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ABSTRACT

Measuring the in-context computational effort of language models is a key chal-
lenge, as metrics like next-token loss fail to capture reasoning complexity. Prior
methods based on latent state compressibility can be invasive and unstable. We
propose Multiple Token Divergence (MTD), a simple measure of computational
effort defined as the KL divergence between a model’s full output distribution
and that of a shallow, auxiliary prediction head. MTD can be computed directly
from pre-trained models with multiple prediction heads, requiring no additional
training. Building on this, we introduce Divergence Steering, a novel decoding
method to control the computational character of generated text. We empirically
show that MTD is more effective than prior methods at distinguishing complex
tasks from simple ones. On mathematical reasoning benchmarks, MTD correlates
positively with problem difficulty. Lower MTD is associated with more accurate
reasoning. MTD provides a practical, lightweight tool for analyzing and steering
the computational dynamics of language models.

1 INTRODUCTION

To solve unfamiliar and challenging problems, language models must perform sophisticated in-
context computation (Brown et al., 2020; Lewkowycz et al., 2022). Can we tell whether, and to
what extent, a model is making use of its computational capacity at any given moment? It is well-
established that the next-token prediction loss offers little insight (Schmidhuber, 1991a;b), as any
particular reduction in loss can, in principle, be arbitrarily difficult to achieve (Bennett, 1988). A
more promising approach is to quantify meaningful computation by measuring the entropy, or in-
compressibility, of a model’s latent representations (Skean et al., 2025; Herrmann et al., 2025). This
concept is rooted in the minimum description length principle (Grünwald, 2007; Vitányi, 2006; El-
moznino et al., 2024): if the most compact description of a sequence’s structure, given the training
data, is still long, then predicting that sequence is demanding due to a large search space. Based on
this, the Prediction of Hidden States (PHi) loss was proposed as a measure of in-context computa-
tional complexity, quantifying the per-token information gain in a model’s latent space (Herrmann
et al., 2025). While promising, the PHi framework introduces significant practical challenges: it
requires inserting a noisy information bottleneck that can degrade model performance, needs fur-
ther model training which can be unstable, and is highly sensitive to its precise placement and the
weighting of multiple loss terms.

In this work, we propose a simplified and more direct measure, Multiple Token Divergence (MTD),
which quantifies information gain in the model’s output distribution. The core insight is simple: if a
shallow computational shortcut (e.g., a single transformer block) can approximate the full model’s
prediction, then the model is not performing particularly complex computation. If, however, there is
a significant divergence between these two predictions, we can conclude that the model is leveraging
its deeper computational capacity. MTD is straightforward to implement and can even be computed
directly using the Multiple Token Prediction (MTP) modules that some modern pre-trained models
already possess, requiring no additional fine-tuning. In addition to this measure, we present Diver-
gence Steering, a novel decoding method that uses the MTD signal to control the computational
character of the generated output. We empirically demonstrate that MTD is more effective than
prior methods at distinguishing complex difficult tasks from simple ones. We also investigate the
properties of MTD and Divergence Steering in reasoning and creative generation tasks.
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2 BACKGROUND

2.1 PREDICTION OF HIDDEN STATES (PHI)
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Figure 1: Comparison between the architecture of a PHi
model (left) and of a MTP model (right).

The Prediction of Hidden states (PHi)
method, introduced by Herrmann
et al. (2025), creates an information
bottleneck (Tishby and Zaslavsky,
2015) within a sequence model in or-
der to measure the complexity of its
in-context computation. A PHi layer
is inserted between a model’s “bot-
tom” and “top” layers.

The model consists of the following
modules: The Bottom Layers (Bβ)
are the initial Transformer blocks that
process the input sequence embed-
dings. The PHi Layer contains three
key components: (1) An encoder
(qψ) that, at time step t, maps the hid-
den state gt from the bottom layers
to a posterior distribution over a la-
tent variable zt. This distribution is
typically a diagonal Gaussian, similar
to variational auto-encoders (Kingma
and Welling, 2014; Rezende et al.,
2014). (2) A decoder (aξ) that reconstructs the hidden state, creating g′t from a sample of the latent
variable zt. (3) An autoregressive prior that predicts the distribution of the current latent zt using
only the history of previous latents, z<t. This can be implemented with a single Transformer block
(Mµ) and two additional linear transforms: bκ, which maps the inputs to Mµ to the right dimension-
ality, and pχ, which maps the output of the transformer to a prior distribution. The Top Layers (Tτ )
are the remaining Transformer blocks that process the sequence of reconstructed hidden states g′.
Finally, we have the standard token Embedding (Eϵ) and the Output Layer (Oω). Here and in the
remainder of the paper, Greek subscript letter indicate learnable neural network parameters.

