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Abstract. Accurate segmentation of infarcted myocardium and microvas-
cular obstruction (MVO) in late gadolinium enhancement (LGE) car-
diac magnetic resonance (CMR) imaging is critical for risk assessment
in myocardial infarction patients. However, the task is challenging due
to anisotropic CMR resolution, complex enhancement patterns, and se-
vere class imbalance. In this work, we propose a cascaded deep learning
framework that combines a 2D slice-wise segmentation network with a
3D correction network to provide enhanced voxel-wise uncertainty es-
timation. We introduce a novel uncertainty estimation approach that
leverages disagreement between the 2D and 3D models as a proxy for
segmentation uncertainty. We quantify this via a Soft Correction Score
(SCS), based on probabilistic discrepancies, and a Discrete Correction
Map (DCM), which encodes interpretable label corrections between net-
works. We evaluate our framework on the publicly available EMIDEC
dataset and on a large in-house clinical dataset. Across both datasets,
our framework achieves superior segmentation accuracy and provides
uncertainty estimates comparable to established methods such as Monte
Carlo Dropout, test-time augmentation, and deep ensembles. The pro-
posed uncertainty measures correlate strongly with prediction errors and
offer interpretable insights into ambiguous regions, enhancing both the
reliability and clinical utility of automated LGE CMR analysis.
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1 Introduction

Cardiovascular diseases remain the leading cause of mortality worldwide [12,17],
with myocardial infarction being a primary contributor. Accurate characteriza-
tion of infarcted myocardium and microvascular obstruction (MVO) using late
gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) imaging has
shown to be critical for risk stratification and clinical decision-making [7,3,2].
However, manual annotation of LGE images is time-consuming and prone to
inter-observer variability, which has driven the development of automated seg-
mentation methods.
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Recent advances in artificial intelligence (AI) have significantly improved
automatic segmentation of LGE CMR images [10,6,8,15,9]. Nonetheless, the
segmentation of infarcted tissue and MVO remains challenging due to several
factors. First, LGE images typically exhibit high anisotropy, with slice thick-
ness being roughly seven times greater than the in-plane resolution. Second, the
spatial distribution of enhancement is often complex, lacking sharp boundaries
between healthy and infarcted tissue, which introduces ambiguity. Third, MVO
regions are extremely underrepresented, appearing in only approximately 50%
to 60% of cases [11] and typically cover less than 10% of the myocardial volume,
leading to severe class imbalance.

For clinical deployment, segmentation methods must address these LGE
CMR specific challenges and additionally provide uncertainty estimates in re-
gions prone to ambiguity. In prior work, we introduced a cascaded segmentation
framework that combines a 2D convolutional neural network (CNN) for per-slice
segmentation with a 3D CNN for volumetric refinement [16]. While this archi-
tecture effectively addresses key challenges in LGE CMR segmentation, such as
anisotropic resolution and complex enhancement patterns, we build upon this
established framework to introduce a novel method for uncertainty estimation.
While several strategies have been proposed to quantify segmentation uncer-
tainty, including approximate Bayesian inference via Monte Carlo (MC) Dropout
[1], deep ensembles [4], or test-time augmentation [18], in this work we exploit
the disagreement between the 2D and 3D networks as a proxy for uncertainty. We
formalize this intuition and introduce a voxel-wise uncertainty measure which
we call Soft Correction Score. Additionally, we introduce an interpretable Dis-
crete Correction Map built to localize clinically relevant misclassifications. We
validate our approach on two LGE CMR datasets and demonstrate robust seg-
mentation performance and reliable uncertainty estimation compared to other
state-of-the-art uncertainty quantification methods.

2 Method

Our framework comprises three stages: An initial 2D segmentation network, a 3D
correction network and a hybrid uncertainty estimation strategy that combines
model disagreement with test-time ensemble variance.

