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Abstract

Entropy Minimization (EM) is beneficial to reducing class overlap, bridging domain
gap, and restricting uncertainty for various tasks in machine learning, yet its
potential is limited. To study the internal mechanism of EM, we reformulate and
decouple the classical EM into two parts with opposite effects: cluster aggregation
driving factor (CADF) rewards dominant classes and prompts a peaked output
distribution, while gradient mitigation calibrator (GMC) penalizes high-confidence
classes based on predicted probabilities. Furthermore, we reveal the limitations
of classical EM caused by its coupled formulation: 1) reward collapse impedes
the contribution of high-certainty samples in the learning process, and 2) easy-
class bias induces misalignment between output distribution and label distribution.
To address these issues, we propose Adaptive Decoupled Entropy Minimization
(AdaDEM), which normalizes the reward brought from CADF and employs a
marginal entropy calibrator (MEC) to replace GMC. AdaDEM outperforms DEM*,
an upper-bound variant of classical EM, and achieves superior performance across
various imperfectly supervised learning tasks in noisy and dynamic environments.

1 Introduction

Entropy Minimization (EM) is a common self-supervised optimization method, which minimizes the
conditional entropy of model predictions to reduce the class overlap [[1]. It facilitates a low-density
separation between classes and enhances confident predictions. EM has been shown to be useful for
clustering, semi-supervised, and unsupervised learning [2;3;4]]. Conditional entropy is also a widely
validated calibration tool for Deep Neural Networks (DNNs), since it measures the prediction error
and distribution shifts to some extent [S]. EM helps to bridge the domain gap and push the model’s
decision boundary towards the low-density regions of the target distribution. Therefore, EM is widely
used in active learning, domain adaptation, and online learning as well [3; 6} [7; (8} [9].

Although Entropy Minimization is applied to a variety of tasks due to its simplicity and generality,
previous literature indicates that the potential of classical EM is limited [[10; [11512], causing unsat-
isfactory performance. To investigate the internal mechanisms by which EM effectively optimizes
model parameters in an unsupervised manner, we attempt to reformulate and decouple the EM. We
divide the conditional entropy in EM into two independent parts with entirely opposite effects: a
positive-acting factor termed Cluster Aggregation Driving Factor (CADF) and a negative-acting
factor called Gradient Mitigation Calibrator (GMC). Minimizing CADF rewards dominant classes
and promotes a peaked output distribution of the model, while minimizing GMC (log-sum-exp of the
logits) penalizes the maximum logit and high-confidence classes based on predicted probabilities and
calibrates the optimization direction, serving as a regularization term. This reformulation enables
systematic analysis of these two parts and refining the classical EM, as shown in Fig. [T}

Importantly, we demonstrate that the highly coupled formulation of conditional entropy inherently
constrains the effectiveness of classical EM. First, samples with lower confidence exert a more pro-
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nounced impact in the learning process, while the contribution of high-certainty samples diminishes
significantly as their predicted probabilities approach 1.0, as shown in Fig. [2](left). This phenomenon
is named reward collapse, which is not preferable because samples with higher certainty can provide
more reliable and informative signals for self-supervised learning. Second, classical EM tends to
exhibit systematic bias toward dominant and easy classes, or assign most samples to a single cluster,
resulting in severe misalignment between the model’s output distribution and the ground-truth label
distribution, as shown in Fig. 2| (right). Easy-class bias undermines the adaptability of classical EM
in handling noisy or imbalanced tasks, particularly in dynamic or non-stationary environments.

Through the investigation in Sec. [3.2}
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DEM* represents the performance upper bound of classical EM on the target task to some extent, but
it incurs additional computational overhead for identifying optimal hyperparameters.
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To address these issues, we propose Adaptive Decoupled Entropy Minimization (AdaDEM). To
enhance the relative contribution of high-certainty samples in the learning process, AdaDEM employs
the L1-norm of rewards brought from CADF to normalize the conditional entropy. Additionally,
a Marginal Entropy Calibrator (MEC) is proposed to replace the GMC, which counteracts the
overwhelming influence of dominant and easy classes by maximizing the estimated marginal entropy.
Unlike existing methods that assume uniform label distributions [[7; [12]], MEC eliminates the need for
label priors and instead leverages dynamic estimation during learning. In this way, AdaDEM, without
requiring tunable hyperparameters, achieves comparable or even superior performance to DEM*.

In summary: 1) We provide an insightful view to study Entropy Minimization by reformulating and
decoupling the classical EM into CADF and GMC with opposite effects. We investigate the roles
of these two parts and reveal the inherent limitations of classical EM caused by its highly coupled
formulation, i.e., reward collapse and easy-class bias phenomena. 2) We propose DEM* to explore
the performance upper bound of classical EM, and propose AdaDEM to mitigate reward collapse
and easy-class bias while eliminating hyperparameter tuning requirements, thereby unleashing EM’s
potential. AdaDEM is validated to outperform DEM*. 3) Extensive experimentﬂ across various
tasks, including semi-supervised and unsupervised learning, domain adaptation, and reinforcement
learning, demonstrate AdaDEM’s superior performance. Additional evaluations on noisy/imbalanced
benchmarks and dynamic/non-stationary environments further validate the effectiveness of AdaDEM.

2 Related Work

Shannon entropy [[14] is a fundamental concept in information theory, which is used to measure the
degree of uncertainty of a random variable. The higher the entropy value, the greater the uncertainty.
For a discrete random variable x with n possible values {x1, xo, ..., x,,} and corresponding prob-

2Source code is available at https://github.com/HAIV-Lab/DEM
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Figure 2: (Left: Reward Collapse) We compare the gradient magnitudes of the classical EM for
samples with different predicted probabilities, which collapse to 0.0 when the maximum probabilities
approach 1.0. (Right: Easy-Class Bias) The output distribution of ViT-B/16 after test-time adaptation
using classical EM and our AdaDEM on a class-balanced Gaussian-noise-corrupted ImageNet-C
benchmark, with all classes sorted by their predicted proportions in descending order.

abilities {p1,po,...pn }, where p; > 0 and >, p; = 1, the Shannon entropy H () is defined as

H(z) = - Zm(m)logpi(a:i). (1)

In machine learning, Shannon entropy is generally used as an information-theoretic measure of
uncertainty or impurity. It represents the amount of information needed to encode a distribution [15].
Given an input distribution X, a target distribution Y, and the sampled examples {z, y}". We build
a model f that maps X to Y that parameterized by 6. The conditional output of f is denoted as
p(y|z, 0). Substituting it into Eq. (I)), we can obtain the uncertainty of the model’s output, which is
defined as the expected value of the information carried by a sample from the output distribution:

1 X Y
HY|X) = =5 > > plylz,0)logp(yl, 6). 2
Ty

The conditional entropy H (Y |X) is a measure of class overlap [1]]. Intuitively, if we want p(y|z, 0)
to be highly peaked, i.e., the model’s prediction for z is certain, we want H (Y| X) to be low. On the
other hand, if we want p(y|x, 0) to be flat or predictions to be uncertain, we can maximize the entropy
H(Y|X), which, in the limit, will lead to a uniform conditional distribution over classes [16].

By minimizing the conditional entropy H (Y| X) for samples, the overlap of model’s output dis-
tribution can be reduced, leading the density of data points to get lower at the decision boundary
[L7]. It facilitates a low-density separation between classes, a commonly prior assumption for semi-
supervised learning [18]]. A number of studies show that unlabeled data can be more informative if
there is less overlap between classes [19]]. Thus, EM has been demonstrated to be effective for clus-
tering (avoiding trivial solutions where most instances concentrate in a single cluster) [25 125205 21],
semi-supervised learning (enhancing model prediction accuracy per data point) [[1; 35 |10; 225 23 [24]],
and unsupervised learning (yielding peaked conditional class distributions) [4; [16} [20; 255 26].

Deep Neural Networks (DNNGs) suffer from distribution shifts. DNNs trained on the source domain
tend to produce over-confident (low-entropy) predictions for in-distribution data and under-confident
(high-entropy) predictions for out-of-distribution data [27]. Conditional entropy H (Y| X) is a widely
validated calibration tool for DNNSs, since it measures the prediction error and distribution shifts
to some extent. More confident predictions are all-in-all more correct. More severe shifts result
in higher entropy [5)]. One possible way to bridge the domain gap is to push the model’s decision
boundary towards the low-density regions of target distributions. On this basis, EM is widely used in
active learning (reducing the number of possible hypotheses as rapidly as possible) [6;|15]], domain
adaptation (aligning the target data distribution with the source data distribution) [7; [27} 28], and
online learning (connecting entropy to error and shift) 155 I8 [115 295 30].

Entropy Maximization plays a role in encouraging exploration in Reinforcement Learning [315|32;(33].
Adding the entropy of policies to the objective function prevents premature convergence to sub-
optimal deterministic policies and is particularly beneficial for tasks that require hierarchical behavior



[31]]. Tt is worth noting that maximizing the conditional entropy H (Y| X) leads to a uniform output
distribution to obtain uncertain predictions, while maximizing the marginal entropy, i.e.,

Y
H(Y)==> p(y,0)logp(y.0) 3)

Y

over all data points, where p(y,0) = + Zfil p(yl|x;, 0), encourages the cluster sizes of classes to be
uniform [12]]. The combination of minimizing H (Y| X') and maximizing H (Y") makes the model’s
output distribution individually certain and globally diverse [7; [12} [16].

Unlike Cross-Entropy and KL-Divergence, which employ external supervision in the learning process,
Entropy Minimization is a self-supervised learning paradigm. Therefore, addressing the potential
limitations of classical EM can promote the development of imperfectly supervised machine learning.
EM exhibits similar concepts to Self-Training [34]] and Pseudo-Labeling [17], which leverage the
model’s own predictions for learning. Reward collapse and easy-class bias are also prevalent in these
methods, and AdaDEM can be plug-and-play. While Early-Learning Regularization [35] mitigates
label noise by using an exponential moving average of predictions as self-supervised signals, MEC in
AdaDEM employs dynamic estimation of predictions to penalize dominant and easy classes.

3 Rethinking Entropy Minimization

3.1 Reformulating Conditional Entropy

Notations. For an example = € X, the output of model f(6) is z = [2;]%, € RC.  is the logit
of the i-th class predicted by the model, and C' is the number of classes. We apply the Softmax
function o (- ) to convert the real-valued vector z into a probability vector p = [p;]%, € R, i.e.,

pi=e*/Y 5 %, where 0 < p; <1,Vi € {1,2,...,C}.

For simplicity, we define the conditional entropy in Eq. (@) as

sz ) log p; (2 )

The objective of EM is to minimize H (z) as the sole loss function or a regularization term, namely,
X C

0" = argmmZH z|x,0) = argmln— ZZpZ z|x, 0) log p;(z|x, 0), 3)
Tz =1

where 6* is defined as the optimal solution for model f(6).

To analyze the contributions of the two decoupled parts with opposite effects from classical EM to
the model’s output, we define the terms "reward" and "penalty." We define "reward" as the negative
partial derivative of the loss function £ = H(z) with respect to the logit z;, i.e., —9L/0z;, which
aligns with the gradient descent direction for solving Eq. (3). We define "penalty" as the opposite of
"reward", i.e., 0L/0z;. We subsequently demonstrate that minimizing CADF rewards the model’s
output logits, while minimizing GMC penalizes them.

