
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MULTIPLE TOKEN DIVERGENCE: MEASURING AND
STEERING IN-CONTEXT COMPUTATION DENSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Measuring the in-context computational effort of language models is a key chal-
lenge, as metrics like next-token loss fail to capture reasoning complexity. Prior
methods based on latent state compressibility can be invasive and unstable. We
propose Multiple Token Divergence (MTD), a simple measure of computational
effort defined as the KL divergence between a model’s full output distribution
and that of a shallow, auxiliary prediction head. MTD can be computed directly
from pre-trained models with multiple prediction heads, requiring no additional
training. Building on this, we introduce Divergence Steering, a novel decoding
method to control the computational character of generated text. We empirically
show that MTD is more effective than prior methods at distinguishing complex
tasks from simple ones. On mathematical reasoning benchmarks, MTD correlates
positively with problem difficulty. Lower MTD is associated with more accurate
reasoning. MTD provides a practical, lightweight tool for analyzing and steering
the computational dynamics of language models.

1 INTRODUCTION

To solve unfamiliar and challenging problems, language models must perform sophisticated in-
context computation (Brown et al., 2020; Lewkowycz et al., 2022). Can we tell whether, and to
what extent, a model is making use of its computational capacity at any given moment? It is well-
established that the next-token prediction loss offers little insight (Schmidhuber, 1991a;b), as any
particular reduction in loss can, in principle, be arbitrarily difficult to achieve (Bennett, 1988). A
more promising approach is to quantify meaningful computation by measuring the entropy, or in-
compressibility, of a model’s latent representations (Skean et al., 2025; Herrmann et al., 2025). This
concept is rooted in the minimum description length principle (Grünwald, 2007; Vitányi, 2006; El-
moznino et al., 2024): if the most compact description of a sequence’s structure, given the training
data, is still long, then predicting that sequence is demanding due to a large search space. Based on
this, the Prediction of Hidden States (PHi) loss was proposed as a measure of in-context computa-
tional complexity, quantifying the per-token information gain in a model’s latent space (Herrmann
et al., 2025). While promising, the PHi framework introduces significant practical challenges: it
requires inserting a noisy information bottleneck that can degrade model performance, needs fur-
ther model training which can be unstable, and is highly sensitive to its precise placement and the
weighting of multiple loss terms.

In this work, we propose a simplified and more direct measure, Multiple Token Divergence (MTD),
which quantifies information gain in the model’s output distribution. The core insight is simple: if a
shallow computational shortcut (e.g., a single transformer block) can approximate the full model’s
prediction, then the model is not performing particularly complex computation. If, however, there is
a significant divergence between these two predictions, we can conclude that the model is leveraging
its deeper computational capacity. MTD is straightforward to implement and can even be computed
directly using the Multiple Token Prediction (MTP) modules that some modern pre-trained models
already possess, requiring no additional fine-tuning. In addition to this measure, we present Diver-
gence Steering, a novel decoding method that uses the MTD signal to control the computational
character of the generated output. We empirically demonstrate that MTD is more effective than
prior methods at distinguishing complex difficult tasks from simple ones. We also investigate the
properties of MTD and Divergence Steering in reasoning and creative generation tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 BACKGROUND

2.1 PREDICTION OF HIDDEN STATES (PHI)

z2

x1

qψ

aξ

x2

qψ

x2

: Transformer BlockTτ × U

: Embedding LayerEϵ

: Output HeadOω

aξ

x3

bκ

PHi 
Layer

NLL: Next Token Prediction LossL

pχ

Next  
Embedding

: Transformer BlockBβ × L

: Transformer BlockMμ

z1

bκ

pχ

Next  
Embedding

z3

aξ

qψ

x3

x4

pχ

bκ

Next
Embedding

PHi: PHi LossL

x1

x2

x2

: Embedding LayerEϵ

: Output HeadOω

x3

x3

x4

MTP 
Layer

NLL: Next Token Prediction LossL

MTP: MTP LossL

bκ

Next  
Embedding

bκ

Next  
Embedding

bκ

: Transformer BlockFϕ × N

: Transformer BlockMμ

z2

x1

qψ

aξ

x2

qψ

x2

: Transformer BlockTτ × U

: Embedding LayerEϵ

: Output HeadOω

aξ

x3

bκ

PHi 
Layer

NLL: Next Token Prediction LossL

pχ

Next  
Embedding

: Transformer BlockBβ × L

: Transformer BlockMμ

z1

bκ

pχ

Next  
Embedding

z3

aξ

qψ

x3

x4

pχ

bκ

Next
Embedding

PHi: PHi LossL

x1

x2

x2

: Embedding LayerEϵ

: Output HeadOω

x3

x3

x4

MTP 
Layer

NLL: Next Token Prediction LossL

MTP: MTP LossL

bκ

Next  
Embedding

bκ

Next  
Embedding

bκ

: Transformer BlockFϕ × N

: Transformer BlockMμ

Figure 1: Comparison between the architecture of a PHi
model (left) and of a MTP model (right).

The Prediction of Hidden states (PHi)
method, introduced by Herrmann
et al. (2025), creates an information
bottleneck (Tishby and Zaslavsky,
2015) within a sequence model in or-
der to measure the complexity of its
in-context computation. A PHi layer
is inserted between a model’s “bot-
tom” and “top” layers.

The model consists of the following
modules: The Bottom Layers (Bβ)
are the initial Transformer blocks that
process the input sequence embed-
dings. The PHi Layer contains three
key components: (1) An encoder
(qψ) that, at time step t, maps the hid-
den state gt from the bottom layers
to a posterior distribution over a la-
tent variable zt. This distribution is
typically a diagonal Gaussian, similar
to variational auto-encoders (Kingma
and Welling, 2014; Rezende et al.,
2014). (2) A decoder (aξ) that reconstructs the hidden state, creating g′t from a sample of the latent
variable zt. (3) An autoregressive prior that predicts the distribution of the current latent zt using
only the history of previous latents, z<t. This can be implemented with a single Transformer block
(Mµ) and two additional linear transforms: bκ, which maps the inputs to Mµ to the right dimension-
ality, and pχ, which maps the output of the transformer to a prior distribution. The Top Layers (Tτ)
are the remaining Transformer blocks that process the sequence of reconstructed hidden states g′.
Finally, we have the standard token Embedding (Eϵ) and the Output Layer (Oω). Here and in the
remainder of the paper, Greek subscript letter indicate learnable neural network parameters.

