. A widely used approach is to initialize the replay buffer with demonstration data and
oversample from it during off-policy training (Vecerik et al., 2017; |[Nair et al., [2018; Ball et al.|
2023). While this can provide some early guidance, it only indirectly leverages the information in the
demonstrations. On the other hand, imitation learning (IL) regularized methods use demonstrations
directly, adding behavior cloning losses or regularization that constrain the policy to remain close to
the expert distribution (Hester et al., 2018; [Nair et al.; 2020). Though these constraints can accelerate
early learning, they often degrade long-term performance as the constraints do not directly align
with reward maximization. More recent approaches train a separate IL reference policy to guide RL
exploration (Zhang et al.|[2023;[Hu et al., |2023), but these require training strong IL policies and a
reliable way of choosing between the IL and RL policies.

In this work, we propose Data-Guided Noise (DGN), a framework for leveraging the prior data
to guide RL exploration with implicit imitation signals. Our key insight is that prior data such as
expert demonstrations are especially valuable for revealing which exploratory actions are likely to be
effective, particularly in sparse-reward environments—not necessarily for prescribing the final optimal
behavior. Rather than imitating demonstration actions directly or regularizing the policy to stay close
to the demonstration distribution, we focus on the difference between demonstration actions and
the agent’s current policy actions at demonstrated states. These differences can be interpreted as
directions in action space that have led to successful outcomes. As a practical instantiation of DGN,
we train a state-dependent covariance matrix on dataset-policy action differences and use it to inject
structured noise into agent actions during rollouts. We can view this instantiation as learning the
mean of the policy via RL and the variance via imitation for that mean. This allows the agent to
follow its own learned behavior while increasing the probability of the policy taking actions that
are represented in the demonstration data, improving the chance of finding a high-reward action
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Figure 1: Data-Guided Noise (DGN). We propose to guide exploration by learning a state-conditioned noise
distribution that uses the difference between expert actions and the current RL policy to provide implicit imitation
signals for exploration.

distribution. Crucially, by shaping the agent’s exploration behavior rather than its policy optimization,
DGN avoids common pitfalls of imitation-augmented RL: it does not require a strong IL policy and
mechanism for switching between policies and avoids regularization that does not align with reward
maximization.

Our main contribution is a framework for using implicit imitation signals to guide an RL agent
towards demonstration-like regions through state-conditioned noise. Instead of enforcing imitation
via a loss, we propose using differences between RL actions and expert actions to guide exploration
of online RL. We evaluate DGN on several sparse-reward continuous control tasks, known to be
difficult for standard RL algorithms. DGN is complementary to prior pipelines and can be integrated
into standard online RL or on top of imitation-augmented RL approaches. Through evaluating
on challenging benchmarks, we find that DGN matches or outperforms existing state-of-the-art
approaches that use demonstration data, providing up to 2-3x improvement in performance.

2 RELATED WORKS

Exploration and Sampling in Reinforcement Learning. Effective exploration is a longstanding
challenge in RL, especially in environments with sparse rewards. One line of work uses count-based
bonuses to encourage visitation to novel states (Bellemare et al., 2016; [Tang et al., [2017; Burda
et al.| 2018; [Ecoffet et al., 2019), or intrinsic rewards such as the learning progress of the agent
(Lopes et al., 2012} |Oudeyer, [2018), model uncertainty (Schmidhuber, [2010; [Houthooft et al., 2016
Pathak et al., [2019; [Sekar et al., [2020), information gain (Houthooft et al., 2016), auxiliary tasks
(Riedmiller et al.||2018), generating and reaching goals (Pong et al.,[2020; (Chen et al.}[2020), and state
distribution matching (Lee et al.|[2019). While these methods provide general-purpose mechanisms
for incentivizing exploration, they often overlook structure that may be available in the form of expert
demonstrations or prior task knowledge. There are also more structured exploration approaches that
guide exploration via learning from prior task structure (Vezzani et al., 2019; Singh et al., [2020).
In this work, we shape the agent’s action distribution towards expert-like behaviors, enabling more
targeted, reward-relevant exploration.