Reformulation. To investigate the internal mechanisms by which EM effectively optimizes model
parameters in an unsupervised manner, we attempt to reformulate and decouple the conditional
entropy H(z) in EM, which can be rewritten as

oo c c
pi(2)log ——— = =Y pi(z)zi+log Y e
Z e 2 2 ©
| S —
CADF GMC

As shown in Eq. (6), the conditional entropy is reformulated into two independent parts with entirely
opposite effects. To analyze the impact of these two parts on EM, we derive the partial derivatives of

the first term 7'(z) = — Z _, pi(2z)z; and the second term Q(z) = log ZZCZI e” with respect to z;,
0T (z) 0Q(z) e

Ry = — =p(T i+1), Rg=- =— = —p;. 7

T o, —pill(2)+z+1) Q 9z, ¥ e p ©)
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Figure 3: (Left) Reward curves of DEM with varying 7 values for a 10-way classification task.
(Center) The best T value positively correlates with the average predicted probability of source
models on target data. (Right) Detailed TTA results using the optimal 7 across 15 target domains, with
exact values sourced from Fig. [3](Center). "NoAdapt" denotes the baseline using fixed source model
parameters without adaptation, hence its performance remains consistent for both single-domain and
continual TTA tasks. Values in brackets indicate the corresponding axis range.
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Figure 4: (Left) Reward curves of DEM with varying « values for a 10-way classification task.
(Center) Effects of different a values on static and dynamic target data distribution shifts of single-
domain and continual tasks. (Right) Detailed TTA results across 15 target domains, using the optimal
a = 1.0 for single-domain TTA tasks and @ = 1.3 for continual TTA tasks. These « values are
selected based on the ablation results in Fig. 4] (Center). The definitions of "NoAdapt" and values in
brackets are consistent with Fig. 3| (Right).

Ry denotes the reward obtained by minimizing 7'(z) for logits z;, which leads to an positive increase
in logit values. The reward curve of Ry w.r.t. the probability p; is shown in Fig. [ (left) (« = 0.0 &
7 = 1.0). Minimizing 7(z) results in higher rewards for logits with elevated predicted probabilities,
exhibiting an approximately linear trend. However, when reflected in probabilities through the
Softmax function, this trend becomes amplified into exponential growth. Consequently, minimizing
T'(z) causes the model to favor predicting classes with higher probabilities, thereby granting more
rewards to dominant and easy classes. Conversely, g = —p; < 0 consistently imposes penalties
on logits based on predicted probabilities. Minimizing ()(z) causes higher-confidence classes to
receive greater penalties, which drives the model’s output distribution toward uniformity. So we name
T'(z) the Cluster Aggregation Driving Factor (CADF) and Q)(z) the Gradient Mitigation Calibrator

(GMCQ). According to Eq. (6) and we introduce ch:l p;2; that shares identical partial derivatives
w.r.t. logits as Q(z), where p; is a constant excluded from the computation graplﬂ
Therefore, the conditional entropy can also be rewritten as

c

H(z) ==Y (pi(2) — )2 ®)

=1

Next, we investigate the effects of CADF and GMC on entropy minimization and propose enhance-
ments to address these limitations.

3.2 Decoupled Entropy Minimization

Role of CADF and GMC. To investigate the effects of CADF and GMC on EM, we conduct ablation
studies on test-time adaptation (TTA) tasks using Tent [S]]. Tent serves as an appropriate study subject

3In PyTorch, the "detach()" method can be used to obtain p;



Table 1: (Left) Ablation studies in single-domain and continual TTA tasks. DEM* searches optimal
hyperparameters (7, ax) on a subset of target data. A denotes the performance improvement relative
to the baseline. (Right) The sensitivity testing of learning rates demonstrates that AdaDEM has
expanded 10x tolerance range compared to classical EM.

Single-Domain TTA

Methods | Single A | Contl A -

ResNet50 B0+ e )

555 —e— AdaDEM
NoAdapt 31.5:0.00 - 31.5:0.00 - £ N
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AdaDEM-Norm (w/o MEC) 43.7+0.10 +3.7 37.5+0.05 +6.3 L 40
AdaDEM-MEC (w/o Norm) 44.4+004 +4.4 37.5:004  +6.3 104 1073 1072 10~
AdaDEM (w/ MEC & Norm) | 44.8:005 +4.8 | 37.7:005s +6.5 Learning Rate
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AdaDEM (w/ MEC & Norm) 61.5:0.20 +8.4 63.2+0.16 +4.6 10-4 10-3 162 10~

Learning Rate

since it solely employs the classical EM as the loss function (where conditional entropy is measured
from streaming data) to mitigate DNNs’ performance degradation during online testing. Target data
distribution shifts are categorized into static single-domain tasks and dynamic continual tasks. We
adopt ResNet50 [36] and ViT-B/16 [37]], two widely used DNNs pre-trained on ImageNet-1K [38]],
as source models for TTA starting points. Other implementation details are provided in Sec. .1}
The experimental results in Table [I|demonstrate that replacing the classical EM with CADF alone
significantly enhances EM performance, yet it suffers from poor robustness, as exemplified by the
single-domain TTA case with ViT-B/16. To address these issues, we propose our improved solution.

Reshaping the Reward Curve. We introduce a temperature 7 in CADF to soften the probability p;,
thereby reshaping the reward curve. This operation is defined in Eq. (), with its partial derivative
w.r.t. logit z; given in Eq. (refer to Appendix[A.2). Based on Eq. (I7), the Fig.[3|(left) plots EM’s
reward curve across different 7 values, which degenerates to classical EM when 7 = 1.0. Notably, the
reward collapses to 0 when predicted probability approaches 1.0 or 1/C'. Introduction of 7 ensures
high-probability predictions remain within the high-reward interval, thus mitigating reward collapse.

ezi/"—
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We search the optimal 7 to maximize performance on target tasks, and empirically demonstrate that
the best 7 value exhibits a positive correlation with the average predicted probability of source models

on target data, - Zf\il maxi<,;<c Pij» as shown in Fig. 3| (center). Detailed results in Fig. (right).

Scaling the Influence of GMC. Note that Q(z) = log Ef’;l e® takes the form of the log-sum-exp
of the logits z;, which provides a smooth approximation to the maximum of logits. Therefore, we
introduce a weight « to control the penalties imposed by minimizing GMC on the maximum logit,
preventing model overfitting caused by rapid growth in logit magnitudes, which is defined as

c
Qa(z) = alogZezi, (10)
i=1

thereby scaling the reward of Q. (z) to Rg, = —ap;. We plot the reward curve of EM with varying
« values, as shown in Fig. 4| (left). When « > 1.0, EM with ), (z) penalizes logits corresponding to
predicted probabilities near 1.0, helping to reject erroneous highly confident predictions from poorly
calibrated models [13]. The results in Fig. ] (center) demonstrate that slightly increasing the value of
« can effectively mitigates model overfitting in noisy tasks and dynamic environments.



In summary, the Decoupled Entropy Minimization (DEM) is formulated as
c c
H(z) = Ty(2) + Qa(z) = = Y _pri(z)zi + alog Y _ e*. (11)
i=1 i=1
To explore the performance upper bound of classical EM, we search for the optimal combination
within the search space defined by 7 and « using a fast TPE algorithm [39]. In Proposition[A.1] we
theoretically prove that valid values of 7 in DEM satisfy 0 < 7 < 2/« where o > 0. DEM* searches
the optimal hyperparameters (7%, ) on a subset of target data. Implementations in Sec.

3.3 Adaptive Decoupled Entropy Minimization

Classical EM suffers from reward collapse and easy-class bias phenomena, demonstrated in Fig. [2]
DEM* enhances the contribution of high-certainty samples in the learning process by improving
the CADF, while refining the GMC to penalize dominant and easy classes. However, DEM* cannot
fundamentally resolve these limitations, as the dynamic interplay between model parameters updates
and shifting data distributions causes the model’s output to evolve over time. While continuous
optimization or designing evolution strategies for hyperparameters 7 and « remains feasible, such
approaches incur substantial computational overhead, which is a drawback effectively addressed by
the next proposed Adaptive Decoupled Entropy Minimization (AdaDEM).

We employ the L1-norm of the reward brought from CADF, i.e., § = || — 9T (z|x, §)/0z]|1, to quantify
the extent of changes in the model’s output logits z = [2;]$_; before and after EM optimization, which
is caused by updates to the model parameters 6 induced by sample x. We adopt 1/ to normalize
rewards across different deterministic samples, providing a more fundamental and direct approach
compared to using the reciprocal of conditional entropy as the normalization factor [8; [11]]. We have
further verified that 6 must be computed from the gradients of CADF, while using the gradients of the
overall conditional entropy H (z) would introduce penalties that compromise the accurate assessment
of rewards brought by learning samples. Refer to Appendix [D.6] for details.

Most existing methods for addressing easy-class bias employ a label prior to guide EM, typically
by maximizing the marginal entropy to align the model’s output distribution with a uniform label
prior distribution [[7; [12]. In contrast, we eliminate the label prior assumptions and propose a
Marginal Entropy Calibrator (MEC) to replace GMC. The MEC dynamically estimates the marginal
entropy during learning via an exponential moving average of 1/Nj ZN’“ pr where pp € R¢
is a probability vector of the k-th class. The estimated probability is dynamically updated as

B =0.9-Ph " +0.1/N;, - ™ pt where ¢ denotes the iteration index and ) = [1/C]<_, € RC.

In summary, the AdaDEM takes the form of
1 &
H(z) = =5 (0i(2) = Bia)zi, & = argmaxp;(). (12)
i=1
AdaDEM requires no tunable hyperparameters and achieves comparable or even superior performance
to DEM*, as demonstrated in Tablem Notably, AdaDEM also reduces the sensitivity of classical EM
to learning rates, as shown in Table|[I] (right). Detailed analyses are provided in Appendix D]

4 Experiments

4.1 Setups

Benchmarks. We conduct experiments on four benchmarks, i.e., Test-Time Adaptation (TTA), Semi-
Supervised Learning (SSL), Unsupervised Domain Adaptation (UDA), and Reinforcement Learning
(RL) tasks. For TTA, we adopt ImageNet-C [40] containing 15 types of image corruptions, as well
as ImageNet [38]] and its variants: -A [41], -V2. [42], -R. [43], and -S. [44]] that represent natural
distribution shifts. For SSL, we consider CIFAR-10, CIFAR-100 [45]], STL-10 [46], EuroSat [47]],
TissueMNIST [48], and Semi-Aves [49]. Regarding synthetic-to-real UDA, we mainly experiment
with the semantic segmentation task, using GTAS dataset [50] as the source domain and Cityscapes
dataset [51] as the target domain. We employ Minigrid [52f], a series of discrete environments,
to conduct RL experiments. We also conduct experiments on class-imbalanced benchmarks of
CIFAR-10-LT (p = 100) and CIFAR-100-LT (p=10) [45]]. Refer to Appendixfor detailed setups.



Table 2: Experiments on single-domain & continual TTA tasks (left) and the test-time prompt tuning
task (right). Top-1 classification accuracy (%) is reported. We highlight the highest accuracy in bold
and the second best as underline. A denotes the performance improvement relative to the baselines.