The forward pass processing tokens x1, x2, . . . is described by these equations:

et = Eϵ(xt) Token embedding

gt = Bβ(e1, . . . , et) Output from bottom layers

zt ∼ qψ( · |gt) Latent sample from posterior

g′t = aξ(zt) Reconstruction of hidden state

ht = Tτ (g
′
1, . . . , g

′
t) Output from top layers

π( · |x<t) = Oω(ht−1) Next token prediction from output head

LNLL(t) = − log π(xt|x<t) Negative Log Likelihood (NLL) loss

The PHi loss (LPHi) is the KL divergence between the posterior qψ , which has access to the current
input xt via gt, and the prior pχ, which only has access to past latents z<t. We assume an initial
latent z0 is given.

ct = bκ(zt−1) Linear projection of last latent (1)
dt = Mµ(c1, . . . , ct) Output from PHi transformer block

LPHi(t) = DKL

(
qψ( · |gt) || pχ( · |dt)

)
PHi Loss (2)

= DKL

(
qψ( · |x1, . . . , xt) || pχ( · |z0, z1, . . . , zt−1)

)
The model is trained to jointly minimize both LNLL and LPHi. The PHi loss quantifies the information
gain at each timestep—the amount of new useful information present in the current input token xt
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that was not predictable from the history of latent states. It has been shown (Herrmann et al., 2025)
that this value correlates well with the complexity and “interestingness” of tasks.

2.2 MULTIPLE TOKEN PREDICTION (MTP)

Multiple Token Prediction (MTP) is a technique used to improve model performance and enable
faster inference via methods like speculative decoding (Cai et al., 2024; Gloeckle et al., 2024; Liu
et al., 2024; Xiaomi et al., 2025). In this setup, a computationally cheap auxiliary module is trained
to directly predict the main model’s future output distribution.

First, consider a standard autoregressive model’s forward pass:

et = Eϵ(xt) Token embedding

ht = Fϕ(e1, . . . , et) Output of all main transformer blocks

π( · |x<t) = Oω(ht−1) Next token prediction from output head

LNLL(t) = − log π(xt|x<t) NLL loss

The goal of MTP is to approximate the main model’s prediction for the token one step further ahead,
xt+1. Note that often in MTP, there are additional modules that approximate predictions for tokens
even further ahead, i.e., xt+n for n > 1. We will not use them in this work.

A separate, smaller MTP module (e.g., a single Transformer block Mµ) generates its own prediction
without access to the full model’s current hidden state ht and is usually trained with a negative log-
likelihood loss, which we call LMTP. Optionally, the MTP module can be given access to the current
token embedding et, as indicated by the square brackets.

ct = bκ(ht−1[, et]) Input to MTP module (projection of ht−1and possibly et) (3)
dt = Mµ(c1, . . . , ct) Output from MTP Transformer block

πMTP( · |x<t) = Oω(dt−1) MTP’s prediction for token xt+1

LMTP(t) = − log πMTP(xt|x<t) MTP Loss

In order to predict the next token x+1, the MTP module has access to the model’s history via ht−1

(and optionally the current embedding et), but it crucially lacks the result of the main model’s full
computation at step t (i.e., ht). In recent works using MTP for Large Language Models (Xiaomi
et al., 2025; Liu et al., 2024), the MTP module shares the embedding and output heads with the
original model, implicitly enforcing alignment of the latent space.

3 MULTIPLE TOKEN DIVERGENCE

Observe the similarity between the PHi framework’s autoregressive prior pχ and posterior qψ on the
one hand, and the MTP prediction πMTP and the full model prediction π on the other (Figure 1): in
both cases, a computationally and informationally constrained module approximates the prediction
from a full model. The key difference is that for PHi, this approximation occurs in a continuous
latent space, whereas MTP operates directly on the discrete token distribution.

Based on this analogy, we propose the Multiple Token Divergence (MTD) as an alternative to the
PHi loss. It is defined as the KL divergence between the full model’s next-token prediction π and
the MTP module’s prediction πMTP:

LMTD(t) = DKL

(
π( · |x≤t) || πMTP( · |x<t)

)
(4)

= DKL

(
π
(
· |Fϕ(e1, . . . , et)

)
|| πMTP

(
· |Fϕ(e1, . . . , et−1)[, et]

))
.