The forward pass processing tokens x1, x2, . . . is described by these equations:

et = Eϵ(xt) Token embedding

gt = Bβ(e1, . . . , et) Output from bottom layers

zt ∼ qψ(· |gt) Latent sample from posterior

g′t = aξ(zt) Reconstruction of hidden state

ht = Tτ (g
′
1, . . . , g

′
t) Output from top layers

π(· |x<t) = Oω(ht−1) Next token prediction from output head

LNLL(t) = − log π(xt|x<t) Negative Log Likelihood (NLL) loss

The PHi loss (LPHi) is the KL divergence between the posterior qψ , which has access to the current
input xt via gt, and the prior pχ, which only has access to past latents z<t. We assume an initial
latent z0 is given.

ct = bκ(zt−1) Linear projection of last latent (1)
dt = Mµ(c1, . . . , ct) Output from PHi transformer block

LPHi(t) = DKL

(
qψ(· |gt) || pχ(· |dt)

)
PHi Loss (2)

= DKL

(
qψ(· |x1, . . . , xt) || pχ(· |z0, z1, . . . , zt−1)

)
The model is trained to jointly minimize both LNLL and LPHi. The PHi loss quantifies the information
gain at each timestep—the amount of new useful information present in the current input token xt

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

that was not predictable from the history of latent states. It has been shown (Herrmann et al., 2025)
that this value correlates well with the complexity and “interestingness” of tasks.

2.2 MULTIPLE TOKEN PREDICTION (MTP)

Multiple Token Prediction (MTP) is a technique used to improve model performance and enable
faster inference via methods like speculative decoding (Cai et al., 2024; Gloeckle et al., 2024; Liu
et al., 2024; Xiaomi et al., 2025). In this setup, a computationally cheap auxiliary module is trained
to directly predict the main model’s future output distribution.

First, consider a standard autoregressive model’s forward pass:

et = Eϵ(xt) Token embedding

ht = Fϕ(e1, . . . , et) Output of all main transformer blocks

π(· |x<t) = Oω(ht−1) Next token prediction from output head

LNLL(t) = − log π(xt|x<t) NLL loss

The goal of MTP is to approximate the main model’s prediction for the token one step further ahead,
xt+1. Note that often in MTP, there are additional modules that approximate predictions for tokens
even further ahead, i.e., xt+n for n > 1. We will not use them in this work.

A separate, smaller MTP module (e.g., a single Transformer block Mµ) generates its own prediction
without access to the full model’s current hidden state ht and is usually trained with a negative log-
likelihood loss, which we call LMTP. Optionally, the MTP module can be given access to the current
token embedding et, as indicated by the square brackets.

ct = bκ(ht−1[, et]) Input to MTP module (projection of ht−1and possibly et) (3)
dt = Mµ(c1, . . . , ct) Output from MTP Transformer block

πMTP(· |x<t) = Oω(dt−1) MTP’s prediction for token xt+1

LMTP(t) = − log πMTP(xt|x<t) MTP Loss

In order to predict the next token x+1, the MTP module has access to the model’s history via ht−1

(and optionally the current embedding et), but it crucially lacks the result of the main model’s full
computation at step t (i.e., ht). In recent works using MTP for Large Language Models (Xiaomi
et al., 2025; Liu et al., 2024), the MTP module shares the embedding and output heads with the
original model, implicitly enforcing alignment of the latent space.

3 MULTIPLE TOKEN DIVERGENCE

Observe the similarity between the PHi framework’s autoregressive prior pχ and posterior qψ on the
one hand, and the MTP prediction πMTP and the full model prediction π on the other (Figure 1): in
both cases, a computationally and informationally constrained module approximates the prediction
from a full model. The key difference is that for PHi, this approximation occurs in a continuous
latent space, whereas MTP operates directly on the discrete token distribution.

Based on this analogy, we propose the Multiple Token Divergence (MTD) as an alternative to the
PHi loss. It is defined as the KL divergence between the full model’s next-token prediction π and
the MTP module’s prediction πMTP:

LMTD(t) = DKL

(
π(· |x≤t) || πMTP(· |x<t)

)
(4)

= DKL

(
π
(
· |Fϕ(e1, . . . , et)

)
|| πMTP

(
· |Fϕ(e1, . . . , et−1)[, et]

))
.

The MTD loss, LMTD, can either be optimized directly in conjunction with the standard next-token
loss LNLL, or it can be calculated post-hoc using an MTP module trained with LMTP loss (see Sec-
tion 4.2). For now, we ignore the optional access of the MTP module to the latest embedding et; this
will be addressed in Section 3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

On the Difference between PHi and MTD While PHi introduced a powerful conceptual frame-
work for analyzing a model’s internal processing, its implementation can be complex. The stochas-
ticity introduced by the variational information bottleneck can also interfere with the main sequence
prediction task. In contrast, MTD is significantly simpler to implement as it functions as a non-
invasive auxiliary task; providing a more direct and less disruptive method to obtain similar insights
into the model’s per-token computational effort.

One interpretation of the PHi loss is that it measures, at every step, changes of the ‘latent program’
that the model synthesizes in-context to perform next-token prediction. The MTD loss, however,
measures changes directly at the level of the output predictions. This distinction can lead to signif-
icant differences. For instance, a small change in the latent program could result in a large shift in
the output predictions. As an illustrative example, consider a model trained on two distinct types
of sequences: one type consists of uniformly random tokens, while the other is a specific single,
repeated token. To distinguish between these two cases, the latent program only needs to gain one
bit of information. The PHi loss would therefore be low. However, the resulting change in the output
distribution is large—shifting from a uniform distribution to a one-hot distribution. In this scenario,
the MTD can be as high as DKL(one-hot||uniform) = log2(vocabulary size) bits. In such cases, we
expect LMTD to be significantly higher than LPHi, an effect we observe in our experiments in Sec-
tion 4.1. Conversely, one can imagine cases where the latent program changes significantly while
the output predictions remain stable. However, the PHi training objective penalizes encoding such
changes, as they do not sufficiently improve downstream predictions and thus represent an ineffi-
cient use of the information bottleneck. Whether the change in the latent program is larger than the
one in the output distributions or not depends on the exact weighting of the PHi loss during training.

Access to the Latest Token Embedding An interesting nuance for both PHi loss and MTD is
that the measured information gain at step t can originate from two distinct sources: (1) novel
information contained within the current token xt itself, and (2) complex computation performed
by the model’s main layers (Bβ for PHi, Fϕ for MTP), which cannot be easily approximated by
the simpler prior or MTP module (Mµ). To disentangle these two sources, we can provide the
prior/MTP module with direct access to the latest token embedding et, which is a common practice
in MTP models (see Equation 3). This effectively isolates the second source of information gain.
For the PHi framework, this modification involves updating Equation 1 to concatenate the previous
latent state with the current embedding:

ct = bκ(zt−1, et).

With this change, the PHi prior has access to the same input token as the bottom layers, Bβ . Conse-
quently, the modified PHi loss, which we denote as L̂PHi, isolates the information gain attributable
solely to the computation performed by Bβ :

L̂PHi(t) = DKL

(
qψ(· |x1, . . . , xt) || pχ(· |z0, . . . , zt−1, et)

)
.

