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Abstract

Active learning (AL) is a prominent technique001
for reducing the annotation effort required for002
training machine learning models. Deep learn-003
ing offers a solution for several essential obsta-004
cles to deploying AL in practice but introduces005
many others. One of such problems is the006
excessive computational resources required to007
train an acquisition model and estimate its un-008
certainty on instances in the unlabeled pool.009
We propose two techniques that tackle this is-010
sue for text classification and tagging tasks, of-011
fering a substantial reduction of AL iteration012
duration and the computational overhead in-013
troduced by deep acquisition models in AL.014
We also demonstrate that our algorithm that015
leverages pseudolabeling and distilled models016
overcomes one of the obstacles revealed previ-017
ously in the literature. Namely, it was shown018
that due to differences between an acquisition019
model used to select instances during AL and020
a successor model trained on the labeled data,021
the benefits of AL can diminish. We show022
that our algorithm, despite using a smaller and023
faster acquisition model, is capable of training024
a more expressive successor with higher per-025
formance.026

1 Introduction027

Active learning (AL) (Cohn et al., 1996) is an ap-028

proach for reducing the amount of dataset anno-029

tation required for achieving the desired level of030

machine learning model performance. This is es-031

pecially important in domains where obtaining la-032

beled instances is expensive or wide crowdsourcing033

is unavailable. For example, annotation of clinical034

and biomedical texts usually requires the help of035

physicians or biomedical researchers. The time of036

such highly qualified experts is extremely valuable037

and should be spent wisely. Straightforward annota-038

tion of datasets can be very redundant, wasting the039

time of annotators on unimportant instances. AL040

alleviates this problem by asking human experts to041

label only the most informative instances selected 042

according to the information acquired from a ma- 043

chine learning model. The algorithm for selection 044

of such instances is called a query strategy, and a 045

model used to estimate the informativeness of yet 046

unlabeled instances is called an acquisition model. 047

AL starts from a small seeding set of labeled 048

instances, which are used to train an initial acqui- 049

sition model. A query strategy ranks unlabeled 050

instances in a large pool according to a criterion 051

that measures their informativeness based on the 052

acquisition model output. One of the most widely 053

adopted criteria is the uncertainty of the acquisi- 054

tion model on instances in question (Lewis and 055

Gale, 1994). Eventually, top selected instances are 056

presented to annotators, and this active annotation 057

process iteratively continues. 058

After labels are collected, we would like to train 059

a model for a final application. In the same vein as 060

(Lowell et al., 2019), we call it a successor model. 061

AL can help reduce the amount of annotation re- 062

quired to achieve a reasonable quality of the succes- 063

sor text processing model by multiple times (Settles 064

and Craven, 2008; Settles, 2009). 065

There are many obstacles to applying AL in prac- 066

tice. One of the most apparent problems with AL 067

is that we have to train an acquisition model al- 068

most without any insights from data that could help 069

us do feature engineering and design inductive bi- 070

ases. Deep learning has given us a tool to build 071

models with reasonable quality, almost without 072

feature engineering. Transfer learning and deep 073

pre-trained models like ELMo (Peters et al., 2018), 074

BERT (Devlin et al., 2019), and their successors 075

such as ELECTRA (Clark et al., 2020) provide near 076

state-of-the-art performance on a variety of tasks 077

without any modifications to their architectures. 078

However, deep learning introduces another prob- 079

lem related to computational performance. Since 080

AL annotation typically is an interactive process, 081

we have to train acquisition models and perform 082
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inference on a huge unlabeled pool of instances083