2.1 2D Slice-Wise Segmentation

The first stage of the cascade consists of a 2D U-Net [13] trained on individual
CMR slices. This network produces initial predictions for all target classes (blood
pool, healthy myocardium, infarcted tissue, and MVO) on a per-slice basis. To
ensure robustness and generalization, we apply data augmentation including
geometric and intensity-based transformations. Preprocessing steps are minimal,
involving center cropping around the left ventricle and per-image normalization.
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2.2 3D Contextual Correction Network

The second stage refines the 2D predictions using a 3D U-Net, which takes the
original volumetric LGE data and the 2D-generated segmentation maps for in-
farction and MVO as input. This network leverages inter-slice context to correct
typical 2D segmentation errors that arise from the absence of 3D spatial infor-
mation. To train the 3D network effectively, we employ a perturbation module
that injects synthetic errors into the 2D segmentation maps. These perturbations
simulate realistic error patterns, such as missing or incomplete annotations in
individual slices, and encourage the 3D network to learn consistent volumetric
corrections. The design ensures that the 3D network does not simply copy 2D
predictions, especially by excluding blood pool and healthy myocardium masks
from the 2D inputs. For full architectural and training details, we refer the reader
to [16].

2.3 Uncertainty Estimation

To enable voxel-wise uncertainty estimation utilizing the cascaded segmentation
architecture, we introduce two complementary strategies that capture the dis-
agreement between the 2D and 3D networks. These methods quantify how much
the 3D contextual correction network alters the initial 2D predictions, under the
assumption that strong corrections indicate low confidence.

Soft Correction Score

As a first uncertainty measure we introduce a Soft Correction Score (SCS), which
captures the magnitude of change between the softmax probabilities predicted by
the 2D and 3D models across multiple folds and stochastic passes via test-time
augmentation. Let Pyp, Pyp € RFXCXHXWXD denote the probabilistic outputs
of the 2D and 3D networks across F' runs, for C classes and a volume of shape
H x W x D. We define the voxel-wise Soft Correction Score SCS € RIXWXD 55

scs_f (CZ’P(f’C) fc)). (1)

This score quantifies how much the 3D model modifies the 2D probability
distributions, averaged over all predictions and classes. Larger values indicate
greater model disagreement and hence higher uncertainty.

Correction Map for Structured Uncertainty

In addition, we compute a Discrete Correction Map (DCM) that captures struc-
tured disagreements between the 2D and 3D networks using aggregated predic-
tions across folds. This map identifies and encodes correction patterns made by
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the 3D network relative to the 2D network, with the goal of providing inter-
pretable insights into model uncertainty that could ultimately assist clinicians
in daily practice. Given 5-fold predictions from both the 2D and 3D networks,
we compute the mean of the softmax outputs at each voxel and then apply the
arg max function to obtain segmentation volumes from both networks, denoted
as Sop and Szp € {0,...CYH*WXD_ The Discrete Correction Map (DCM) is
then defined by comparing these volumes voxel-wise. Specifically, for each pixel
T we set

DCM($): SQD(I)~C+53D($), lf SQD(I)#S:;D(I) ’
0, it Sop(z) = Ssp(x)

where C' is the total number of segmentation classes. In this way, each specific
class transition corresponds to a unique correction label in the Discrete Cor-
rection Map and reflects the models’ disagreement between two classes, such
as uncertainty between myocardial scar and healthy myocardium. To improve
interpretability and robustness, we apply connected component analysis [14] to
each correction pattern and filter out small, isolated components by enforcing a
minimum region size threshold of 10 pixels. This ensures that only meaningful,
spatially coherent corrections are retained in the final correction map.

3 Experiments

3.1 Datasets

We evaluated our method on the publicly available EMIDEC dataset [5] and
on an in-house dataset acquired at the University Clinic of Radiology, Inns-
bruck. The EMIDEC dataset consists of 100 LGE CMR scans, including both
healthy subjects (1/3) and patients with myocardial infarction (2/3). The in-
house dataset consists of 442 clinically acquired LGE CMR scans from patients
diagnosed with ST-segment elevation myocardial infarction. For both datasets,
manual ground truth annotations were provided, including segmentation masks
for the left ventricular blood pool, healthy myocardium, myocardial scar, and
MVO, following standardized clinical guidelines.

To evaluate segmentation performance and uncertainty quantification, we
withheld a total of 60 scans (20 from EMIDEC and 40 from the in-house dataset)
as test datasets. The remaining data were used for training.