A PHi layer modified in this way acts as an information bottleneck that specifically measures com-
putational effort. Information that the prior can easily extract from the input embedding et is allowed
to pass freely, while information that is computationally non-trivial for Bβ to extract is quantified by
L̂PHi. The same logic applies to the MTD module when it is given access to the latest embedding.

Arguably, PHi and MTD loss with access to the latest embedding provide a better measure of dense
in-context computation. This access allows the prior/MTP module to account for trivial shifts in the
predictions—like the one described in Section 3—thereby reducing the effective difference between
the two metrics. In essence, providing access to the latest embedding allows us to quantify the
information gain per step that is due to significant computational effort, whether measured in the
latent space (PHi) or in the output distribution (MTD).

3.1 DECODING WITH DIVERGENCE STEERING

So far, we have presented MTD as a post-hoc analysis tool. However, its formulation, based on
the divergence between two output distributions, provides a mechanism to influence the model’s
behavior during generation. This allows us to steer the decoding process towards or away from
tokens that the shallow MTP module can easily predict. This gives rise to a novel decoding method.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Divergence Steering on a K=3
simplex with temperature curve for p,
geodesic interpolation between from m to p
and beyond, and projection onto distributions
with a fixed entropy of H(p).

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
0.0

0.2

0.4

0.6

Pr
ob

ab
ilit

y

p m
Geodesic

0.4

0.6

0.8

1.0

En
tro

py

H(p)

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
0.0

0.2

0.4

0.6

Pr
ob

ab
ilit

y

p
Fixed Entropy

0.4

0.6

0.8

1.0

En
tro

py

Figure 3: Distributions corresponding to Figure 2.
Geodesic interpolation sα, and the entropy of the
resulting distribution (top). The same distribu-
tions projected onto the surface with fixed entropy,
ŝα (bottom).

The core idea is to construct a new sampling distribution, sα, by interpolating between the full
model’s prediction, π, and the MTP module’s prediction, πMTP. This is controlled by a single pa-
rameter, α: For α = 0, we recover the original distribution from the full model: s0 = π. For
α = 1, we use the distribution from the shallow MTP module: s1 = πMTP. For α < 0, we ex-
trapolate away from the MTP module’s prediction. This amplifies the probability of tokens that
are considered likely by the full model but unlikely by the shallow shortcut, effectively creating an
‘anti-speculative’ distribution biased towards computationally intensive tokens.

To perform this interpolation in a principled way, we travel along the geodesic path between the
two distributions under the Fisher-Rao metric. This is achieved by mapping the distributions onto
the positive orthant of a hypersphere and performing spherical linear interpolation (Miyamoto et al.,
2024). Let p = π and m = πMTP be two categorical distributions over a vocabulary of size K. Their
representations on the hypersphere are the square roots of their probabilities:

pg = (
√
p1,

√
p2, . . . ,

√
pK)

mg = (
√
m1,

√
m2, . . . ,

√
mK)

The angle between these two vectors is Θ = arccos
(∑

k

√
pkmk

)
. The geodesic path sg(α) be-

tween pg and mg is then given by:

sg(α) =
sin((1− α)Θ)

sin(Θ)
pg +

sin(αΘ)

sin(Θ)
mg

To map this path back to a valid probability distribution s(α), we square each component of the
vector sg(α), i.e., sk(α) = (sg,k(α))

2.

This method introduces a new control knob, α, which is complementary to the standard temperature
parameter, T . While T adjusts the entropy of the output distribution, α adjusts its “computational
character.” Because πMTP often has higher entropy than π, changing α can also affect entropy. To
isolate these effects, we can optionally project the interpolated distribution s(α) to a new distribution
ŝα such that its entropy matches that of the original distribution, i.e., H(s(α)) = H(π) for all α.
This provides two orthogonal levers for shaping the decoding process: T for entropy and α for
computational density. Figures 2 and 3 visualize the method, additional details can be found in
Appendix A. As we will show, the optimal choice of α is task-dependent (which is also the case for
T): some tasks benefit from the robust, simpler predictions favored by positive α, while others may
require the novel, less obvious paths uncovered by negative α.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Mem. Seq. Mem. Prog. ICLL Random Copy

-1 std

mean

+1 std

+2 std

No
rm

al
ize

d
PH

i/M
TD

 lo
ss

Model
PHi without latest embedding
PHi with latest embedding
MTD without latest embedding
MTD with latest embedding

Figure 4: Normalized PHi or MTD loss of the four different model
types on each of the five tasks. Only in-context language learning
(ICLL) requires sophisticated in-context computation. This is re-
flected by the scores, with the exception of the MTD model without
access to the latest embedding, which assigns high MTD also to the
memorized programs task (see the discussion in Sections 3 and 4.1).
Bootstrapped mean with 95% confidence intervals across 8 runs.

PFA Complexity PC

0.25

0.00

0.25

0.50

Pa
rti

al
 c

or
re

la
tio

n
be

tw
ee

n
PH

i/M
TD

 lo
ss

 a
nd

 c
om

pl
ex

ity
 le

ve
l

(c
on

tro
llin

g
fo

r N
LL

 lo
ss

)

Figure 5: Partial correla-
tion of PHi or MTD loss
with the complexity of the
modelled PFA, controlling
for NLL. Also here, MTD
without latest embedding
access is the outlier.

4 EXPERIMENTS

4.1 MTD AND PHI LOSS OF SEQUENCE MODELS TRAINED FROM SCRATCH

The considerations from Section 3 leave us with four different model configurations to compare:
PHi and MTD models, each with and without access to the latest token embedding. The PHi model
without this access corresponds to the original method proposed in prior work (Herrmann et al.,
2025). To compare these different setups, we train transformer models from scratch on several tasks
and evaluate them in settings similar to those in (Herrmann et al., 2025). For details on the exact
training setups, please see Appendix B.1.

Evaluation on Different Tasks The four model types are trained on five different tasks: (1)
reciting memorized sequences, (2) modeling sequences from a small set of known formal lan-
guages (memorized programs), (3) in-context language learning (ICLL), where the formal lan-
guage is unknown (Akyürek et al., 2024), (4) modeling random token sequences, and (5) a copy-
ing task that involves modeling random tokens where subsequences appear twice. Of these, only
ICLL—which requires inferring the structure of an unknown probabilistic finite automaton (PFA)
in-context—involves meaningful computation, in the sense that a non-trivial latent program must
be synthesized by the model. Figure 4 shows a comparison of the normalized PHi and MTD losses
for each task. The MTD with latest embedding access shows the clearest distinction between the
one complex task and the four “boring” ones; note the high value for ICLL and the consistently
low values for all other tasks. For the MTD model without latest embedding access, we see the
effect alluded to in Section 3: the loss is high for both ICLL and the memorized programs. For the
memorized programs task, the actual in-context program required is minimal (only ∼ log2(10) bits
to identify any one out of the ten memorized automata). However, the lack of information from the
latest token causes a significant shift in the model’s output distribution, resulting in a high MTD.
Finally, giving the PHi layer access to the latest embedding does not appear to improve its ability to
distinguish boring from interesting tasks.