Offline-to-Online Reinforcement Learning. When rewards are sparse, the aforementioned ex-
ploration strategies may struggle to efficiently discover task solutions. One remedy is to leverage
prior data, such as expert demonstrations or offline collected experience, to bootstrap the learning
process. Such prior data can help the agent more quickly focus on relevant states, and has been
theoretically shown to improve sample efficiency (Song et al., 2022). However, naively including
offline data in online RL pipelines can be unstable, leading to recent research on better approaches for
offline-to-online RL. Several approaches maintain separate exploration and agent policies to balance
optimism and pessimism between the two (Yang et al., 2023} Mark et al.||2023) or calibrate value
estimates learned using the offline data (Nakamoto et al.,[2023). AWAC and similar methods (Nair
et al.,[2020) find that one effective approach is to constrain policy updates using the advantage of
offline actions. [Lee et al. (2022) use a balanced replay and pessimistic Q-ensemble to address the
state-action distribution shift when fine-tuning online. Another common recipe is to initialize the
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replay buffer with demonstrations and oversample them during off-policy training (Vecerik et al.;
2017; Nair et al., 2018; |Hansen et al.,2022; Ball et al.,[2023; |Paine et al., 2019). While these methods
accelerate learning through careful reuse or constraint of demonstration data, they often impose a
tight coupling between the learning algorithm and the expert policy distribution. Instead of using
expert demonstrations to constrain learning or warm-start policies, DGN obtains much more efficient
learning by adaptively guiding the policy toward actions represented by the demonstrations, while
still allowing the agent to discover and optimize its own reward-maximizing policy.

Combining Imitation and Reinforcement Learning. One particularly common approach that
leverages expert demonstrations in RL combines the objective with imitation learning (IL). A
straightforward technique is to first pre-train a policy on demonstrations and then fine-tune it with
RL (Silver et al., 2016; |Hester et al., [2018} Rajeswaran et al.,[2017). However, a challenge with this
pipeline is that the policy, if optimized only with RL, may forget the initial demonstrated behaviors.
To address this, many methods use an imitation loss, i.e. behavior cloning regularization, during
RL to keep the policy close to the expert. DQfD (Hester et al., |2018) does this integration of IL
and RL in the loss, and regularized optimal transport (ROT) adapts the weight of the imitation loss
over time (Haldar et al., [2023). More recent methods have explicitly maintained both IL and RL
policies. These include Policy Expansion (PEX) (Zhang et al., 2023)), which uses a reference offline
RL policy during online exploration, and imitation-bootstrapped RL (IBRL) (Hu et al., 2023), which
first trains a separate IL policy and uses it to propose actions alongside the RL policy. In contrast to
the above approaches, which often require careful tuning of loss weights or maintenance of separate
policies, DGN uses demonstrations only to guide sampling in the RL process, aiming to leverage
expert data without requiring an explicit imitation loss. DGN can also be integrated into existing IL +
RL pipelines, as we show in our experiments.

3 PRELIMINARIES

We consider an online reinforcement learning (RL) setting where an agent interacts with a Markov
Decision Process (MDP) defined by the tuple (S, .A, p, r, ), where S is the set of states, A the set of
actions, p(s’ | s, a) the transition dynamics, (s, a) the reward function, and «y € [0, 1) the discount
factor. At each timestep ¢, the agent observes state s; € S, selects an action a; € A according to a
policy m(a | s), receives reward r(s;, a;), and transitions to a new state s;+1 ~ p(- | s¢, ar).

The goal of the agent is to learn a policy 7y (a|s) that maximizes the expected discounted return:
maxg B, 327 7'7 (51, ar)] where mp(als) := N(ug(s), ). In addition to interacting with the
environment, the agent has access to an expert dataset Dyyy = {71,...,7n5}. Each trajectory
7; = {80, ao, 7o, $1, a1, - .., ST, ar, r7} consists of a sequence of states and actions as well as sparse
reward signal. This dataset is used to guide learning, particularly in the early stages when reward
signals are sparse or difficult to obtain.

4 RL wWITH DATA-GUIDED NOISE

To address the challenge of sparse rewards and sample inefficiency in online RL, our key insight is
that prior data, particularly expert data, is especially valuable for identifying what kinds of exploratory
actions are likely to be effective—not necessarily what the final policy should do. We introduce
DGN, a framework that leverages data to guide RL with implicit imitation signals, without relying
on imitation losses or constraining the policy. Our proposed framework aims to shape the agent’s
exploratory behavior—rather than its policy updates—using learned noise. This learned noise increases
the probability of the policy taking actions that are represented in the demonstration data.