very quickly. This imposes constraints on the ac-084

quisition model size and entails another issue.085

Ideally, the architectures of acquisition and086

successor models should be the same. Lowell087

et al. (2019) demonstrate that when the acquisition088

model is different from the successor model, the089

performance of the latter can degrade compared090

to the performance of the model trained on the091

same amount of annotation obtained without AL.092

The performance drop in the case of acquisition-093

successor mismatch raises the question of whether094

AL is a practical technique at all since this is a095

common situation to try various models on the an-096

notated dataset. It also leads to a contradiction097

between the fact that we would like the acquisition098

model to be as lightweight as possible to mitigate099

computational overhead and the successor model to100

be as expressive as possible because we apparently101

care about the quality of our final application.102

In this work, we propose a simple algorithm103

based on pseudo-labeling and demonstrate that it104

is able to alleviate the acquisition-successor mis-105

match problem. Moreover, we show that it is pos-106

sible to substitute a resource-intensive acquisition107

model with a smaller one (e.g., take DistilBERT108

instead of BERT) but train a more powerful succes-109

sor model of an arbitrary type (e.g., ELECTRA)110

without loss of quality. This helps to accelerate111

the execution of AL iterations and reduce computa-112

tional overhead.113

We also find that the most time-consuming part114

of an AL iteration with uncertainty-based query115

strategies can be the inference on the unlabeled116

pool of instances, while a set of the most certain in-117

stances usually does not change substantially from118

iteration to iteration. Therefore, the straightforward119

approach to instance acquisition wastes much time120

on instances shown to be unimportant in previous121

iterations. We leverage this finding and propose122

an algorithm that subsamples instances in the un-123

labeled pool depending on their uncertainty scores124

obtained on previous AL iterations. This helps125

to speed up the AL iterations further, especially126

when the unlabeled pool is large. A series of ex-127

periments on text classification and tagging bench-128

marks widely used in recent works on AL demon-129

strate the efficiency of the proposed algorithms.130

The contributions of the paper are the following:131

• We propose a novel algorithm denoted as132

Pseudo-labeling for Acquisition Successor133

Mismatch (PLASM) that allows the use of 134

computationally cheap models during the ac- 135

quisition of instances in AL, while it does 136

not introduce constraints on the type of the 137

successor model and effectively alleviates the 138

acquisition-successor mismatch problem. It 139

helps to reduce the hardware requirements and 140

the duration of AL iterations. 141

• We propose a novel algorithm denoted as Un- 142

labeled Pool Subsampling (UPS) that helps to 143

reduce the time required for calculating infor- 144

mativeness of instances in AL based on the 145

fact that the set of instances that model is cer- 146

tain about does not change substantially. This 147

helps to further speed up the AL iteration. 148

2 Related Work 149

Deep learning, to a large extent, has freed data 150

scientists from doing feature engineering, which 151

has been one of the essential obstacles to annota- 152

tion with AL. This advantage has sparked a series 153

of works on deep active learning (DAL) in natu- 154

ral language processing (NLP) that investigate the 155

combination of these two techniques. 156

Shen et al. (2017) conduct one of the first inves- 157

tigations on DAL in sequence tagging tasks. They 158

propose an efficient way of quantifying the uncer- 159

tainty of sentences, namely maximal normalized 160

log probability (MNLP), by averaging log probabil- 161

ities of their tokens. They also address the problem 162

of excessive duration of a neural network training 163

step during an AL iteration by interleaving online 164

learning with training from scratch. In our work, 165

we take MNLP as a query strategy for experiments 166

on sequence tagging tasks since it has demonstrated 167

a good trade-off between quality and computational 168

performance. We consider that online learning can 169

potentially be used as a complement to our algo- 170

rithms. Since the most time-consuming part of 171

an AL iteration can be model inference instead of 172

training, in this work, we also pay attention to the 173

acceleration of the inference step. 174

Several recent publications investigate deep pre- 175

trained models based on the Transformer architec- 176

ture (Vaswani et al., 2017), ELMo (Peters et al., 177

2018), and ULMFiT (Howard and Ruder, 2018) 178

in AL on NLP tasks (Prabhu et al., 2019; Ein-Dor 179

et al., 2020; Yuan et al., 2020; Shelmanov et al., 180

2021). We continue this line of works by relying 181

on pre-trained Transformers since this architecture 182

has been shown promising for AL in NLP due to its 183
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good qualitative and computational performance.184