The MTD loss, LMTD, can either be optimized directly in conjunction with the standard next-token
loss LNLL, or it can be calculated post-hoc using an MTP module trained with LMTP loss (see Sec-
tion 4.2). For now, we ignore the optional access of the MTP module to the latest embedding et; this
will be addressed in Section 3.
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On the Difference between PHi and MTD While PHi introduced a powerful conceptual frame-
work for analyzing a model’s internal processing, its implementation can be complex. The stochas-
ticity introduced by the variational information bottleneck can also interfere with the main sequence
prediction task. In contrast, MTD is significantly simpler to implement as it functions as a non-
invasive auxiliary task; providing a more direct and less disruptive method to obtain similar insights
into the model’s per-token computational effort.

One interpretation of the PHi loss is that it measures, at every step, changes of the ‘latent program’
that the model synthesizes in-context to perform next-token prediction. The MTD loss, however,
measures changes directly at the level of the output predictions. This distinction can lead to signif-
icant differences. For instance, a small change in the latent program could result in a large shift in
the output predictions. As an illustrative example, consider a model trained on two distinct types
of sequences: one type consists of uniformly random tokens, while the other is a specific single,
repeated token. To distinguish between these two cases, the latent program only needs to gain one
bit of information. The PHi loss would therefore be low. However, the resulting change in the output
distribution is large—shifting from a uniform distribution to a one-hot distribution. In this scenario,
the MTD can be as high as DKL(one-hot||uniform) = log2(vocabulary size) bits. In such cases, we
expect LMTD to be significantly higher than LPHi, an effect we observe in our experiments in Sec-
tion 4.1. Conversely, one can imagine cases where the latent program changes significantly while
the output predictions remain stable. However, the PHi training objective penalizes encoding such
changes, as they do not sufficiently improve downstream predictions and thus represent an ineffi-
cient use of the information bottleneck. Whether the change in the latent program is larger than the
one in the output distributions or not depends on the exact weighting of the PHi loss during training.

Access to the Latest Token Embedding An interesting nuance for both PHi loss and MTD is
that the measured information gain at step t can originate from two distinct sources: (1) novel
information contained within the current token xt itself, and (2) complex computation performed
by the model’s main layers (Bβ for PHi, Fϕ for MTP), which cannot be easily approximated by
the simpler prior or MTP module (Mµ). To disentangle these two sources, we can provide the
prior/MTP module with direct access to the latest token embedding et, which is a common practice
in MTP models (see Equation 3). This effectively isolates the second source of information gain.
For the PHi framework, this modification involves updating Equation 1 to concatenate the previous
latent state with the current embedding:

ct = bκ(zt−1, et).

With this change, the PHi prior has access to the same input token as the bottom layers, Bβ . Conse-
quently, the modified PHi loss, which we denote as L̂PHi, isolates the information gain attributable
solely to the computation performed by Bβ :

L̂PHi(t) = DKL

(
qψ( · |x1, . . . , xt) || pχ( · |z0, . . . , zt−1, et)

)
.

A PHi layer modified in this way acts as an information bottleneck that specifically measures com-
putational effort. Information that the prior can easily extract from the input embedding et is allowed
to pass freely, while information that is computationally non-trivial for Bβ to extract is quantified by
L̂PHi. The same logic applies to the MTD module when it is given access to the latest embedding.

Arguably, PHi and MTD loss with access to the latest embedding provide a better measure of dense
in-context computation. This access allows the prior/MTP module to account for trivial shifts in the
predictions—like the one described in Section 3—thereby reducing the effective difference between
the two metrics. In essence, providing access to the latest embedding allows us to quantify the
information gain per step that is due to significant computational effort, whether measured in the
latent space (PHi) or in the output distribution (MTD).

3.1 DECODING WITH DIVERGENCE STEERING

So far, we have presented MTD as a post-hoc analysis tool. However, its formulation, based on
the divergence between two output distributions, provides a mechanism to influence the model’s
behavior during generation. This allows us to steer the decoding process towards or away from
tokens that the shallow MTP module can easily predict. This gives rise to a novel decoding method.
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Figure 2: Divergence Steering on a K=3
simplex with temperature curve for p,
geodesic interpolation between from m to p
and beyond, and projection onto distributions
with a fixed entropy of H(p).
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Figure 3: Distributions corresponding to Figure 2.
Geodesic interpolation sα, and the entropy of the
resulting distribution (top). The same distribu-
tions projected onto the surface with fixed entropy,
ŝα (bottom).

The core idea is to construct a new sampling distribution, sα, by interpolating between the full
model’s prediction, π, and the MTP module’s prediction, πMTP. This is controlled by a single pa-
rameter, α: For α = 0, we recover the original distribution from the full model: s0 = π. For
α = 1, we use the distribution from the shallow MTP module: s1 = πMTP. For α < 0, we ex-
trapolate away from the MTP module’s prediction. This amplifies the probability of tokens that
are considered likely by the full model but unlikely by the shallow shortcut, effectively creating an
‘anti-speculative’ distribution biased towards computationally intensive tokens.