Single-Domain Continual . ImageNet

Methods Mean A Mean A Methods K A V2. R . Avg. A
NoAdapt | 38.8:000 - | 38.8:000 - CLIP-RN50

Tent! . 53.1s065  +0.0 | 58.65000 +0.0 Zero-Shot 58.2:000 21.8:000 51.42000 56.2:000 33.4z000 | 44.2:000 +0.0
FIDIE] 56.0:032 429 | 64.1005 455 Epeemble | 59.8:000 2324000 52.9:000 60.7:000 35.5:000 | 46.4s000 +2.2
+AdaDEM | 61.5:020 484 | 63.2:016  +4.6 TPT 60.720.07 26.1x0.10 54.6:002 58.9:008 35.2:000 | 47.1:006 +2.9
Tent 52.7:010 +0.0 | 48.5:011  +0.0 + DEM* 61.3:009 25.5:007 55.0:0.10 59.7:0.12 35.6:008 | 47.4:004 +3.2
+ DEM* 55.1:011  +2.4 | 64.5:014 +16.0 + AdaDEM | 60.7:004 29.2:0.19 54.8:022 58.8:005 35.4:0.03 | 47.82007 +3.6

AdaDEM | 66.2:0. 13.5 | 64.4z0. 15.9

LoCh S 28 S CoOp 63.3x000 23.1x000 55.4x000 56.6:000 34.7:000|46.6:000 +2.4
ETA 65.1z010  +0.0 | 6422004 +0.0 TPT (CoOp) | 65.4:006 28.9:0.14 58.2:0.10 59.0:0.00 36.3:0.15 | 49.6:007 +5.4

+DEM* | 66.3:004 +1.2 | 6572004 +L5 4 AdaDEM | 65.6:005 31.3:010 58.5:022 59.3:010 36.3:0.1 | 50.2:006 +6.0
+ AdaDEM | 66.8-002 +1.7 | 66.1:001 +1.9

CLIP-ViT-B/16
EATA 62.2:014  +0.0 | 64.9:008 +0.0
+ DEM* 64.4:030 +2.2 | 66.2:007 +1.3 Zero-Shot 66.7x000 47.9:000 60.9x000 74.0:000 46.1:000 | 59.1:000 +0.0
+ AdaDEM | 65.3z0.11  +3.1 | 66.4004 +1.5 Ensemble 68.32000 49.9:000 61.9:000 77.7:000 48.2:000 | 61.2:000 +2.1
DeYO 6260052 400 | 57.6:036  +0.0 TPT . 69.0:004 54.5:000 63.4:0.13 77.0:006 48.0:0.13 | 62.4:005 +3.3
+ DEM* 65.6:005 +3.0 | 6545012 +7.8 + DEM 68.92003 54.8:009 63.5:011 77.1x008 47.9:006 | 62.5:006 +3.4
+ AdaDEM | 62.6:010 +0.0 | 59.0:005 +1.4 + AdaDEM | 69.4:0.12 58.8:0.18 64.0:006 77.62021 48.6:005 | 63.7:005 +4.6

SAR 54.2:007 +0.0 | 57.0s005 +0.0 CoOp 71.5:000 49.7:000 64.2x000 75.2:000 48.0:000 | 61.7:000 +2.6
+ DEM* 57.9:004 437 | 6244003 +5.4 TPT (CoOp) | 73.6:005 57.9z0.12 66.9:008 77.2:004 49.2:0.07 | 64.92006 +5.8
+ AdaDEM | 65.7:007 +11.5 | 63.0:005 +6.0 + AdaDEM | 73.7:007 60.3:0.11 66.9:0.19 77.9:0.14 49.3:007 | 65.6:002 +6.5

Table 3: Experiments on semi-supervised learning tasks. We report the average Top-1 classification
accuracy (%) under different numbers of labeled samples. We highlight the highest accuracy in bold
and the second best as underline. A denotes the performance improvement relative to the baselines.

Methods CIFAR- 10 CIFAR- 100 STL—IO EuroSdt TlssueMNlST Semi- Aves
Mean Mean Mean Mean Mean Mean

Ent. Min. 96.4:19  40.0 | 72.6:05 +0.0 | 82416 +0.0 | 76.5:36 +0.0 | 473126 +0.0 | 59.9:07  +0.0
+ AdaDEM 97.2:02  +0.8 | 75.8:03 +3.2 | 84.8:03 +2.4 | 83.7:08 +7.2 | 493sx13 +2.0 | 61.0:02 +1.1
Vat (w/ Ent. Min.) | 97420 +40.0 | 77.5:07 +40.0 | 854209 +40.0 | 86.6:54 +0.0 | 452+48 +0.0 | 61.0z04 +0.0
+ AdaDEM 98.5:01  +1.1 | 78.8:07 +1.3 | 86.9:01 +1.5 | 91.2:00 +4.6 | 49.4:06 +4.2 | 61.8:00 +0.8
MixMatch 98.5:03  +0.0 | 73.8:04 +0.0 | 82.9:21  +0.0 | 79.3:43 +0.0 | 48.0s17  +0.0 | 62.6:02  +0.0
+ AdaDEM 98.3:06  -0.2 74.8:02  +1.0 | 85.2:01  +2.3 | 83.9:24 +4.6 | 50.0:00 +2.0 | 62.5:01 -0.1
FixMatch 98.4:07  40.0 | 79.3:06 +0.0 | 88.5:12  +0.0 | 91.9:36 +0.0 | 46.7:33 +0.0 | 68.2:03 +0.0
+ AdaDEM 98.7:02  40.3 | 79.5:09 +0.2 | 87.9x08 -0.6 | 96.9:07 +5.0 | 49.9:13 +43.2 | 67.9:01 -0.3
FreeMatch 98.9:00 4+0.0 | 82.6:01  +0.0 | 89.7:16 +0.0 | 95.8:10 +0.0 | 45.6:33 +0.0 | 67.0:03 +0.0
+ AdaDEM 99.0:0.1  +0.1 83.1:01  +0.5 | 91.6:02  +1.9 | 95.9:01  +0.1 47904 423 | 67.3:02 +0.3

Implementations. We consider the proposed Table 4: Experiments on unsupervised domain
DEM* and AdaDEM as alternatives to the clas- adaptation task of semantic segmentation. Stan-
sical EM. Therefore, we replace EM in the ob- dard mIoU (%) is reported.

jective function of existing methods with our
implementations of DEM* or AdaDEM. For in-  Methods | MinEnt _+ AdaDEM | AdvEnt +DEM* + AdaDEM
stance, we substitute the loss function of Tent mloU | 41.6:047 42.7:013 | 43.6:019  44.6:032 44.9:0.17
(5] with Eq. (I1) or[T2] DEM* employs a fast 2 00 __ *00 i
TPE algorithm [39] to search for the best hyper-

parameters (7%, a*). Propositionhelps to reduce the search scope. We use a subset comprising
~ 20% of test data with ground-truth labels for TPE, which is only applied for DEM* to explore
the upper bound performance of classical EM. Note that AdaDEM requires neither test data labels
nor hyperparameter tuning, strictly adhering to the unsupervised learning paradigm. We mainly
utilize ResNet [36]], ViT [37], CLIP Model [53], Deeplab-V2 [54]], MLP and other DNNs as the
research subjects. Meanwhile, for TTA, we adopt Tent [5l], ETA [8], EATA [8], DeYO [L1], SAR [29],
TPT [30]; for SSL, we employ Ent. Min. [1l], VAT [3]], MixMatch [24]], FixMatch [23]], FreeMatch
[22]; for UDA, we use MinEnt & AdvEnt [27]; and for RL, we take PPO [32] as baselines. We
follow the implementations and hyperparameter setups of original methods unless otherwise specified.
Uniformly, we report Top-1 accuracy for classification tasks, mIoU [55]] for semantic segmentation
tasks, and average return for RL tasks. All experiments are running in 3 seeds (e.g., {1, 2, 3}) which
control the orders of training/testing samples and the initial conditions of algorithms. Performance
metrics are reported as "mean =+ std". Refer to Appendix for detailed implementations.
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Figure 5: Experiments on class-imbalanced benchmarks. p denotes the sample ratio between the
most and least populous classes. Both per-class F1 scores and the average F1 score are reported.
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Figure 6: Experimental results on Reinforcement Learning tasks in Minigrid environments.
4.2 Main Results

In the following, we present the experimental results in various tasks. Details in Appendix [C]

Test-Time Adaptation. As shown in Table ETA, EATA, SAR, and DeYO are based on sample
selection and assign larger weights to higher certainty test samples for mitigating the reward collapse.
The application of DEM* and AdaDEM improves the original performance by addressing the potential
limitations of the classical EM, which also enhances the prior-based EATA and SAR. For test-time
prompt tuning task based on episodic TTA, DEM* and AdaDEM provide a solution suitable for the
aggressive optimization strategy with large learning rate and multiple adaptation steps, which brings
a significant improvement in unsupervised prediction to CLIP Models and TPT.

Semi-Supervised Learning. Entropy Minimization is widely used in SSL to facilitate low-density
separation between classes. We set different numbers of available labeled samples, i.e., N; per class,
for the training of DNNs. Specifically, we set N; = 4/25/400 for CIFAR-10, N; = 2/4/25 for
CIFAR-100, N; = 4/10 for STL-10, N; = 2/4 for EuroSat, N; = 10/50 for TissueMNIST, and
N; = 15 ~ 53 for Semi-Aves. In Table 3] we report the average classification accuracy under
different settings. We replace the classical EM in Ent. Min. and VAT (w/ Ent. Min.) with AdaDEM,
and introduce AdaDEM as part of the loss functions in MixMatch, FixMatch, and FreeMatch, which
do not use EM. We also validate on class-imbalanced benchmarks for SSL, as shown in Fig. E[
and provide an imbalance study on highly skewed data with varying degrees of imbalance severity,
refer to Appendix Experimental results show that AdaDEM outperforms the classical EM.
Meanwhile, incorporating AdaDEM into SSL methods effectively improves the performance of
original algorithms.

Unsupervised Domain Adaptation in Semantic Segmentation. Beyond image classification, we
also verify the effectiveness of DEM* and AdaDEM in the semantic segmentation task. As shown in
Table ] compared with the classical EM, AdaDEM can better bridge the domain gap between the
source and target distributions, thus achieving a higher mIoU on the target data. For detailed results,
refer to Table[T0} DEM* and AdaDEM can improve the accuracy of tail classes and prevent the model
from being inclined to predict dominant classes. We also visualize the segmentation results and pixel
entropy in Fig.[7] AdaDEM reduces the prediction entropy of pixels more effectively, resulting in
clearer object boundaries of out-of-distribution data.

Reinforcement Learning. Entropy Maximization is beneficial for encouraging agents’ exploration in
RL tasks. To demonstrate that our AdaDEM is not confined to the minimization strategy, we compare
the effects of applying the classical EM and AdaDEM to PPO while keeping entropy maximization
strategy unchanged. The experimental results, as depicted in Fig. [6] indicate that AdaDEM can
achieve a higher or comparable average return.



4.3 Ablation Studies

We report the optimal hyperparameters (7*, o*) searched for DEM* in different methods and tasks
in Table[TT] For additional discussions, refer to Appendix [D]for details.

Effect of Temperature 7 in DEM*. As shown in Fig. 3] increasing the value of 7 promotes DNNs to
learn high-certainty samples by reshaping the reward curve. The best 7 for a target data distribution
is positively correlated with the average prediction probability of DNNs for target samples.

Effect of Weight o in DEM*. As shown in Fig.[4](left), GMC employs « to scale the penalty applied
to logits, reducing the interference of over-confident samples for poorly calibrated DNNs. Decreasing
the value of « is suitable for aggressive optimization strategies, while increasing « is suitable for
alleviating the catastrophic forgetting caused by model overfitting, as shown in Fig. ] (center).

Sensitivity of AdaDEM to Optimizers and Learning Rates. We compare the impacts of different
optimizers and learning rates on classical EM and AdaDEM. As shown in Table 1, AdaDEM effec-
tively reduces EM’s sensitivity to the learning rate. Meanwhile, Table 2| demonstrates performance
gains when applying AdaDEM to various optimizers including vanilla SGD (Tent'), Momentum
(ETA, EATA, DeYO), Adam (Tent), and SAM (SAR). The results indicate that AdaDEM maintains
compatibility with SGD or optimizers utilizing first-/second-order momentum estimation.

Robustness of AdaDEM. As shown in Table 2] and Fig. [5] source models’ predictions on target
data are significant noisy due to severe distribution shifts. Continual TTA tasks are evaluated under
dynamically changing target data distributions. The results across these tasks demonstrate that
AdaDEM exhibits robustness to noisy/imbalanced tasks and dynamic/non-stationary environments.

5 Conclusion

This paper provides an insightful view to study EM by reformulating and decoupling it into CADF
and GMC with opposite effects. We reveal the limitations of classical EM caused by its highly
coupled formulation: reward collapse and easy-class bias phenomena. We propose AdaDEM to
overcome these limitations, which outperforms DEM*, an upper-bound variant of classical EM, and
achieves superior performance across various machine learning tasks.