Few works have experimented with Bayesian185

query strategies for AL. Shen et al. (2017), Sid-186

dhant and Lipton (2018), Ein-Dor et al. (2020),187

and Shelmanov et al. (2021) leverage Monte Carlo188

dropout (Gal and Ghahramani, 2016) for quanti-189

fying uncertainty of models. Siddhant and Lipton190

(2018) also apply the Bayes by backprop algorithm191

(Blundell et al., 2015) for performing variational192

inference of a Bayesian neural network. This ap-193

proach demonstrates the best improvements upon194

the baseline but introduces large computational195

overhead both for training and uncertainty estima-196

tion of a model, as well as the memory overhead for197

storing parameters of a Bayesian neural network.198

The query strategies based on Monte Carlo dropout199

do not affect the model training procedure and do200

not change the memory footprint. However, they201

also suffer from slow uncertainty estimation due to202

necessity of making multiple stochastic predictions,203

while their empirical evaluations with Transformers204

in recent works (Ein-Dor et al., 2020; Shelmanov205

et al., 2021) do not demonstrate significant advan-206

tages. Therefore, we do not use Bayesian query207

strategies in our experiments and adhere to the clas-208

sical uncertainty-based query strategies.209

Recently proposed alternatives to uncertainty-210

based query strategies leverage reinforcement learn-211

ing and imitation learning (Fang et al., 2017; Liu212

et al., 2018; Vu et al., 2019; Brantley et al., 2020).213

This series of works aims at constructing a trainable214

policy-based query strategies. Learning such poli-215

cies is a challenging task, requiring an enormous216

amount of computation for obtaining a supervision217

signal, especially when an acquisition model is a218

deep neural network. Such an approach can be219

practical only when a policy is pre-trained before-220

hand the actual annotation process as suggested in221

(Fang et al., 2017; Liu et al., 2018). However, the222

transferability of learned policies across domains223

and tasks is currently underexplored.224

Finally, Lowell et al. (2019) question the use-225

fulness of AL techniques in general. They demon-226

strate that due to the acquisition-successor mis-227

match problem, AL can be even detrimental to228

the performance of the successor. This finding is229

also revealed for classical machine learning models230

by Baldridge and Osborne (2004), Tomanek and231

Morik (2011), Hu et al. (2016) and supported by ex-232

periments with Transformers in (Shelmanov et al.,233

2021). Our work directly addresses the question234

raised by Lowell et al. (2019) and suggests a sim- 235

ple solution to the acquisition-successor mismatch 236

problem. Moreover, we combine it with the method 237

proposed by Shelmanov et al. (2021), who suggest 238

using distilled models for instance acquisition and 239

their teacher models as successors. 240

3 Background and Methods 241

This section describes models and AL query strate- 242

gies used in the experiments and outlines the pro- 243

posed algorithms. 244

3.1 Models 245

We use the standard models based on the Trans- 246

former architecture (Vaswani et al., 2017) proposed 247

by Devlin et al. (2019) and Clark et al. (2020). For 248

sequence tagging, the models consist of a Trans- 249

former encoder and a classification head. For text 250

classification, they also include a pooling mech- 251

anism. We also employ a CNN-BiLSTM-CRF 252

model of Ma and Hovy (2016) for ablation study. 253

Besides the full-fledged Transformers, we lever- 254

age the distilled version of BERT: DistilBERT 255

(Sanh et al., 2019). The distillation procedure aims 256

at creating a smaller-size model (student) while 257

keeping the behavior of the original model (teacher) 258

by minimizing the distillation loss over the stu- 259

dent predictions and soft target probabilities of the 260

teacher (Hinton et al., 2015): 261

Ldistil =
∑
i

ti ∗ log (si) 262

where ti and si are the probabilities estimated by 263

the teacher and the student correspondingly. Dis- 264

tilBERT also takes advantage of several additional 265

techniques that help align it with BERT. 266

DistilBERT is much more compact than its 267

teacher. It contains 66M of parameters compared 268

to 110M in BERT-base, which results in a 40% re- 269

duction of a memory footprint. The distilled model 270

also achieves the 60% speedup, sacrificing only 3% 271

of its qualitative performance (Sanh et al., 2019). 272

Since the qualitative performance during acquisi- 273

tion is not essential, we would like to use such 274

lightweight models for instance acquisition to keep 275

iterations of AL as quick as possible and reduce 276

the requirements to the computational power of the 277

hardware. 278

3.2 Query Strategies 279

We conduct experiments with three basic AL query 280

strategies. We note that despite their simplicity, 281
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Figure 1: The scheme of the Pseudo-labeling for Acquisition-Successor Mismatch algorithm