3.2 Implementation Details

All models were implemented in PyTorch and trained on NVIDIA A40 GPUs
using stochastic gradient descent with Nesterov momentum (@ = 0.99). The
2D and 3D U-Nets were trained sequentially with batch sizes of 16 and 4, re-
spectively, using Dice loss as the objective function. Model training followed a
5-fold cross-validation scheme and all models were trained for 750 epochs. Un-
certainty estimation was performed using the ensemble of 5 models trained on
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the different cross-validation folds. Additionally, test-time augmentation involv-
ing flipping along the horizontal and vertical axes was applied to each model in
the ensemble.

3.3 Reference Methods for Uncertainty Quantification

We evaluated our disagreement-based uncertainty estimation against several un-
certainty quantification strategies used in medical image segmentation:

— MC Dropout [1]: We applied dropout layers (p = 0.1) during inference with
10 stochastic forward passes and computed the voxel-wise variance from the
resulting class probabilities to obtain an uncertainty map.

— Test-Time Augmentation (TTA) [18]: We generated predictions over 3
augmented variants of the input by flipping the volume along horizontal and
vertical axes, and computed voxel-wise variance of the softmax outputs as
the uncertainty score.

— Deep Ensembles [4]: We trained an ensemble of 5 independently initialized
models, each on a different fold of the data. The variance across the ensemble
outputs served as an uncertainty estimate.

— Deep Ensembles + TTA: We applied TTA to each model in the deep
ensemble. We then computed the voxel-wise variance across all augmented
ensemble outputs to produce a more robust and comprehensive uncertainty
estimate.

3.4 Results
Uncertainty Evaluation

To evaluate the performance of our method in terms of both segmentation accu-
racy and uncertainty estimation, we used several standard metrics. Segmentation
accuracy was quantified using the Dice similarity coefficient (DCS), reported as
mean Dice coefficient across all classes and patients. For uncertainty estima-
tion, we assess the quality of the predicted uncertainty maps by measuring how
well they correlate with actual prediction errors. Specifically, we report the Area
Under the Receiver Operating Characteristic Curve (AUC), which reflects how
well uncertainty values can discriminate between correct and incorrect predic-
tions. Additionally, we computed Pearson and Spearman correlation coefficients
between voxel-wise uncertainty scores and absolute segmentation errors to mea-
sure the consistency and monotonicity of their relationship.

Visual examples of segmentation results alongside the corresponding uncer-
tainty heatmaps generated by our Soft Correction Score are shown in Figure 1.
All together, the cascaded segmentation pipeline in combination with the pro-
posed Soft Correction Score demonstrated strong performance in both segmen-
tation accuracy and uncertainty estimation. On the EMIDEC dataset (Table 1),
the error correcting 3D network was able to improve the mean Dice score over all
classes compared to the 2D baseline methods. Further, AUC (0.85) achieved by
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Fig. 1. Examples of segmentation of our framework compared to ground truth and
corresponding heatmap using the proposed Soft Correction Score. High uncertainty is
observed at class boundaries and in regions with challenging scar and MVO patterns.

the proposed method was comparable to ensemble-based and TTA approaches.
Additionally, our method yielded slightly higher Pearson correlation (0.40), indi-
cating a more consistent relationship between uncertainty estimates and voxel-
wise prediction errors.

Table 1. Segmentation and uncertainty estimation results on the EMIDEC dataset for
different metrics. All scores are reported as mean + standard deviation across patients.
Best values are marked in bold, second-best are underlined.

Method DCS (%) AUC Spearman Pearson

MC Dropout (2D) 71.24+10.7 0.82+0.07 0.39£0.07 0.37+=0.06
TTA (2D) 709+122 085+0.03 042£0.05 0.33+0.09
Ensemble (2D) 71.8+11.3 0.86+0.03 0.434+0.04 0.39 4 0.06
TTA+Ensemble (2D) 73.4+11.2 0.86 +£0.03 0.44 4 0.03 0.39 £ 0.06

Cascade+SCS (Ours) 76.0 £11.1 0.854+0.03 0.394+0.04 0.40+0.07
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Table 2. Segmentation and uncertainty estimation results on the in-house dataset.
All scores are reported as mean + standard deviation across patients. Best values are
marked in bold, second-best are underlined.

