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ABSTRACT

Mixture models are universal approximators of smooth densities but are difficult
to utilize in complicated datasets due to restrictions on typically available modes
and challenges with initialiations. We show that by continuously parameterizing a
mixture of factor analyzers using a learned ordinary differential equation, we can
improve the fit of mixture models over direct methods. Once trained, the mixture
components can be extracted and the neural ODE can be discarded, leaving us with
an effective, but low-resource model. We additionally explore the use of a training
curriculum from an easy-to-model latent space extracted from a normalizing flow
to the more complex input space and show that the smooth curriculum helps to
stabilize and improve results with and without the continuous parameterization.
Finally, we introduce a hierarchical version of the model to enable more flexible,
robust classification and clustering, and show substantial improvements against
traditional parameterizations of GMMs.

1 INTRODUCTION

Mixture models have long served as reliable tools for both modeling (density estimation) and
summarizing (cluster analysis) datasets. Through their probabilistic nature, mixture models provide
an estimate of the underlying data distribution; through a parsimonious collection of components,
mixture models succinctly summarize the major patterns found in a dataset. Gaussian mixture models
(GMMs), which provide a universal approximation for smooth densities (20), have been effectively
deployed for modeling and clustering in a wide range of applications (4; 17; 31).

There are two major challenges in applying GMMs to complicated, high dimensional data. First,
the partitions (modes) that we wish to characterize in data are rarely spherical or simple enough in
nature to be faithfully captured with Gaussian components. As an alternative, one may consider
more complicated components (27), however, this worsens identifiability issues and yields partitions
that do not adequately summarize populations of interest in the data (4). Second, mixture models
converge to local minima and thus their optimization is extremely sensitive to initialization. Some
approaches propose to initialize via local fitting methods such as k-means (46). However, the distance
metrics, for example Euclidean distance, implied in those local fitting methods is rarely appropriate
in high dimensions, imposing initial partitioning that is arduous to escape.

We propose to offset the first difficult by taking a mixture of mixtures in a hierarchical approach
by considering a mixture of distinct dynamical systems. In effect, we propose to learn to evolve the
components of one partition (see Fig. 1a) in a fashion that results in an infinite mixture model in
the limit. This alleviates the burden of learning a large number of separate modes through a shared
generator of components in an approach that is akin to hypernetworks (23). We can then combine
multiple partitions to cover the entire support (see Fig. 1b). Specifically, each partition is itself defined
by multiple components that are spanned through smooth dynamics to represent complex, multi-
modal distributions. We sample discrete components from this continuous parameterization during
inference to construct a cheap, lightweight model that dramatically reduces the computational cost,
maintains improved performance over typical mixture methods, and simplifies model interpretation.

We alleviate the second difficulty by creating a learned curriculum (2) over the data. We construct the
curriculum by transforming the data into a standard Gaussian through a normalizing flow (7; 12; 22;
33) and slowly annealing back to the original space. This removes the difficulty with initialization
since the distribution early in the training process is known. As we advance through the curriculum,
the model only requires minor perturbations from its previous state. We find that this process results
in considerably improved performance regardless of the mixture parameterization.
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(a) Evolution of a single continuous mixture
model.

(b) Evolution of several continuous mixtures.
Color schemes represent different mixtures.

Figure 1: We illustrate how a continuously parameterized mixture model can evolve components to
model the data distribution (samples in blue). Each ellipse corresponds to equal likelihood contours
for a different component. Colors across components implicitly indicates the arrow of pseudotime. (a)
A single trajectory through the space provides a smooth probabilistic model. (b) A hierarchy of three
different partitions allows for different manifolds and enables flexible clustering or classification.

Main Contributions We propose a parameterization of Gaussian mixture models through the output
of a neural ordinary differential equation (NODE). This formulation induces a smoothly-varying
trajectory through the data, in essence, learning a probabilistic sheath across the data manifold. Once
trained, the components of the GMM can be extracted and the NODE discarded, rendering storage
and inference notably cheaper than most other modern methods. We include a hierarchical component
to the model by considering multiple trajectory starting points to allow us to utilize simple Bayesian
methods for clustering or classification. Finally, we demonstrate a curriculum-based training method
to significantly improve model performance. Code will be made available upon publication.