Task Complexity Focusing on the ICLL task, we investigate the relationship between the models’
PHi or MTD losses and the complexity of the underlying language, as measured by the description
length of the PFA. Figure 5 displays the partial correlation between the mean PHi or MTD loss
across a sequence and the language’s complexity. We control for the mean NLL, as it is positively
correlated with language complexity (r=0.367, 95% CI [0.315, 0.424]). Here again, we find that
MTD with latest embedding access shows the strongest positive correlation (r=0.524 [0.480, 0.565]).
In contrast, MTD without access to the latest embedding is negatively correlated with language
complexity when controlling for NLL, confirming that it is not a reliable measure for this purpose.
Figure 6 shows the token-wise PHi or MTD loss against binned NLL loss, broken down by PFA

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1 2 3
NLL Loss

5.0

7.5

10.0

12.5

15.0

17.5

PH
i l

os
s

PHi without latest embedding

0 1 2 3
NLL Loss

1.25

1.50

1.75

2.00

2.25

2.50

2.75

PH
i l

os
s

PHi with latest embedding

0 1 2 3
NLL Loss

0.00

0.05

0.10

0.15

0.20

M
TD

 lo
ss

MTD without latest embedding

0 1 2 3
NLL Loss

0.00

0.01

0.02

0.03

0.04

M
TD

 lo
ss

MTD with latest embedding

2

4

6

8

10

PF
A

Co
m

pl
ex

ity

Figure 6: Token-wise PHi loss and MTD against binned NLL, for the different modeled PFA com-
plexities. PHi loss without and MTD with latest embedding access both show a clear correlation with
complexity level, across NLL bins. See Figure 9 (Appendix) for a bin-wise normalized version.

complexity (from 1, simple, to 10, complex). This analysis reveals that only the original PHi loss
(without embedding access) and the MTD loss with embedding access show a clear, positive token-
wise relationship with language complexity after controlling for NLL.

4.2 PRE-TRAINED LANGUAGE MODELS

To validate our hypotheses on existing large-scale models, we leverage the pre-trained, open-source
MiMo-7B model (Xiaomi et al., 2025). We chose this model for two reasons. First, as a modern,
high-quality 7B parameter model, its base pre-training incorporates an MTP objective, providing the
built-in auxiliary prediction heads necessary for calculating the MTD without any post-hoc modi-
fication. Second, its compact size, comparable to Llama 3 8B (Dubey et al., 2024), allows for the
efficient, large-scale experimentation required to statistically validate our hypotheses across diverse
tasks. We note that while MiMo-7B was trained with an MTP objective from the outset, a similar
setup could be achieved for other models by keeping the base model frozen and training an MTP
head using standard teacher-student distillation (Schmidhuber, 1992; Hinton et al., 2015) with a
fraction of the original data and compute.

Reasoning Difficulty We employ the MATH dataset (Hendrycks et al., 2021), which provides
mathematics problems labeled from Level 1 (easy) to Level 5 (hard), along with detailed reasoning
solutions. We first compute the mean MTD for the provided step-by-step solution for each problem
in the dataset and find that it clearly correlates with the difficulty level (r=0.179, 95% CI [0.152,
0.203]). Interestingly, the NLL loss negatively correlates with problem difficulty (r=-0.249 [-0.274,
-0.224]). This suggests that from the model’s perspective, reasoning chains for difficult problems
are no less plausible or predictable. However, the higher MTD indicates that the model makes
increased use of its full capacity to process and generate them. We also have the model generate ten
different chains-of-thought (CoTs) for each problem and repeat the analysis on these self-generated
solutions. There again, we observe very similar results: the partial correlation between MTD and
difficulty level, controlling for NLL, is r=0.199 [0.189, 0.208], while the correlation between NLL
and difficulty is r=-0.158 [-0.168, -0.149]. These effects hold consistently across most problem
categories, as shown in Figures 10 and 11 (Appendix). Since the provided rationales, as well as
the generated CoTs, are longer for more difficult problems, the cumulative NLL also correlates
positively with difficulty level (see Figures 12 and 13 in the Appendix).

Token-wise Development Across the Response We track the token-wise values for MTD and
NLL across each generated CoT. As seen in Figure 7a, the positive correlation between MTD and
problem difficulty holds consistently from the first tokens of the response to the last. Likewise,
the negative correlation for NLL persists throughout the generation, even though not as pronounced
(Figure 7b). The difference between MTD and NLL in their correlation with the problem difficulty is
notable because, at a global level, MTD and NLL are positively correlated with each other (r=0.255
[0.246, 0.265]). This highlights that MTD captures a distinct signal related to computational effort
that is not present in the standard NLL loss.

Reasoning Accuracy For the self-generated CoTs, we also investigate the relationship between
MTD values and the correctness of the final answer. Figure 7c plots the token-wise MTD, stratified
by whether the rationale was correct or incorrect. We observe that correct responses are consistently

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0% 50% 100%
Relative Position in CoT

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

M
TD

Difficulty
1
2
3
4
5

(a) MTD vs. Difficulty

0% 50% 100%
Relative Position in CoT

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

NL
L

Difficulty
1
2
3
4
5

(b) NLL vs. Difficulty

0% 50% 100%
Relative Position in CoT

0.35

0.40

0.45

0.50

0.55

0.60

M
TD

Correct
False
True

(c) MTD vs. Correctness

0% 50% 100%
Relative Position in CoT

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

NL
L

Correct
False
True

(d) NLL vs. Correctness

Figure 7: Token-wise losses against relative positions in self-generated CoT for the MATH test
dataset. MTD shows a clear correlation with difficulty across the full CoT (a), the relationship
between NLL and difficulty is less clear (b). Similarly, correct CoTs show higher MTD over all
relative positions (c), which is not the case for NLL (d).