To perform this interpolation in a principled way, we travel along the geodesic path between the
two distributions under the Fisher-Rao metric. This is achieved by mapping the distributions onto
the positive orthant of a hypersphere and performing spherical linear interpolation (Miyamoto et al.,
2024). Let p = π and m = πMTP be two categorical distributions over a vocabulary of size K. Their
representations on the hypersphere are the square roots of their probabilities:

pg = (
√
p1,

√
p2, . . . ,

√
pK)

mg = (
√
m1,

√
m2, . . . ,

√
mK)

The angle between these two vectors is Θ = arccos
(∑

k

√
pkmk

)
. The geodesic path sg(α) be-

tween pg and mg is then given by:

sg(α) =
sin((1− α)Θ)

sin(Θ)
pg +

sin(αΘ)

sin(Θ)
mg

To map this path back to a valid probability distribution s(α), we square each component of the
vector sg(α), i.e., sk(α) = (sg,k(α))

2.

This method introduces a new control knob, α, which is complementary to the standard temperature
parameter, T . While T adjusts the entropy of the output distribution, α adjusts its “computational
character.” Because πMTP often has higher entropy than π, changing α can also affect entropy. To
isolate these effects, we can optionally project the interpolated distribution s(α) to a new distribution
ŝα such that its entropy matches that of the original distribution, i.e., H(s(α)) = H(π) for all α.
This provides two orthogonal levers for shaping the decoding process: T for entropy and α for
computational density. Figures 2 and 3 visualize the method, additional details can be found in
Appendix A. As we will show, the optimal choice of α is task-dependent (which is also the case for
T ): some tasks benefit from the robust, simpler predictions favored by positive α, while others may
require the novel, less obvious paths uncovered by negative α.
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Figure 4: Normalized PHi or MTD loss of the four different model
types on each of the five tasks. Only in-context language learning
(ICLL) requires sophisticated in-context computation. This is re-
flected by the scores, with the exception of the MTD model without
access to the latest embedding, which assigns high MTD also to the
memorized programs task (see the discussion in Sections 3 and 4.1).
Bootstrapped mean with 95% confidence intervals across 8 runs.
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Figure 5: Partial correla-
tion of PHi or MTD loss
with the complexity of the
modelled PFA, controlling
for NLL. Also here, MTD
without latest embedding
access is the outlier.

4 EXPERIMENTS

4.1 MTD AND PHI LOSS OF SEQUENCE MODELS TRAINED FROM SCRATCH

The considerations from Section 3 leave us with four different model configurations to compare:
PHi and MTD models, each with and without access to the latest token embedding. The PHi model
without this access corresponds to the original method proposed in prior work (Herrmann et al.,
2025). To compare these different setups, we train transformer models from scratch on several tasks
and evaluate them in settings similar to those in (Herrmann et al., 2025). For details on the exact
training setups, please see Appendix B.1.

Evaluation on Different Tasks The four model types are trained on five different tasks: (1)
reciting memorized sequences, (2) modeling sequences from a small set of known formal lan-
guages (memorized programs), (3) in-context language learning (ICLL), where the formal lan-
guage is unknown (Akyürek et al., 2024), (4) modeling random token sequences, and (5) a copy-
ing task that involves modeling random tokens where subsequences appear twice. Of these, only
ICLL—which requires inferring the structure of an unknown probabilistic finite automaton (PFA)
in-context—involves meaningful computation, in the sense that a non-trivial latent program must
be synthesized by the model. Figure 4 shows a comparison of the normalized PHi and MTD losses
for each task. The MTD with latest embedding access shows the clearest distinction between the
one complex task and the four “boring” ones; note the high value for ICLL and the consistently
low values for all other tasks. For the MTD model without latest embedding access, we see the
effect alluded to in Section 3: the loss is high for both ICLL and the memorized programs. For the
memorized programs task, the actual in-context program required is minimal (only ∼ log2(10) bits
to identify any one out of the ten memorized automata). However, the lack of information from the
latest token causes a significant shift in the model’s output distribution, resulting in a high MTD.
Finally, giving the PHi layer access to the latest embedding does not appear to improve its ability to
distinguish boring from interesting tasks.