Limitations. DEM* and AdaDEM overcome the limitations of classical EM only from the perspective
of objective functions. Although improving performance, they cannot completely solve all the
problems of self-supervised learning. Additional targeted techniques and designs are required.
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A More Design Details of DEM and AdaDEM

A.1 Pseudo Code

Algorithm 1 Pseudo code of DEM and AdaDEM in the PyTorch-like style

logits: the output logits of the model, in the shape of (N, C)

tau: hyper-paramerter for CADF in DEM

alpha: hyper-parameter for GMC in DEM

avg_pred: the averaged predicted probabilities for C classes, initialized as None
reset: a flag for resetting the MEC in AdaDEM, in bool type

H H H R

import torch
import torch.nn.functional as F

# Decoupled Entropy Minimization (DEM)
p_tau = F.softmax(logits / tau, dim=1)

# CADF
cadf = - (p_tau * logits).sum(dim=1)

# GMC
gmc = alpha * torch.logsumexp(logits, dim=1)

# Total loss of DEM
dem_loss = cadf + gmc

# Adaptive Decoupled Entropy Minimization (AdaDEM)
p = F.softmax(logits, dim=1)
pseudo_label = p.argmax(dim=1)

# Initialize avg_pred to a (C, C) tensor of 1/C
if reset is True or avg_pred is None:
C = torch.tensor(p.size(1), device=p.device)
avg_pred = torch.ones((C, C), device=p.device) * 1.0 / C

with torch.no_grad():

# Update avg_pred for MEC
for label in torch.unique(pseudo_label):
avg_pred[label] = 0.9 * avg_pred[label] +
0.1 * p[pseudo_label == label] .mean(dim=0)

# Calculate the L-1 norm of the rewards of CADF
T = - (p * logits).sum(dim=1, keepdim=True)
grad = (logits + T + 1) x p

delta = grad.abs().sum(dim=1, keepdim=True)

Original EM

p = p - p.detach()

AdaDEM-Norm

p = (p - p.detach()) / delta
AdaDEM-MEC

P = p - avg_pred[pseudo_label]

AdaDEM

= (p - avg_pred[pseudo_label]) / delta

O H OH OH H H H

# Total loss of AdaDEM
adadem_loss = - (p * logits).sum(dim=1)
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A.2 Theory and Proof
Firstly, we present the detailed derivation process of reformulatlng and decoupling the conditional
entropy for Eq. (6). Given the logit vector z = [z1,...2;, ..., 2¢] € R predicted by the model

£(0) for sample x and the probability vector p = [py, .. ,pz, ...,pc] € R obtained by applying the
Softmax function o(+). The conditional entropy can be rewritten as

c c
_Zpibgpi = —sz‘log

e%i
Zgl e
c

= Z Z i log g €%

piz; — log Z e")

piz; + log Z i

Toapr . ovc
where p; = e/ Z " e% and Y7 p; = 1. Note that logz -, €% is independent of i.

Q

DiZi — logZezf X sz (13)

I MQ i Mq i

H'MQ

Next, we derive the partial derivatives of the two independent parts in Decoupled Entropy Minimiza-
tion (DEM) with respect to the logit z; for Eq. (7), respectively. According to the Softmax function,
the partial derivatives of p; with respect to z; and z; are

Z; C Zj 2z; ) .
op; €7 Z_j:l e —er 9 Op; e*ie?i
= S —=pi—p, ad ot =—————pp;.  (14)
Oz (Zj:l e%)? 0z (Zj:l e*)?
LetT = — 226;1 piz; denote the Cluster Aggregation Driving Factor (CADF), and let Q =

log 210:1 e* denote the Gradient Mitigation Calibrator (GMC). The partial derivatives of 7" and )
with respect to z; are calculated as follows,

oT 8Zipi C 8szj
dz 2 +_. 0z
J#i
c
=—|pi+ zz Z
Z ;ﬁ ’L
c
=— | pi+zpi—p))+ > zi(—pips)
i
c 15)
= — | pi +pizi — P}z + Zpipjzj)
i#j
c
=— | pi T Pizi — Zpipjzj
j=1
c
=— | pi +Pizi — i ijzj
j=1

= —pi(T+ 2z +1),
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0Q Ology et 1 YT em = p (16)
07; 0z Zle e%i 0z Zf:l ezi "

Note that T" and Q) treat z;, Vi € {1,2,...,C} equally.

Proposition A.1. The valid value of temperature T in Decoupled Entropy Minimization is 0 < 7 <
2/a where o > 0.

Proof. Considering the introduction of a temperature 7 in CADF to reshape the reward curve, we

obtain T, = — ch=1 prizi, where pr; = e%/7 / Zle /7. Following the derivation process in
Eq. (I3), we calculate the partial derivative of T, with respect to z; as
oT, 1
= — —Pri T‘r i . 17
0z; Tp (Tr + 2 +7) (17

Therefore, we can obtain the partial derivative of the conditional entropy used by DEM with respect
to z; as

0H(z) 0T, 0Q,

6Zi - (')zl + 821

1
= api — ;pTi(T‘r +2zi+ 7). (18)

Let ' =T, + z; + T — a7p; /pri, and we have OH (z)/0z; = —F X p,;/7. We take the derivative
of F with respect to z; in order to derive the second derivative of H (z) with respect to z;:
or,
6zi n

Z; Tq— T—1 i 2 i
(i g Ty = Dpe P By
T T TPri Pri T

(19)

Under the boundary condition of z; = z; = k,V i # j, we have p; = p-; = 1/C, Vi € {1,2,...,C},
T = — chzl Prizi = —k chzl pri = —k,and F = 7(1 — «). Then, we can obtain the second
derivative of H (z) with respect to z; as

#H(z) _ pri OF  FOps

1 1 T—1 1 1 1,1 1
S S Sl S SR P U SO YN S0
ool me ) mme (G )
1  « 2

For the logits z predicted for a sample x, we assume that 2, > z;,Vj # m. It means that the
probability of the m-th class is greater than others. We hope that the reward for z,, is greater
than zero, and the rewards for other z;,Vj # m are less than zero, i.e., —0H (z)/0zm > 0 and
—0H(z)/0z; < 0,Vj # m, in order to achieve low-density separation between classes and reduce
the class overlap. Equivalently, we hope that 9% H(z)/0z; < 0 under the boundary condition of

z; = 2j,Vi # j. Because C' > 1 and o is set to be o > 0, thus

0?H (z) ! 2 2
<0 & =———<0 & < —. 21
0z; — cC rC — “= T @D
When 7 > 0, we have 7 < 2/a. The above inequality does not hold when 7 < 0.
Considering the limit conditions 7 — 0% and 7 — 0™, we have
0°H 0°H
lim (2) — —o00, and lim (2) — +o00. (22)
T—0t Z; T—0— Zi

Overall, the valid value of 7 in Decoupled Entropy Minimization is 0 < 7 < 2/, where o > 0.
O
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B More Implementation Details

B.1 Experimental Protocols
B.1.1 Single-Domain Test-Time Adaptation

ImageNet-C [40] is used to construct the single-domain TTA task. ImageNet-C contains 15 different
versions of corruptions applied to 50, 000 images from the validation set of ImageNet-1K [38]]. These
corruptions are Gaussian noise (Gauss), Shot noise (Shot), Impulse noise (Impul), Defocus blur
(Defcs), Frosted Glass blur (Gls), Motion blur (Mtn), Zoom blur (Zm), Snow (Snw), Frost (Frst),
Fog (Fg), Brightness (Brt), Contrast (Cnt), Elastic (Els), Pixelation (Px), and JPEG (Jpg). Each
type of corruption consists of 5 levels, with the 5-th level indicating the highest degree of damage.
Following previous TTA methods [55[8; [11; 29], we uniformly use the corruption at the 5-th level as
the test datasets. We measure the Top-1 classification accuracy of TTA algorithms on each corruption
subset and calculate the average accuracy as the metric for the single-domain TTA task. We employ
3 random seeds, to run experiments on ImageNet-C. These seeds determine the order in which test
samples are seen by TTA algorithms and models over time. Since TTA is an online learning task,
the arrival order of test samples can significantly impact the performance of TTA algorithms. We
report the average accuracy and standard deviation across the 3 random seeds as metrics to measure
the performance and robustness.

B.1.2 Continual Test-Time Adaptation

Unlike the single-domain task tested separately on each corruption, continual TTA constructs a
continuously changing testing environment using ImageNet-C [40]. Specifically, it concatenates
the 15 corruptions in the 5-th level in the order of Gaussian noise — Shot noise — Impulse noise
— Defocus blur — Frosted Glass blur — Motion blur — Zoom blur — Snow — Frost — Fog —
Brightness — Contrast — Elastic — Pixelation — JPEG. This setup requires the TTA algorithms to
have the ability to adapt aggressively in local static distribution shifts and maintain stability in the
face of a dynamically changing environment without suffering from catastrophic forgetting. Similarly,
we employ the Top-1 classification accuracy as the metric, conduct experiments with 3 random seeds,
and report the average accuracy and standard deviation.

B.1.3 Test-Time Prompt Tuning

We mainly use ImageNet-1K [38] and ImageNet variants, including ImageNet-A [41], ImageNet-V2
[42], ImageNet-R [43], and ImageNet-Sketch [44] as the test datasets. They are used to measure the
robustness of TTA algorithms and models against natural distribution shifts. ImageNet-A consists
of 7,500 natural adversarial samples that are misclassified by the standard ResNet-50 [36] and
contains 200 ImageNet categories. ImageNet-V2 includes 10, 000 images and 1,000 ImageNet
categories collected from the source different from ImageNet-1K. ImageNet-R collects 30, 000
artistic renditions from 200 ImageNet categories. ImageNet-Sketch is composed of 50, 000 black-
and-white sketches, independently collected from the original ImageNet validation set, covering
1,000 ImageNet categories. A main research object of test-time prompt tuning is the CLIP models
[S3]], a series of foundational vision-language models. It uses test samples to update the input learnable
prompts of the text encoder in CLIP models. Test-time prompt tuning focuses on performing episodic
online learning on an individual test sample, that is, only one sample is used for prompt tuning at
a time. The updated prompt is applied to make predictions on the current sample again, and then
the learnable prompt is reset and waits for the next test sample to arrive. Similar to other TTA tasks,
we employ the Top-1 classification accuracy as the metric and calculate the average accuracy and
standard deviation over 3 random seeds.

B.1.4 Semi-Supervised Learning

We use CIFAR-10 [45]], CIFAR-100 [45], STL-10 [46]], EuroSat [47], TissueMNIST [48]], and
Semi-Aves [49] as the datasets for evaluating SSL algorithms. CIFAR-10 and CIFAR-100 contain
50,000 32 x 32 training images and 10, 000 test images, covering 10 and 100 categories respectively.
STL-10 consists of 13,000 96 x 96 RGB images, with 5, 000 labeled images and 100, 000 unlabeled
images for training, and 8, 000 for testing. The EuroSAT dataset focuses on land use and cover
classification, which includes 10 categories, 16, 200 training images, and 5, 400 test images. The
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TissueMNIST dataset is related to biomedical images, mainly containing 8 biomedical scenarios
and tissue types, with 165,466 28 x 28 training images and 47, 280 test images. The Semi-Aves
dataset is a bird dataset for semi-supervised image classification, extracted from the iNaturalist-2018
dataset, containing 200 bird species, 3, 959 labeled images and 26, 640 unlabeled images for training,
and 4, 000 for testing, with an average of 15 ~ 53 labeled images per class. We strictly follow the
configuration of various comparison methods and datasets in USB|[56]], a unified semi-supervised
learning benchmark. We report the average Top-1 classification accuracy and standard deviation from
running experiments on 3 random seeds.