2 BACKGROUND

2.1 GAUSSIAN MIXTURE MODELS

Traditional (finite) mixture models model the presence of sub-populations within a dataset through
a convex combination of distinct components of a chosen distribution. Gaussian mixture models
(GMMs), the most common class of mixture models, restrain the set of chosen distributions that
constitutes the mixture to the Gaussian family:

p(x) =

K∑
k=1

πk N (x;µk,Σk) , (1)

where x ∈ RM is the input data, π is the component weight, µ ∈ RM is the mean, Σ ∈ RM×M is
the covariance matrix, and K is the number of components in the mixture. Despite the seemingly
stringent simplification GMMs make, they encompass a broad set of distributions. In effect, they are
universal approximators to any smooth probability distribution given enough mixture components
(20). This offers us an insight when deploying GMMs for data modeling: the more complex the
data distribution is, the more components the GMM would likely require to yield a reasonable
approximation. Motivated by this insight, analogous to defining an integral as an infinite sum, we
take the limit K → ∞ in Eq. 1 to arrive at the following continuous representation of GMMs

p(x) = (2π)−M/2

∫ 1

0

|Σ(s)|−0.5
exp

(
− (x−µ(s))

T
Σ

−1
(s) (x−µ(s)) /2

)
π(s) ds (2)

where the set of parameters, {πk, µk,Σk}k, for the finite GMMs become the set of functions,
{π(s), µ(s),Σ(s)}, that is parametrized by the variable s whose meaning depends on the specific
context of the problem. Eq. 1 can then be reversely seen as a discretized formulation of Eq. 2.
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2.1.1 MIXTURE OF FACTOR ANALYZERS

General GMMs require O(M2) parameters for each component. To reduce this parameter cost,
we utilize a Mixture of Factor Analyzers (19; 46) which parameterizes the covariance matrix of
each component as the sum of a diagonal matrix, D, and the inner product of a low-rank matrix,
A ∈ RM×R, with itself where R ≪ M , such that Σ = D + AAT . This brings the number of
parameters down to O(MR) and allows for O(MR2) cost to estimate the determinant and inverse.

2.2 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

Built upon the observation that a residual network (25) can be seen as an Euler discretization for
solving an ODE, Chen et al. (8) introduced neural ODEs (NODEs), a class of continuous-depth
neural networks that parameterize the class of ODEs that aim to solve the initial value problem:

dh(t)

dt
= f (h(t), t; θ) , h(t0) = ht0 , (3)

with known initial value ht0 . Instead of being restricted to the Euler discretization, Neural ODEs are
able to incorporate any black-box ODE solver in a memory efficient manner to compute

h(ti+1) = h(ti) +

∫ ti+1

ti

f (h(t), t; θ) dt . (4)

In practice, for tabular data, we set the architecture of f to be a multilayer perceptron with an explicit
dependence on t and use either tanh or sin as the activation function. We find that when using sin,
the ODE seems to be less prone to becoming stiff (3) and hence is easier to numerically integrate.
When using image data, we utilize a convolutional neural network with the same activation functions.

3 METHODS

In this section we discuss how we utilize neural ordinary differential equations (NODE) to parameter-
ize mixture models over continuous indices and how to improve the training process by instituting a
curriculum to guide the model from an easy-to-learn space to the true data space. The NODE allows
for a hyper-network (23) type approach, which shares weights of a network to output parameters
over multiple components, and whose limit is an infinite GMM. We then extend a continuously
parameterized mixture model by allowing for multiple trajectories in a hierarchical structure that
allows us to perform clustering or classification.

3.1 CONTINUOUSLY PARAMETERIZED MIXTURE MODELS

Inspired by the universal approximator properties of Eq. 2, where the parameters of each component
depend on the latent variable, s, we chose to parameterize the MFA via a neural network. We begin
by constructing a joint state across the MFA parameters. When the data is tabular, this amounts to
flattening each parameter and concatenating them together:

h(t) =
[
µ(t), Ā(t), log(d)(t), log(π)(t)

]
(5)

where the bar over A indicates the matrix has been flattened, d is the diagonal portion of D, and log is
applied element-wise. We choose to use a shared state across parameters rather than a separate ODE
for each parameter so that the model can better coordinate and share relevant information. We learn
the log of d and π instead of the parameters directly to ensure that the covariance is positive definite
and that the weights are non-negative. As a result, h ∈ RJ where J = (R+ 2)M + 1. In most cases,
we set the value of π to a constant and exclude it from the state to encourage contiguous modes.