these strategies are usually on par with more elab-282

orated counterparts (Shelmanov et al., 2021; Mar-283

gatina et al., 2021).284

Random sampling is used for both text classi-285

fication and sequence tagging experiments. Ap-286

plying this strategy means that we do not use AL287

at all and just emulate that an annotator labels a288

randomly sampled piece of a dataset.289

Least Confident (LC) is used for text classifica-290

tion experiments. This strategy sorts texts in the291

ascending order of their maximum class probabili-292

ties given by a machine learning model. Let y be a293

predicted class of an instance x, then LCcls is:294

LCcls = 1−max
y

P (y|x) .295

Maximum Normalized Log-Probability296

(MNLP) is proposed by Shen et al. (2017) to297

mitigate the drawback of the standard LC when298

it is applied to sequence tagging tasks. Let yi be299

a tag of a token i, let xj be a token j in an input300

sequence of length n. Then the MNLP score can301

be formulated as follows:302

MNLP = − max
y1,...,yn

1

n

n∑
i

logP [yi|{yj} \ yi, {xj}]303

This modified version of LC works slightly bet-304

ter for sequence tagging tasks (Shen et al., 2017),305

and is adopted in many other works on DAL (Sid-306

dhant and Lipton, 2018; Erdmann et al., 2019; Shel-307

manov et al., 2021).308

3.3 Pseudo-labeling for309

Acquisition-Successor Mismatch310

We propose a simple algorithm for constructing a311

successor model of an arbitrary type using AL:312

Pseudo-labeling for Acquisition-Successor Mis-313

match (PLASM). The algorithm is designed for314

reducing the amount of computation required for 315

instance acquisition during AL with uncertainty- 316

based query strategies. 317

PLASM leverages the finding of Shelmanov et al. 318

(2021) that the successor model can be trained on 319

instances labeled during AL without a penalty to 320

the quality if its distilled version was used for in- 321

stance acquisition. However, this idea alone does 322

not resolve the question, how we can train new 323

models of arbitrary type on datasets collected via 324

AL (Lowell et al., 2019). 325

The algorithm scheme is presented in Figure 1: 326

1. Consider we have a resource-intensive pre- 327

trained teacher model (e.g. BERT). We con- 328

struct a lightweight distilled version of this 329

model (e.g. DistilBERT) using unlabeled data. 330

2. We apply a distilled model to perform acqui- 331

sition during AL for collecting gold labels. 332

3. The collected labels are used for training a 333

resource-intensive teacher model, which has 334

a higher quality than the distilled acquisition 335

model. 336

4. The teacher model is used for pseudo-labeling 337

of the whole unlabeled pool of instances. 338

5. Finally, we train a successor model of an ar- 339

bitrary type on the dataset that contains auto- 340

matically labeled instances and instances with 341

gold labels obtained from human experts. 342

If the teacher model is expressive enough, it will 343

generate reasonable pseudo labels, which can be 344

reused by a model of any type and architecture. 345

This additional annotation helps to mitigate the 346

performance drop due to the acquisition-successor 347

mismatch and to keep benefits of AL even when the 348

successor model is more expressive than the model 349

used for pseudolabeling. Meanwhile, PLASM 350
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helps to reduce the duration of AL iterations sim-351

ilarly to the approach of Shelmanov et al. (2021),352

and it does not introduce any additional computa-353

tional overhead during the annotation process since354

training the teacher model and pseudo-labeling are355

performed after the AL annotation is completed.356

3.4 Unlabeled Pool Subsampling357

If the unlabeled pool of instances is large, which358

is a common situation, and a deep neural network359

is used as an acquisition model, the most time-360

consuming step of the AL cycle is the generation361

of predictions for unlabeled instances, which is nec-362

essary for uncertainty-based query strategies (refer363

to Table 1). We note that uncertainty estimates of364

the most certain instances in the unlabeled pool365

do not alter substantially across multiple AL itera-366

tions (Table 2). This means that AL wastes much367

time and resources on these unimportant instances.368

We claim that it is possible to recalculate uncer-369

tainty scores on the current iteration only for the370

top instances of the unlabeled pool, which were371

the most uncertain on previous iterations, while not372

sacrificing the benefits of AL.373

We propose an unlabeled pool subsampling374

(UPS) algorithm, in which uncertainty estimates375

only for a fraction of instances are updated. Sam-376

pling of an instance on the current iteration is377

performed according to the Bernoulli distribution,378

which parameter depends on model uncertainty on379

previous iterations. Let u be the last recalculated380

uncertainty score of an instance on one of the previ-381

ous iterations. We order the instances according to382

this value: u0 ≤ u1 ≤ · · · ≤ ui ≤ · · · ≤ uM and383

denote a normalized rank of an instance as ri = i
M .384

Let T > 0 be a “temperature” hyperparameter and385

γ ∈ [0, 1] be a hyperparameter that controls how386

many instances are always chosen. Then the proba-387

bility of keeping an instance i for recalculation of388

uncertainty on the current iteration is:389

P(i) ∝ exp

(
−max(0, ri − γ)