B.1.5 Unsupervised Domain Adaptation in Semantic Segmentation

We focus on the synthetic-to-real unsupervised domain adaptation task, in which the model is trained
on fully annotated synthetic images and validated on real-world data. Several unlabeled real images
are accessible during training. We use the GTAS dataset [S0] as the source domain data, which
contains 24, 966 synthetic frames and pixel-level semantic annotations of 33 categories captured from
a video game. The Cityscapes dataset [S1] is used as the target domain data, and its 2, 975 unlabeled
images are utilized for training. The 19 common categories of GTAS and Cityscapes are selected.
We measure the segmentation performance with the standard mean-Intersection-over-Union (mIoU)
metric [53]], evaluated on 500 validation images. We also report the average mloU and standard
deviation over 3 random seeds.

B.1.6 Reinforcement Learning

We mainly consider RL tasks in discrete environments and utilize the Minigrid environment [52].
Minigrid offers a series of grid environments with different layouts and tasks, enabling agents to
move within these grids. The agents’ actions are typically discrete, such as basic actions like moving
up, down, left, and right. We conduct experiments in 9 environments, including DoorKey-5x35,
Empty-Random-5x5, Fetch-5x5-N2, FourRooms, GoToDoor-5x5, KeyCorridorS3R 1, PutNear-6x6-
N2, RedBlueDoors-6x6, and Unlock. We employ the RL Baselines3 Zo<ﬂ a training framework for
Stable Baselines3 RL agents, to run our experiments and strictly follow the configurations of RL
algorithms implemented therein. We report the mean and standard deviation of the average return
over 10 episodes, which is measured on 6 random seeds.

B.2 Method Implementations

We primarily run experiments on one NVIDIA GeForce RTX 4090 GPU with 24 GB of memory.

DEM*. In Sec. we propose DEM and introduce two hyperparameters, 7 and «, to improve
the classical EM. When 7 = 1.0 and o = 1.0, DEM is completely equivalent to classical EM. To
find the most suitable hyperparameter configuration, we construct a search space where 7 and «
range from 0.0 to 2.0 (including 0.0 and 2.0), sampled at intervals of 0.1. Through TPE [39]], a fast
hyperparameter search algorithm integrated in NN]E], we can search for the optimal hyperparameter
configuration (7%, a*). We call this method DEM*. However, when applying DEM* to replace
or add to the loss functions of existing TTA and SSL algorithms, it requires a significant amount
of additional computational overhead to search the suitable hyperparameters. Although we do not
recommend this, if necessary, the way of introducing and searching for (7*, «*) in DEM* can also be
applied to AdaDEM, which is discussed in Appendix [D] We share our practical experience in tuning
7 and « for quick hyperparameter searching. For DEM, changes in the value of « have a greater
impact on the original algorithm than changes in the value of 7. This means that we can fix 7 = 1.0
and search for the optimal o*, then fix o* and search for the optimal 7*, thus obtaining a sub-optimal
hyperparameter combination. We also notice that the valid value of 7 in DEM is 0 < 7 < 2/, which
is considered to help determine the search scope of 7.

AdaDEM. To avoid the complications brought by hyperparameter search, we do not introduce 7
and  in AdaDEM, even though it is feasible, as discussed in Appendix [D] We uniformly use the
loss function in Eq. (I2)) to replace or add to existing TTA and SSL algorithms. Specifically, if the
original algorithms employ the Entropy Minimization loss as a part of the objective function, we

*https://github. com/microsoft/Semi-supervised-learning
Shttps://github.com/DLR-RM/rl-baselines3-zoo
Shttps://github.com/microsoft/nni
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Table 5: Detailed experimental results on single-domain TTA task. Top-1 accuracy (%) is reported. We
highlight the highest accuracy in bold and the second best as underline. A denotes the performance
improvement relative to the baselines.

Single-Domain TTA
Methods Noise Blur Weather Digital Mean A
Gauss Shot Impul | Defcs GIs Mtn Zm | Snw Frst Fg Brt | Cnt Els Px Jpg

NoAdapt | 29.1 296 31.6 | 312 251 393 315|246 302 543 645|484 342 525 551 |38.8:000 -

Tent" 542 548 554 | 56.6 54.0 60.8 342 | 38 9.6 709 765|694 59.5 70.0 67.2|53.1:065 +0.0
+ DEM* 517 519 533 | 548 512 587 508|147 443 699 77.0|68.5 573 69.0 66.8|56.0:032 +2.9
+AdaDEM | 572 582 581 | 589 602 655 633 ] 20 66.0 737 780|687 692 733 70.4 | 61.5:020 +84

Tent 516 520 53.1 | 523 47.6 56.6 46.7|102 29.7 672 742|672 509 665 64.3]|52.7:0.10 +0.0
+ DEM* 50.1 50.1 51.7 | 52.1 46.6 556 463|300 522 675 75.8|67.0 504 66.1 642551011 +2.4
+AdaDEM | 57.5 585 58.6 | 583 603 663 653|638 678 73.6 785|678 70.8 742 717 | 66.2:0.2 +13.5

ETA 562 S7.1 57.3 | 583 588 63.9 612|666 659 734 77.6|70.0 672 724 70.1]|65.1:010 +0.0
+ DEM#* 573 582 583 | 597 600 654 628|682 67.0 742 79.1|70.7 69.0 739 71.4|66.3:004 +1.2
+AdaDEM | 574 587 58.6 | 587 60.8 66.6 654 |69.9 684 742 786|680 713 74.1 71.6| 66.8:00: +1.7

EATA 552 559 565 | 540 549 619 588|619 603 71.6 754 |68.6 63.0 693 66.3]|622:014 +0.0
+ DEM* 562 567 569 | 556 585 63.6 63.1]67.1 649 713 767|656 682 71.7 693 | 64.4:030 +2.2
+AdaDEM | 569 579 58.0 | 575 58.8 63.8 63.8|68.0 663 727 77.0]|66.6 694 726 70.0 | 653011 +3.1

DeYO 533 544 543 | 551 551 619 550|643 63.1 71.7 772|672 658 71.5 68.4|62.6:03 +0.0
+ DEM* 564 572 574 | 59.1 588 643 598|673 668 741 79.3|70.7 679 73.8 70.9 | 65.6:005 +3.0
+AdaDEM | 53.6 547 547 | 545 562 62.1 544|632 635 717 77.1]675 652 71.7 689 | 62.6:0.00 +0.0

SAR 510 51.6 524 | 524 495 562 492|217 439 66.6 732|665 514 644 63.3]|542:007 +0.0
+ DEM* 51.1 51,1 528 | 534 485 56.4 489|548 56.7 678 757|674 529 663 64.0|579:004 +3.7
+AdaDEM | 56.6 57.8 57.6 | 585 60.0 64.1 622|684 665 733 789|669 69.0 741 71.5| 657007 +11.5

replace the classical EM with AdaDEM, such as Tent, ETA, EATA, DeYO, SAR, TPT, Ent. Min.,
VAT, MinEnt, and efc.. Otherwise, we add AdaDEM, calculated using only unlabeled samples, to
the original objective function, such as MixMatch, FixMatch, FreeMatch, AdvEnt, and etc.. Since
Entropy Maximization is applied in RL to encourage exploration, we replace the implementation of
conditional entropy in PPO with our AdaDEM while keeping the maximization strategy unchanged.

Test-Time Adaptation Methods. We compare with several TTA methods, including Tent [5], ETA
[8], EATA [8], DeYO [11], SAR [29], and TPT [30]. We use ResNet50 and ViT-B/16 pre-trained on
ImageNet-1K as the source models, except for using CLIP-RN50 and CLIP-ViT-B/16 for test-time
prompt tuning. We follow the original methods’ hyperparameter settings unless otherwise specified.

Semi-Supervised Learning Methods. We adopt VAT [3]], MixMatch [24]], FixMatch [23]], and
FreeMatch [22] implemented in USB [56] as the base algorithms. Meanwhile, we implement Ent.
Min. as a baseline. Ent. Min. calculates the cross-entropy loss for labeled samples and the entropy
minimization loss for unlabeled samples based on the work [[1], where EM is weighted by 0.3.
ViT-S/2-32px is applied for CIFAR and EuroSat, ViT-S/16-224px for Semi-Aves, ViT-B/16-96px
for STL-10, and ViT-T/2-32px for TissueMNIST. We follow the hyperparameter settings of these
methods unless otherwise specified.

Unsupervised Domain Adaptation Methods. We mainly follow the work [27] to implement
unsupervised domain adaptation in semantic segmentation. We use Deeplab-V2 [54] as the backbone.
We employ MinEnt [27] and AdvEnt [27] as baselines and follow the hyperparameter settings of the
original methods unless otherwise specified.

Reinforcement Learning Methods. We adopt Proximal Policy Optimization (PPO) [32]] as the
baseline. In PPO, Entropy Maximization is used as part of the objective function, which is weighted by
0.001 by default. We replace the calculation method of conditional entropy in PPO with our AdaDEM
while keeping the entropy-maximization strategy unchanged. We follow the hyperparameter setup
implemented in RL Baselines3 Zoo unless otherwise specified.

C More Experimental Results

C.1 Experiments on Single-Domain & Continual Test-Time Adaptation Tasks

For single-domain and continual TTA tasks, we compare with previous state-of-the-art (SOTA) TTA
methods, including Tent, ETA, EATA, DeYO, and SAR. We replace the classical EM loss function in
these methods with our proposed DEM* and AdaDEM. As shown in Tables[5]and [6] we employ the
ViT-B/16 pretrained on ImageNet-1K as the source model. Compared with the official Tent which
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Table 6: Detailed experimental results on continual TTA task. Top-1 accuracy (%) is reported. We
highlight the highest accuracy in bold and the second best as underline. A denotes the performance
improvement relative to the baselines.

Continual TTA
) Time i
Methods Noise Blur Weather Digital Mean A

Gauss Shot Impul | Defcs Gls Mtn Zm | Snw Frst Fg Brt | Cnt Els Px Jpg
NoAdapt 29.1 296 316 | 312 251 393 315|246 302 543 645|484 342 525 55.1 | 38.8:000 -

Tent" 494 542 563 | 469 48.1 56.7 520|557 61.0 682 772|645 528 68.1 67.5]|58.6:000 +0.0
+ DEM* 508 571 593 | 564 587 62.6 62.0| 659 662 72.0 76.6|66.6 66.5 714 69.1 | 64.1z005 +5.5
+AdaDEM | 549 592 60.1 | 533 569 61.7 586|633 653 709 77.6|643 61.7 713 693 | 63.2:006 +4.6

Tent 51.6 562 575 | 492 512 575 532|560 612 682 772|648 209 1.6 1.8 |485:x07m +0.0
+ DEM* 53.1 587 595 | 562 582 63.1 63.5|66.1 659 72.1 764 |66.6 673 71.7 69.1 | 64.5:0.14 +16.0
+AdaDEM | 547 59.7 604 | 559 58.1 62.6 615|655 664 723 77.1 665 649 71.7 69.5 | 64.4:00 +15.9

ETA 562 60.0 60.6 | 555 588 619 60.7|651 658 70.6 780|619 66.5 720 69.4 | 64.2:004 +0.0
+ DEM* 57.0 608 61.0 | 570 599 63.6 623|665 67.7 728 785|669 68.0 729 70.7| 657004 +1.5
+AdaDEM | 57.0 61.0 608 | 57.0 60.0 643 65.1|67.7 674 732 773|668 698 732 70.6 | 66.1z001 +1.9

EATA 552 589 598 | 56.7 588 63.1 614|659 675 726 786|655 665 722 71.2| 649008 +0.0
+ DEM* 563 603 60.7 | 574 600 642 629 | 67.6 68.6 738 789 | 68.5 684 733 71.6 | 66.2:007 +1.3
+AdaDEM | 57.0 60.7 603 | 572 60.3 654 66.1 | 693 685 73.6 779 |63.7 70.7 73.6 71.1 | 66.4:004 +1.5

DeYO 533 56.6 565 | 449 530 562 229|590 602 674 762|575 629 699 67.1|57.6:03 +0.0
+ DEM* 562 603 611 | 573 60.0 63.8 564|662 674 733 79.0 | 67.7 679 734 709 | 654012 +7.8
+AdaDEM | 51.5 545 553 | 50.7 532 57.0 509|579 60.8 645 756 |60.5 592 67.6 663 | 59.0:005 +1.4

SAR 51.0 542 552 | 505 525 56.5 528|508 414 66.7 755|642 529 651 656 |57.0005 +0.0
+ DEM* 514 571 589 | 536 546 60.1 563|623 650 699 783|672 61.1 70.6 70.1 | 62.4:003 +5.4
+AdaDEM | 544 585 586 | 534 575 612 59.0| 629 64.0 69.8 77.8 |63.1 644 713 688 | 63.0t005 +6.0

Table 7: Detailed experimental results on test-time prompt tuning task. Top-1 accuracy (%) is
reported. OOD Avg. is average accuracies on ImageNet variants, including -A, -V2., -R., and -S..