There are two possible ways to proceed. If our goal was to best match Eq. 2, we would construct the
NODE based on the joint state and solve the system of ODEs that includes the continuous mixture

dh(t)

dt
= f(h(t), t; θ)

dp(x)

dt
= (2π)−M/2 |Σ(t)|−0.5

exp
(
− (x−µ(t))

T
Σ

−1
(t) (x−µ(t)) /2

)
π(t)
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where we evaluate each component in accordance with Eq. 2 on the instantaneous value of t within
the ODE solver and set p(x) = 0 at t = 0 and take the integral over the range of t without producing
intermediate values. Unfortunately, while this formulation is a better match to the continuous mixture
model, integrating p(x) is numerically unstable and often causes f to become stiff (3) or for the
integrator to underflow, see Appendix for additional details. Additionally, this form would require
that we keep the NODE once training is complete and resolve it for every new example encountered.

We instead choose to solve for the joint state directly and return the parameters at a (possi-
bly variable) number of pseudotimes. That is, for a (uniformly drawn) set of pseudotimes,
{tj}Gj=1, we model the density as p(x) =

∑G
j=1 π(tj)N

(
x; µ(tj), A(tj)A(tj)

T +D(tj)
)
, where

π(tj), µ(tj), A(tj), D(tj) are the respective continuously indexed parameters and
∑

j π(tj) = 1.
This approach is essentially doing numerical integration to approximate Eq. 2, which is feasible given
the 1d integral. This leaves us with a mixture model whose parameters are derived from a continuous
process. We will refer to this model as a continuously parameterized mixture model (CPMM). Figure
1 illustrates a dataset overlayed with the components extracted from a CPMM.

We have specifically chosen f so that the ODE is not autonomous (3). From a practical perspective,
this means that our models are capable of learning loops and cycles. However, to further increase the
flexibility of the model, we additionally augment the joint state

h(t) =
[
µ(t), Ā(t), log(d)(t), α(t)

]
(6)

where α ∈ RL and we have excluded log(π) from the state. α is not directly used in evaluating any
portion of the mixture but instead provides an unconstrained pathway that the network can use to
pass information along. Without the augmented state, the network must encode information relevant
to future times into the parameters of the current time, overloading those parameters and notably
decreasing performance. We generally choose L to be 2-4× larger than J , so h ∈ R5J .

In this form, the NODE does not depend on the evaluation data point, x, directly and can be solved
independently. In fact, the NODE can be evaluated with only the initial value and the parameter
times. We can therefore consider that our model is a type of hypernetwork (23). We train the model
by evaluating/solving the hypernetwork against the learnable initial state and then evaluating the
likelihood for each example in the batch. The initialization and hypernetwork dynamics are then
updated to maximize the likelihood of the batch. During evaluation, we solve the hypernetwork
once and cache the parameters (for a uniformly drawn set of pseudotimes {tj}Gj=1) against future
executions. This places the total computational cost for inference at O(KMR).

When the input data is an image, we construct the joint (augmented) state by keeping the parameters
in the image shape for the NODE and concatenating over channels. We then flatten the data and
parameters to calculate the likelihood. This means that the unaugmented portion of the channel
dimension is increased by a factor of R+2 relative to the image channel count (when π is held fixed).

3.2 HIERARCHICAL MIXTURE OF FACTOR ANALYZERS

To facilitate clustering and classification, we extend the mixture of factor analyzers (MFAs) in a
hierarchical manner. More specifically, we model the data with a mixture of MFAs

p(x) =

C∑
c=1

ηc p(x |c) =
C∑

c=1

ηc

G∑
j=1

πc(tj)N
(
x; µc(tj), Ac(tj)Ac(tj)

T +Dc(tj)
)
, (7)

where C denotes the number of MFAs and, therefore the number of clusters/classes,
∑

c ηc = 1, and
{tj}Gj=1 is a set of pseudotimes. We construct the mixture of the C MFAs by providing C different
initial values to the NODE. Alternatively, we could learn a separate NODE and initial state for each
MFA. This should allow for greater flexibility in each trajectory. However, we generally find that the
improvement is not appreciable while the increase in compute is significant. Sharing the ODE means
that the trajectories will learn from one another and share certain dynamic characteristics.

The hierarchical mixture allows the model to learn disparate data partitions without requiring that a
single trajectory transition through low probability regions. Additionally, we can utilize Bayes rule to
estimate p(y = c|x) from Eq. 7 to perform clustering or classification.
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Figure 2: Evenly distributed transitions through different spaces. The data begins in a latent space as
a standard Gaussian (top left) and ends in the true space (bottom right).