T

)
.390

Sampling certain instances with a non-negative391

probability instead of just ignoring them gives a392

chance of overcoming a situation when an infor-393

mative instance is occasionally assigned a high394

certainty score and is never selected ever since.395

On several initial iterations of AL, an acquisi-396

tion model is trained on an extremely small amount397

of data, which leads to unreliable uncertainty esti-398

mates. To mitigate this problem, we suggest keep- 399

ing the standard approach to performing instance 400

acquisition on several first iterations and switch to 401

the optimized process later during AL. We also note 402

that interleaving the optimized selection with the 403

standard approach, in which we recalculate the un- 404

certainty for the whole unlabeled pool of instances, 405

can help to keep the high performance of AL. 406

4 Experiments 407

4.1 Experimental Setup 408

We follow the common schema of AL experi- 409

ments adopted in many previous works (Settles 410

and Craven, 2008; Shen et al., 2017; Siddhant and 411

Lipton, 2018; Shelmanov et al., 2021). We emu- 412

late the AL annotation cycle starting with a small 413

random sample of the dataset used as a seed for the 414

construction of the initial acquisition model. On 415

each iteration, we pick a fraction of top instances 416

from the unlabeled pool sorted using the query 417

strategy and, instead of demonstrating them to an- 418

notators, automatically label them according to the 419

gold standard. These instances are removed from 420

the unlabeled pool and added to the training dataset 421

for the next iterations. On each iteration, we train 422

the successor model on the data acquired so far and 423

evaluate it on the whole available test set. Acquisi- 424

tion and successor models are always trained from 425

scratch. We run several iterations of emulation to 426

build a chart, which demonstrates the performance 427

of the successor depending on the amount of “la- 428

bor” invested into the annotation process. To report 429

standard deviations of scores, we repeat the whole 430

experiment five times with different random seeds. 431

For classification, accuracy is used as the evalua- 432

tion metric. For sequence tagging, we use the strict 433

span-based F1-score (Sang and Meulder, 2003). 434

4.1.1 Datasets 435

We experiment with widely-used datasets for the 436

evaluation of AL methods on text classification and 437

sequence tagging tasks. 438

For text classification, we use the English AG 439

News topic classification dataset (Zhang et al., 440

2015). We randomly select 1% of instances of the 441

training set as a seed to train the initial acquisition 442

model and select 1% of instances for “annotation” 443

on each AL iteration. 444

For sequence tagging, we use English CoNLL- 445

2003 (Sang and Meulder, 2003) and English 446

OntoNotes 5.0 (Pradhan et al., 2013). We randomly 447
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a) ELECTRA is a successor model.
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b) BERT is a successor model.

Figure 2: AL experiments on CoNLL-2003, in which a successor model does not match an acquisition model
(DistilBERT).

sample instances with a total number of tokens448

equal to 2% of all tokens from the training set as449

a seed. On each AL iteration, we select instances450

from the unlabeled pool until a total number of451

tokens equals 2% of all training tokens.452

The corpora statistics are presented in Table 3 in453

Appendix A.454

4.1.2 Model Choice, Training Details, and455

Hyperparameter Selection456

We conduct experiments with pre-trained Trans-457

formers used in several previous works on AL:458

BERT (Devlin et al., 2019), ELECTRA (Clark459

et al., 2020), and DistilBERT (Sanh et al., 2019).460

In particular, we use the ‘google/electra-base-461

discriminator’ checkpoint from the Hugging Face462

repository (Wolf et al., 2020) for initialization of463

ELECTRA in both text classification and sequence464

tagging tasks. For initialization of DistilBERT and465

BERT for text classification, we take ‘distilbert-466

base-uncased’ and ‘bert-base-uncased’ checkpoints467

correspondingly. In experiments with sequence tag-468

ging, similar “cased” versions are used.469

We keep a single pre-selected set of hyperpa-470

rameters for all AL iterations. Tables 4, 5 in Ap-471

pendix A describe the hyperparameter setup. Hy-472

perparameter tuning on each AL iteration is very473

time-consuming. This is an important research474

problem but out of the scope of the current work.475

4.2 Results and Discussion476

4.2.1 Acquisition-Successor Mismatch477

First of all, we illustrate the acquisition-478

successor mismatch problem on the CoNLL-2003,479

OntoNotes, and AG News datasets (Figure 2a and480
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Figure 3: The performance of PLASM on CoNLL-
2003 compared with the standard approach to AL.

Figures 5a, 6a in Appendix B). The presented re- 481

sults correspond to the findings of Lowell et al. 482

(2019) and Shelmanov et al. (2021). We see a 483

significant reduction in the performance of succes- 484

sor models when they are different from acquisi- 485

tion models (DistilBERT(acq.)-ELECTRA(succ.)) 486

compared to the case when they are the same 487

(ELECTRA(acq.)-ELECTRA(succ.)). The perfor- 488

mance drop is especially notable on the CoNLL- 489

2003 dataset in Figure 2a. The similar performance 490

drop appears if we use BERT for acquisition and 491

ELECTRA as a successor and vice versa (Figure 7 492

in Appendix B). 493

We show on both text classification and tagging 494

tasks that replacing the original full-fledged acqui- 495

sition model with its distilled version can alleviate 496

this problem (Figure 2b, and Figures 5b, 6b in Ap- 497

pendix C). Previously, this effect was also revealed 498

by Shelmanov et al. (2021) for tagging. As we can 499

see in Figure 2b, when DistilBERT is used as an 500
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acquisition model, the successor based on BERT501

