
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNPACKING SDXL TURBO: INTERPRETING TEXT-TO-
IMAGE MODELS WITH SPARSE AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse autoencoders (SAEs) have become a core ingredient in the reverse engi-
neering of large-language models (LLMs). For LLMs, they have been shown to
decompose intermediate representations that often are not interpretable directly
into sparse sums of interpretable features, facilitating better control and subse-
quent analysis. However, similar analyses and approaches were lacking for text-
to-image models. We investigated the possibility of using SAEs to learn inter-
pretable features for a few-step text-to-image diffusion models, such as SDXL
Turbo. To this end, we train SAEs on the updates performed by transformer blocks
within SDXL Turbo’s denoising U-net. We find that their learned features are in-
terpretable, causally influence the generation process, and reveal specialization
among the blocks. In particular, we find one block mainly dealing with image
composition, mainly responsible for adding local details, and, one for color, illu-
mination, and style. Therefore, our work is an important first step towards better
understanding the internals of generative text-to-image models like SDXL Turbo
and showcases the potential of features learned by SAEs for the visual domain.

1 INTRODUCTION

Text-to-image generation is a rapidly evolving field. The DALL-E model first captured public inter-
est (Ramesh et al., 2021), combining learned visual vocabularies with sequence modeling to produce
high-quality images based on user input prompts. Today’s best text-to-image models are largely
based on text-conditioned diffusion models (Rombach et al., 2022; Saharia et al., 2022b; Podell
et al., 2023; Sauer et al., 2023b; Betker et al., 2023; Pernias et al., 2023). This can be partially
attributed to diffusion models’ stable training dynamics, which makes them easier to scale than
previous approaches like generative adversarial neural networks (Dhariwal & Nichol, 2021). As a
result, they can be trained on internet scale image-text datasets (Schuhmann et al., 2022a) and learn
to generate photorealistic images from text.

However, the underlying logic of the neural networks enabling the text-to-image pipelines we have
today, due to their black box nature, is not well understood. Unfortunately, this lack of interpretabil-
ity is typical in the deep learning field. For example, advances in image recognition (Krizhevsky
et al., 2012) and language modeling (Devlin, 2018; Brown, 2020) come mainly from scaling mod-
els (Hoffmann et al., 2022), rather than from an improved understanding of their internals. Recently,
the emerging field of mechanistic interpretability has sought to alleviate this limitation by reverse
engineering visual models (Olah et al., 2020) and transformer-based LLMs (Rai et al., 2024). At the
same time, diffusion models have remained under-explored.

This work focuses on SDXL Turbo, a recent open-source few-step text-to-image diffusion model.
We leverage methodologies originally developed for language models, which allow inspection of the
intermediate results of the forward pass (Chen et al., 2024; Ghandeharioun et al., 2024; Cunningham
et al., 2023; Bricken et al., 2023). Moreover, some even enable reverse engineering the entire task-
specific subnets (Marks et al., 2024). In particular, sparse autoencoders (SAEs) (Yun et al., 2021;
Cunningham et al., 2023; Bricken et al., 2023) are considered a breakthrough in interpretability
for LLMs. They have been shown to decompose intermediate representations of the LLM forward
pass – often difficult to interpret due to polysemanticity1 – into sparse sums of interpretable and

1A phenomenon where a single neuron or feature encodes multiple, unrelated concepts (Elhage et al., 2022)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

monosemantic features. These features are learned in an unsupervised way, can be automatically
annotated using LLMs (Caden et al., 2024), and facilitate subsequent analysis, for example, circuit
extraction (Marks et al., 2024).

Contributions. In this work, we ask whether we can use SAEs to draw information on the compu-
tation performed by the 1-step generation process of SDXL Turbo, a recent open-source few-step
text-to-image diffusion model.

To facilitate our analysis, we developed a library called SDLens that allows us to cache and manip-
ulate intermediate results of SDXL Turbo’s forward pass. We use our library to create a dataset of
SDXL Turbo’s intermediate feature maps of several transformer blocks inside SDXL Turbo’s U-net
on 1.5M LAION-COCO prompts (Schuhmann et al., 2022a;b). We then use these feature maps to
train multiple SAEs for each transformer block.2 Finally, we perform a quantitative and qualitative
analysis of the SAE’s learned feature maps:

1. We empirically show the potential of SAEs to learn highly interpretable features in
diffusion-based text-to-image models.

2. We developed visualization techniques to analyze the interpretability and causal effects of
the learned features.

3. We perform two case studies in which we visualize and interpret the active features in
different transformer blocks, finding evidence that certain transformer blocks of SDXL
Turbo’s pipeline specialize in image composition, adding details, and style.

4. We follow up our qualitative case studies by designing multiple quantitative experiments
that show that our hypotheses hold up also on larger sample sizes.

5. As a part of our quantitative analysis, we create an automatic feature annotation pipeline
for the transformer block which appears responsible for image compositions.

Note on Visualizations. Qualitative analysis through inspection of generated images is crucial for
this type of research. However, since image grids require a significant amount of space, many
essential visualizations are included into App. F and the supplementary material.

2 BACKGROUND

2.1 SPARSE AUTOENCODERS

Let h(x) 2 Rd be some intermediate result of a forward pass of a neural network on the input x. In a
fully connected neural network, the components h(x) could correspond to neurons. In transformers,
which are residual neural networks with attention and fully connected layers, h(x) usually either
refers to the content of the residual stream after some layer, an update to the residual stream by
some layer, or the neurons within a fully connected block. In general, h(x) could refer to anything,
e.g., also keys, queries, and values. It has been shown (Yun et al., 2021; Cunningham et al., 2023;
Bricken et al., 2023) that in many neural networks, especially LLMs, intermediate representations
can be well approximated by sparse sums of nf 2 N learned feature vectors, i.e.,

h(x) ⇡
nfX

⇢=1

s⇢(x)f⇢, (1)

where s⇢(x) are the input-dependent3 coefficients most of which are equal to zero and f1, . . . , fnf 2
Rd is a learned dictionary of feature vectors. Importantly, the features are usually interpretable.

Sparse autoencoders. In order to implement the sparse decomposition from equation 12, the vector
s containing the nf coefficients of the sparse sum is parameterized by a single linear layer followed
by ReLU activations, called the encoder,

s = ENC(h) = �(W ENC(h� bpre) + bact), (2)
in which h 2 Rd is the latent that we aim to decompose, �(·) = max(0, ·), W ENC 2 Rnf⇥d is
a learnable weight matrix and bpre and bact are learnable bias terms. We omitted the dependencies
h = h(x) and s = s(h) that are clear from context.

2We plan to release our library and trained SAEs to allow other scholars and the OSS community to replicate
and extend our findings conveniently.

3In the literature this input dependence is usually omitted.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Similarly, the learnable features are parametrized by a single linear layer, called decoder,

h0 = DEC(s) = W DECs+ bpre, (3)

in which W DEC = (f1| · · · |fnf) 2 Rd⇥nf is a learnable matrix of whose columns take the role of
learnable features and bpre is a learnable bias term.

Training Details. An extended version of this section including training details can be found in
App. A.

2.2 FEW STEP DIFFUSION MODELS: SDXL TURBO

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ramesh et al., 2022; Rombach
et al., 2022; Saharia et al., 2022a) sample from an unknown distribution p by learning to iteratively
denoise corrupted samples, starting from pure noise. The corruption process is defined on training
samples from p. Mathematically, the images are corrupted with Gaussian noise and are distributed
according to

qt(xt|x0) := N (↵tx0,�
2
t I), (4)

where x0 corresponds to a real image from p, 0  t  T , ↵t,�2
t are positive real-valued scalars

such that the signal-to-noise ratio SNR := ↵t

�2
t

is monotonically decreasing. Additionally, The
coefficients ↵T�1,�2

T�1 are typically chosen such that xT ⇠ N (0, I).