To realize the framework proposed by DGN, one practical instantiation of implicit imitation signals is
learning a state-dependent zero-mean Gaussian noise distribution over the action difference between
the prior demonstration data and the RL policy in the dataset states. We can view this instantiation as
learning the mean of the policy via RL and the variance via imitation for that mean. More formally,
this procedure learns a parameterized policy Tsumpling (@ | ), Where the action distribution is modeled
as a Gaussian distribution N (ug(s), 4(s), to sample actions during training. Here, 114(s) is the
mean of the policy learned via RL. We learn X via imitation to match the action differences around
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Figure 2: Behavior of Online RL with Expert Data. Prior work has proposed several strategies for sparse-
reward RL that leverage expert data. Initializing the replay buffer with expert data does not directly use the
expert information to maximally accelerate learning. In IL-regularized RL, the agent is constrained to mimic
expert actions, which may limit the agent from finding more optimal solutions. IL + RL frameworks that use a
reference policy rely on training a strong IL policy and robust modulation between policies. Instead of using
explicit imitation constraints, DGN implicitly guides exploration by using expert-policy action differences to
learn a noise distribution that accelerates the agent’s learning.

the mean. In this sense, X4 controls the structure and scale of exploration noise, so the policy learns
how to act through RL and how to explore through prior data supervision.

4.1 LEARNING DATA-GUIDED NOISE

We instantiate DGN with modeling the noise as a learned, state-dependent Gaussian. The noise
captures the direction and scale of the differences to the dataset distribution, increasing the probability
of policy taking actions represented in the dataset without explicitly constraining the policy.

DGN with a zero-mean Gaussian. Let 1 (s) be the mean of the current policy parameterized by
6. We learn the sampling policy Tsampiing (@|) to model N'(pg(s), X4 (s)) corresponding to learning
the mean via RL and variance via imitation. The learned state-conditioned covariance matrix X (s)
is parameterized by an MLP that maps from states s to the Cholesky decomposition A4(s) of the

covariance matrix X4(s) = Ags(s)Ay(s)T.

Our training objective for ¢ for the covariance matrix is to minimize the negative log-likelihood of
Tsampling (@|s) on (s, a) pairs from Dyye:

ming Y —10g Tampiing (¢]s) Where Tamping (a]s) := A (0(s), Lo (5)) (1)
(5,a) €Dyaia

Every N environment steps, we fine-tune X4 (s) using the latest RL policy mg(a|s) for each (s, a) in
the prior dataset Dygta-

Alternative DGN Formulation. There are other ways we can model the difference between policy
actions and dataset actions as noise. One particular example is that we can fit a full residual policy
via imitation learning rather than only fitting the covariance, which gives N (14 (s), X4 (s)) as the
noise distribution. We let 114(s) denote a learned state-conditioned mean and ¥4 (s) the covariance
matrix parameterized the same way as the zero-mean formulation. This gives Tmpling(@]s) =

N(po(s) + 1s(s) Zo(s))

4.2 DATA-GUIDED PERTURBATIONS FOR EXPLORATION
We use the trained sampling policy to guide exploration during rollouts. Actions taken in the
environment are sampled from the sampling policy which learns expert-guided perturbations. More

formally, at each timestep, the agent samples an action as:

at ~ 7"'sampling(@t|3t)
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Algorithm 1 RL via Implicit Imitation (DGN)

Require: Prior dataset Dyy = {(54, a;)}, initialize policy 7y, sampling policy Tsampling
1: while training do
2: Collect rollouts:
3 for each environment step ¢ do
4 Sample a; from Tgmpling (@¢]S¢)
5 Take action a; and observe r; and s;1; from the environment
6 Store (¢, at, ¢, S¢4+1) in RL replay buffer
7: end for
8.
9
0
1

Update policy:
: Perform standard off-policy RL updates with collected data
10: if time to update sampling policy then
1 Update ¢ by minimizing negative log-likelihood:
min¢ Z — IOg Wsamplmg(a|5)
(5,a) EDgata

12: end if
13: end while

Importantly, this does not constrain the policy to stay near the expert distribution: the noise distribution
is only used to perturb actions during exploration, not to alter the policy optimization objective.