1 0 1
0.4

0.5

0.6

0.7

Cr
ea

tiv
ity

 sc
or

e

Sibling Discovery

1 0 1
0.00

0.01

0.02

0.03

Cr
ea

tiv
ity

 sc
or

e

Triangle Discovery

1 0 1
0.4

0.5

0.6

0.7

Cr
ea

tiv
ity

 sc
or

e

Circle Construction

1 0 1
0.15

0.20

0.25

0.30

0.35

0.40

0.45

Cr
ea

tiv
ity

 sc
or

e

Line Construction

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Te
m

pe
ra

tu
re

Figure 8: For the discovery tasks, positive α leads to higher creativity, whereas for the construction
tasks, negative α leads to higher creativity. Results for geodesic distributions sα.

associated with lower MTD. The relationship between NLL and correctness is less consistent (see
Figure 7d). Following the methodology from prior work (Herrmann et al., 2025), we randomly
assemble pairs of one correct and one incorrect CoT for each math problem. The probability of
choosing the correct CoT when picking the one with the lower mean MTD is 67.1% (95% CI:
[65.4%, 68.7%]). When selecting the one with the lower NLL, the probability is 73.3% [71.9%,
74.8%]. For the cases where NLL and MTD are agree, we get 80.4% [78.5%, 81.9%] accuracy. We
repeat these experiments on the GSM-8k dataset (Cobbe et al., 2021), where we find that select-
ing CoTs with lower MTD yields 66.0% [62.9%, 69.2%] correct answers, while lower NLL yields
72.2% [69.1%, 75.0%] and combined yields 75.5% [71.7%, 79.2%]. For token-wise curves, please
see Appendix C.1. These findings stand in contrast to the results for PHi loss, where, for a Llama
3B model, correct answers are associated with a high PHi loss (Herrmann et al., 2025). While fur-
ther investigation is needed, we hypothesize that different models may have different tendencies to
either overly simplify or overly complicate their reasoning process (Sui et al., 2025). This tendency
could determine whether computationally intensive answers—as opposed to more straightforward
ones—are more or less likely to be correct for a given model architecture or training regime.

4.3 DIVERGENCE STEERING AND CREATIVE TASKS

Having established MTD as an indicator of complex in-context computation, we now investigate
whether we can use it to influence model generation. Specifically, can biasing generation towards
tokens with high MTD lead to more complex or creative outputs? The Divergence Steering method
allows us to test this hypothesis. We adopt the creative algorithmic toy task framework proposed
by Nagarajan et al. (2025), training transformer models on four distinct tasks: sibling discovery,
triangle discovery, circle construction, and line construction (for details, please see Appendix B.3).
The objective for each task is to generate sequences that are simultaneously valid, novel (i.e., not
memorized from the training set), and unique within a fixed number of attempts. Success is mea-
sured by a creativity score, where 1 indicates perfect performance across all three criteria. All mod-
els used in this experiment are configured with MTP modules that have access to the latest token
embedding. Figure 8 shows the creativity scores across a range of values for temperature and our

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

steering parameter, α. The results reveal a task-dependent effect. For the “discovery” tasks, positive
values of α—which bias generation toward the simpler predictions of πMTP—yield higher creativ-
ity scores. For the “construction” tasks, negative values of α—which create an “anti-speculative”
distribution biased away from πMTP—lead to better performance. A more detailed analysis (Ap-
pendix C.2) suggests that positive α helps the model avoid memorized solutions (improving nov-
elty), whereas negative α can encourage the generation of more structurally sound outputs (improv-
ing validity). The optimal strategy, therefore, depends on the specific demands of the task. Crucially,
temperature and α function as largely independent controls over the decoding process: for all four
tasks, the best-performing combination of temperature and α achieves significantly higher creativity
scores than optimizing for temperature alone. The qualitative behavior is similar for both geodesic
and fixed-entropy distributions (see Figure 16 in the Appendix).

5 DISCUSSION & FUTURE WORK

In our experiments, MTD outperforms PHi loss in differentiating “boring” from “interesting” tasks
and simple from complex ones. It successfully isolates the per-token information gain attributable to
non-trivial, or “irreducible” (Wolfram, 2002), computation by the model. However, the utility of the
MTD signal is contingent on the relative capacities of the main model and the MTP module (Mµ):
if the MTP module is too powerful, MTD approaches zero, and if it is too weak, MTD offers little
beyond the standard NLL loss. Furthermore, because the shortcut module has fewer parameters,
MTD may entangle genuine computational effort with memorization.

Our findings also surface several intriguing questions. The positive correlation of MTD with prob-
lem complexity, in direct contrast to the negative correlation of NLL, warrants further investigation
to determine if this is a general pattern across models and scales. Similarly, our result that lower
MTD is associated with correct reasoning contrasts with prior findings for PHi loss, suggesting the
relationship between computational effort and correctness is complex and model-dependent. While
Divergence Steering enhanced performance on creative tasks, in preliminary experiments we found
no clear improvement in the reasoning of large pre-trained models, perhaps because significant
changes to the decoding strategy interfere with behaviors learned during post-training.

Our findings suggest that MTD and Divergence Steering has the potential for many applications in
training and inference. Examples could be Dynamic Compute Allocation: MTD could be moni-
tored in real-time during generation. A prolonged period of low MTD might trigger early stopping
for a simple task, while a sudden spike in MTD could activate more powerful components (e.g.,
additional Mixture-of-Experts layers) for a difficult step. Solution Convergence: The transition
from a high-MTD processing phase to a low-MTD conclusion could act as a signal that the model
has “settled” on a solution, potentially allowing for more efficient decoding. Intrinsic Motivation:
In agent-based settings, MTD could serve as an intrinsic reward. This would encourage an agent to
pursue policies that lead to computationally interesting states (high information gain), fostering the
development of more sophisticated behaviors. Open Endedness: MTD and Divergence steering al-
lows the filtering or direct generation of “interesting” data. This may help to prevent model collapse
when training on self-generated data and enable more creative, open-ended learning.

6 CONCLUSION

In this work, we introduce Multiple Token Divergence (MTD), a practical and direct measure for
quantifying the computational effort of language models. By measuring information gain in the
output distribution, MTD serves as a more robust and stable metric than prior methods that rely on
latent state compression. We show that giving the auxiliary prediction module access to the latest
token embedding allows MTD to specifically isolate the information gain attributable to non-trivial
computation. Our findings demonstrate that MTD successfully distinguishes complex in-context
reasoning from simpler tasks and reveals a nuanced relationship between computational effort and
predictive loss. As a non-invasive and easily implemented metric, MTD provides a valuable new
tool for analysis and evaluation. Furthermore, we introduce Divergence Steering, a novel decoding
method that uses the MTD signal to actively steer the generation process towards either more or less
computationally dense sequences. Shaping this “computational character” is complementary to the
standard entropy adjustment using decoding temperature.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Architectures and
algorithms. In Proc. Int. Conf. on Machine Learning (ICML), Vienna, Austria, July 2024.

C. H. Bennett. Logical depth and physical complexity. In The Universal Turing Machine: A Half Century
Survey, pages 227–258. Oxford University Press, 1988.

Tom B Brown et al. Language models are few-shot learners. In Proc. Advances in Neural Information Pro-
cessing Systems (NeurIPS), Virtual only, December 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv preprint arXiv:
2401.10774, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training veri-
fiers to solve math word problems. ArXiv, abs/2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe
Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel
Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-
Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan,
Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar,
Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evti-
mov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Ji-
awen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua John-
stun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Ken-
neth Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024. URL
https://doi.org/10.48550/arXiv.2407.21783.