The denoising process is implemented via a learned distribution p✓(xt�1|xt). The simplest way
to generate samples using p✓(xt�1|xt) is to first generate a sample of pure noise xT ⇠ N (0, I),
followed by T iterative applications of p✓, which yields a sequence xT , xT�1, ..., x1, x0, where x0

approximates samples from p. The vector ✓ represents the parameters of a neural network that
defines p✓(xt�1|xt). The denoising distribution p✓(xt�1|xt) is parameterized to be Gaussian.

The neural network used to parameterize p✓(xt�1|xt) can be trained to learn different quantities
(Luo, 2022; Salimans & Ho, 2022; Karras et al., 2022). A possible approach is to directly output
the mean µt of p✓(xt�1|xt), while the variance is either fixed or learned as well. In this work, the
neural network is parameterized to predict the noise added to the original sample during the forward
process (eq. (18)). This is achieved by minimizing the objective w(t)k✏�✏✓(↵tx0+�t✏, t)k2, where
w is a weighing function (Ho et al., 2020). Once ✏✓ is trained, the mean of p✓(xt�1|xt) is computed
as 1

↵t
(xt��t✏✓) (Rombach et al., 2022). Since our primary goal is to analyze a pre-trained diffusion

model, we refer the interested reader to App. B.

Latent diffusion. Originally, diffusion models operated directly on pixels (Ho et al., 2020; Song &
Ermon, 2020). However, training a denoising network in pixel space is computationally expensive
(Hoogeboom et al., 2023). Thus, Rombach et al. (2022) uses a pre-trained autoencoder to first
compress images and define a diffusion process in the latent space instead. To make this difference
clear they write p✓(zt�1|zt), in which now zt refers to a noisy latent instead of a noisy image.

SDXL Turbo. To speed-up inference of latent diffusion models, Sauer et al. (2023b) distills a pre-
trained Stable Diffusion XL (SDXL) model (Podell et al., 2023). The distilled model is referred to
as SDXL Turbo as it allows high-quality sampling in as little as 1-4 steps. In comparison, the original
original SDXL model is trained with a noise schedule of 1000 steps, but in practice, sampling with
20 to 50 steps still generates high-quality images.

Neural network architecture. The denoising network of SDXL Turbo estimating p✓(zt�1|zt) is
implemented using a U-net similar to Rombach et al. (2022). The U-net is composed of a down-
sampling path, a bottleneck, and an up-sampling path. Both the down-sampling and up-sampling
paths are composed of 3 individual blocks. The individual block structure differs slightly but both
down- and up-sampling blocks consist of residual layers with some blocks including cross-attention
transformer layers while others do not. Finally, the bottleneck layer is also composed of attention
and residual layers. Importantly, the text conditioning is achieved via cross-attention to text embed-
dings performed by in total 11 transformer blocks embedded in the down-, up-sampling path and
bottleneck. An architecture diagram displaying the relevant blocks can be found in App. B Fig. 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 SPARSE AUTOENCODERS FOR SDXL TURBO

With the necessary definitions at hand, in this section we show a way to apply SAEs to SDXL Turbo.
In the following, we assume that all SDXL Turbo generations are done using a 1-step process.

Where to apply the SAEs. We apply SAEs to the updates performed within the cross-attention
transformer blocks responsible for incorporating the text prompt (depicted in Fig. 2). Each of these
blocks consists of multiple transformer layers, which attend to all spatial locations (self-attention)
and to the text prompt embeddings (cross-attention). Since the overall architecture is a U-net, the
shapes feature maps can get manipulated inbetween the cross-attention blocks by residual network
blocks, upscaling layers and downscaling layers.

Formally, the cross-attention transformer blocks update their inputs in the following way

Dout
ij = Din

ij + TRANSFORMER(Din, c)ij , (5)

in which Din, Dout 2 Rh⇥w⇥d denote the residual stream before and after application
the cross-attention block respectively. The transformer block itself calculates the function
TRANSFORMER[`] : Rh⇥w⇥d ! Rh⇥w⇥d. Note that we denote the input to the cross-attention
transformer block as Din to highlight that there can be layers in between cross-attention transformer
block TRANSFORMER[`] and the previous one TRANSFORMER[`�1]. Further, we omitted the input
noise zt and text embedding c and the block index ` for both D[`]in(zt, c) and D[`]out(zt, c).

We train our SAEs on the residual updates TRANSFORMER[`](Din, c)ij 2 Rd, we denote them by

�Dij := TRANSFORMER(Din, c)ij = Dout
ij �Din

ij . (6)

That is, we train one encoder ENC[`], decoder DEC[`] pair per transformer block ` and share it over
all spatial locations i, j. For notational convenience we omit block indices from now. We do this the
for 4 out of the 11 transformer blocks (App. B Fig. 2) that we found have the highest impact on the
generation (see App. C), namely, down.2.1, mid.0, up.0.0 and up.0.1.

Feature maps. We refer to �D 2 Rh⇥w⇥d as dense feature map and applying ENC to all image
locations results in the sparse feature map S 2 Rh⇥w⇥nf with entries

Sij = ENC(�Dij). (7)

We refer to the feature map of the ⇢th learned feature using S⇢ 2 Rh⇥w. This feature map S⇢

contains the spatial activations (or coefficients) of the ⇢th learned feature f⇢ 2 Rd, which is a
column in the decoder matrix W DEC = (f1| · · · |fnf) 2 Rd⇥nf . Therefore, now we can represent
each element of the dense feature map as a sparse sum

�Dij ⇡
nfX

⇢=1

S⇢
ijf⇢, with S⇢

ij = 0 for most ⇢ 2 {1, . . . , nf}. (8)

Training. In order to train an SAE for a transformer block, we collected dense feature maps �Dij

from SDXL Turbo one-step generations on 1.5M prompts from the LAION-COCO (Schuhmann
et al., 2022b). Each feature map has dimensions of 16 ⇥ 16, resulting in a training dataset of
384M dense feature vectors per transformer block. For the SAE training process, we followed the
methodology outlined in (Gao et al., 2024), using the TopK activation function and an auxiliary loss
to handle dead features. For more details see App. A.

4 QUALITATIVE ANALYSIS OF THE TRANSFORMER BLOCKS

Here we introduce feature visualization techniques and use them to qualitatively analyse the learned
features. While we have one SAE per transformer block, we omit the transformer block index `.

4.1 FEATURE VISUALIZATION TECHNIQUES

We start by introducing feature visualization techniques and use them to depict the features active
for the prompt “A cinematic shot of a professor sloth wearing a tuxedo at a BBQ party.” (see Fig. 5).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Spatial activations. We visualize the feature map S⇢ 2 Rh⇥w containing the activations of a feature
⇢ across the spatial locations by upscaling it to the size of the generated images and overlaying it as
a heatmap over the generated images. In the heatmap red encodes the highest feature activation and
blue the lowest nonzero activation. For examples, have a look at the first column of Fig. 5.

Top dataset examples. For a given feature ⇢ we can sort our dataset examples according to their
average spatial activation

a⇢ =
1

wh

hX

i=1

wX

j=1

S⇢
ij 2 R. (9)

We use equation 9 to define top dataset examples and to sample from the top 5% quantile of activat-
ing examples (a⇢ > 0). Further, we will refer to them as top 5% images for a feature ⇢.

Note that S⇢
ij always depends on an input prompt embedding c and input noise z1, via Sij(c, z1) =

ENC(�Dij(c, z1)), which we usually omit for ease of notation. As a result a⇢ also depends on c and
z1. When we refer to top dataset examples we mean our (c, z1) pairs ones with the largest values for
a⇢(c, z1). For examples, have a look at the last four columns of Fig. 5.