does not experience a performance drop. A similar502

effect can be noted for tagging on OntoNotes and503

for text classification on AG News.504

Although we can mitigate the acquisition-505

successor mismatch problem for such pairs of mod-506

els, it is still a serious constraint for applying AL.507

Obviously, such an approach is not feasible if there508

is no available distilled version of the model (e.g.509

there is no distilled version of ELECTRA). In the510

next section, we show that the proposed method511

based on pseudo-labeling helps to overcome this512

limitation and resolve the acquisition-successor513

mismatch problem in a more general case.514

4.2.2 Pseudo-labeling for515

Acquisition-Successor Mismatch516

Figure 3 and Figure 8 in Appendix C compare the517

performance of successor models constructed us-518

ing the standard approach to AL, in which we use519

ELECTRA as an acquisition and successor model,520

and PLASM, in which we use DistilBERT for ac-521

quisition, BERT for pseudo-labeling, and ELEC-522

TRA as a successor. We can see that not only523

PLASM mitigates the acquisition-successor mis-524

match problem, but also helps to achieve slightly525

better results.526

Figure 9a presents the results of the first abla-527

tion study, in which, for pseudolabeling, we re-528

place BERT with a smaller model DistilBERT. The529

study demonstrates that in the case of acquisition-530

successor mismatch, using an expressive model531

(e.g. BERT) for pseudolabeling is necessary for532

achieving high scores and keeping AL useful in the533

begging of annotation. Figure 9b presents results534

of the second ablation study, in which, we use Dis-535

tilBERT for acquisition and ELECTRA for pseu-536

dolabeling and as a successor. This study demon-537

strates that pseudolabeling on its own cannot al-538

leviate the successor-mismatch completely. It is539

better to use an expressive pseudolabeling model540

that also matches the lightweight acquisition model541

(e.g. distilled model for acquisition, its teacher542

– for labeling), as it is proposed in PLASM. Fig-543

ure 10 in Appendix C shows that PLASM also544

effectively mitigates performance drop due to mis-545

match between a DistilBERT acquisition model546

and a CNN-BiLSTM-CRF successor model.547

Table 1 and Table 6 in Appendix D summa-548

rize the time required for conducting AL itera-549

tions with different acquisition functions on the550

AG News and CoNLL-2003 datasets. As we can551
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Figure 4: The performance of UPS on AG News com-
pared with baselines (γ = 0.1, T = 0.01).

see, since PLASM uses DistilBERT for acquisition, 552

our method reduces the iteration time by more than 553

30% compared to the standard approach, in which 554

ELECTRA is used for acquisition. Thereby, empir- 555

ical results show that PLASM offers two benefits: 556

(1) it helps to improve the performance of the fi- 557

nal successor model that uses data obtained with 558

AL; (2) it reduces the time of an AL iteration and 559

required computational resources for training and 560

running acquisition models. These benefits sub- 561

stantially increase the practicality of using AL in 562

interactive annotation tools. 563

4.2.3 Unlabeled Pool Subsampling 564

Table 1 compares the duration of AL iterations on 565

the AG News dataset, including the duration of 566

the acquisition model training step and the dura- 567

tion of inference on instances from the unlabeled 568

pool.We can see that the inference step is very time- 569

consuming, especially on early iterations and takes 570

more than half of the time required for perform- 571

ing an AL iteration. Therefore, we claim that in 572

such cases, it is more important to accelerate the 573

inference step rather than the training step as it was 574

done in previous work (Shen et al., 2017). 575

To justify our approach to accelerating the infer- 576

ence step, we show that many unlabeled instances 577

have similar uncertainty estimates across different 578

AL iterations. Table 2 presents the fraction of in- 579

stances, which would be standardly queried on the 580

current iteration if we selected them from the whole 581

unlabeled pool that are contained in k-% of most 582

uncertain instances, according to the acquisition 583

model built on the previous AL iteration. For ex- 584

ample, we observe that 50% of the most uncertain 585

instances according to the model trained on the 586

first iteration contain more than 99% of instances 587
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ELECTRA BERT DistilBERT ELECTRA
with UPS (ours)

DistilBERT
with UPS (ours)

It
er

.2 Train 176.3± 1.4 174.8± 1.4 87.4± 0.8 178.0± 1.4 87.9± 0.5
Inference 622.2± 9.4 623.8± 7.5 481.8± 17.2 630.9± 12.3 483.2± 23.0
Overall 798.6± 9.6 798.6± 8.4 569.2± 17.5 808.8± 12.8 571.1± 22.6

It
er

.6 Train 342.8± 5.7 339.9± 4.2 174.1± 2.9 342.2± 5.3 173.0± 1.4
Inference 600.5± 10.4 596.4± 6.6 455.1± 8.9 58.9±3.3 50.0±6.4
Overall 943.4± 15.9 936.3± 8.8 629.1± 9.7 401.1±3.4 222.9±5.9

It
er

.1
0 Train 504.6± 6.3 498.8± 3.9 257.5± 3.9 502.7± 6.0 255.1± 3.4

Inference 573.0± 6.9 577.5± 7.7 434.6± 4.6 55.5±2.9 42.6±7.1
Overall 1077.6± 13.1 1076.4± 10.9 692.1± 5.5 558.2±4.4 297.7±10.3

It
er

.1
5 Train 701.9± 7.2 714.9± 20.5 358.3± 3.0 704.8± 11.7 359.3± 5.4

Inference 548.6± 9.2 541.0± 5.0 415.9± 10.2 59.4±3.1 39.3±2.6
Overall 1250.5± 16.0 1255.9± 18.4 774.2± 10.8 764.2±10.6 398.6±6.8

Overall train 6323.7± 72.1 6294.8± 73.7 3215.1± 38.5 6333.3± 92.8 3204.5± 32.5
Overall inference 8799.2± 150.7 8787.5± 102.7 6682.1± 96.2 3110.9±85.3 2332.2±86.2
Overall 15122.9± 213.4 15082.2± 141.1 9897.1± 112.8 9444.2±113.6 5536.7±100.8

Table 1: Duration of training and inference steps of AL iterations in seconds on AG News. Hardware configuration:
2 Intel Xeon Platinum 8168, 2.7 GHz, 24 cores CPU; NVIDIA Tesla v100 GPU, 32 Gb of VRAM.