If the policy eventually surpasses the expert demonstrations in performance, the learned noise may
remain large in magnitude, potentially pulling the agent away from its improved behavior. To mitigate
this, one strategy is to apply an annealing schedule to the noise during training. This annealing
schedule ensures that early in training, exploration relies on guidance by expert-informed noise, but
as learning progresses and the policy improves, the influence of the noise decreases, so it eventually
relies more on its own learned behavior. Specifically, we scale the sampled noise by an inverse

exponential factor:
- t
€t = €¢ - €Xp (—) )
T

where ¢ is the number of environment steps that have been taken and 7 is the annealing timescale.
Another strategy to allow the agent to rely on its own learned behavior after initial exploration is to
turn off data-guided noise and set €, = 0 when the last n training episodes reaches m% success rate.
The full algorithm is shown in Algorithm I}

5 EXPERIMENTAL RESULTS

Our experimental evaluations aim to answer the following core questions:

1. Is DGN able to leverage imitation signals for improvement over standard RL and methods
that use explicit imitation regularization?

2. How does DGN perform compared to methods that rely on a reference imitation learning
policy?

3. What components of DGN are most important for performance?

We evaluate DGN on a set of 7 challenging continuous control tasks from Adroit and Robomimic.
We present the tasks in Figure [3. The Adroit benchmark suite involves controlling a 28-Dof
robot hand to perform complex tasks of spinning a pen (pen-binary-v0), opening a door
(door-binary-v0), and relocating a ball (relocate-binary-v0). The policy needs to learn
highly dexterous behavior to successfully complete each task. In the Robomimic (Mandlekar et al.|
2021) environment suite, we evaluate on Lift, Can, Square, and Tool Hang, which involve
controlling a 7-Dof robot arm to lift up a cube, pick up a can and place it in the correct bin, insert a
tool on a square peg, and hang a tool on a rack, respectively. All environments have sparse binary
rewards to signal task completion at the end of an episode. For all tasks, the observations consist of
robot proprioception as well as the pose of objects in the environment relevant to the task. For Adroit,
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Figure 3: Visualizations of the seven environments on which we evaluate DGN.
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Figure 4: Average Normalized Returns for Robomimic and Adroit tasks comparing with standard uncon-
strained RL and imitation-regularized RL methods. Across all tasks, DGN consistently exceeds or matches the
performance of the best baseline—even as the best baseline method varies by task. The relative benefit of DGN
over RLPD and other baselines is larger on the most difficult tasks: square, tool hang, and relocate.

we use data from a combination of human teleoperation and trajectories collected from a BC policy.
For the Robomimic tasks, we use demonstrations from the proficient-human dataset provided by the
paper. Several of these tasks (e.g., Tool Hang, Relocate) are known to be especially difficult
for standard RL algorithms under sparse rewards.

We evaluate DGN against four state-of-the-art comparisons that leverage prior data for training: (1)
RL with Prior Data (RLPD) (Ball et al.,[2023), which initializes the replay buffer with prior data
and oversamples from it for online training; (2) Regularized Fine-Tuning (RFT), which pretrains
the policy with imitation learning and adds a imitation learning loss to the RL objective with a
regularization weight, encouraging the policy to remain close to the prior data throughout training.
(3) Implicit Q-Learning (IQL) (Kostrikov et al.,[2021) finetuning, which learns a value function using
expectile regression and a policy via advantage-weighted regression that constrains the policy to be
close to behavior data. (4) Imitation-Bootstrapped RL (IBRL) (Hu et al.| [2023), which first trains an
IL policy with the offline data and then chooses between actions proposed by the IL and RL policies
using a Q-function.

We instantiate DGN on top of RLPD, with the only changes being the guided sampling model
described in Section | The state-dependent learned covariance MLP is trained every N = 1000
environment steps on Robomimic tasks and every N = 2000 steps on Adroit tasks. For the Adroit
experiments, we anneal perturbations with 7 = 30000 and we turn off noise for the Robomimic
environments when the previous n = 10 training episodes reaches m = 50% success rate. We report
the average and standard error across three runs for all experiments.
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5.1 DOES DGN IMPROVE OVER STANDARD RL AND IMITATION-REGULARIZED RL METHODS?