Activation modulation. We design interventions that allow us to modulate the strength of the ⇢th
feature. We do so, by adding or subtracting a multiple of the feature ⇢ on all of the spatial locations
i, j proportional to its original activation S⇢

ij

�D0
ij = �Dij + �S⇢

ijf⇢, (10)

in which �Dij ,�D0
ij is the update performed by the transformer block before and after the inter-

vention, � 2 R is a modulation factor, and f⇢ is the ⇢th learned feature vector. For examples, have a
look at the columns with titles containing “A” in Fig. 5. The titles contain �’s value respectively.

We observed that often positive � values significantly greater than one are required to causally affect
the output. Similarly, while turning off a feature by setting it to zero, which is equivalent to � = �1,
we observed that significantly smaller negative values are required for feature ablations to causally
affect the output. Interestingly, while such coefficients never occur naturally by forward passing
noise and text embeddings their effects are usually interpretable. This is akin to what is observed
when applying steering techniques (Rimsky et al., 2023; Geiger et al., 2024) or SAE interventions
to language models (Cunningham et al., 2023; Bricken et al., 2023).

Activation on empty context. Another way of visualizing the causal effect of features is to activate
them while doing a forward pass on the empty prompt c(“”). In order to do so, we turn off all other
features at the transformer block ` of intervention and turn on the target feature ⇢. Formally, modify
the forward pass by setting

Dout0

ij = Din
ij + �kµ⇢f⇢, (11)

in which Dout0
ij replaces residual stream plus transformer block update, Din

ij is the input to the block,
f⇢ is the ⇢th learned feature vector, � 2 R is a hyperparameter to adjust the intervention strength,
and µ⇢ is a feature dependent multiplier obtained by taking the average activation across positive
activations of ⇢ (collected over a subset of 50.000 dataset examples). Multiplying it by k aims to
recover the coefficients lost by setting the other features to zero. For examples, have a look at the
columns with titles containing “B” in Fig. 5. Again �’s value is in the titles.

Note that for both intervention types, we directly added/subtracted feature vectors to the dense vec-
tors, instead of encoding, manipulating sparse features, and decoding. By doing so, we mitigate
side-effects caused due to reconstruction loss.

4.2 CASE STUDY I: MOST ACTIVE FEATURES ON A PROMPT

Combining all our feature visualization techniques, in Fig. 1, we depict the features with the highest
average activation when processing the prompt: “A cinematic shot of a professor sloth wearing a
tuxedo at a BBQ party”. We discuss the transformer blocks in order of decreasing interpretability.
In App. E Fig. 5 we have the same case study but with top 9 instead of top 5).

Down.2.1. The down.2.1 transformer block indeed seems to contribute to the image composition.
Several features relate to the prompt: 4539 “professor sloth”, 4751 “a tuxedo”, 2881 “party”.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Top 5 features of down.2.1 (b) Top 5 features of mid.0

(c) Top 5 features of up.0.0 (d) Top 5 features up.0.1

Figure 1: The top 5 features of down.2.1 (a), mid.0 (b), up.0.0 (c) and up.0.1 (d) for
the prompt: “A cinematic shot of a professor sloth wearing a tuxedo at a BBQ party.” Each row
represents a feature. The first column depicts a feature heatmap (highest activation red and lowest
nonzero one blue). The column titles containing “A” show feature modulation interventions, the
ones containing “B” the intervention of turning on the feature on the empty prompt, and the ones
containing “C” depict top dataset examples. Floating point values in the title denote � and � values.

Turning off features (A. -6.0 column) removes elements from and changes elements in the scene
in ways that mostly make sense when comparing with the heatmap (hmap column) and the top
examples (C columns): 1674 removes the light chains in the back, 4608 the umbrellas/tents, 4539
the 3D animation-like sloth face, and, 4751 changes the type of suit. Similarly, enhancing the same
features (A. 6.0 column) enhances the corresponding elements and sometimes changes them.

Activating the features on the empty prompt often creates related elements. With the fixed random
seed we use, the empty prompt itself looks like a painting of a piece of nature with a lot of green
and brown. Therefore, while the prompt is empty, the features active during the forward pass that
are not and due to the transformer blocks that we don’t intervene on still contribute to the images.

While top dataset examples (C.0, C.1) and empty prompt intervention (B.) mostly agree with the
feature activation heatmaps (hmap column), some of them provide additional insights, e.g., 2881
which activates on the suit, seems to correspond to (masqueraded) characters in a (festive) scene.

Up.0.1. The features of up.0.1 indeed seem to contribute to the style. They only indirectly relate
to the prompt. The illumination (2727) and shadow (500, 1700) effects relate to “a cinematic shot”.

Interestingly, turning on the up.0.1 features on the entire empty prompt (B. column) results in
texture-like images. In contrast, when activating them locally (A. columns) their contribution to
the output is highly localized and keeps most of the remaining image largely unchanged. For the
up.0.1 we find it remarkable that often the ablation and amplification are counterparts: 500 (light,
shadow), 2727 (shadow, light), 3936 (blue, orange).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Up.0.0. For the third, up.0.0, we observe that it acts locally and seems to require relevant other
features from the other transformer blocks to effectively influence the image. For the empty prompt,
activating these features results in abstract looking images, which are hard to relate to the other
columns. Thus, we excluded this visualization technique and instead added one more example.

Most top dataset examples and their activations (C columns) are highly interpretable: 3603 party
decoration, 5005 upper part of tent, 775 buttons on suit, 153 lower animal jaw, 1550 collars. All of
the features have an expected causal effect on the generation when ablating/enhancing (B. columns):
3603, 5005, 775, 153, 1550. To sum up, the learned features of this transformer block primarily adds
local details to the generation. The interventions are effective only given a suitable context.

Mid.0. The specific role of the forth, mid.0 is not well understood. We find it harder to interpret
because most interventions on the mid.0 have very subtle effects. We did not include the empty
prompt intervention because they barely affect the generation.

While effects of interventions are subtle, dataset examples (C. columns) and heatmap (hmap column)
all mostly agree with each other and are specific enough to be interpretable: 4755 bottom right part
of faces, 4235 left part of (animal) faces, 1388 people in the background, and, 5102 outlines the left
border of the main object in the scene. We hypothesize that mid.0’s features are more abstract,
indicate where things are4 and potentially how they relate to each other.

4.3 CASE STUDY II: RANDOM FEATURES

Next, we look at the learned features in isolation, i.e., independently of the context of a specific
prompt. In App. F Fig. 6, Fig. 7, and Fig. 8,5 we do so by selecting dataset examples that have the
largest average activation and perturbing them using our activation modulation intervention from
above. For down.2.1 and up.0.1 we also include the empty prompt interventions.

Interpretation. Overall, on the random feature examples, we can make similar observations as in
Fig. 5 where we looked at the most active features when generating a picture for a prompt. Namely,

1. down.2.1 mostly creates elements in the scene of which many directly correspond to
phrases in the prompt. Both its global as well as local interventions are highly effective and
interpretable. To term it a compositional block is not too far off.

2. mid.0 features seem to be abstract, contain information about where things are (0 bottom
left corner, 2 sides of a woman/person, 4 top right object boundary in App. F Fig. 6) and
maybe also how they relate to each other (3 object inside other object, 5 bottom right of
a kind). Global interventions on the empty prompt barely change the generation and local
interventions result in subtle changes.

3. up.0.0 features mostly correspond to concrete details in the images. While empty-prompt
interventions result in abstract-looking images, local interventions in context are highly
effective and change images in expected ways. We term up.0.0 a detail block.

4. up.0.1 features mostly correspond to stylistic aspects of the image such as colour, texture,
illumination and shadow. Both global as well as local interventions are highly effective and
interpretable. We find the folklore term of style block appropriate.