Eric Elmoznino, Tom Marty, Tejas Kasetty, Léo Gagnon, Sarthak Mittal, Mahan Fathi, Dhanya Sridhar, and
Guillaume Lajoie. In-context learning and occam’s razor. ArXiv, abs/2410.14086, 2024.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Synnaeve. Better & faster
large language models via multi-token prediction. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pages 15706–15734. PMLR, 21–27 Jul 2024.

Peter D. Grünwald. The Minimum Description Length Principle. Springer, 2007.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS, 2021.

Vincent Herrmann, Róbert Csordás, and Jürgen Schmidhuber. Measuring in-context computation complexity
via hidden state prediction. In Forty-second International Conference on Machine Learning, 2025.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. stat, 1050:9,
2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Int. Conf. on Learning Represen-
tations (ICLR), Banff, AB, Canada, April 2014.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay V. Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-
Ari, and Vedant Misra. Solving quantitative reasoning problems with language models. In Proc. Advances
in Neural Information Processing Systems (NeurIPS), New Orleans, LA, USA, November 2022.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

10

https://doi.org/10.48550/arXiv.2407.21783

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sachit Menon, David Blei, and Carl Vondrick. Forget-me-not! Contrastive critics for mitigating posterior
collapse. In Uncertainty in Artificial Intelligence, pages 1360–1370. PMLR, 2022.

Henrique K Miyamoto, Fábio CC Meneghetti, Julianna Pinele, and Sueli IR Costa. On closed-form expressions
for the fisher–rao distance. Information Geometry, 7(2):311–354, 2024.

Vaishnavh Nagarajan, Chen Henry Wu, Charles Ding, and Aditi Raghunathan. Roll the dice & look before you
leap: Going beyond the creative limits of next-token prediction. In Forty-second International Conference
on Machine Learning, 2025.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In Proc. Int. Conf. on Machine Learning (ICML), volume 32, pages
1278–1286, Beijing, China, June 2014.

Jürgen Schmidhuber. Curious model-building control systems. In Proc. Int. Joint Conf. on Neural Networks,
pages 1458–1463, 1991a.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural con-
trollers. In Proc. Int. Conf. on Simulation of Adaptive Behavior: From Animals to Animats, pages 222–227,
1991b.

Jürgen Schmidhuber. Learning complex, extended sequences using the principle of history compression. Neural
Computation, 4(2):234–242, 1992. doi: 10.1162/neco.1992.4.2.234.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Nikul Patel, Jalal Naghiyev, Yann LeCun, and Ravid Shwartz-
Ziv. Layer by layer: Uncovering hidden representations in language models. In Forty-second International
Conference on Machine Learning, 2025.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, Andrew
Wen, Shaochen Zhong, Na Zou, et al. Stop overthinking: A survey on efficient reasoning for large language
models. arXiv preprint arXiv:2503.16419, 2025.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. 2015 IEEE
Information Theory Workshop (ITW), 2015.

Paul M Vitányi. Meaningful information. IEEE Transactions on Information Theory, 52(10), 2006.

Stephen Wolfram. A new kind of science. 2002.

LLM-Core Xiaomi, :, Bingquan Xia, Bowen Shen, Cici, Dawei Zhu, Di Zhang, Gang Wang, Hailin Zhang,
Huaqiu Liu, Jiebao Xiao, Jinhao Dong, Liang Zhao, Peidian Li, Peng Wang, Shihua Yu, Shimao Chen,
Weikun Wang, Wenhan Ma, Xiangwei Deng, Yi Huang, Yifan Song, Zihan Jiang, Bowen Ye, Can Cai,
Chenhong He, Dong Zhang, Duo Zhang, Guoan Wang, Hao Tian, Haochen Zhao, Heng Qu, Hongshen
Xu, Jun Shi, Kainan Bao, Kai Fang, Kang Zhou, Kangyang Zhou, Lei Li, Menghang Zhu, Nuo Chen,
Qiantong Wang, Shaohui Liu, Shicheng Li, Shuhao Gu, Shuhuai Ren, Shuo Liu, Sirui Deng, Weiji Zhuang,
Weiwei Lv, Wenyu Yang, Xin Zhang, Xing Yong, Xing Zhang, Xingchen Song, Xinzhe Xu, Xu Wang,
Yihan Yan, Yu Tu, Yuanyuan Tian, Yudong Wang, Yue Yu, Zhenru Lin, Zhichao Song, and Zihao Yue.
Mimo: Unlocking the reasoning potential of language model – from pretraining to posttraining, 2025. URL
https://arxiv.org/abs/2505.07608.

11

https://arxiv.org/abs/2505.07608

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A FIXED ENTROPY PROJECTION FOR DIVERGENCE STEERING

To project the distribution sα onto the hypersurface with entropy H(p), we solve the following
optimization problem:

min
ŝα

DKL(ŝα||sα)

subject to H(ŝα) = H(p)∑
i

ŝα,i = 1

By solving the Lagrangian, we see that this is equivalent to finding a temperature-scaled version of
sα. This means that ŝα takes the form:

ŝα = softmax
(
log sα
T

)
for some temperature T, such that the entropy constraint H(ŝα) = H(p) is met. Since entropy is a
smooth monotonic function of the temperature, we can use a fast root-finding algorithm like binary
search to find the correct value for T .

In practice, divergence steering, either with geodesic interpolation or this fixed-entropy projection,
does not meaningfully slow down the generation process. For large vocabularies, however, it might
be sensible use Divergence Steering in combination with top-k sampling and only optimize the
remaining smaller distribution.

B EXPERIMENT DETAILS

B.1 SEQUENCE MODELS TRAINED FROM SCRATCH

We train all models using the Adam optimizer, a batch size of 16 and gradient norm clipping of 1.0.
The learning rate is 0.0003, with a 500 step linear warm-up from zero and no decay. All losses are
weighted equally, for the PHi loss we take the mean of the element-wise KL-Divergence for z, not
the sum. Every model variation is trained 8 times with different random seeds for the initial weights
and the procedurally generated data (which results in different memorized sequences and programs).
The training of a model can be done on a single consumer-grade GPU (e.g., NVIDIA RTX 4090).

The base model is based on the Llama 3.2 architecture (Dubey et al., 2024).

• Number of layers: 12
• Model dimensionality: 768
• Number of attention heads: 6
• MLP intermediate size: 2048
• Embedding layer and output head are tied

PHi models:

To prevent posterior collapse, we employ an additional contrastive self-critic loss (Menon et al.,
2022).

• Training steps: 30, 000
• Placement of the PHi Layer: After the 10th layer
• z dimensionality: 768
• qψ: Linear transform
• aξ: Linear transform
• bκ: Linear transform
• Mµ: One transformer block like the ones in the rest of the model
• pψ: Linear transform

MTD models:

• Training steps: 10, 000
• bκ: Linear transform
• Mµ: One transformer block like the ones in the rest of the model

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

For generation of training and testing data, we follow Herrmann et al. (2025). The only difference
is that we do not perturb any tokens during training, and that we use the same models for the task
differentiation and task complexity experiments (Section 4.1).