Top-k% / Curr. AL iter. 1 2 6
10% 0.503 0.649 0.924
20% 0.789 0.883 0.992
30% 0.915 0.947 0.995
40% 0.958 0.976 1.000
50% 0.980 0.991 1.000

Table 2: A fraction of instances that would be stan-
dardly selected on the current AL iteration, contained
in top-k% uncertain instances according to the acquisi-
tion model on the previous iteration (AG News corpus).

from the “standard query” on the second iteration,588

and 30% contain almost 95% of instances from589

the “standard query”. Later iterations have even a590

better trade-off. Thereby, it is reasonable to avoid591

spending computational resources on instances that592

were most certain in previous iterations.593

If we exclude a big part of the unlabeled pool594

from consideration during acquisition, the bene-595

fits of AL can potentially deteriorate. Results of596

experiments presented in Figures 4 and 11 in Ap-597

pendix D show that the proposed UPS algorithm598

does not lead to the performance drop compared599

to the standard approach, in which we consider the600

whole unlabeled pool for instance selection. Mean-601

while, the results of the ablation study in Figure 12602

(Appendix D) demonstrate that the baseline, which603

randomly subsamples the unlabeled dataset, has a604

performance drop compared to UPS.605

From Table 1, we can see that UPS acceler-606

ates the query process up to 10 times. The cor-607

responding results for CoNLL-2003 are presented608

in Table 6 in Appendix D. Overall, applying both609

PLASM and UPS algorithms on AG News reduces610

the duration of AL iterations by more than 60%611

comparing with the standard approach. We can also612

tune the hyperparameters γ and T to reduce dura-613

tion further in exchange for slightly worse scores. 614

5 Conclusion 615

We investigated several obstacles to deploying AL 616

in practice and proposed two algorithms that help 617

to overcome them. In particular, we considered the 618

acquisition-successor mismatch problem revealed 619

by Lowell et al. (2019), as well as the problem 620

related to the excessive duration of AL iterations 621

with uncertainty-based query strategies and deep 622

learning models. We demonstrate that the proposed 623

PLASM algorithm helps to deal with both of these 624

issues: it removes the constraint on the type of the 625

successor model trained on the data labeled with 626

AL and allows the use of lightweight acquisition 627

models that have good training and inference per- 628

formance, as well as a small memory footprint. The 629

unlabeled pool subsampling algorithm helps to sub- 630

stantially decrease the inference time during AL 631

without a loss in the quality of successor models. 632

Together the PLASM and UPS algorithms help re- 633

duce the duration of an AL iteration by more than 634

60%. We consider that the conducted empirical 635

investigations and proposed methods will help to 636

increase the practicality of using deep AL in inter- 637

active annotation tools. 638

There are still many issues that hinder the ap- 639

plication of AL techniques. We consider that one 640

of the most important obstacles is the necessity of 641

hyperparameter optimization of deep learning mod- 642

els that can take a prohibitively long time to keep 643

the annotation process interactive. We are looking 644

forward to addressing this problem in future work. 645
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A Dataset Statistics and Model881

Hyperparameters882

Table 3: Dataset statistics. We provide a number of
sentences/tokens for the training and test sets. k stands
for a size of seeding datasets (% of the training dataset)
and a size of sets of instances selected for “annotation”
on each iteration. C is a number of classes/entity types.

Datasets Train Test k C
CoNLL-2003 15K/203.6K 3.7K/46.4K 2% 4(5)
OntoNotes 5.0 59.9K/1088.5K 8.3K/152.7K 2% 18
AG News 120K/4556.4K 7.6K/287.6K 1% 4

Table 4: Hyperparameter values of Transformers. The
hyperparameters are chosen according to evaluation
scores on the validation datasets when models are
trained using the whole available training data.

Hparam AG News CoNLL OntoNotes
Number of epochs 5 5 5
Batch size 16 16 16
Minimum
number of steps 350 350 350

Max sequence
length 256 - -

Optimizer Adam Adam Adam
Learning rate 2e-5 5e-5 5e-5
Weight decay 0.01 0.01 0.01
Gradients clipping 1. 1. 1.
Scheduler STLR STLR STLR
% of warmup steps 0.1 0.1 0.1

Table 5: Hyperparameter values of the CNN-BiLSTM-
CRF model.