When studying features in isolation, it becomes apparent that distinctions between the blocks are
not clear cut. While down.2.1 has the most features related to the prompt, all transformer blocks
usually have some features that directly relate to phrases in the prompt. E.g., 1 in mid.0: “ceiling
fan”6. Some down.2.1 features are style features as well, e.g., it usually has a anime style and
a cartoon style feature (see App. F Fig. 8). The difference inbetween down.2.1 style features
and up.0.1 ones is maybe that the former ones are acting more globally, while the latter ones
usually only change individual aspects (App. F Fig. 10). Some up.0.0 features also directly relate
to phrases in the prompt and some of them also have an effect when turning them on in the empty

4SDXL Turbo does not utilize positional encodings for the spatial locations in the feature maps. Therefore,
we did a brief sanity check and trained linear probes to detect i, j given Din

ij . These probes achieved high
accuracy on a holdout set: 97.9%, 98.48%, 99.44%, 95.57% for down.2.1, mid.0, up.0.0, up.0.1.

5For the features in App. F Fig. 8 we provide additional visualizations in which we turn the corresponding
features on on unrelated prompts (Fig. 9) and the up.0.1 ones locally in Fig. 10.

6For lack of space, we included the prompts corresponding to all features in Fig. 6 only in App. F Table 3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

prompt. Some up.0.1 features don’t only change style but also add and remove elements of the
scene, e.g., dog eyes (Fig. 6 up.0.1 feature 3).

5 QUANTITATIVE INTERPRETING THE LEARNED FEATURES

5.1 ANNOTATION PIPELINE

Feature annotation with an LLM followed by further evaluation is a common way to assess feature
properties such as interpretability, specificity, and causality of learned features (Caden et al., 2024).
We found it applicable to the down.2.1 transformer block learned features, which have a strong
effect on the generation and thus are amendable to automatic annotation using visual language mod-
els such as GPT-4o (OpenAI, 2024). In contrast, for features of other blocks with more subtle
effects, we found VLM-generated captions to be unsatisfactory. In order to caption the features of
down.2.1, we prompt GPT-4o with a sequence of 14 images. The first five images are irrelevant to
the feature (i.e., the feature was inactive during the generation of the images), followed by a progres-
sion of 4 images with increasing average activation values, and finished five images with the highest
average activation value. The last nine images are provided alongside their so-called ”coldmaps”: a
version of an image with weakly active and inactive regions being faded and concealed. The prompt
template and examples of the captions can be found in App. G.

5.2 EXPERIMENTAL DETAILS

We perform a series of experiments in order to get statistical insights into the features learned. We
will report the majority of experimental score in the format M(S). When the score is reported in the
context of SDXL Turbo’s transformer block, it means that we computed the score for each feature
of the block and set M and S to mean and standard deviation across the feature scores. For the
baselines, we calculate the mean and standard deviation across the scores of a 100-element sample.

Table 1: Metrics for SDXL Turbo blocks and baselines.

(a) Specificity, texture score, and color activa-
tion for different blocks and baselines.

Block Specificity Texture Color

Down.2.1 0.71 (0.11) 0.16 (0.02) 86.2 (14.9)
Mid 0.62 (0.11) 0.14 (0.01) 84.7 (16.3)
Up.0.0 0.66 (0.12) 0.18 (0.03) 86.3 (16.5)
Up.0.1 0.65 (0.11) 0.20 (0.02) 73.8 (20.6)
Random 0.50 (0.10) 0.13 (0.02) 90.7 (54.9)
Same Prompt 0.89 (0.06) – –
Textures – 0.18 (0.02) –

(b) Manhattan distances between original and intervened im-
ages at varying intervention strengths.

Block -10 -5 5 10

Down.2.1 148.2 / 116.0 124.2 / 94.4 101.4 / 78.7 128.9 / 105.60
Mid 69.2 / 32.2 39.4 / 18.5 33.2 / 15.2 59.9 / 29.82
Up.0.0 105.3 / 38.4 77.7 / 23.7 63.6 / 23.3 88.6 / 37.08
Up.0.1 125.0 / 26.8 73.1 / 16.4 68.6 / 21.9 98.9 / 34.74

Interpretability. Features are usually considered interpretable if they are sufficiently specific, i.e.,
images exhibiting the feature share some commonality. In order to measure this property, we com-
pute the similarity between images on which the feature is active. High similarity in between these
images is a proxy for high specificity. For each feature, we collect 10 random images among top 5%
images for this feature and calculate their average pairwise CLIP similarity (Radford et al., 2021;
Cherti et al., 2023). This value reflects how semantically similar the contexts are in which the feature
is most active. We display our results in the first column of Table 1 (a), which shows that the CLIP
similarity between images with the feature active is significantly higher then the random baseline
for all transformer blocks. This suggests that when a feature is on, the images are similar.

For down.2.1 we compute an additional interpretability score by comparing how well the gener-
ated annotations align with the top 5% images. The resulting CLIP similarity score is 0.21 (0.03)
and again significantly higher then the random baseline (average CLIP similarity with random im-
ages) 0.12 (0.02). To obtain an upper bound on this score we also compute the CLIP similarity to
an image generated from the feature annotation, which is 0.25 (0.03).

Causality. We can use the feature annotations to measure a feature’s causal strength by comparing
the empty prompt intervention images with the caption.7 The CLIP similarity in between inter-

7Since we require captions for our quantitative causality analysis we only have it for down.2.1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

vention images and feature caption is 0.19 (0.04) and almost matches the annotation based inter-
pretability score of 0.21 (0.03). This suggests that empty prompt intervention images are similar
to the corresponding feature annotations even though the annotation pipeline has never seen such
images, which speaks for the high causal strength of features learned on down.2.1.

Sensitivity. A feature is said to be sensitive when it activates on its relevant context. As a proxy for
the context, we have chosen the feature annotations obtained with the auto-annotation pipeline.8 For
each learned feature, we collected the 100 prompts from a 1.5M sample of LAION-COCO with the
highest sentence similarity based on sentence transformer embeddings of all-MiniLM-L6-v2
Reimers & Gurevych (2019). We make sure that the resulting set of 100 prompts is diverse. Next,
we run SDXL Turbo on these prompts and count the proportion of generated images in which the
feature is active on more than 0%, 10%, 30% of the image area, resulting in 0.60 (0.32), 0.40 (0.34),
0.27 (0.30) respectively, which is much higher than the random baseline, which is at 0.06 (0.09),
0.003 (0.006), 0.001 (0.003). However, the average scores are < 1 and thus not perfect. This may
be caused by incorrect or imprecise annotations for the features that are subtle and, therefore, hard
to annotate with a VLM and SDXL Turbo failing to comply with some prompts.

Relatedness to texture. In Fig. 5 and App. F Fig. 6 the empty prompt interventions of the up.0.1
features resulted in texture-like pictures. In order to quantify whether this consistently happens, we
design a simple texture score by computing the CLIP similarity between an image and the word
“texture”. Using this score, we compare empty prompt interventions of the different transformer
blocks with each other and also to real-world texture images. The results are in the second column
of Table 1 (a) and suggest that up.0.1 and up.0.0 generate textures and some of the down.2.1
images look like textures as well. For up.0.0 we did not observe any connection of these images
to the top activating images. In particular, the score of up.0.1 is higher than the one of the
real-world textures dataset (Cimpoi et al. (2014)).

Color sensitivity. In our qualitative analysis, we suggested that the features learned on up.0.1

relate to texture and color. If this holds, the image regions that activate a feature should not differ
significantly in color on average. To test that, we calculate the “average” color for each feature: this
is a weighted average of pixel colors with the weights as activation values among random 10 of top
5% images for this feature. Then, we calculate the weighted average Manhattan distance between
the colors of the pixels and the “average” color on the same images (the highest possible distance
is 3 · 255 = 765). We report these distances for different transformer blocks and for the images
generated on random prompts from LAION-COCO. We present our results in the third column of
Table 1 (a). The average distance for the up.0.1 transformer block is in fact the lowest.