Methods \ ImageNet-1K ImageNet-A ImageNet-V2. ImageNet-R. ImageNet-S. \ Average A \ OOD Avg. A
CLIP-RN50
Zero-Shot 58.2:0.00 21.8:0.00 51.4=x0.00 56.2:0.00 33.4=x0.00 44.2:000 +0.0 | 40.7:000 +0.0
Ensemble 59.8=0.00 23.2+0.00 52.9=0.00 60.7=0.00 35.5=0.00 46.4:000 +2.2 | 43.1:000 +2.4
TPT 60.7x0.07 26.1x0.10 54.6+0.02 58.9=0.08 35.2+0.09 47.1x006 +2.9 | 43.7:005 +3.0
+ DEM* 61.3:0.09 25.5:0.07 55.0:0.10 59.7x0.12 35.6:0.08 47.4:004 +3.2 | 43.9:006 +3.2
+ AdaDEM 60.7:0.04 29.2:0.19 54.8:0.22 58.8+0.05 35.4:0.03 47.8:007 +3.6 | 44.5:000 +3.8
CoOp 63.3:0.00 23.1+0.00 55.4x0.00 56.6:0.00 34.7:0.00 46.6:000 +2.4 | 424000 +1.7
TPT (CoOp) 65.4+0.06 28.9:0.14 58.2:0.10 59.0+0.09 36.3:0.15 49.6:007 +5.4 | 45.6:007 +4.9
+ AdaDEM 65.60.05 31.3:0.10 58.5+0.22 59.3=0.10 36.3+0.11 50.2:006 +6.0 | 46.4:006 +5.7
CLIP-ViT-B/16

Zero-Shot 66.7+0.00 47.9x0.00 60.920.00 74.00.00 46.1:0.00 59.1x000 +0.0 | 57.2x000 +0.0
Ensemble 68.3:0.00 49.9:0.00 61.9:0.00 77.7+0.00 48.2:0.00 61.2:000 +2.1 | 59.4z000 +2.2
TPT 69.0=0.04 54.5x0.09 63.4+0.13 77.0<0.06 48.0:0.13 62.4:005 +3.3 | 60.7x006  +3.5
+ DEM* 68.920.03 54.8+0.09 63.5z0.11 77.1x0.08 47.9:0.06 62.5:006 +3.4 | 60.8z008 +3.6
+ AdaDEM 69.4=0.12 58.8+0.18 64.0=0.06 77.62021 48.6+0.05 63.7x005 +4.6 | 62.2+009 +5.0
CoOp 71.5:0.00 49.7:0.00 64.2:0.00 75.20.00 48.00.00 61.7:000 +2.6 | 59.3:000 +2.1
TPT (CoOp) 73.6+0.05 57.9:0.12 66.9+0.08 77.240.04 49.2+0.07 64.9:006 +5.8 | 62.8:006 +5.6
+ AdaDEM 73.7+0.07 60.3:0.11 66.9-0.19 77.9:0.14 49.3:0.07 65.6:002 +6.5 | 63.6:004 +6.4

applies SGD with momentum, our implemented Tent' utilizes vanilla SGD as the optimizer and
achieves better performance on both tasks. However, SGD with momentum has higher potential, and
applying DEM* and AdaDEM can bring higher performance gains. ETA, EATA, SAR, and DeYO
adopt sample-selection-based methods to screen high-confident test samples for model optimization.
These methods assign a higher weight to high-certainty test samples. This re-weighting approach
partially alleviates the reward collapse phenomenon in the classical EM. Nevertheless, there is still
room for improvement, which can be observed from the performance gains brought by DEM*.
EATA and SAR use the Fisher information of in-distribution samples from the source model and
the sharpness-aware optimizer respectively to stabilize the model’s optimization in the dynamically
changing environment. Our DEM* and AdaDEM can be directly applied to these prior-based methods
and achieve significant performance improvements.

C.2 Experiments on Test-Time Prompt Tuning Task

Test-time prompt tuning is an episodic TTA task. It focuses on optimizing the learnable text prompts
of the source model using a single test sample and making predictions for the current batch with
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Table 8: Detailed experimental results (a) on semi-supervised learning. Top-1 accuracy (%) is
reported. We highlight the highest accuracy in bold and the second best as underline. A denotes the
performance improvement relative to the baselines.

Methods CIFAR-10 CIFAR-100 Semi-Aves
ethods 25 400 Mean A 2 4 25 Mean 15~53 A
Ent. Min. 93.2:57  97.5:02  98.5:00 96419 +0.0 | 58.8:26  74.6:11 84402  72.6:05 +0.0 | 59907  +0.0
+ AdaDEM 95.7:06  97.4:01  98.5:00 97.2:02 +0.8 | 66.2:16 76.3:08 85.1:x00 75.8:03 43.2 | 61.0:02 +1.1
Vat (w/ Ent. Min.) 94.7:60  98.6:00  98.9:00 974120 +0.0 | 68.4:21 78.3z05  85.8:04  77.5:07  +0.0 | 61.0s04  +0.0

+ AdaDEM ‘ 97.8:02  98.7:01  98.8:00 98.5:01  +1.1 ‘ 70.8:05  79.2:11  86.3:04  78.8:07 +1.3 ‘ 61.8:00 +0.8

MixMatch 98.1:07  98.5:01  98.9:01  98.5:03 +0.0 | 62.8:07  73.6:06 84.9:02  73.8:04 +0.0 | 62.6:02 +0.0
+ AdaDEM 97.5:15  98.6:0.1 98.9:0.1 98.3:0.6 -0.2 64.1:07  74.6:02  85.7x02 T74.8:02 +1.0 | 62.5:0.1 -0.1
FixMatch 97.5:20  98.8:0.1 99.1:00  98.4:07  +0.0 | 69.9:17  80.6:06 87.2:02  79.3:06 +0.0 | 68.2:03  +0.0
+ AdaDEM 98404  98.7:00  99.1x00  98.7x02  +0.3 | 71.3:23  80.1x03  87.0:w02  79.5:09 +0.2 | 67.9:01 -0.3
FreeMatch 98.7=0.1 99.0z0.1 99.1x00  98.9:00 4+0.0 | 76.5:13  83.6:10  87.5:03  82.6:0.1 +0.0 | 67.0:03 +0.0
+ AdaDEM 98.8:02  99.0:00  99.1:00 99.0:01  +0.1 | 77.5:00 84.3:01 87.7:02 83.d:01  +0.5 | 67.3:02 403

Table 9: Detailed experimental results (b) on semi-supervised learning. Top-1 accuracy (%) is
reported. We highlight the highest accuracy in bold and the second best as underline. A denotes the
performance improvement relative to the baselines.

Methods STL-10 EuroSat TissueMNIST

ethods 10 Mean A 2 4 Mean A 10 50 Mean A
Ent. Min. 76.3:30  88.5:06 824:16  +0.0 | 66.6:57  86.4s2s 765136  +0.0 | 44.6137  50.0s7 47326  +0.0
+ AdaDEM 80.4:07  89.2:01  84.8:03 +2.4  76.4:x12  91.003  83.7x08 +7.2 | 46.8:19 51.8:07 49.3x13  +2.0

Vat (w/ Ent. Min) ‘ 81.6:18  89.3:06  85.4x09  +0.0 81.9:99  91.3:29  86.6:54  +0.0 ‘ 41.6:79  48.7x19  45.2x48  +0.0

+ AdaDEM 83.8:02  89.9:01  86.9:01  +1.5 90.3:x18  92.1x01  91.2:09 +4.6 | 48.0:13  50.8:01  49.4:06 +4.2
MixMatch 76. 731 89.2:11  829:x21  +0.0 ‘ 72056  86.6:72  79.3:43  +0.0 | 44.7:23  51.3:u8  48.0a17 +0.0
+ AdaDEM 80.2:0.1  90.2:01  85.2:01  +2.3 76402  91.4x49 83.9x24 +4.6 | 46.8:17  53.2:02  50.0:00 +2.0
FixMatch 84.0x26  93.1:05  88.5:2  +0.0 | 87.7:2  96.2:00  91.9:36  +0.0 | 44.6:45 48.8:21 467233 +0.0
+ AdaDEM 83.8:04  92.1x19  87.9:08 -0.6  96.0:10 97.8:04 96.9:07 +5.0 | 46.5:17  53.4:09 49.9:13  +3.2
FreeMatch 86.9:18  92.5:15 89.7:16  +0.0 ‘ 952:17  96.4:05  95.8:10  +0.0 | 42.8:46 483:20 45.6:33  +0.0
+ AdaDEM 89.6:07  93.7:03  91.6:02 +1.9  95.6:01  96.2:00 95.9:01  +0.1 | 46.3:00 49.6:08 47.9:04 423

the updated parameters. It emphasizes the ability to learn rapidly and adapt extremely well to a
single test sample, often employing aggressive optimization strategies such as more complex image
augmentation functions, larger learning rates, and more test-time adaptation steps. We adopt CLIP-
RN50 and CLIP-ViT-B/16 as the source models. As shown in the Table. [/}, CLIP models’ zero-shot
prediction and the experimental results based on a prompt ensemble method [53] are employed as
baselines. We compare with TPT, a widely used method for test-time prompt tuning, and CoOp,
a prompt-tuning method for supervised few-shot learning. We modify the loss function of TPT to
our proposed DEM* and AdaDEM. We find similar conclusions in other TTA tasks, that is, DEM*
and AdaDEM improve the optimization performance by addressing the potential limitations in the
classical EM. They enable the source model to adapt in aggressive optimization strategies with large
learning rates and multiple steps for TTA.

C.3 Experiments on Semi-Supervised Learning

Entropy Minimization is widely used in semi-supervised learning (SSL) tasks. A common prior
assumption for SSL is the low-density separation between classes. EM reduces the overlap of models’
output probability distribution by decreasing the conditional entropy of the data, causing the density of
data points to be lower at the decision boundary. To verify the effectiveness of our proposed AdaDEM
in SSL tasks, we conduct experiments on six common SSL benchmarks. The results are presented in
Table[8]and [0] For each benchmark, we set different numbers of available labeled samples N; per
class for training. Specifically, we set N; = 4/25/400 for CIFAR-10, N; = 2/4/25 for CIFAR-100,
N; = 4/10 for STL-10, N; = 2/4 for EuroSat, V; = 10/50 for TissueMNIST, and N; = 15 ~ 53
for Semi-Aves. We report the average top-1 classification accuracy under different numbers of
labeled samples. We replace the classical EM in Ent. Min. [1] and VAT (w/ Ent. Min.) [3] with
AdaDEM, and introduce AdaDEM as a part of the loss functions in MixMatch [24], FixMatch [23]],
and FreeMatch [22] which do not use Entropy Minimization. Through experiments, we demonstrate
that AdaDEM outperforms the classical EM. Meanwhile, incorporating AdaDEM into existing SSL
methods can effectively improve the performance of the original algorithms.
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Table 10: Detail experimental results on unsupervised domain adaptation in semantic segmentation.
The standard mloU is reported. We highlight the highest accuracy in bold and the second best as
underline. A denotes the performance improvement relative to the baselines.