Hparam ConLL-2003
Word embeddings
pre-trained model GloVe (Pennington et al., 2014) 1

Word embedding dim. 50
Char embedding dim. 25
CNN dim. 128
CNN filters [2, 3, 4, 5]
CNN activation Mish
RNN num. layers 2
RNN hidden size 200
RNN recur. dropout prob. 0.5
RNN layer dropout prob. 0.5
Encoder dropout prob 0.5
Feed forward num. layers 1
Feed forward hidden size 200
Feed forward activation Tanh
Feed forward dropout prob. 0.5

1https://allennlp.s3.amazonaws.com/datasets/glove/glove.6B.50d.txt.gz
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B Additional Experimental Results with Acquisition-successor Mismatch 883
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a) ELECTRA is a successor model.
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b) BERT is a successor model.

Figure 5: AL experiments on OntoNotes, in which a successor model does not match an acquisition model (Distil-
BERT).
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a) ELECTRA is a successor model.
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b) BERT is a successor model.

Figure 6: AL experiments on AG News, in which a successor model does not match an acquisition model (Distil-
BERT).
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Figure 7: AL experiments on CoNLL-2003, in which a successor model does not match an acquisition model. This
experiment demonstrates that models with similar expressiveness and size (BERT and ELECTRA) cannot be used
interchangeably in AL.
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C Additional Experimental Results with PLASM884
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a) OntoNotes dataset.
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b) AG News dataset.

Figure 8: The performance of PLASM compared with the standard approach to AL on OntoNotes and AG News.
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a) DistilBERT for pseudolabeling.
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b) ELECTRA for pseudolabeling.

Figure 9: Ablation studies of PLASM on the CoNLL-2003 dataset, in which inappropriate model is used for
pseudolabeling.
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Figure 10: Experiments with PLASM and standard approaches, in which BiLSTM-CRF is used as a successor
model. We can see that due to using PLASM and the expressiveness of the labeling model (BERT), the successor
achieves substantial improvements upon the baseline.
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D Additional Experimental Results with UPS 885
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Figure 11: The performance of UPS in conjunction with PLASM on CoNLL-2003 compared with baselines (γ =
0.1, T = 0.01).
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Figure 12: The comparison of UPS with a random-subsampling baseline on the AG News dataset (γ = 0.1,
T = 0.01).
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ELECTRA BERT DistilBERT ELECTRA
with UPS (ours)

DistilBERT
with UPS (ours)

It
er

.2 Train 44.8± 0.3 50.9± 1.6 29.1± 0.3 43.3± 0.8 26.4± 2.5
Inference 25.9± 0.3 25.9± 0.3 19.6± 0.3 25.7± 0.4 19.9± 0.9
Overall 70.6± 0.6 76.8± 1.7 48.7± 0.5 69.0± 1.0 46.3± 3.1

It
er

.6 Train 74.9± 1.6 81.4± 1.4 49.7± 1.3 66.9± 1.6 44.2± 4.0
Inference 23.8± 0.0 23.4± 0.3 17.9± 0.0 3.2±0.2 2.3±0.2
Overall 98.6± 1.5 104.8± 1.1 67.5± 1.4 70.1±1.6 46.5±4.2

It
er

.1
0 Train 95.6± 1.1 105.7± 1.5 63.6± 2.0 88.4± 1.2 57.1± 5.5

Inference 21.3± 0.1 21.4± 0.2 15.9± 0.5 2.6±0.2 2.3±0.1
Overall 116.9± 1.2 127.1± 1.5 79.5± 2.4 91.0±1.3 59.4±5.6

It
er

.1
5 Train 122.2± 1.2 133.4± 3.1 79.0± 1.3 129.9± 3.2 74.6± 6.4

Inference 18.9± 0.2 18.6± 0.1 14.0± 0.2 2.0±0.1 1.4±0.1
Overall 141.1± 1.0 151.9± 3.2 92.9± 1.2 131.9±3.1 76.0±6.5

Overall train 1266.6± 16.9 1387.1± 26.3 838.6± 19.2 1195.0± 25.0 748.3± 70.4
Overall inference 339.1± 3.5 335.5± 4.7 252.9± 3.9 128.9±5.6 97.5±5.1
Overall 1605.7± 18.8 1722.6± 24.1 1091.4± 18.4 1323.9±28.5 845.8±75.1

Table 6: Duration of training and inference steps of AL iterations in seconds on CoNLL-2003. We highlight with
the bold font the values affected by UPS. Hardware configuration: 2 Intel Xeon Platinum 8168, 2.7 GHz, 24 cores
CPU; NVIDIA Tesla v100 GPU with 32 Gb of VRAM.
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