3.3 CURRICULUM THROUGH SPACES

Unfortunately, training large mixture models in high dimensions often gets stuck in local minima
and is extremely sensitive to initialization. Direct mixtures (mixtures with disconnected parameters)
are often initialized via a combination of kmeans and local fitting prior to gradient descent (46).
However, for CPMMs, the parameters are the product of a learnable process and cannot be directly
initialized. As a heuristic, one may initialize the ODE initial value based on kmeans or labeled
examples, however this only provides a limited signal and one must resolve how to initialize other
parameters such as A or log d.

In order to circumvent this difficulty, we borrow ideas from curriculum learning (2). We begin by
defining a continuously indexible map, ∀v ∈ [0, 1], Mv : RM 7→ RM such that M0(x) = x, and
Mv progressively maps to a smoother, simpler space as v increases. We propose to leverage M to
construct a curriculum for learning the CPMM. Intuitively, we may begin training on the simplest
space induced by M1 and slowly progress to training on our target input space M0. That is, for a
sequence 1 = v1 > . . . > vT = 0, we progressively train on respective datasets Dt = {Mt(xi)}Ni=1.
An accessible choice is to define Mv as a continuous normalizing flow (22), Mv = uv , where

uv(x) =

∫ v

0

g(us(x), s;ϕ)ds, log puv (uv(x)) = logN (u1(x); 0, I) +

∫ 1

v

tr
(
∂g

∂s

)
ds, (8)

u0(x) ≡ x and uv(x) is defined by a learnable function, g, which is trained via MLE so that
u1(x) ∼ N (0, I).

We construct the curriculum for the CPMM by first training the CPMM on u1. Since the data is
(ideally) a standard Gaussian in this space, it is trivial to learn a good CPMM and the initialization
of the CPMM parameters can be created as perturbations from the standard Gaussian. We then
marginally perturb the space by taking a small step in v towards the input, e.g., we train the CPMM on
u1−ϵ where, for sufficiently small ϵ, pu1−ϵ(u1−ϵ) ≈ pu1(u1). We repeat this process of perturbing
the space and then updating the CPMM until we have arrived back at the input space. Figure 2 shows
this smooth transition on a two-dimensional dataset as the map transitions between the latent space,
through several intermediate spaces, before arriving back at the input space.

One interpretation of this curriculum is that we learn the initialization for one space based on training
over a marginally simpler version of the data. This interpretation applies to both the parameters of the
NODE hypernetwork and the initial values of each trajectory. Without this slow update procedure,
even with a good initial value, the CPMM can be hard to train since the initial trajectories can point
in the wrong directions and the model can struggle to shift the probability mass appropriately.

An important distinction between our use of a curriculum and the typical form of curriculum learning
is that we do not want to remember earlier “tasks.” Doing so would mean that the CPMM would still
capture the intermediate spaces between the Gaussian noise and the input space. Since these spaces
are only used as a guide and have no intrinsic meaning, maintaining them has no direct value.
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4 RELATED WORK

Mixture Models Mixture models can be applied to solve an array of ML problems, e.g., clustering
and density estimation (24), and are widely deployed in modern ML methods. Viroli et al. (49) model
the variables at each layer of a deep network with a Gaussian mixture model (GMM), leading to a
set of nested mixtures of linear models. Izmailov et al. (28) use a GMM as the base distribution in
conjunction with normalizing flows for semi-supervised learning. Richardson et al. (46) demonstrate
that GMMs better capture the statistical modes of the data distribution than generative adversarial
models (GANs), while Eghbal-zadeh et al. (14) incorporate a GMM into the discriminator of a GAN
to encourage the generator to exploit different modes in the data.

Tractable Likelihood Models Normalizing flows and autoregressive models are two common
types of extremely effective tractable likelihood estimators. Normalizing flows (NF) learn invertible
transformations to a latent space where the data has a known, prechosen, distribution, typically
the standard normal. There exist considerable variations between models based on the families of
invertible functions allowed (7; 12; 22; 33). Autoregressive (AR) models (39; 40; 48) exploit the
probabilistic chain rule and learn a distribution for each dimension conditioned on the previous
features. Despite their impressive performance as likelihood estimators and as generative methods,
these models are surprisingly brittle. In particular, they show higher likelihoods for completely
different datasets than the ones they were trained on which prevents them from being utilized for
outlier detection (26; 38).