B.2 PRE-TRAINED LANGUAGE MODELS

For our experiments, we use the SFT version of the MiMo-7B model (Xiaomi et al., 2025). To
calculate the MTD, we use the included MTP head that predicts one token in advance.

All experimental results include bootstrapped 95% confidence intervals.

B.3 DIVERGENCE STEERING AND CREATIVITY TASKS

The MTD models use the architecture and training procedure specified in in Section B.1. For each
task, a dedicated model is trained for 50, 000 steps. No seed conditioning is used. For task definitions
and evaluation procedure, we refer to Nagarajan et al. (2025).

The creativity score is defined as the fraction of all generated items that are valid, unique, and novel
among. In addition, we define three more scores:

• Validity score: fraction of valid items among all generated items
• Uniqueness score: fraction of unique items among valid generated items
• Novelty score: fraction of novel items among valid unique generated items

These are be used in the additional empirical analysis in section C.2.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C ADDITIONAL EXPERIMENTAL RESULTS

Figure 9 shows the normalized PHi losses and MTDs, binned by NLL and normalized, making
it clear to see that PHi without and MTD with access to the latest embedding show the clearest
tokenw-wise relationship with PFA complexity.

C.1 PRE-TRAINED LANGUAGE MODELS

Figure 10 shows MTD and NLL for the provided step-by-step solutions, broken down by category
and difficulty level. Figure 11 shows the same for the self-generated CoTs. The results are qual-
itatively similar, even though, although the differences between categories for the CoTs are less
pronounced.

Figures 12 and 13 use the cumulative instead of the mean losses. Due to the fact that the pro-
vided solutions as well as the generated ones grow in length as the problems become more difficult,
cumulative NLL also correlates positively with difficulty level.

Figure 14 shows the development of MTD and NLL across self-generated CoTs for the problems
of the GSM-8k test dataset (analogous to Figures 7c and 7d for MATH). Correct CoTs clearly have
lower MTD, and lower NLL. Interestingly, for the GSM-8k dataset, the shapes of the NLL curves
differ significantly from the shapes of the MTD, missing the prominent initial bump. Currently, we
have no explanation for this.

0 1 2 3
NLL Loss

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
PH

i l
os

s

PHi without latest embedding

0 1 2 3
NLL Loss

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
PH

i l
os

s

PHi with latest embedding

0 1 2 3
NLL Loss

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

TD
 lo

ss

MTD without latest embedding

0 1 2 3
NLL Loss

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

TD
 lo

ss

MTD with latest embedding

2

4

6

8

10

PF
A

Co
m

pl
ex

ity

Figure 9: Similar to Figure 6, but normalized for each NLL bin. PHi loss without access to the latest
embedding, and MTD loss with access to the latest embedding both show a clear correlation with
complexity level, across NLL bins.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Num
be

r T
he

ory

Alge
bra

Int
erm

ed
iat

e A
lge

bra

Pre
alg

eb
ra

Geo
metr

y

Pre
cal

cul
us

Cou
nti

ng
 & Pr

ob
ab

ilit
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
TD

Difficulty
1
2
3
4
5

(a) Mean MTD Loss

Num
be

r T
he

ory

Alge
bra

Int
erm

ed
iat

e A
lge

bra

Pre
alg

eb
ra

Geo
metr

y

Pre
cal

cul
us

Cou
nti

ng
 & Pr

ob
ab

ilit
y

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

NL
L

Difficulty
1
2
3
4
5

(b) Mean NLL Loss

Figure 10: Mean losses of the MiMo model across the provided step-by-step solutions to the prob-
lems of the MATH test set, grouped by category and difficulty level. MTD clearly grows with diffi-
culty, suggesting that the model is making more use of its computational capacity when processing
more challenging problems. NLL loss, on the other hand, goes down with increasing complexity.
Figure 11 shows similar results for self-generated chains of thought.

Num
be

r T
he

ory

Alge
bra

Int
erm

ed
iat

e A
lge

bra

Pre
alg

eb
ra

Geo
metr

y

Pre
cal

cul
us

Cou
nti

ng
 & Pr

ob
ab

ilit
y

0.0

0.1

0.2

0.3

0.4

0.5

M
TD

Difficulty
1
2
3
4
5

(a) Mean MTD Loss

Num
be

r T
he

ory

Alge
bra

Int
erm

ed
iat

e A
lge

bra

Pre
alg

eb
ra

Geo
metr

y

Pre
cal

cul
us

Cou
nti

ng
 & Pr

ob
ab

ilit
y

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

NL
L

Difficulty
1
2
3
4
5

(b) Mean NLL Loss

Figure 11: Mean losses of the MiMo model across self-generated CoTs for the problems of the
MATH test set, grouped by category and difficulty level. Similarly as in Figure 10, we observe that
MTD clearly grows with difficulty, as the model is making more use of its computational capacity
when generating the solutions to more challenging problems. Also here, the mean NLL goes down
with problem difficulty.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Num
be

r T
he

ory

Alge
bra

Int
erm

ed
iat

e A
lge

bra

Pre
alg

eb
ra

Geo
metr

y

Pre
cal

cul
us

Cou
nti

ng
 & Pr

ob
ab

ilit
y

0

100

200

300

400

500

600

700

Cu
m

ul
at

iv
e

M
TD

Difficulty
1
2
3
4
5

(a) Cumulative MTD Loss

Num
be

r T
he

ory

Alge
bra

Int
erm

ed
iat

e A
lge

bra

Pre
alg

eb
ra

Geo
metr

y

Pre
cal

cul
us

Cou
nti

ng
 & Pr

ob
ab

ilit
y

0

100

200

300

400

500

600

Cu
m

ul
at

iv
e

NL
L

Difficulty
1
2
3
4
5

(b) Cumulative NLL Loss

Figure 12: Cumulative losses of the MiMo model across provided solutions from the MATH test
set. Since more difficult problems have longer solutions, both cumulative MTD and cumulative
NLL correlate with problem difficulty.

Num
be

r T
he

ory

Alge
bra

Int
erm

ed
iat

e A
lge

bra

Pre
alg

eb
ra

Geo
metr

y

Pre
cal

cul
us

Cou
nti

ng
 & Pr

ob
ab

ilit
y

0

200

400

600

800

1000

1200

1400

1600

Cu
m

ul
at

iv
e

M
TD

Difficulty
1
2
3
4
5

(a) Cumulative MTD Loss

Num
be

r T
he

ory

Alge
bra

Int
erm

ed
iat

e A
lge

bra

Pre
alg

eb
ra

Geo
metr

y

Pre
cal

cul
us

Cou
nti

ng
 & Pr

ob
ab

ilit
y

0

100

200

300

400

500
Cu

m
ul

at
iv

e
NL

L

Difficulty
1
2
3
4
5

(b) Cumulative NLL Loss

Figure 13: Cumulative losses of the MiMo model across self-generated CoTs for the problems of
the MATH test set. We observe a similar effect as in Figure 12.