Task Complexity Focusing on the ICLL task, we investigate the relationship between the models’
PHi or MTD losses and the complexity of the underlying language, as measured by the description
length of the PFA. Figure 5 displays the partial correlation between the mean PHi or MTD loss
across a sequence and the language’s complexity. We control for the mean NLL, as it is positively
correlated with language complexity (r=0.367, 95% CI [0.315, 0.424]). Here again, we find that
MTD with latest embedding access shows the strongest positive correlation (r=0.524 [0.480, 0.565]).
In contrast, MTD without access to the latest embedding is negatively correlated with language
complexity when controlling for NLL, confirming that it is not a reliable measure for this purpose.
Figure 6 shows the token-wise PHi or MTD loss against binned NLL loss, broken down by PFA

6
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Figure 6: Token-wise PHi loss and MTD against binned NLL, for the different modeled PFA com-
plexities. PHi loss without and MTD with latest embedding access both show a clear correlation with
complexity level, across NLL bins. See Figure 9 (Appendix) for a bin-wise normalized version.

complexity (from 1, simple, to 10, complex). This analysis reveals that only the original PHi loss
(without embedding access) and the MTD loss with embedding access show a clear, positive token-
wise relationship with language complexity after controlling for NLL.

4.2 PRE-TRAINED LANGUAGE MODELS

To validate our hypotheses on existing large-scale models, we leverage the pre-trained, open-source
MiMo-7B model (Xiaomi et al., 2025). We chose this model for two reasons. First, as a modern,
high-quality 7B parameter model, its base pre-training incorporates an MTP objective, providing the
built-in auxiliary prediction heads necessary for calculating the MTD without any post-hoc modi-
fication. Second, its compact size, comparable to Llama 3 8B (Dubey et al., 2024), allows for the
efficient, large-scale experimentation required to statistically validate our hypotheses across diverse
tasks. We note that while MiMo-7B was trained with an MTP objective from the outset, a similar
setup could be achieved for other models by keeping the base model frozen and training an MTP
head using standard teacher-student distillation (Schmidhuber, 1992; Hinton et al., 2015) with a
fraction of the original data and compute.

Reasoning Difficulty We employ the MATH dataset (Hendrycks et al., 2021), which provides
mathematics problems labeled from Level 1 (easy) to Level 5 (hard), along with detailed reasoning
solutions. We first compute the mean MTD for the provided step-by-step solution for each problem
in the dataset and find that it clearly correlates with the difficulty level (r=0.179, 95% CI [0.152,
0.203]). Interestingly, the NLL loss negatively correlates with problem difficulty (r=-0.249 [-0.274,
-0.224]). This suggests that from the model’s perspective, reasoning chains for difficult problems
are no less plausible or predictable. However, the higher MTD indicates that the model makes
increased use of its full capacity to process and generate them. We also have the model generate ten
different chains-of-thought (CoTs) for each problem and repeat the analysis on these self-generated
solutions. There again, we observe very similar results: the partial correlation between MTD and
difficulty level, controlling for NLL, is r=0.199 [0.189, 0.208], while the correlation between NLL
and difficulty is r=-0.158 [-0.168, -0.149]. These effects hold consistently across most problem
categories, as shown in Figures 10 and 11 (Appendix). Since the provided rationales, as well as
the generated CoTs, are longer for more difficult problems, the cumulative NLL also correlates
positively with difficulty level (see Figures 12 and 13 in the Appendix).

Token-wise Development Across the Response We track the token-wise values for MTD and
NLL across each generated CoT. As seen in Figure 7a, the positive correlation between MTD and
problem difficulty holds consistently from the first tokens of the response to the last. Likewise,
the negative correlation for NLL persists throughout the generation, even though not as pronounced
(Figure 7b). The difference between MTD and NLL in their correlation with the problem difficulty is
notable because, at a global level, MTD and NLL are positively correlated with each other (r=0.255
[0.246, 0.265]). This highlights that MTD captures a distinct signal related to computational effort
that is not present in the standard NLL loss.

Reasoning Accuracy For the self-generated CoTs, we also investigate the relationship between
MTD values and the correctness of the final answer. Figure 7c plots the token-wise MTD, stratified
by whether the rationale was correct or incorrect. We observe that correct responses are consistently
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Figure 7: Token-wise losses against relative positions in self-generated CoT for the MATH test
dataset. MTD shows a clear correlation with difficulty across the full CoT (a), the relationship
between NLL and difficulty is less clear (b). Similarly, correct CoTs show higher MTD over all
relative positions (c), which is not the case for NLL (d).