Intervention locality. We suggested that the features learned on up.0.0 and up.0.1 influence
intervened generations locally. To quantitatively assess that, we estimate how the top 5% images
change inside and outside the active regions. In order to exclude weak activation regions from
consideration, we say that a pixel is inside the active area if the corresponding 32x32 patch has
an activation value larger than 50% of the image patches, and it is outside the active area, if the
corresponding 32x32 patch has activation value of zero. In the Table 1 (b), we report Manhatten
distances between the original images and the intervened images inside and outside the active areas
for intervention strengths -10, -5, 5, 10. The features for up.0.0 and up.0.1 have a higher effect
inside the active area than outside, in contrast to down.2.1 for which this difference is smaller.

6 RELATED WORK

Analyzing the latent space of diffusion models. Kwon et al. (2023) show that diffusion models
naturally have a semantically meaningful latent space. Park et al. (2023) analyzes the latent space
of DMs using Riemannian geometry. Li et al. (2024); Dalva & Yanardag (2024) presents self-
supervised methods for finding semantic directions in the latent space. Similarly, Gandikota et al.
(2023) show that the attribute variations lie in a low-rank space by learning LoRA adapters (Hu et al.,
2021) on top of pre-trained DMs. Brack et al. (2023); Wang et al. (2023) demonstrate effective
semantic vector algebraic operations in the latent space of DMs, as observed by Mikolov et al.
(2013). However, none of those works train SAEs to interpret and control the latent space explicitly.

8Since we require feature annotations for our sensitivity analysis, we only have it for down.2.1.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Mechanistic interpretability using SAEs. Sparse autoencoders have only recently been popular-
ized by Bricken et al. (2023), in which they show that it is possible to learn interpretable features by
decomposing neurons in MLPs in 2-layer transformer language models. At the same time, a parallel
work decomposed the elements of the residual stream (Cunningham et al., 2023), which followed
up on (Sharkey et al., 2022). To our knowledge, the first work that applied sparse autoencoders
to transformer-based LLM was (Yun et al., 2021), which learned a joint dictionary for patterns of
all layers. Recently, sparse autoencoders have gained a lot of traction and many have been trained
even on state-of-the-art LLMs (Gao et al., 2024; Templeton & et al., 2024; Lieberum et al., 2024).
In addition, great tools are available for inspection (Lin & Bloom, 2023) and automatic interpreta-
tion Caden et al. (2024) of learned characteristics. Marks et al. (2024) have shown how to use SAE
features to facilitate automatic circuit discovery.

The works most closely related to our work are (Ismail et al., 2023) and (Daujotas, 2024). Ismail
et al. (2023) apply concept bottleneck methods (Koh et al., 2020) that decompose latent concepts
into vectors of interpretable concepts to generative image models, including diffusion models. Un-
like the SAEs that we train, this method requires labeled concept data. Daujotas (2024) decomposes
CLIP (Radford et al., 2021; Cherti et al., 2023) vision embeddings using SAEs and use them for
conditional image generation with a diffusion model called Kandinsky (Razzhigaev et al., 2023).
Importantly, using SAE features they are able to manipulate the image generation process in inter-
pretable ways. In contrast, in our work we train SAEs on intermediate representations of the forward
pass of SDXL Turbo. Consequently, we can interpret and manipulate SDXL Turbo’s forward pass
on a finer granularity, e.g., by intervening on specific transformer blocks and spatial positions.

7 CONCLUSION

We trained SAEs on SDXL Turbo’s (by default) opaque intermediate representations. We highlight
that this study is one of the first in the academic literature to mechanistically interpret the inter-
mediate representations of the modern text-to-image model. Our findings demonstrate that SAEs
are capable of extracting interpretable features and that they have a significant causal effect on the
generated images. Importantly, the learned features shed light on the forward pass of SDXL Turbo.
In particular, they enabled us to observe that transformer blocks play a specific and varying role in
the generation process. Our findings show a clear picture for the functions of down.2.1, up.0.0,
and, up.0.1. For mid.0, the picture is less clear; as we observed from its learned features, it
seems to encode more abstract information, and interventions are less effective. These observa-
tions lead us to the rough hypothesis of how SDXL Turbo generates images: down.2.1 decides
top-level composition, mid.0 assigns low-level semantics, up.0.0 adds details based on the two
above, and up.0.1 fills in color, texture, and style.

Although our work provides important insights into the mechanisms of SDXL Turbo, we studied
its transformer blocks in isolation. More research is required to understand how the features of
SDXL Turbo interact between layers and how this affects the overall functionality of the model. A
promising direction would be the application of advanced interpretability techniques such as (Marks
et al., 2024). Marks et al. (2024) computes circuits that show how different layers and attention
heads wire together and, therefore, would provide insight into our hypothesis stated above.

In addition, the complex nature of some of the learned visual features deserves special attention. Al-
though some features (for example, learning on down.2.1 and up.0.1) exhibit their effect even
when turning them on during empty-prompt generations, other features (typically, the ones learned
on mid.0 and up.0.0) require an appropriate context to show their effect. This complexity poses
additional challenges for the automatic annotation of features. Our preliminary results in this direc-
tion suggest that current visual language models do not seem to pick up the features, often subtle
roles. Furthermore, we question whether captioning the visual features with few short sentences can
adequately capture most features’ roles.

We believe that our work highlights the potential of SAEs in revealing the internal structure of
diffusion models like SDXL Turbo, and it could help future researchers answer more sophisticated
questions about image generation. For example, how does SDXL Turbo add illumination effects,
render wool, hair, or reflections of objects in the water?

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

Our research focuses on enhancing the interpretability of SDXL Turbo using sparse autoencoders
with the goal of making complex generative AI systems more transparent and understandable, es-
pecially as these models become more advanced and are increasingly used in image generation,
content creation, and other influential domains. We acknowledge the ethical responsibilities that
come with AI advancements, including the potential misuse of generative models to create harmful
content, embedded biases that may exacerbate risks to people—particularly those historically un-
derrepresented or misrepresented in these models. By working on interpretability methods with the
goal of increasing our understanding of text-to-image models, we hope to facilitate the identification
and mitigation of unintended behaviors or biases within the models. We foresee no particular ethical
concerns with the methods developed in this work and hope this paper contributes to developing
tools that can identify and mitigate ethical issues in the future.

REPRODUCIBILITY STATEMENT

Upon acceptance we will provide code to reproduce all datasets, experiments, and analyses. In the
meantime, we refer to Appendix A for SAE training details and to Appendix F and our supplemen-
tary material for further feature visualizations and results.

REFERENCES

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Manuel Brack, Felix Friedrich, Dominik Hintersdorf, Lukas Struppek, Patrick Schramowski, and
Kristian Kersting. Sega: Instructing text-to-image models using semantic guidance. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 25365–25389. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/

file/4ff83037e8d97b2171b2d3e96cb8e677-Paper-Conference.pdf.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, and Adam Jermyn et al.
Towards monosemanticity: Decomposing language models dictionary learning. Trans-
former Circuits, October 2023. URL https://transformer-circuits.pub/2023/

monosemantic-features.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Juang Caden, Paulo Gonçalo, Drori Jacob, and Belrose Nora. Open source automated inter-
pretability for sparse autoencoder features, 2024. URL https://blog.eleuther.ai/

autointerp/. Accessed: 2024-09-27.