0% 50% 100%
Relative Position in CoT

0.35

0.40

0.45

0.50

0.55

0.60

0.65

M
TD

Correct
False
True

(a) MTD vs. Correctness

0% 50% 100%
Relative Position in CoT

0.05

0.10

0.15

0.20

0.25

NL
L

Correct
False
True

(b) NLL vs. Correctness

Figure 14: Token-wise losses against relative positions in self-generated CoTs for the GSM-8k test
dataset. Lower MTD and lower NLL are both associated with more correct reasoning.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.2 DIVERGENCE STEERING AND CREATIVE TASKS

Figure 15 shows the creativity scores for the four tasks, using different values for temperature and α.
In addition, we break down the results into validity, uniqueness and novelty scores. By the nature of
the task, sibling and triangle discovery models are at risk of overfitting to the training data. A positive
α value can help avoiding repeating memorized examples, as can be seen from the increased novelty
scores. The models for circle and line construction, on the other hand, are less prone to overfitting,
due to the combinatorial nature of the task. The novelty and uniqueness scores are consistently high.
For these tasks, negative α appears to help construct increase the validity scores.

Figure 16 shows qualitatively very similar results for fixed entropy distributions.

1 0 1
0.4

0.5

0.6

0.7

Cr
ea

tiv
ity

 sc
or

e

Sibling Discovery

1 0 1
0.00

0.01

0.02

0.03
Cr

ea
tiv

ity
 sc

or
e

Triangle Discovery

1 0 1
0.4

0.5

0.6

0.7

Cr
ea

tiv
ity

 sc
or

e

Circle Construction

1 0 1
0.15

0.20

0.25

0.30

0.35

0.40

0.45

Cr
ea

tiv
ity

 sc
or

e

Line Construction

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Te
m

pe
ra

tu
re

1 0 1

0.7

0.8

0.9

1.0

Va
lid

ity
 sc

or
e

Sibling Discovery

1 0 1
0.00

0.02

0.04

0.06

Va
lid

ity
 sc

or
e

Triangle Discovery

1 0 1

0.5

0.6

0.7
Va

lid
ity

 sc
or

e

Circle Construction

1 0 1
0.15

0.20

0.25

0.30

0.35

0.40

0.45

Va
lid

ity
 sc

or
e

Line Construction

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Te
m

pe
ra

tu
re

1 0 1
0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

Un
iq

ue
ne

ss
 sc

or
e

Sibling Discovery

1 0 1
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Un
iq

ue
ne

ss
 sc

or
e

Triangle Discovery

1 0 1

0.80

0.85

0.90

0.95

1.00

Un
iq

ue
ne

ss
 sc

or
e

Circle Construction

1 0 1

0.94

0.96

0.98

1.00
Un

iq
ue

ne
ss

 sc
or

e

Line Construction

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Te
m

pe
ra

tu
re

1 0 1
0.4

0.5

0.6

0.7

0.8

No
ve

lty
 sc

or
e

Sibling Discovery

1 0 1
0.2

0.4

0.6

0.8

No
ve

lty
 sc

or
e

Triangle Discovery

1 0 1
0.9980

0.9985

0.9990

0.9995

1.0000

No
ve

lty
 sc

or
e

Circle Construction

1 0 1

0.97

0.98

0.99

1.00

No
ve

lty
 sc

or
e

Line Construction

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Te
m

pe
ra

tu
re

Figure 15: Breakdown of the creativity scores into validity, uniqueness, and novelty. Positive α can
improve novelty, negative α can improve validity. Results for geodesic distributions sα.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1 0 1
0.45

0.50

0.55

0.60

0.65

0.70

0.75

Cr
ea

tiv
ity

 sc
or

e

Sibling Discovery

1 0 1
0.00

0.01

0.02

0.03
Cr

ea
tiv

ity
 sc

or
e

Triangle Discovery

1 0 1
0.4

0.5

0.6

0.7

Cr
ea

tiv
ity

 sc
or

e

Circle Construction

1 0 1
0.15

0.20

0.25

0.30

0.35

0.40

0.45

Cr
ea

tiv
ity

 sc
or

e

Line Construction

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Te
m

pe
ra

tu
re

1 0 1

0.7

0.8

0.9

1.0

Va
lid

ity
 sc

or
e

Sibling Discovery

1 0 1
0.00

0.02

0.04

0.06

Va
lid

ity
 sc

or
e

Triangle Discovery

1 0 1
0.45

0.50

0.55

0.60

0.65

0.70

0.75
Va

lid
ity

 sc
or

e
Circle Construction

1 0 1
0.15

0.20

0.25

0.30

0.35

0.40

0.45

Va
lid

ity
 sc

or
e

Line Construction

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Te
m

pe
ra

tu
re

1 0 1

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

Un
iq

ue
ne

ss
 sc

or
e

Sibling Discovery

1 0 1

0.5

0.6

0.7

0.8

0.9

1.0

Un
iq

ue
ne

ss
 sc

or
e

Triangle Discovery

1 0 1
0.80

0.85

0.90

0.95

1.00

Un
iq

ue
ne

ss
 sc

or
e

Circle Construction

1 0 1

0.92

0.94

0.96

0.98

1.00
Un

iq
ue

ne
ss

 sc
or

e

Line Construction

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Te
m

pe
ra

tu
re

1 0 1

0.5

0.6

0.7

0.8

No
ve

lty
 sc

or
e

Sibling Discovery

1 0 1
0.2

0.4

0.6

0.8

No
ve

lty
 sc

or
e

Triangle Discovery

1 0 1

0.9985

0.9990

0.9995

1.0000

No
ve

lty
 sc

or
e

Circle Construction

1 0 1

0.96

0.97

0.98

0.99

1.00

No
ve

lty
 sc

or
e

Line Construction

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Te
m

pe
ra

tu
re

Figure 16: Breakdown of the creativity scores into validity, uniqueness, and novelty. Positive α can
improve novelty, negative α can improve validity. Results for fixed entropy distributions ŝα.

18

	Introduction
	Background
	Prediction of Hidden States (PHi)
	Multiple Token Prediction (MTP)

	Multiple Token Divergence
	Decoding with Divergence Steering

	Experiments
	MTD and PHi Loss of Sequence Models Trained from Scratch
	Pre-Trained Language Models
	Divergence Steering and Creative Tasks

	Discussion & Future Work
	Conclusion
	Fixed Entropy Projection for Divergence Steering
	Experiment Details
	Sequence Models Trained from Scratch
	Pre-Trained Language Models
	Divergence Steering and Creativity Tasks

	Additional Experimental Results
	Pre-Trained Language Models
	Divergence Steering and Creative Tasks