Deep Clustering Several approaches to apply deep networks for clustering have been proposed
in the past few years (5; 51), centering around the concept that the input space in which traditional
clustering algorithms operate is of importance. There have also been works on incorporating
traditional clustering methods, such as spectral clustering or hierarchical clustering, directly into deep
networks (6; 34; 47). Mukherjee et al. (36) extend GANs for clustering by using a combination of
discrete and continuous latent variables.

Mixture Models + Deep Nets for Clustering Since mixture models are the traditional models
of choice for clustering tasks, arming them further with the recent development in deep learning
is only natural. Zhang et al. (52) directly deployed a mixture of autoencoders with the assumption
that different clusters are effectively different local data manifolds, and thus could be parametrized
and learned by autoencoders. In the same vein, Pires et al. (44) model the data using a mixture
of normalizing flows, where the mixture weights are computed through optimizing the variational
lower bound. Jiang et al. (30) use a GMM as the prior distribution for the latent code in a variational
auto-encoder (VAE), thus allowing for clustering of the input data in the latent space.

Non-parametric Bayesian Mixture Models Non-parametric Bayesian models (37) assume the
number of parameters of the underlying model grows with the number of data samples. In the case of
the underlying model being a non-parametric Bayesian mixture model, this indicates that for every
new data sample, the model can either group it with the already-discovered mixture components or
initiate a new mixture component for that data sample, increasing the number of mixture components
deployed and hence the number of parameters utilized (21). This is accomplished by using a Dirichlet
process for the prior distribution of the parameters of non-parametric Bayesian mixture models (18).
Despite effectively deploying an infinite number of mixture components during the training stage, the
number of components eventually learned is determined by the finite data samples available, resulting
in a learned finite mixture distribution at test time.

Sum-Product Networks Sum-product networks (SPN) (42; 43; 45) are a class of probabilistic
circuits (9) that produce a tractable likelihood estimate akin to normalizing flows and autoregressive
methods. SPNs are constructed as a directed acyclic graph composed of alternating “sum” and
“product” operations over the evaluation of (typically) one-dimensional densities at each leaf node.
Learning is often performed through the EM algorithm by updating the parameters of each leaf
distribution and the weights at each sum node. This structure allows SPNs to cheaply evaluate a
variety of statistical quantities (e.g., marginals) without approximation. When leaf densities are
Normal distributions, the SPN can be expressed as a GMM with many components (29).
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5 EXPERIMENTS

We construct our models in PyTorch (41) and train using PyTorch Lightning (15). We used Adam
(32) as the optimizer in all cases. Unless otherwise stated, we extract 25 components per trajectory
for each hierarchical CPMM. Curriculum models were constructed using simple CNFs from FFJORD
(22). Since the execution of a CNF is computationally expensive, we extracted the smoothly varying
datasets (see Sec. 3.3), Dt, immediately after training and saved them to disk. In general, we choose
to use 51 total spaces (including the latent space, u1, and the input space, x) and allocate one epoch
per space. We then fine-tune on the input space. All models trained directly in the input space utilize
standard data augmentations (see Appendix for further details). Models trained with the curriculum
are initialized randomly; other models are initialized via kmeans or a combination of kmeans and
fitting a local Factor Analyzer as in (46). When training a hierarchical model, we often find it helpful
to include entropy regularizations across trajectories.

5.1 SYNTHETIC DATA

Figure 3: Two synthetic datasets designed to
assess the limitations of the CPMM.

We demonstrate the effectiveness and weaknesses of
CPMM on two toy datasets. The first dataset con-
sists of two concentric, broken circles. The radii of
both circles are chosen to differ by 10% and have
similar thicknesses. The second dataset consists of
a noisy five-armed spiral that begins near the origin
before curving outward. This dataset is intentionally
constructed with “outliers” (points between the arms
without a clear cluster identity) to assess how the
CPMM will handle examples “far” from the mani-
fold. Both CPMMs are trained using a curriculum.

Figure 3 contains true data points in the top row and
samples drawn from the CPMM on the bottom row.
Since the model is trained unsupervised, we use dif-
ferent colors between true labels and cluster labels
(e.g., between the top and bottom row). We see that the CPMM does a reasonable job of capturing the
general manifolds of both datasets. However, the model seems to struggle with the end points of the
trajectory and the samples are less precise than during the other portions of the trajectory. We observe
this trend on all datasets: the CPMM often struggles with endpoints, typically the early pseudotimes.
In the spiral data, we see that the model has attempted to capture the outliers, though they have larger
spread than the true outliers and it attributes them all to the same cluster.