Haozhe Chen, Carl Vondrick, and Chengzhi Mao. Selfie: Self-interpretation of large language model
embeddings. arXiv preprint arXiv:2403.10949, 2024.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2818–2829, 2023.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild. In
Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/4ff83037e8d97b2171b2d3e96cb8e677-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4ff83037e8d97b2171b2d3e96cb8e677-Paper-Conference.pdf
https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://blog.eleuther.ai/autointerp/
https://blog.eleuther.ai/autointerp/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yusuf Dalva and Pinar Yanardag. Noiseclr: A contrastive learning approach for unsupervised discov-
ery of interpretable directions in diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 24209–24218, June 2024.

Gytis Daujotas. Interpreting and steering features in images, 2024.
URL https://www.lesswrong.com/posts/Quqekpvx8BGMMcaem/

interpreting-and-steering-features-in-images. Accessed: 2024-09-27.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021. URL
https://arxiv.org/abs/2105.05233.

Soch Joram Duchi John. Multivariate normal distribution: Kullback-leibler divergence, 05 2020.
URL https://statproofbook.github.io/P/mvn-kl.html. Accessed on October
2, 2024.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superpo-
sition. Transformer Circuits, September 2022. URL https://transformer-circuits.

pub/2022/toy_model/index.html.

Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
synthesis, 2021. URL https://arxiv.org/abs/2012.09841.

Rohit Gandikota, Joanna Materzynska, Tingrui Zhou, Antonio Torralba, and David Bau. Concept
sliders: Lora adaptors for precise control in diffusion models, 2023. URL https://arxiv.

org/abs/2311.12092.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah Goodman. Find-
ing alignments between interpretable causal variables and distributed neural representations. In
Causal Learning and Reasoning, pp. 160–187. PMLR, 2024.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lucas Dixon, and Mor Geva. Patchscope: A
unifying framework for inspecting hidden representations of language models. arXiv preprint
arXiv:2401.06102, 2024.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. URL https:

//arxiv.org/abs/1406.2661.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. Simple diffusion: End-to-end diffusion for
high resolution images, 2023. URL https://arxiv.org/abs/2301.11093.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:

//arxiv.org/abs/2106.09685.

Aya Abdelsalam Ismail, Julius Adebayo, Hector Corrada Bravo, Stephen Ra, and Kyunghyun Cho.
Concept bottleneck generative models. In The Twelfth International Conference on Learning
Representations, 2023.

12

https://www.lesswrong.com/posts/Quqekpvx8BGMMcaem/interpreting-and-steering-features-in-images
https://www.lesswrong.com/posts/Quqekpvx8BGMMcaem/interpreting-and-steering-features-in-images
https://arxiv.org/abs/2105.05233
https://statproofbook.github.io/P/mvn-kl.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://arxiv.org/abs/2012.09841
https://arxiv.org/abs/2311.12092
https://arxiv.org/abs/2311.12092
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2301.11093
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

William B Johnson, Joram Lindenstrauss, and Gideon Schechtman. Extensions of lipschitz maps
into banach spaces. Israel Journal of Mathematics, 54(2):129–138, 1986.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models, 2022. URL https://arxiv.org/abs/2206.00364.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models,
2023. URL https://arxiv.org/abs/2107.00630.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International conference on machine learning, pp.
5338–5348. PMLR, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent
space, 2023. URL https://arxiv.org/abs/2210.10960.

Hang Li, Chengzhi Shen, Philip Torr, Volker Tresp, and Jindong Gu. Self-discovering inter-
pretable diffusion latent directions for responsible text-to-image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12006–12016,
June 2024.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

Jae Hyun Lim and Jong Chul Ye. Geometric gan, 2017. URL https://arxiv.org/abs/

1705.02894.

Johnny Lin and Joseph Bloom. Neuronpedia: Interactive reference and tooling for analyzing neural
networks, 2023. URL https://www.neuronpedia.org. Software available from neuron-
pedia.org.

Calvin Luo. Understanding diffusion models: A unified perspective, 2022. URL https:

//arxiv.org/abs/2208.11970.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
arXiv preprint arXiv:2403.19647, 2024.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do
actually converge?, 2018. URL https://arxiv.org/abs/1801.04406.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space, 2013. URL https://arxiv.org/abs/1301.3781.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter. An
overview of early vision in inceptionv1. Distill, 5(4):e00024–002, 2020.

OpenAI. Hello gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o. Ac-
cessed: 2024-09-28.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nico-
las Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Ar-
mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2024. URL https://arxiv.org/abs/2304.07193.

13

https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2107.00630
https://arxiv.org/abs/2210.10960
https://arxiv.org/abs/1705.02894
https://arxiv.org/abs/1705.02894
https://www.neuronpedia.org
https://arxiv.org/abs/2208.11970
https://arxiv.org/abs/2208.11970
https://arxiv.org/abs/1801.04406
https://arxiv.org/abs/1301.3781
https://openai.com/index/hello-gpt-4o
https://arxiv.org/abs/2304.07193

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understand-
ing the latent space of diffusion models through the lens of riemannian geometry. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 24129–24142. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/

file/4bfcebedf7a2967c410b64670f27f904-Paper-Conference.pdf.

Pablo Pernias, Dominic Rampas, Mats L Richter, Christopher J Pal, and Marc Aubreville.
Würstchen: An efficient architecture for large-scale text-to-image diffusion models. arXiv
preprint arXiv:2306.00637, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023. URL https://arxiv.org/abs/2307.01952.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A practical review of mecha-
nistic interpretability for transformer-based language models. arXiv preprint arXiv:2407.02646,
2024.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022. URL https://arxiv.org/abs/

2204.06125.

Anton Razzhigaev, Arseniy Shakhmatov, Anastasia Maltseva, Vladimir Arkhipkin, Igor Pavlov, Ilya
Ryabov, Angelina Kuts, Alexander Panchenko, Andrey Kuznetsov, and Denis Dimitrov. Kandin-
sky: An improved text-to-image synthesis with image prior and latent diffusion. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, pp. 286–295, 2023.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.

org/abs/1908.10084.

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt Turner.
Steering Llama 2 via contrastive activation addition. arXiv preprint arXiv:2312.06681, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/

abs/2112.10752.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Sal-
imans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image dif-
fusion models with deep language understanding, 2022a. URL https://arxiv.org/abs/

2205.11487.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022b.

14

https://proceedings.neurips.cc/paper_files/paper/2023/file/4bfcebedf7a2967c410b64670f27f904-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4bfcebedf7a2967c410b64670f27f904-Paper-Conference.pdf
https://arxiv.org/abs/2307.01952
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2205.11487

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models, 2022.
URL https://arxiv.org/abs/2202.00512.

Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger. Projected gans converge faster, 2021.
URL https://arxiv.org/abs/2111.01007.

Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and Timo Aila. Stylegan-t: Unlocking
the power of gans for fast large-scale text-to-image synthesis, 2023a. URL https://arxiv.

org/abs/2301.09515.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation, 2023b. URL https://arxiv.org/abs/2311.17042.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022a.

Christoph Schuhmann, Andreas Köpf, Richard Vencu, Theo Coombes, Romain Beaumont, and Ben-
jamin Trom. Laion coco: 600m synthetic captions from laion2b-en, 2022b. URL https:

//laion.ai/blog/laion-coco/. Accessed: 2024-10-01.

Lee Sharkey, Dan Braun, and beren. Interim research report: Tak-
ing features out of superposition with sparse autoencoders, 2022. URL
https://www.lesswrong.com/posts/z6QQJbtpkEAX3Aojj/

interim-research-report-taking-features-out-of-superposition.
Accessed: 2024-09-27.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics, 2015. URL https://arxiv.org/

abs/1503.03585.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution,
2020. URL https://arxiv.org/abs/1907.05600.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2021.

Matteo Spinelli. Advanced style transfer with the mad scientist node. YouTube video, 2024. URL
https://www.youtube.com/watch?v=ewKM7uCRPUg. Accessed: 2024-09-17.