1 0 1
0.4

0.5

0.6

0.7

Cr
ea

tiv
ity

 sc
or

e

Sibling Discovery

1 0 1
0.00

0.01

0.02

0.03

Cr
ea

tiv
ity

 sc
or

e

Triangle Discovery

1 0 1
0.4

0.5

0.6

0.7

Cr
ea

tiv
ity

 sc
or

e

Circle Construction

1 0 1
0.15

0.20

0.25

0.30

0.35

0.40

0.45

Cr
ea

tiv
ity

 sc
or

e

Line Construction

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Te
m

pe
ra

tu
re

Figure 8: For the discovery tasks, positive α leads to higher creativity, whereas for the construction
tasks, negative α leads to higher creativity. Results for geodesic distributions sα.

associated with lower MTD. The relationship between NLL and correctness is less consistent (see
Figure 7d). Following the methodology from prior work (Herrmann et al., 2025), we randomly
assemble pairs of one correct and one incorrect CoT for each math problem. The probability of
choosing the correct CoT when picking the one with the lower mean MTD is 67.1% (95% CI:
[65.4%, 68.7%]). When selecting the one with the lower NLL, the probability is 73.3% [71.9%,
74.8%]. For the cases where NLL and MTD are agree, we get 80.4% [78.5%, 81.9%] accuracy. We
repeat these experiments on the GSM-8k dataset (Cobbe et al., 2021), where we find that select-
ing CoTs with lower MTD yields 66.0% [62.9%, 69.2%] correct answers, while lower NLL yields
72.2% [69.1%, 75.0%] and combined yields 75.5% [71.7%, 79.2%]. For token-wise curves, please
see Appendix C.1. These findings stand in contrast to the results for PHi loss, where, for a Llama
3B model, correct answers are associated with a high PHi loss (Herrmann et al., 2025). While fur-
ther investigation is needed, we hypothesize that different models may have different tendencies to
either overly simplify or overly complicate their reasoning process (Sui et al., 2025). This tendency
could determine whether computationally intensive answers—as opposed to more straightforward
ones—are more or less likely to be correct for a given model architecture or training regime.

4.3 DIVERGENCE STEERING AND CREATIVE TASKS

Having established MTD as an indicator of complex in-context computation, we now investigate
whether we can use it to influence model generation. Specifically, can biasing generation towards
tokens with high MTD lead to more complex or creative outputs? The Divergence Steering method
allows us to test this hypothesis. We adopt the creative algorithmic toy task framework proposed
by Nagarajan et al. (2025), training transformer models on four distinct tasks: sibling discovery,
triangle discovery, circle construction, and line construction (for details, please see Appendix B.3).
The objective for each task is to generate sequences that are simultaneously valid, novel (i.e., not
memorized from the training set), and unique within a fixed number of attempts. Success is mea-
sured by a creativity score, where 1 indicates perfect performance across all three criteria. All mod-
els used in this experiment are configured with MTP modules that have access to the latest token
embedding. Figure 8 shows the creativity scores across a range of values for temperature and our
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steering parameter, α. The results reveal a task-dependent effect. For the “discovery” tasks, positive
values of α—which bias generation toward the simpler predictions of πMTP—yield higher creativ-
ity scores. For the “construction” tasks, negative values of α—which create an “anti-speculative”
distribution biased away from πMTP—lead to better performance. A more detailed analysis (Ap-
pendix C.2) suggests that positive α helps the model avoid memorized solutions (improving nov-
elty), whereas negative α can encourage the generation of more structurally sound outputs (improv-
ing validity). The optimal strategy, therefore, depends on the specific demands of the task. Crucially,
temperature and α function as largely independent controls over the decoding process: for all four
tasks, the best-performing combination of temperature and α achieves significantly higher creativity
scores than optimizing for temperature alone. The qualitative behavior is similar for both geodesic
and fixed-entropy distributions (see Figure 16 in the Appendix).

5 DISCUSSION & FUTURE WORK

In our experiments, MTD outperforms PHi loss in differentiating “boring” from “interesting” tasks
and simple from complex ones. It successfully isolates the per-token information gain attributable to
non-trivial, or “irreducible” (Wolfram, 2002), computation by the model. However, the utility of the
MTD signal is contingent on the relative capacities of the main model and the MTP module (Mµ):
if the MTP module is too powerful, MTD approaches zero, and if it is too weak, MTD offers little
beyond the standard NLL loss. Furthermore, because the shortcut module has fewer parameters,
MTD may entangle genuine computational effort with memorization.

Our findings also surface several intriguing questions. The positive correlation of MTD with prob-
lem complexity, in direct contrast to the negative correlation of NLL, warrants further investigation
to determine if this is a general pattern across models and scales. Similarly, our result that lower
MTD is associated with correct reasoning contrasts with prior findings for PHi loss, suggesting the
relationship between computational effort and correctness is complex and model-dependent. While
Divergence Steering enhanced performance on creative tasks, in preliminary experiments we found
no clear improvement in the reasoning of large pre-trained models, perhaps because significant
changes to the decoding strategy interfere with behaviors learned during post-training.