5.2 IMAGES

To process image datasets, we first rescale the input pixels to be between zero and one and then apply
an element-wise logit transform, a standard preprocessing technique (e.g., (22)). We perform these
transformations so that the “input” data has support over R. These transformations are applied before
we train any model and the corresponding log detJacobian is accounted for when estimating bits
per dimension as in a normalizing flow.

We test training CPMMs on MNIST (10) and Fashion-MNIST (50) and compare to two different
GMM baselines along with several standard likelihood models and clustering models. CPMM
NODEs are constructed using CNNs with a depth of 3, a hidden channel width of 64, and utilize sin
activations. We additionally augment the state space by a factor of four and explicitly condition the
ODEs on pseudotime by concatenating it as an extra channel. To avoid degeneracies, we soft-clip
log d so that the minimum value cannot be less than -6.

We consider two baseline GMMs for comparison. In the first model, we choose the total number of
components equal to the number of clusters (e.g., 10). This simple procedure allows for easy cluster
assignments; each component corresponds to exactly one cluster. In the second case, we train a GMM
with 250 components since this corresponds exactly to the number of components extracted across
trajectories when using a CPMM. However, attributing components to clusters is less obvious in this
case. We choose to use spectral clustering (16) over components based on the Fréchet distance over
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Figure 4: Means from a hierarchical CPMM trained on MNIST with a space-based curriculum. Each
trajectory is evaluated at evenly spaced pseudotimes between zero and one and displayed from left to
right. Despite the 3/8 and 4/9 confusion, the model does an excellent job of learning smoothly-varying
transitions between digits. The initial component (far left cases) are never the most likely component
and could be discarded.

Gaussians (13). Specifically, we attribute examples to components and components to clusters based
on a spectral clustering model that constructs an affinity matrix through the Fréchet distance. Both
models are initialized and trained as discussed in Sec. 5.

Table 1: Bits per dimension (BPD) and clustering accuracy
(Acc.) for several image datasets.

MNIST Fashion-MNIST
BPD Acc. BPD Acc.

Matched GMM 6.61 61.75 6.58 55.00
GMM w/ S.Clust. 5.21 48.91 5.71 48.52
EiNet (Matched) 2.19 - 4.18 -
EiNet (Large) 1.95 - 3.98 -
GMM w/ Curr. 2.61 64.47 4.35 58.41
CPMM 2.21 80.07 3.91 65.01

Teacher 1.04 - 2.85 -
FFJORD 1.01 - 2.75 -
VADE - 94.5 - 57.8
SPC - 99.21 - 67.94
DLS - 97.6 - 69.3

Table 1 summarizes the results for the
different mixture models in juxtaposi-
tion to standard baselines (1; 11; 35;
42). The matched GMM models (one
component per cluster) achieves sur-
prisingly high clustering accuracies
but subpar BPD. Unsurprisingly, in-
troducing more components (GMM
w/ S.Clust.) improves the BPD. How-
ever, spectral clustering across com-
ponents is only marginally successful
and the clustering accuracy drops rel-
ative to the baseline GMM. We addi-
tionally train two EiNets (42), a type
of SPN. The first EiNet (Matched)
is constrained to have the same to-
tal number of parameters (not compo-
nents) as the the CPMM. The second
EiNet (Large) utilizes an order of mag-
nitude more parameters. Finally, we
train a standard GMM with 250 components that additionally utilizes the curriculum. The CPMM
trained with the curriculum enjoys significantly improved BPD and clustering accuracy relative to the
GMM baselines, better performance compared to the matched EiNet and standard GMM with the
curriculum, and similar performance against the large EiNet. (See Appendix for additional ablation ex-
periments.) Our results indicate that our proposed methodology closes the considerable gap between
mixture models and modern neural baselines (listed in the bottom of Table 1). An especially notable
case is the Fashion MNIST clustering accuracy, where the CPMM results in comparable-to-better
than the standard baselines. Thus, CPMM allows one to retain the interpretability and inference speed
of mixture models with improvements in modeling performance over tradition mixture approaches.