Adly Templeton and Tom Conerly et al. Scaling monosemanticity: Extracting interpretable fea-
tures from claude 3 sonnet, 2024. URL https://transformer-circuits.pub/2024/

scaling-monosemanticity/. Accessed: 2024-09-27.

Zihao Wang, Lin Gui, Jeffrey Negrea, and Victor Veitch. Concept algebra for (score-
based) text-controlled generative models. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 35331–35349. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/

6f125214c86439d107ccb58e549e828f-Paper-Conference.pdf.

Zeyu Yun, Yubei Chen, Bruno A Olshausen, and Yann LeCun. Transformer visualization via dictio-
nary learning: contextualized embedding as a linear superposition of transformer factors. arXiv
preprint arXiv:2103.15949, 2021.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

15

https://arxiv.org/abs/2202.00512
https://arxiv.org/abs/2111.01007
https://arxiv.org/abs/2301.09515
https://arxiv.org/abs/2301.09515
https://arxiv.org/abs/2311.17042
https://laion.ai/blog/laion-coco/
https://laion.ai/blog/laion-coco/
https://www.lesswrong.com/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.lesswrong.com/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1907.05600
https://www.youtube.com/watch?v=ewKM7uCRPUg
https://transformer-circuits.pub/2024/scaling-monosemanticity/
https://transformer-circuits.pub/2024/scaling-monosemanticity/
https://proceedings.neurips.cc/paper_files/paper/2023/file/6f125214c86439d107ccb58e549e828f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6f125214c86439d107ccb58e549e828f-Paper-Conference.pdf

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A SUPERPOSITION AND SPARSE AUTOENCODERS

Let h(x) 2 Rd be some intermediate result of a forward pass of a neural network on the input x. In a
fully connected neural network, the components h(x) could correspond to neurons. In transformers,
which are residual neural networks with attention and fully connected layers, h(x) usually either
refers to the content of the residual stream after some layer or an update to the residual stream by
some layer or the neurons within a fully connected block. In general, h(x) could refer to anything,
e.g. keys, queries, and values. Bricken et al. (2023) have shown that in many neural networks
(especially large language models), intermediate representations can be well approximated by sparse
sums of nf 2 N learned feature vectors, i.e.,

h(x) ⇡
nfX

⇢=1

s⇢(x)f⇢, (12)

where s⇢(x) are the input dependent (in the literature, input dependence is usually omitted) coef-
ficients of which most are equal to zero and f1, . . . , fnf 2 Rd is a learned dictionary of feature
vectors.

Importantly, these learned characteristics are usually highly interpretable (specific), sensitive (fire
on the relevant contexts), causal (change the output in expected ways in intervention) and usually
do not correspond directly to individual neurons. There are also some preliminary results on the
universality of these learned features, i.e., that different training runs on similar data result in the
corresponding models picking up largely the same features (Bricken et al., 2023).

Superposition. By associating task-relevant features with directions in Rd instead of individual
components of h(x) 2 Rd, it is possible to represent many more features than there are components,
i.e., nf >> d. As a result, in this case, the learned dictionary vectors f1, . . . , fnf cannot be orthog-
onal to each other, which can lead to interference when too many features are on (thus the sparsity
requirement). However, it would be theoretically possible to have exponentially (in d) many almost
orthogonal directions embedded in Rd.9

Using representations like this, the optimization process during training can trade off the benefits
of being able to represent more features than there are components in h with the costs of features
interfering with each other. Such representations are especially effective if the real features under-
lying the data do not co-occur with each other too much, that is, they are sparse. In other words, in
order to represent a single input (“Michael Jordan”) only a small subset of the features (“person”,
..., “played basketball”) is required (Elhage et al., 2022; Bricken et al., 2023).

The phenomenon of neural networks that exploit representations with more features than there are
components (or neurons) is called superposition (Elhage et al., 2022). Superposition can explain
the presence of polysemantic neurons. The neurons, in this case, are simply at the wrong level of
abstraction. The closest feature vector can change when varying a neuron, resulting in the neuron
seemingly reacting to or steering semantically unrelated things.

Sparse autoencoders. To implement the sparse decomposition from equation 1, the vector s con-
taining the nf coefficients of the sparse sum, is parameterized by a single linear layer followed by
ReLU activations, called the encoder,

s = ENC(h) = �(W ENC(h� bpre) + bact), (13)

in which h 2 Rd is the latent that we aim decompose, �(·) = max(0, ·), W ENC 2 Rnf⇥d is a
learnable weight matrix and bpre and bact are learnable bias terms. We omitted the dependencies
h = h(x) and s = s(h) that are clear from context.

Similarly, the learnable features are parametrized by a single linear layer, called decoder,

h0 = DEC(s) = W DECs+ bpre, (14)

in which W DEC = (f1| · · · |fnf) 2 Rd⇥nf is a learnable matrix of which the columns take the role of
learnable features and bpre is a learnable bias term.

9It follows from the Johnson-Lindenstrauss Lemma (Johnson et al., 1986) that one can find at least
exp(d✏2/8) unit vectors in Rd with the dot product between any two not larger than ✏.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Training. The pair ENC and DEC are trained in a way that ensures that h0 is a sparse sum of feature
vectors (as in equation 1). Given a dataset of latents h1, . . . , hn, both encoder and decoder are
trained jointly to minimize a proxy to the loss

min
W ENC,W DEC

bpre,bact

nX

i=1

kh0
i � hik22 + �ksik0 =

nX

i=1

kDEC(ENC(hi))� hik22 + �kENC(hi)k0, (15)

where hi = h(xi), si = ENC(h(xi)) (when we refer to components of s we use s⇢ instead), the
kh0

i�hik22 is a reconstruction loss, ksik0 a regularization term ensuring the sparsity of the activations
and � the corresponding trade-off term.

Technical details. In practice, ksik0 cannot be efficiently optimized directly, which is why it is
usually replaced with ksik1 or other proxy objectives.

In our work, we make use of the top-k formulation from Gao et al. (2024), in which ksik0  k is
ensured by introducing the a top-k function TopK into the encoder:

s = ENC(h) = �(TopK(W ENC(h� bpre) + bact)). (16)

As the name suggests, TopK returns a vector that sets all components except the top k ones to zero.

In addition (Gao et al., 2024) use an auxiliary loss to handle dead features. During training, a sparse
feature ⇢ is considered dead if s⇢ remains zero over the last 10M training examples.

The resulting training loss is composed of two terms: the L2-reconstruction loss and the top-
auxiliary L2-reconstruction loss for dead feature reconstruction. For a single latent h, the loss is
defined

L(h, h0) = kh� h0k22 + ↵kh� h0
auxk22 (17)

In this equation, the h0
aux is the reconstruction based on the top kaux dead features. This auxiliary

loss is introduced to mitigate the issue of dead features. After the end of the training process, we
observed none of them. Following (Gao et al., 2024), we set ↵ = 1

32 and kaux = 256, performed
tied initialization of encoder and decoder, normalized decoder rows after each training step. The
number of learned features nf is set to 5120, which is four times the length of the input vector.
The value of k is set to 10 as a good trade-off between sparsity and reconstruction quality. Other
training hyperparameters are batch size: 4096, optimizer: Adam with learning rate: 10�4 and betas:
(0.9, 0.999).

B FEW STEP DIFFUSION MODELS: SDXL TURBO

Diffusion models. Diffusion models are a class of generative models that were introduced by Sohl-
Dickstein et al. (2015) and are a core component of many of the recent large-scale text-to-image
generative models (Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022a). Notably, Ho
et al. (2020); Song & Ermon (2020) demonstrates that diffusion model are a viable alternative to
GANs (Goodfellow et al., 2014) for image generation. Additionally, diffusion models enjoy stable
training dynamics, are easier to scale than GANs (Dhariwal & Nichol, 2021), and offer likelihood
estimates of samples (Song et al., 2021).