N &

& &

y ¥ 8

Methods & T 35 mloU A

MinEnt 844 243 774 22.1 213 265 33.1 19.2 827 309 764 58.0 26.6 754 31.4 380 2.0 255 35.5|41.6:047 +0.0
78.8

+ AdaDEM | 85.5 22.6 214 24.6 272 344 19.6 825 28.8 78.0 585 285 80.1 34.4 41.2 1.8 245 38.1|42.7:013 +1.1

AdvEnt 89.1 254 814 26.7 25.6 29.4 32.8 22.5 83.8 35.1 77.5 579 288 84.3 30.3 41.8 0.9 29.3 26.0|43.6:0.19 +0.0
+ DEM* 89.0 322 809 28.3 254 284 33.7 209 84.1 356 77.8 58.8 29.1 83.6 34.7 41.3 1.6 29.1 32.6|44.6:032 +1.0
+AdaDEM | 889 304 812 27.9 27.0 28.7 34.0 21.0 84.1 354 78.6 59.1 29.8 84.4 364 42.6 1.6 28.0 33.4|44.9:017 +1.3
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Figure 7: Visualization of the pixel prediction results and pixel entropy of baselines and AdaDEM.

C.4 Experiments on Unsupervised Domain Adaptation

Another role of Entropy Minimization is to bridge the domain gap between the source training
distribution and the target test distribution. The classical EM pushes the decision boundaries of
DNNs towards the low-density regions of the target distribution. On the other hand, conditional
entropy is also a widely validated calibration tool for DNNs, which measures the prediction error and
distribution shifts to some extent. Vu et al. vu2019advent demonstrate that the semantic segmentation
model trained in the source distribution has high prediction entropy and blurred boundaries for objects
in out-of-distribution images. We verify the effectiveness of DEM* and AdaDEM in the semantic
segmentation task, and use MinEnt and AdvEnt [27] as baselines for comparison. The experimental
results are shown in Table We also visualize the segmentation results of the baselines and
AdaDEM, as shown in Fig.[/] The experimental results show that compared with the classical EM,
AdaDEM can effectively improve the accuracy of semantic segmentation, especially for tail classes,
and avoid DNNs’ tendency to predict dominant classes. At the same time, AdaDEM can effectively
reduce the prediction entropy of DNNs for image pixels, resulting in clearer object boundaries and
thus bridging the domain gap between the source and target distributions.

C.5 Experiments on Reinforcement Learning

For reinforcement learning, Entropy Minimization could increase the certainty of policies, thereby
limiting the exploration of agents. Therefore, reinforcement learning methods commonly use the
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Figure 8: The curves of average return with respect to timesteps in 9 environments of Minigrid for
Reinforcement Learning.

Entropy Maximization strategy to prevent premature convergence and encourage exploration. We aim
to prove that AdaDEM is not limited to the Entropy Minimization strategy and is also applicable to the
Entropy Maximization strategy in reinforcement learning. We adopt Proximal Policy Optimization
(PPO) as the baseline and compare the experimental results of adding the classical EM and our
AdaDEM to PPO, as shown in Fig. [§] We keep the Entropy Maximization strategy unchanged.
The experimental results demonstrate that replacing the classical EM with AdaDEM can effectively
improve or maintain a comparable performance of reinforcement learning methods.

D Additional Discussions

D.1 Effect of Temperature 7 in DEM*

As stated in Sec. [3.2] 7 controls the contribution of samples with different certainties to model
optimization by reshaping the reward curve. As shown in Fig. [3| (left), the larger the value of 7
is, the higher the reward given to high-confident samples than to low-confident ones, which makes
the model more inclined to learn high-confident samples. On the contrary, the lower the value of
T is, the more the model tends to learn low-confident samples. When DNNs classify all samples
accurately, a lower value of 7 promotes the model to rapidly improve the prediction probability of
samples and accelerate the model optimization. However, poorly calibrated DNNs often have very
low accuracy on out-of-distribution samples. In this case, a low value of 7 leads to incorrect model
optimization. Therefore, setting 7 to a value slightly larger than 1.0 enables DNNSs to stably and
effectively learn from data distributions with low certainty (distributions that deviate significantly
from the source training distribution). Additionally, as shown in Fig.|3|(center), we find that the best
value of 7 is positively correlated with the average prediction probability of DNNs for samples in a
specific distribution. That is, when the model has a higher average prediction accuracy for a certain
data distribution, increasing the value of 7 maximizes the efficiency of DNNs in learning this data
distribution within a limited optimization time.
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Table 11: Optimal hyperparameters (7*, o*) of DEM* applied to different methods on various tasks,
and the resulting performance improvement brought by DEM*.

Methods | Tent' (RN) +DEM* | Tent’ (ViT) +DEM#*| ETA  +DEM*| EATA +DEM*| DeYO +DEM*| SAR +DEM*

Single-Domain Test-Time Adaptation

[ 1.0 1.1 1.0 1.3 1.0 12 1.0 1.3 1.0 1.1 1.0 1.0
o 1.0 0.0 1.0 1.8 1.0 1.2 1.0 0.2 1.0 1.6 1.0 2.0
Acc. 40.0:003  41.8:005 53.1+065 56.0:032 | 65.1x0.10 66.3:004 | 62.2:0.14 64.4:030 | 62.6:032 65.6:0.03 | 54.2:007 57.9:0.04
A +0.0 +1.8 +0.0 +2.9 +0.0 +1.2 +0.0 +2.2 +0.0 +3.0 +0.0 +3.7
Continual Test-Time Adaptation
[ 1.0 1.4 1.0 0.8 1.0 1.1 1.0 1.3 1.0 0.9 1.0 1.0
o 1.0 1.4 1.0 1.0 1.0 1.2 1.0 1.2 1.0 1.4 1.0 1.8
Acc. 31.2:011 39.0:0.02 58.6:0.09 64.1:005 | 64.2:004 65.7:004 | 64.9:008 66.2:007 | 57.6:036 65.4z0.12 | 57.0:005 62.4:0.03
A +0.0 +7.8 +0.0 +5.5 +0.0 +1.5 +0.0 +1.3 +0.0 +7.8 +0.0 +5.4
Methods ‘ CLIP-RN50 TPT + DEM* ‘ CLIP-ViT-B/16 TPT + DEM*
Test-Time Prompt Tuning

[ - 1.0 1.0 1.0 0.8

o - 1.0 0.6 1.0 1.0
Acc. 44.2+0.00 47.1x006 47 4004 59.1:0.00 62.410.05 62.5:0.06

A +0.0 +2.9 +3.2 +0.0 +3.3 +3.4

D.2 Effect of Weight o in DEM*

In GMC, o suppresses the overfitting of DNNs to over-confident samples by scaling the penalty
on logits. As shown in Fig. [] (left), increasing the value of « causes DNNs to impose greater
penalties on samples with prediction probabilities approaching 1.0. For poorly calibrated DNNSs,
increasing the value of o reduces the disruption of over-confident samples to DNNs optimization.
For data distributions with high prediction accuracy, decreasing the value of o promotes rapid model
optimization and enhances the learning efficiency of high-confident samples. Therefore, a lower
value of « is suitable for the aggressive optimization strategy, while a higher value of « is suitable for
alleviating the catastrophic forgetting problem caused by DNNs overfitting. The ablation study in
Fig. ] (center) validates this point.

D.3 Optimal Hyperparameters (7*, o*) for DEM*

In Table we obtain the optimal hyperparameters (7*, «*) for different methods on various
tasks through hyperparameter search by the fast TPE algorithm. For test-time prompt tuning, we
employ well-calibrated CLIP models as the source models. It is suitable for leveraging an aggressive
optimization strategy to enable CLIP models to quickly learn the target data distribution. Therefore,
a lower value of 7 or « is optimal. We mainly use ViT-B/16 for TTA. Hence, for single-domain
TTA, a lower « and a higher 7 are suitable for the rapid optimization of ViT-B/16 and enhance the
contribution of high-confident samples to model optimization. For continual TTA, higher values of
7 and « prevent ViT-B/16 from overfitting to a Single static distribution and improve the model’s
adaptability in dynamically changing environments and its ability to resist catastrophic forgetting.

D.4 Ablation Studies of DEM and AdaDEM

In Tables [12] and we report the detailed ablation experiment results of DEM and AdaDEM,
respectively. Different from the official Tent [S]], which uses SGD with Momentum as the optimizer,
we employ vanilla SGD to verify the learning efficiency of TTA algorithms on real-time incoming
test samples, while avoiding the influence of historical gradients on the learning of current samples.
This implementation leads to better accuracies than the official Tent. In some cases, applying CADF
alone improves the performance of DNNs on the single-domain TTA task. However, CADF suffers
from catastrophic forgetting in dynamically changing environments. Therefore, DEM* searches the
optimal hyperparameters (7%, &*) to stabilize the model optimization process and enhance the model’s
learning efficiency for the target distribution. AdaDEM-Norm solves the reward collapse phenomenon
in the classical EM by introducing 4§, the L1-norm of the reward brought from CADF. It improves
the performance of Tent. Meanwhile, AdaDEM-MEC uses the estimated prior label distribution in
the marginal entropy calibrator to alleviate the model’s overfitting to dominant classes, resulting
in performance improvement on continual tasks. AdaDEM comprehensively utilizes AdaDEM-
Norm and AdaDEM-MEC as alternatives to the classical EM and DEM. It avoids the additional
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Table 12: Detailed ablation studies of DEM and AdaDEM in the single-domain TTA task. We
highlight the highest accuracy in bold and the second best as underline. A denotes the performance
improvement relative to the baselines.

Single-Domain TTA

Methods Noise Blur Weather Digital Mean A
Gauss Shot Impul | Defcs Gls Mtn Zm | Snw Frst Fg  Brt | Cnt Els  Px Jpg
ResNet50
NoAdapt 153 159 158 | 151 152 264 389343 33.1 48.1 652|168 441 488 39.6 | 31.5:000 -
EM (Tent) 248 263 258 | 244 237 369 469|439 394 556 66.8|26.7 52.1 56.5 49.7|40.0:003 +0.0
CADF 283 292 293 | 272 265 40.6 485|468 409 567 66.0 |22.8 54.1 57.6 51.5|41.7:005 +1.7
DEM* 283 292 293 | 27.1 265 40.7 485|468 410 568 66.0|23.2 542 57.6 51.5|41.8:005 +1.8

AdaDEM-Norm | 30.5 327 320 | 29.6 285 44.0 50.7 | 492 41.0 58.6 67.6 | 22.1 56.4 59.7 53.6 | 43.7:0.10 +3.7
AdaDEM-MEC | 31.7 342 331 | 303 29.6 44.8 50.0|49.5 41.8 579 66.0 |30.0 55.6 58.6 53.0|44.4=004 +4.4

AdaDEM 318 339 330 | 306 30.0 44.0 503|493 428 58.0 66.2 | 342 55.7 58.7 53.0 | 44.8:005 +4.8
ViT-B/16

NoAdapt 29.1 296 31.6 | 312 251 393 315|246 302 543 645|484 342 525 551388000 -

EM (Tent) 542 548 554 | 56.6 540 60.8 342| 38 9.6 709 765|694 595 70.0 67.2|53.1:06 +0.0

CADF 501 506 51.6 | 490 443 550 46.1| 6.6 150 642 72.8|653 33.0 634 616 |48.6:042 -4.5

DEM#* 517 519 533 | 548 512 587 508|147 443 699 77.0 | 685 57.3 69.0 66.8 |56.0:032 +2.9

AdaDEM-Norm | 543 552 556 | 565 542 61.1 41.0| 37 134 712 764|693 60.5 703 67.4 |54.0:045 +0.9
AdaDEM-MEC | 560 57.1 57.0 | 414 59.1 64.1 612 27 625 734 77.0|502 679 71.9 69.7|58.1s025 +5.0
AdaDEM 572 582 58.1 | 589 60.2 655 633| 2.0 66.0 73.7 78.0 |68.7 69.2 73.3 70.4 | 61.5:020 +8.4

Table 13: Detailed ablation studies of DEM and AdaDEM in the continual TTA task. We highlight the
highest accuracy in bold and the second best as underline. A denotes the performance improvement
relative to the baselines.