Method DCS (%) AUC Spearman Pearson
MC Dropout (2D) 71.44+£103 082+0.12 0.33£0.12 0.39+0.12
TTA (2D) 78.6 £ 9.6 0.83+£0.12 0.32+£0.13 0.31+£0.12
Ensemble (2D U-Net) 80.2 + 8.8 0.86 +0.09 0.36 +0.11 0.36 +£0.14
TTA-+Ensemble (2D) 79.14+9.2 0.86 +£0.08 0.35£0.10 0.36+0.14
Cascade+SCS (Ours) 82.4+84 0.884+0.03 0.35+0.06 0.40+ 0.08

A similar trend was observed on the in-house dataset (Table 2), where our
correction-based method yielded the best segmentation results (82.4%) and the
highest AUC (0.88) among all evaluated methods. This indicates that incorpo-
rating 3D contextual corrections not only improves segmentation quality but
also can serve as a very reliable signal for identifying uncertainty in error-prone
regions.

Qualitative Analysis

To further explore model uncertainty and error modes, we visualize the Discrete
Correction Maps introduced in Section 2.3. These maps highlight structured
disagreements between the 2D and 3D networks, offering interpretable insights
into where and how the 3D model systematically alters initial 2D predictions.
Each non-zero entry represents a specific class transition, thereby distinguish-
ing the two principal classes of uncertainty and connected component filtering
ensures that the map highlights only spatially coherent and clinically relevant
corrections. As illustrated in Figure 2 the structures displayed in the correc-
tion maps correspond with anatomically plausible regions of inherent ambiguity.
Representative cases include boundary regions between myocardial scar tissue
and adjacent structures such as the left ventricular blood pool or epicardial fat,
where signal intensity contrast is inherently low (see Figure 2, first and second
line). Another common source of ambiguity arises at the interface between vi-
able myocardium and MVO, particularly when complex LGE patterns lead to
overlapping intensity distributions between the two tissues (see Figure 2, third
line).

Because the Discrete Correction Map localizes clinically relevant misclassi-
fications, it can also guide targeted refinements of the pipeline. The prevalence
of border corrections around scar tissue, for example, suggests augmenting the
training data with additional boundary cases. Likewise, displaying maps dur-
ing manual ground truth annotation could alert experts to regions that warrant
particular care.
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Fig. 2. Discrete Correction Map produced by the 3D contextual model. Voxels in color
indicate connected components of class labels that were changed with respect to the
2D baseline.

3.5 Limitations and Future Work

Despite the strong performance of our method in uncertainty-aware segmenta-
tion, several limitations remain. First, our approach leverages 3D spatial context,
whereas the baseline uncertainty quantification methods operate on 2D archi-
tectures. Consequently, some of the observed performance improvements may
arise from differences in model capacity rather than the uncertainty estimation
strategy itself. A fairer comparison using 3D U-Net backbones with state-of-the-
art uncertainty quantification methods is planned for future work. Additionally,
our current framework is designed as a two-stage pipeline involving an explicit
correction model, which may constrain its applicability to end-to-end or single-
model segmentation systems. Generalizing our approach to broader segmentation
and classification architectures could be a promising direction. Finally, while we
report high correlations between uncertainty scores and segmentation errors,
comparing different methods remains challenging due to their distinct under-
lying assumptions. Further work is needed to examine the interpretability and
calibration of the used uncertainty evaluation metrics.
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4 Conclusion

We proposed a cascaded segmentation framework for LGE cardiac MR images
that integrates voxel-wise uncertainty estimation through model disagreement.
By combining a 2D slice-wise network with a 3D contextual correction network,
our method addresses key challenges in LGE segmentation, including anisotropic
resolution and ambiguous tissue boundaries. To quantify uncertainty, we intro-
duced a Soft Correction Score and a Discrete Correction Map, which capture
both probabilistic and structured disagreements between models. These mea-
sures correlate strongly with prediction errors and highlight clinically relevant
regions of ambiguity. Our approach outperforms standard uncertainty methods
across two datasets, achieving high segmentation accuracy and interpretable
uncertainty estimates. Overall, our method enhances both the reliability and
transparency of infarct and MVO segmentation, bringing it closer to practical
clinical use.
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