For the first set of experiments, we compare DGN against unconstrained RL algorithms and algorithms
that utilize explicit imitation regularization across Adroit and Robomimic benchmarks. We focus
on two questions, is DGN able to leverage imitation signals to outperform unconstrained RL with
prior data approaches, and how does the implicit imitation signal from DGN compare with explicit
regularization approaches. We present the results in Figure d. First, we find that DGN outperforms
or matches the performance of RLPD on every task. In particular, on the harder tasks relocate
and tool hang, DGN outperforms RLPD by a significant margin and requires significantly fewer
samples to learn to solve the task. While RLPD utilizes prior data, the policy is not directly
influenced by it, so it is not able to maximally get the benefit of sample efficiency from imitation
signals. In contrast, the implicit imitation signals greatly accelerate policy learning by guiding
the policy to explore in expert-like directions. Even on the Adroit tasks which uses a mix of
human teleoperation and IL policy data, DGN was able to outperform RLPD by 2x on the hardest
relocate task. Comparing with RFT and IQL, which are two approaches for explicitly constraining
the policy to imitation signals, we see that DGN outperforms them even more as the imitation learning
regularization does not align with reward maximization of RL. This is particularly clear in door
as the policy alternates between improving and zero performance. While DGN provides implicit
imitation signals, it does not force RL to balance between losses, which allows it to find its own high
reward policy while getting benefits from the imitation signal.

5.2 How DOES DGN PERFORM COMPARED TO METHODS THAT RELY ON A REFERENCE
IMITATION POLICY?

We next compare DGN to IBRL, a state-of-the-art reference policy based approach. While IBRL
trains an unconstrained RL policy for reward maximization, it relies on a strong IL policy to derive
benefits. We make the comparison of DGN with IBRL under three conditions, with a high-quality BC
policy trained to convergence, a low-quality BC policy obtained by underfitting the data, and using a
multimodal dataset. To stay consistent with IBRL implementation details, we apply dropout to the
actor. We find that this generally helps the performance of DGN, but it is a design choice orthogonal
to taking advantage of implicit imitation signals so we only include it for experiments in this section.

10 can square

Eos — -~ Varying the quality of the IL policy:
K oe As seen in Figure E across can and
T square, DGN performs comparable to
R IBRL even when IBRL has access to a
502 strong BC policy. This indicates implicit
0.04 imitation signals alone are enough to derive

25 50 75 100 125 150 50 100 150 200 250 f 11 b ﬁ f .. . . 1 . h
Environment Steps (x1000) Environment Steps (x1000) u eneflts of imitation signals, without
—— IBRL —— IBRL (Underfit BC) DGN (w/Dropout) the need to train a reference policy. How-

ever, we find that IBRL’s performance de-

Figure 5: Comparison to IBRL. Average normalized re- grades significantly without a strong IL pol-
turns on can and square, comparing to the reference policy- 1€y €.g., due to insufficient training time or
based approach of IBRL. IBRL’s performance strongly de- limited capacity, and this is especially the
pends on having a well-trained IL policy, and its performance case for the harder task of square, caus-
can degrade substantially without it, while DGN does not. ing it to have substantially lower success.

This is because IBRL'’s ability to leverage
imitation signals is dependent on the IL policy capturing the right distribution, which can be a
significant assumption to make in practice. In contrast, DGN does not suffer from this problem as we
leverage imitation signals only for guiding sampling.

Using a multimodal dataset: IBRL uses a reference IL policy to guide RL exploration. The
effectiveness of this approach depends heavily on the quality of the IL policy. We further evaluate
IBRL on a more challenging setting: a multimodal dataset composed of successful trajectories. We
defer to Appendix [A for details on the setup. Despite all trajectories being successful demonstrations,
the diversity of strategies introduces multimodality that makes learning a reliable IL policy difficult.
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In Figure[6] we see that the performance of IBRL degrades significantly when the data is multimodal,
and this is apparent on both can and square, even when we carefully train the reference IL policy.
In contrast, DGN appears less sensitive to mode quality. Because it does not rely on executing a fixed
imitation policy, DGN can still extract useful exploratory structure from the expert data.

5.3  WHAT COMPONENTS OF DGN ARE MOST IMPORTANT FOR PERFORMANCE?

To better understand the importance of different
components of DGN for policy performance, can square
we ablate over two key components that could

=
=]

c
affect the performance of DGN: learning a full ~ 2 os
residual policy via imitation learning rather than ; 06
only the covariance and the state-dependence of £ o4
the learned covariance. Eo2
= 0.0
Ablation on learning a full residual POliCy via En?/?ronm;r?SStepgs(gloooz)oo Environ?ggnt Step:(z?QOOO)
imitation learning: A key design choice in — IBRL DGN (w/Dropout)

DGN is how the exploration noise is modeled.

We consider two variants of DGN in this abla- Figure 6: Comparison to IBRL with a multi-
tion: one where only the covariance of Tsmpling modal dataset. DGN outperforms IBRL, showing
is learned via imitation, and another where the DGN is less sensitive to dataset quality and multi-
mean is learned alongside the covariance. modality.