Continual TTA
Time
Methods Noise Blur Weather Digital Mean A
Gauss Shot Impul | Defcs Gls Mtn Zm | Snw Frst Fg Brt | Cnt Els Px Jpg
ResNet50
NoAdapt 153 159 158 | 151 152 264 389|343 33.1 48.1 652|168 441 488 39.6|31.5:000 -
EM (Tent) 248 329 327 | 242 259 302 37.7|302 283 364 49.2|17.7 325 353 30.0|31.2:11 +0.0
CADF 18.1 242 266 | 226 257 338 44.1|369 364 472 599|263 47.1 493 438 |36.1:003 +4.9
DEM* 187 262 289 | 239 269 365 456|398 39.5 498 062.8|32.8 49.6 54.0 49.3 | 39.0:002 +7.8

AdaDEM-Norm | 18.9 252 27.1 | 22.6 25.6 343 44.6|38.0 37.9 487 622|284 493 52.8 474 |37.5:05 +6.3
AdaDEM-MEC | 20.5 280 295 | 23.5 27.0 342 438|369 37.0 472 60.5|27.8 485 51.5 465 |37.5:0 +6.3

AdaDEM 205 283 29.9 | 238 27.5 345 440|369 369 474 603|287 48.6 515 467 |37.7s005 +6.5
ViT-B/16

NoAdapt 291 296 316 | 312 251 393 31.5|24.6 302 543 645|484 342 525 55.1|38.8:000 -

EM (Tent) 494 542 563 | 469 48.1 567 520|557 61.0 682 772|645 528 68.1 67.5|58.6:0 +0.0

CADF 50.1 548 568 | 532 574 619 60.1|649 664 715 77.0|66.7 640 70.7 68.9 | 63.0:01 +4.4

DEM* 50.8 57.1 59.3 | 564 587 62.6 62.0|659 662 72.0 766|666 665 714 69.1 | 64.1:005 +5.5

AdaDEM-Norm | 48.9 544 565 | 47.7 495 574 53.1|58.1 620 685 773|651 552 684 67.9 |593:004 +0.7
AdaDEM-MEC | 544 58.0 58.7 | 52.7 555 60.6 572|624 641 70.1 77.7|652 599 70.7 688 | 624014 +3.8
AdaDEM 549 592 60.1 | 533 569 61.7 58.6|633 653 709 77.6|643 61.7 71.3 69.3 | 63.2:016 +4.6

computational overhead caused by hyperparameter search and achieves the best performance on both
single-domain and continual tasks.

D.5 Sensitivity of AdaDEM to Optimizers and Learning Rates

Setting different learning rates for the optimizer leads to different learning efficiencies of the model
on unlabeled samples. A larger learning rate corresponds to an aggressive optimization strategy,
which can effectively promote the model’s learning of limited online samples, improving the speed at
which DNNs adapt to the target distributions. But it may also cause the model to easily overfit to
a single data distribution, resulting in the catastrophic forgetting problem. A smaller learning rate
adopts a more conservative optimization approach, accelerating the model’s adaptation to the target
distribution while ensuring that the performance of DNNs does not degrade significantly. As shown
in Fig. E], we compare the sensitivities of the classical EM, AdaDEM-Norm, AdaDEM-MEC, and
AdaDEM to different learning rates. Existing TTA algorithms, especially Tent, which simply uses
the classical EM to optimize DNNSs, are susceptible to the settings of the optimizer and learning
rate, making it necessary to carefully adjust the optimization strategy. However, we demonstrate that
AdaDEM normalizes the contributions of samples with different certainties to model optimization
and introduces the estimated prior label distribution as a regularizer. It alleviates the model’s tendency
to optimize low-confident samples and the overwhelming influence of dominate classes. Therefore,
the sensitivity of AdaDEM to the learning rate is significantly lower than that of the classical EM.
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Figure 9: Comparison of the sensitivity to the learning rate among the classical EM, AdaDEM-Norm,
AdaDEM-MEC, and AdaDEM for single-domain and continual TTA tasks.

Table 14: Ablation study on the role of §. We compare two methods for computing: § derived from
the reward brought from CADF, and §,, derived from the reward brought from overall conditional
entropy. AdaDEM and AdaDEM-V denote the approaches using ¢ and §,, as reweighting factors.

LR Single-Domain TTA LR Continual TTA
Classical EM AdaDEM AdaDEM-V Classical EM AdaDEM AdaDEM-V
0.0001 40.5 39.7 39.9 0.0001 447 42.6 42.7
0.00025 42.2 40.8 41.0 0.00025 48.2 43.8 31.2
0.0005 44.1 42.1 394 0.0005 51.0 48.3 26.0
0.001 46.5 441 37.7 0.001 53.8 51.7 10.8
0.0025 49.8 47.6 29.2 0.0025 57.0 55.7 3.8
0.005 51.5 50.9 14.6 0.005 58.6 58.0 1.5
0.01 52.5 53.8 6.3 0.01 49.1 60.1 0.7
0.025 53.1 57.2 2.2 0.025 6.2 62.5 0.3
0.05 48.3 59.5 1.2 0.05 2.3 63.2 0.2
0.1 41.9 61.5 0.7 0.1 1.1 41.6 0.2

D.6 Ablation Study on the Role of § in AdaDEM

In Sec. the parameter 0 is introduced to reweight the conditional entropy H(z) in AdaDEM.
d is defined as the L1-norm of the reward brought from CADF (i.e., § = || — 0T(z|z,0)/0z]1).
which quantifies the extent of changes in the model’s output logits before and after EM optimization.
Another common reweighting method uses the L1-norm of the reward from the overall loss function
as the reweighting factor, specifically employing the partial derivative of the conditional entropy
H (z) with respect to the logits z, i.e., §, = || — OH(z|z,0)/0z||;. We compare these two methods
for constructing AdaDEM using ¢ and d,, respectively. Experimental results in Table [T4] demonstrate
that employing §,, leads to degraded performance and robustness, whereas J must be computed
from CADF gradients. Since 4, incorporates gradients from the overall loss function, it risks
introducing penalties from components such as GMC or MEC into the normalization process. This
may undermine the targeted mitigation of reward collapse by diluting CADF-specific rewards and
altering optimization dynamics, such as misaligning sample contributions or impairing robustness in
noisy or dynamic environments.

D.7 Impact of Adding o to Scale MEC in AdaDEM

Similar to introducing « in the GMC of DEM to scale the penalty on logits as mentioned in Sec. 3.2}
we can also introduce an « in AdaDEM to scale the effect of MEC. We conduct an ablation study on
adding o to AdaDEM for single and continual TTA tasks, as shown in Fig.[I0] The results indicate
that AdaDEM-Norm is less sensitive to the value of o than AdaDEM-MEC. Meanwhile, changing
the value of « also improves the performance of AdaDEM, but additional computational overhead is
required to determine an appropriate value for a.
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Figure 11: Ablation study of different Ln-norm types to normalize the reward brought from CADF.

D.8 Impact of Different Norm Types on AdaDEM

As stated in Sec. [3.3] we default to using the L1-norm of the reward brought from CADEF, i.e.,
§ = ||0T/dz||1, to normalize the loss of an individual sample. In Fig.[11} we compare applying
L1-norm, L2-norm, and Loo-norm as criteria for measuring the reward of CADF on logits, which are
then used to normalize the loss function. The results show that the impact of different norm types
on AdaDEM-Norm is negligible. However, the L1-norm achieves better performance for AdaDEM
compared to the other two methods. The reason is that the L1-norm directly measures the Manhattan
distance of the logits predicted by the model for a sample before and after EM optimization.

D.9 Impact of Different 7 on AdaDEM

As stated in Sec. [3.3] we use the exponential moving average of the marginal entropy predicted
by the model for each class as the estimated prior label distribution. Further, we can change the
momentum 7 in the moving average equation, i.e., ﬁ}; =(1-mn)- )32_1 + 7 - pg, to alter the follow-up
ability of the estimated label distribution to the model’s prediction probability. Specifically, we set
7 = 1.0, 0.1, and 0.01 for the ablation study, as shown in Fig. When © = 1.0, MEC uses the
marginal entropy estimated for the samples in the current batch as the regularizer. When 7 approaches
0.0, the update of the estimated label distribution becomes slow. The experimental results show
that in the single-domain task, m = 0.1 is suitable for AdaDEM and AdaDEM-MEC. However, for
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Figure 12: Ablation study of different 7 to estimate prior label distribution for MEC.

Table 15: Imbalance study on Classical EM and AdaDEM. Top-1 classification accuracy (%) is
reported. p denotes the sample ratio between the most and least populous classes. A represents the
accuracy improvement of AdaDEM over Classical EM.

CIFAR-10-LT CIFAR-100-LT

Methods | ) _ 100 p=500 p=1000 | Methods p=10 p=100 p=500
Classical EM | 854 83.9 82.1 Classical EM | 60.0 58.6 57.6
AdaDEM 91.4 90.7 88.6 AdaDEM 66.2 64.4 64.1
A +6.0 +6.8 +6.5 A +6.2 +5.8 +6.5

EuroSat-LT TissueMNIST-LT

Methods 1 ) _ 100 p=500 p=1000 | Methods 1 100 ,=500 p=1000
Classical EM | 67.1 65.7 63.4 Classical EM |  47.8 474 468
AdaDEM 76.6 74.8 73.6 AdaDEM 496 487 48.4
A +9.5 +9.1 +10.2 A +1.8 +1.3 +1.6

continual tasks, a smaller value of 7 improves the performance of the algorithms for both AdaDEM
and AdaDEM-MEC.

D.10 Ablation Study on Imbalanced Benchmarks

Table |L5| presents experimental results on CIFAR-10-LT, CIFAR-100-LT, EuroSat-LT, and
TissueMNIST-LT. In addition to CIFAR-LT, we employ EuroSat-LT (focusing on land use and
land cover classification) and TissueMNIST-LT (targeting biomedical scenarios and tissue type
classification). We vary the configuration of p (the sample ratio between the most and least populous
classes). A larger p indicates greater skewness in class sample sizes and higher imbalance severity.
Results in Table[T3] along with Fig.[5]in the manuscript, demonstrate that AdaDEM more effectively
mitigates easy-class bias and further improves accuracy compared to the classical EM across tasks
with varying degrees of imbalance.

E Broader Impacts

This paper aims to improve the widely-used classical Entropy Minimization method in the machine
learning community. Our proposed method achieves credible performance across multiple machine
learning tasks, including semi-supervised and unsupervised learning, domain adaptation, and rein-
forcement learning, thereby directly facilitating real-world applications of self-supervised entropy
minimization strategies. Our work involves no human subjects and complies with legal requirements,
with no anticipated harmful consequences. Through this study, we seek to enhance research and
societal awareness regarding imperfectly supervised machine learning and deep learning systems.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The main claims can be found in the abstract and Sec.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this paper in Sec.[3]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We present the theoretical results and corresponding proofs in Appendix [A.2]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We elaborate on benchmarks, experimental setups, implementation details,
and hyperparameter choices in Sec.d.T]and Appendix [B] We also provide the source code
via an anonymous link in Sec.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the source code via an anonymous link in Sec. [I]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify all the training and test details in Sec.[d.T|and Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report error bars for experiments in Sec. 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We specify the compute resources in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss society impacts of the work performed in Sec. [E]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve the release of any high-risk data or models for
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in this paper are properly
credited and mentioned.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We communicate the details of the source code as part of our submission via
structured templates via an synonymous link in Sec. [T}

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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