Our findings suggest that MTD and Divergence Steering has the potential for many applications in
training and inference. Examples could be Dynamic Compute Allocation: MTD could be moni-
tored in real-time during generation. A prolonged period of low MTD might trigger early stopping
for a simple task, while a sudden spike in MTD could activate more powerful components (e.g.,
additional Mixture-of-Experts layers) for a difficult step. Solution Convergence: The transition
from a high-MTD processing phase to a low-MTD conclusion could act as a signal that the model
has “settled” on a solution, potentially allowing for more efficient decoding. Intrinsic Motivation:
In agent-based settings, MTD could serve as an intrinsic reward. This would encourage an agent to
pursue policies that lead to computationally interesting states (high information gain), fostering the
development of more sophisticated behaviors. Open Endedness: MTD and Divergence steering al-
lows the filtering or direct generation of “interesting” data. This may help to prevent model collapse
when training on self-generated data and enable more creative, open-ended learning.

6 CONCLUSION

In this work, we introduce Multiple Token Divergence (MTD), a practical and direct measure for
quantifying the computational effort of language models. By measuring information gain in the
output distribution, MTD serves as a more robust and stable metric than prior methods that rely on
latent state compression. We show that giving the auxiliary prediction module access to the latest
token embedding allows MTD to specifically isolate the information gain attributable to non-trivial
computation. Our findings demonstrate that MTD successfully distinguishes complex in-context
reasoning from simpler tasks and reveals a nuanced relationship between computational effort and
predictive loss. As a non-invasive and easily implemented metric, MTD provides a valuable new
tool for analysis and evaluation. Furthermore, we introduce Divergence Steering, a novel decoding
method that uses the MTD signal to actively steer the generation process towards either more or less
computationally dense sequences. Shaping this “computational character” is complementary to the
standard entropy adjustment using decoding temperature.
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A FIXED ENTROPY PROJECTION FOR DIVERGENCE STEERING

To project the distribution sα onto the hypersurface with entropy H(p), we solve the following
optimization problem:

min
ŝα

DKL(ŝα||sα)

subject to H(ŝα) = H(p)∑
i

ŝα,i = 1

By solving the Lagrangian, we see that this is equivalent to finding a temperature-scaled version of
sα. This means that ŝα takes the form:

ŝα = softmax
(
log sα
T

)
for some temperature T, such that the entropy constraint H(ŝα) = H(p) is met. Since entropy is a
smooth monotonic function of the temperature, we can use a fast root-finding algorithm like binary
search to find the correct value for T .

In practice, divergence steering, either with geodesic interpolation or this fixed-entropy projection,
does not meaningfully slow down the generation process. For large vocabularies, however, it might
be sensible use Divergence Steering in combination with top-k sampling and only optimize the
remaining smaller distribution.

B EXPERIMENT DETAILS

B.1 SEQUENCE MODELS TRAINED FROM SCRATCH

We train all models using the Adam optimizer, a batch size of 16 and gradient norm clipping of 1.0.
The learning rate is 0.0003, with a 500 step linear warm-up from zero and no decay. All losses are
weighted equally, for the PHi loss we take the mean of the element-wise KL-Divergence for z, not
the sum. Every model variation is trained 8 times with different random seeds for the initial weights
and the procedurally generated data (which results in different memorized sequences and programs).
The training of a model can be done on a single consumer-grade GPU (e.g., NVIDIA RTX 4090).

The base model is based on the Llama 3.2 architecture (Dubey et al., 2024).

• Number of layers: 12
• Model dimensionality: 768
• Number of attention heads: 6
• MLP intermediate size: 2048
• Embedding layer and output head are tied

PHi models:

To prevent posterior collapse, we employ an additional contrastive self-critic loss (Menon et al.,
2022).

• Training steps: 30, 000
• Placement of the PHi Layer: After the 10th layer
• z dimensionality: 768
• qψ: Linear transform
• aξ: Linear transform
• bκ: Linear transform
• Mµ: One transformer block like the ones in the rest of the model
• pψ: Linear transform

MTD models:

• Training steps: 10, 000
• bκ: Linear transform
• Mµ: One transformer block like the ones in the rest of the model

12
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For generation of training and testing data, we follow Herrmann et al. (2025). The only difference
is that we do not perturb any tokens during training, and that we use the same models for the task
differentiation and task complexity experiments (Section 4.1).

B.2 PRE-TRAINED LANGUAGE MODELS

For our experiments, we use the SFT version of the MiMo-7B model (Xiaomi et al., 2025). To
calculate the MTD, we use the included MTP head that predicts one token in advance.