Interpretability Figure 4 shows the trajectories learned by a CPMM where we have manually
ordered the clusters. The figure shows smooth transitions along the trajectory for all digits, in general
transitioning from fatter, curvier digits to slimmer, straight digits. The early pseudotimes (far left)
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are never the most likely component and could be excluded for a slight increase in the BPD. We
have not done so here for the sake of transparency and to avoid arbitrary post-hoc operations. This
particular model does an excellent job of isolating different digits into different trajectories with
the exception of some 3/8 and 4/9 confusion that results in a clustering accuracy of 80%. This
confusion is understandable given the similarities in the digit pairs but more importantly, this analysis
highlights the interpretability of our model. That is, it is simple to resolve the model’s confusion
from the trajectories since CPMM directly operates over input features. In contrast to more opaque
clustering models, a quick visual inspection reveals CPMM’s partioning of the space. Similar results
and discussion can be found for Fashion-MNIST in the Appendix.

Table 2: OOD Detection via Likelihood Thresholding

CPMM FFJORD
In Out AUROC AUPR AUROC AUPR.

MNIST Fashion 99.95 99.95 99.95 99.95
Fashion MNIST 93.38 93.28 8.98 31.65

OOD Detection Finally, we
test the CPMM’s ability to distin-
guish between different datasets
based on likelihood. This is
a known shortcoming of neural
likelihood models (26; 38) where
the networks unfortunately pre-
dict that simpler datasets are
more likely than the data the
model was trained on; e.g., MNIST instances yield a higher likelihood than Fashion-MNIST instances
for models trained on Fashion-MNIST. This surprising result limits the applicability of modern
likelihood models for detecting out-of-distribution (OOD) and anomalous instances, despite their
intuitive capabilities. Table 2 illustrates the performance of our model against a CNF for detecting
instances that are out-of-distribution when trained on a distinct inlier distribution with a simple
thresholding of likelihoods. Results are given as areas under the receiver operating characteristic and
precision/recall curves as a percent. Higher is better. Although both models perform nearly perfectly
when MNIST is in-distribution and Fashion-MNIST is out-of-distribution, the CPMM performs quite
well on the reverse problem where the CNF fails miserably. Notwithstanding a gap in the likelihood
that is obtainable with CPMM as compared to CNF (Table 1), this experiment illustrates an advantage
to our simplified approach of directly modeling the input data through a mixture of components.

6 CONCLUSIONS

Mixture models are interpretable, well-behaved, computationally-cheap likelihood models that are,
unfortunately, increasingly difficult to employ as the data complexity and dimensionality increases.
These difficulties are largely due to the relatively simple components and sensitivities to model
initializations. Neural networks have proven themselves to be incredibly powerful models but their
performance is inexplicable and they exhibit bizarre failure modes. We have proposed a hierarchical
method to parameterize a continuum of mixture models from neural ODEs to create a rich, multi-
modal density over disparate partitions, essentially constructing a mixture of mixtures where the
outer mixture encompasses different data regions and the inner mixture can be arbitrarily complex.

We have additionally innovated a curriculum that alleviates many of the difficulties associated with
initialization. The curriculum utilizes an annealing process from a prescribed latent space chosen
for its simplicity towards the true, nuanced data space. The transitions are learned via maximum
likelihood estimation through a continuous normalizing flow. Since the initial distribution is known, it
is trivial to initialize a model that is well-matched. Finally, we sample a finite number of components
from the dynamic NODE to achieve an effective, light-weight model that significantly outperforms
mixtures with a similar number of components, indicating that the combination of the curriculum and
dynamic system allows for a more efficient use of the available components than traditional methods.

While this method provides notable improvements in terms of likelihood predictions and clustering
accuracies in comparison to typical mixture methods, it unsurprisingly, fall short of neural network
methods that utilize learned latent spaces on the primary metrics typically used in model assessment.
However, we do not exhibit the same brittleness (e.g., larger likelihoods on OOD data), require
significantly less computation (once trained), and are completely interpretable. We additionally have
the ability to arbitrarily condition our models if a subset of features is known a priori. Similarly, we
can easily marginalize a subset of features to produce a completely consistent model without requiring
any additional training. Neither of these benefits are available to pure neural network models.
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A NUMERICAL INTEGRATION

The typical strategy to train a likelihood model is to optimize based on the predicted log-likelihood
and not on the likelihood directly. In fact, when training a Gaussian mixture model, we typically
calculate the log-likelihood of each component separately prior to utilizing the numerically-stable
log

∑
exp operator instead of performing the exp, followed by the

∑
, followed by the log. This

joint version stably handles difficulties resulting from over- or under-flow when the log-likelihood of
any single component is very (large) small.