Empirically, we find that both variants lead to comparable performance across the Robomimic tasks,
as seen in Figure [7. This suggests that the benefits of DGN are not tied to whether the mean is
fixed at zero or learned — rather, they stem from the broader mechanism of using expert-policy
differences to inform the structure of the noise to shape the exploration distribution. This highlights
that the core strength of DGN lies not in enforcing imitation, but in extracting exploration priors from
demonstrations that help RL discover useful behaviors more efficiently.

Ablation on state-conditioning: An important component of DGN is that the learned data-guided
noise is conditioned on the current state. This state-conditioning allows the exploration noise to be
adapted dynamically, capturing task-specific differences in how expert actions deviate from policy
actions across the state space.

To isolate the importance of state-conditioning the distribution, we test an ablation of DGN where
we learn a covariance matrix in the same way as DGN, but this covariance matrix is no longer
state-conditioned. We replace the learned sampling policy Tgmpling (a]s) := N (1o (s), Ly (s)) with
Tsampling (@]$) 1= N (o (s), ). The covariance matrix X4 is now parameterized by single matrix of
learned weights A, representing the Cholesky decomposition of X4. This matrix of parameters is
learned the same way as DGN’s state-dependent covariance matrix, following equation[d.T, with the
important difference that the parameters are no longer state-dependent.

The results in Figure [§| show that this ablation of DGN without state-conditioning of the covariance
matrix substantially underperforms DGN. The performance drop is especially apparent in can, and
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Figure 7: Ablation on Learning Full Residual Policy via Imitation Learning. Learning a full
residual policy via imitation performs similarly to only learning the covariance.
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Figure 8: Ablation on State-Conditioning DGN Distribution. The ablation of DGN without
state-conditioning of the learned covariance matrix performs worse than DGN on Robomimic tasks.

tool hang, where vanilla RLPD outperforms the ablation with no state conditioning, indicating
the importance of learning state-dependent noise.

How does the action distribution of DGN com-
pare to other methods? To further understand

KL divergence across training

why the implicit imitation signals of DGN could oon
be significantly more preferable than explicit regu- 80 e
larization, we analyze the KL divergence between 0 — T

the action distributions of each policy and that
of an IL policy trained on demonstrations over
a set of demonstration states. As shown in Fig-
ure[9, while all methods initially reduce their KL
divergence, as they all learn to imitate demonstra-
tor behavior early, the plot shows differences in
how each method balances imitation and reward
maximization. Our method maintains a higher
KL divergence from the IL policy than RFT and ° P remensepsiaoon
IBRL throughout training. This reflects greater
freedom to deviate from the demonstrations for Figure 9: KL Divergence from BC Policy over
better reward optimization. Training. On the square task, we plot the KL diver-
gence between each method’s policy and a BC policy

trained on expert demonstrations, evaluated on a fixed
6 LIMITATIONS AND CONCLUSION set of demonstration states. All methods initially re-

duce their divergence, reflecting early-stage imitation.
In this work, we introduced DGN, a framework However, DGN maintains a consistently higher diver-
that leverages prior data such as expert demon- gence than IBRL and RFT throughout training.
strations not by constraining the policy through
explicit imitation, but by shaping the agent’s ex-
ploration behavior through implicit imitation in the form of prior data-guided noise. Using the
state-dependent differences between expert and policy actions, DGN injects structured noise into
action selection, encouraging the agent to explore in directions that align with successful behaviors.
This approach enables efficient reward discovery early in training while allowing the policy to im-
prove beyond the demonstrations. Our experiments across a range of challenging sparse-reward
continuous control tasks demonstrate that DGN consistently matches or outperforms both standard
RL and imitation-augmented methods.

KL divergence vs. BC
w IS @ o
8 5 g 3

N
S

Despite these promising results, limitations remain that suggest avenues for future work. In particular,
while our framework is general for any approach that learns an implicit imitation signal from prior data
to guide the policy, we explore one specific instantiation as a state-dependent Gaussian distribution.
It would be interesting to study how different modeling choices and sampling strategies impact
performance to understand what would be the best instantiation of our proposed framework.
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REPRODUCIBILITY STATEMENT

We fully describe the method and our algorithm in the main paper text. We include a table of
hyperparameters we used and describe other experimental details in the appendix. Additionally, we
attach the code we ran to produce the presented results. The code submission includes configuration
files, and instructions to download the data and run the code are included in the README files in the
code.
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