All experimental results include bootstrapped 95% confidence intervals.

B.3 DIVERGENCE STEERING AND CREATIVITY TASKS

The MTD models use the architecture and training procedure specified in in Section B.1. For each
task, a dedicated model is trained for 50, 000 steps. No seed conditioning is used. For task definitions
and evaluation procedure, we refer to Nagarajan et al. (2025).

The creativity score is defined as the fraction of all generated items that are valid, unique, and novel
among. In addition, we define three more scores:

• Validity score: fraction of valid items among all generated items
• Uniqueness score: fraction of unique items among valid generated items
• Novelty score: fraction of novel items among valid unique generated items

These are be used in the additional empirical analysis in section C.2.
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C ADDITIONAL EXPERIMENTAL RESULTS

Figure 9 shows the normalized PHi losses and MTDs, binned by NLL and normalized, making
it clear to see that PHi without and MTD with access to the latest embedding show the clearest
tokenw-wise relationship with PFA complexity.

C.1 PRE-TRAINED LANGUAGE MODELS

Figure 10 shows MTD and NLL for the provided step-by-step solutions, broken down by category
and difficulty level. Figure 11 shows the same for the self-generated CoTs. The results are qual-
itatively similar, even though, although the differences between categories for the CoTs are less
pronounced.

Figures 12 and 13 use the cumulative instead of the mean losses. Due to the fact that the pro-
vided solutions as well as the generated ones grow in length as the problems become more difficult,
cumulative NLL also correlates positively with difficulty level.

Figure 14 shows the development of MTD and NLL across self-generated CoTs for the problems
of the GSM-8k test dataset (analogous to Figures 7c and 7d for MATH). Correct CoTs clearly have
lower MTD, and lower NLL. Interestingly, for the GSM-8k dataset, the shapes of the NLL curves
differ significantly from the shapes of the MTD, missing the prominent initial bump. Currently, we
have no explanation for this.
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Figure 9: Similar to Figure 6, but normalized for each NLL bin. PHi loss without access to the latest
embedding, and MTD loss with access to the latest embedding both show a clear correlation with
complexity level, across NLL bins.
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(a) Mean MTD Loss
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(b) Mean NLL Loss

Figure 10: Mean losses of the MiMo model across the provided step-by-step solutions to the prob-
lems of the MATH test set, grouped by category and difficulty level. MTD clearly grows with diffi-
culty, suggesting that the model is making more use of its computational capacity when processing
more challenging problems. NLL loss, on the other hand, goes down with increasing complexity.
Figure 11 shows similar results for self-generated chains of thought.
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(b) Mean NLL Loss

Figure 11: Mean losses of the MiMo model across self-generated CoTs for the problems of the
MATH test set, grouped by category and difficulty level. Similarly as in Figure 10, we observe that
MTD clearly grows with difficulty, as the model is making more use of its computational capacity
when generating the solutions to more challenging problems. Also here, the mean NLL goes down
with problem difficulty.
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(a) Cumulative MTD Loss
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(b) Cumulative NLL Loss

Figure 12: Cumulative losses of the MiMo model across provided solutions from the MATH test
set. Since more difficult problems have longer solutions, both cumulative MTD and cumulative
NLL correlate with problem difficulty.
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(b) Cumulative NLL Loss

Figure 13: Cumulative losses of the MiMo model across self-generated CoTs for the problems of
the MATH test set. We observe a similar effect as in Figure 12.
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Figure 14: Token-wise losses against relative positions in self-generated CoTs for the GSM-8k test
dataset. Lower MTD and lower NLL are both associated with more correct reasoning.
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C.2 DIVERGENCE STEERING AND CREATIVE TASKS

Figure 15 shows the creativity scores for the four tasks, using different values for temperature and α.
In addition, we break down the results into validity, uniqueness and novelty scores. By the nature of
the task, sibling and triangle discovery models are at risk of overfitting to the training data. A positive
α value can help avoiding repeating memorized examples, as can be seen from the increased novelty
scores. The models for circle and line construction, on the other hand, are less prone to overfitting,
due to the combinatorial nature of the task. The novelty and uniqueness scores are consistently high.
For these tasks, negative α appears to help construct increase the validity scores.

Figure 16 shows qualitatively very similar results for fixed entropy distributions.
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Figure 15: Breakdown of the creativity scores into validity, uniqueness, and novelty. Positive α can
improve novelty, negative α can improve validity. Results for geodesic distributions sα.
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Figure 16: Breakdown of the creativity scores into validity, uniqueness, and novelty. Positive α can
improve novelty, negative α can improve validity. Results for fixed entropy distributions ŝα.
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