When attempting to evaluate the log-likelihood for a continuum of components we should utilize a
similar log

∫
exp:

log p(x) =
−M

2
log(2π)

+ log

∫ 1

0

exp
(
− log |Σ(s)| /2− (x−µ(s))

T
Σ

−1
(s) (x−µ(s)) /2 + log π(s)

)
ds.

Unfortunately, none of the available black-box integrators match this form. This requires that we
utilize a naive implementation of the log

∫
exp operator. In practice, we find this sufficient to train

the model for several epochs without issue but the ODE becomes increasingly stiff before ultimately
underflowing and “NaNing” out. A better strategy to estimate a continuous mixture model will require
a new black-box integrator which we consider an excellent avenue for future work.

B AUGMENTATIONS

For all image datasets we added uniform random noise between zero and one prior to rescaling, e.g.,
a pixel with an 8bit value of 34 would then be distributed uniformly between 34 and 35. For color
images, we additionally perform standard random translations and horizontal flips. For tabular data,
we add Gaussian noise to each feature such that the standard deviation of the noise is 1-10% of the
spread of the data itself, e.g., we normalize each feature to be zero mean and unit standard deviation,
add Gaussian noise scaled by 0.01 to 0.1 and unnormalize that data.

When training with the curriculum (see Sec. 3.3), we utilize similar augmentations prior to transform-
ing into the various spaces such that the augmentation is shared across spaces. When training the
CPMM student, we then add a small mount of Gaussian noise (standard deviation of 0.01) regardless
of the space, including when fine-tuning on the input space.

C MNIST ABLATIONS

We experiment with different types of initializations and modifications of the CPMM on MNIST. In
particular, we test random initializations and kmeans-based initializations. We also explore restricting
the diagonal portion of the covariance within each MFA to be constant (though still learnable and
still with the low rank updates, A) and attempt to utilize a separate ODE for each cluster.

Table 3: MNIST Ablation

Init. Diagonal BPD Acc.

Random Constant 7.67 48.83
kmeans Constant 7.56 64.93
kmeans Variable 4.49 46.42

kmeans* Constant 7.55 71.22

Table 3 contains some representative runs attempting to train the CPMM without guidance from
the teacher. We find that training the models with a variable diagonal often results in the model
degenerating and failing to train. In fact, training with a variable diagonal and a random initialization
tends to fail after a few epochs and is therefore excluded from the table. Utilizing a kmeans
initialization produces moderately good BPD (better than standard GMM training methods) but
slightly worsened accuracies. Restricting the model to use a constant diagonal greatly stabilizes
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training and can produce reasonably good clustering accuracies. However, this strong assumption on
the covariance results in very poor BPD. This is not surprising, as the model must raise the variance
of pixels that would normally be very small (background pixels) to sufficiently capture the spread
elsewhere. Finally, the bottom row in Table 3 contains results using a kmeans initialization with a
constant diagonal but utilizes a separate ODE for each trajectory. This added flexibility results in
virtually no improvement to the BPD but does provide a noticeable increase in accuracy. We find that
training separate ODEs per cluster results in a significant increase to run time.

The results in Table 3 were chosen as representative values across many different runs. In general,
it is possible to trade accuracy for BPD in any given row by adjust other hyperparameters or seeds.
Utilizing the curriculum learning process helps to stabilize training and allows us to simultaneously
improve the generative and discriminative portions of the model.

D FASHION MNIST RESULTS

Figure 5 contains the trajectories from a curriculum-based CPMM trained on Fashion-MNIST. Similar
to MNIST, the trajectories show smooth variations between means. Many of the trajectories contain
visible evolutions from start to finish, i.e., bags begin without handles but end with handles or shoes
evolve from boots to stilletos. However, some of the fine detail is missing from the trajectories, in
particular for the shirts, pullovers, and coats classes.

As in MNIST, we can clearly see why the model achieves 65.74% clustering accuracy. The shirts,
pullovers, and coats classes all produce very similar trajectories. Similarly, the sandals,
sneakers, and ankle boots classes see considerable overlap. Abstractly, this information
can be extracted from any clustering model based on the confusion matrix. But, thanks to the
interpretability of the mixture models, the decision process and resulting confusion is clear.

Figure 5: Means from a hierarchical CPMM trained on Fashion-MNIST with a space-based curricu-
lum. Each trajectory is evaluated at evenly spaced pseudotimes between zero and one and displayed
from left to right. The initial component (far left cases) are never the most likely component and
could be discarded.
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