Diffusion models sample from an unknown distribution p by learning to iteratively denoise corrupted
samples, starting from pure noise. The corruption process is defined on training samples from p.
Mathematically, the images are corrupted with Gaussian noise and are distributed according to

qt(xt|x0) := N (↵tx0,�
2
t I), (18)

where x0 corresponds to a real image from p, 0  t  T , ↵t,�2
t are positive real-valued scalars such

that the signal-to-noise ratio SNR := ↵t

�2
t

is monotonically decreasing. Additionally, the coefficients
↵T�1,�2

T�1 are typically chosen such that xT ⇠ N (0, I). In this work, the number of corruption
steps T is fixed to 1000, as we study the pre-trained models from (Sauer et al., 2023b). Given this
predetermined corruption process, the diffusion model learns to reverse it to recover clean data.

The denoising process is implemented via a distribution p✓(xt�1|xt). The simplest way to generate
samples using p✓(xt�1|xt) is to first generate a sample of pure noise xT ⇠ N (0, I), followed by T

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

iterative applications of p✓, yielding a sequence xT , xT�1, ..., x1, x0, where x0 approximates sam-
ples from p. The vector ✓ represents the parameters of a neural network that defines p✓(xt�1|xt).
There exist many objectives to learn to reverse the corruption process (Ho et al., 2020; Kingma
et al., 2023; Song & Ermon, 2020), but p✓ is generally trained to minimize the Kullback-Leibler
divergence between adjacent steps of the corruption process: DKL [qt(xt�1|xt, x0)||p✓(xt�1|xt)]
for t 2 {1, ..., T}, where qt(xt�1|xt, x0) is a Gaussian distribution whose mean and variance can
be computed in closed-form using Bayes rule and the definition in eq. (18) (Ho et al., 2020). The
denoising distribution p✓(xt�1|xt) is parameterized to be Gaussian. The Kullback-Leibler diver-
gence between two Gaussians admits a simple closed-form solution (Duchi John, 2020), hence, the
objective can be efficiently implemented.

The neural network used to parameterize p✓(xt�1|xt) can be trained to learn different quantities
(Luo, 2022; Salimans & Ho, 2022; Karras et al., 2022). A possible approach is to directly output
the mean µt of p✓(xt�1|xt), while the variance is either fixed or learned as well. In this work, the
neural network is parameterized to predict the noise added to the original sample during the forward
process (eq. (18)). This is achieved by minimizing the objective w(t)k✏�✏✓(↵tx0+�t✏, t)k2, where
w is a weighting function (Ho et al., 2020). Once ✏✓ is trained, the mean of p✓(xt�1|xt) is computed
as 1

↵t
(xt��t✏✓) (Rombach et al., 2022). Since our primary goal is to analyze a pre-trained diffusion

model, we refer the interested reader to Rombach et al. (2022); Luo (2022); Salimans & Ho (2022)
for more details.

Latent diffusion. Originally, diffusion models operated directly on pixels (Ho et al., 2020; Song
& Ermon, 2020). However, training a denoising network in pixel space is difficult and expensive
(Hoogeboom et al., 2023). As such, Rombach et al. (2022) uses a pre-trained auto-encoder to first
compress images, similar to VQGAN (Esser et al., 2021), and define a diffusion process in the latent
space instead of the pixel space. To make this difference clear they write p✓(zt�1|zt), in which now
zt refers to a noisy latent instead of a noisy image.

Distilled diffusion for fast inference. To speed-up inference of latent diffusion models, Sauer et al.
(2023b) distills a pre-trained Stable Diffusion XL (SDXL) model (Podell et al., 2023). The distilled
model is referred to as SDXL Turbo as it allows high-quality sampling in as little as 1-4 steps. The
original SDXL model is trained with a noise schedule of 1000 steps, but in practice, sampling with
20 to 50 steps still generates high-quality images. The speed-up in SDXL Turbo is achieved through
a combination of two objectives. First, Sauer et al. (2023b) defines an adversarial game, similar to
GANs (Goodfellow et al., 2014). The discriminator is implemented using lightweight classification
heads on top of frozen features extracted at K different layers of a DINOv2 backbone (Oquab et al.,
2024). Concretely, the objective of the discriminator is given by

LD
adv = Ex0

"
KX

k=1

(1�Dk(Fk(x0)))+ + �R1(�)

#
+ Ex̂✓

"
KX

k=1

(1 +Dk(Fk(x̂✓)))+

#
, (19)

where (x)+ = max(0, x) is the positive part, Fk denotes the k-th features tensor from the DINOv2
backbone, Dk the k-th classification head, � is the discriminator parameters, R1 is an L2 penalty
term on the norm of the gradients, introduced by Mescheder et al. (2018) and � is a scalar hyperpa-
rameter. Instead of a traditional classification loss, Sauer et al. (2023b) use the hinge loss (Lim &
Ye, 2017), following Sauer et al. (2021; 2023a).

Finally, x̂✓ represents the prediction of the diffusion model being distilled for the ground-truth image
x0 given a noisy sample xt obtained through the forward diffusion process defined in eq. (18). Sauer
et al. (2023b) found that distilling a diffusion model using the adversarial objective only resulted in a
model with a FID of 20.8. To further improve performance, they also distilled the noise predictions
of the teacher model. Importantly, both the teacher and student models were initialized with the
same pre-trained weights. After adversarial distillation (Sauer et al., 2023b), the model learns to
map noise to samples in one step

Neural network architecture. The denoising network of SDXL Turbo estimating p✓(zt�1|zt) is
implemented using a U-net similar to Rombach et al. (2022). The U-net is composed of a down-
sampling path, a bottleneck, and an up-sampling path. Both the down-sampling and up-sampling
paths are composed of 3 individual blocks. The individual block structure differs slightly but both
down- and up-sampling blocks consist of residual layers as well as cross-attention transformer
blocks. Finally, the bottleneck layer is also composed of attention and residual layers. As for the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

DOWN.0 (no attn)

DOWN.1.0

DOWN.1.1

DOWN.2.0

DOWN.2.1

MID.0

UP.0.0

UP.0.1

UP.0.2

UP.1.0

UP.1.1

UP.1.2

UP.2 (no attn)

ResNet

Upsampler

Downsampler

Figure 2: Cross-attention transformer blocks in SDLX’s U-net.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 3: We generate images for the prompts “A dog playing with a ball cartoon.”, “A photo of
a colorful model.”, “An astronaut riding on a pig on the moon.”, “A photograph of the inside of a
subway train. There are frogs sitting on the seats. One of them is reading a newspaper. The window
shows the river in the background.” and “A cinematic shot of a professor sloth wearing a tuxedo at a
BBQ party.” while ablating the updates performed by different cross-attention layers (indicated by
the titles). The title “baseline” corresponds to the generation without interventions.

original U-net architecture (Ronneberger et al., 2015), the corresponding blocks in the up-sampling
and and down-sampling path are connected via a skip connection. Importantly, the text condition-
ing is achieved via cross-attention to text embeddings performed by in total 11 transformer blocks
embedded in the down-, up-sampling paths and bottleneck. An architecture diagram displaying the
relevant blocks can be found in App. B Fig. 2.

C FINDING CAUSALLY IMPACTFUL TRANSFORMER BLOCKS

As a first step, we narrow down design space of the 11 cross-attention transformer blocks (see Fig. 2)
to those with the highest causal impact on the output. In order to assess their causal impact on the
output we qualitatively study the effect of individually ablating each of them (see Fig. 3). As can be
seen in Fig. 3 each of the middle blocks down.2.1, mid.0, up.0.0, up.0.1 have a relatively
high impact on the output respectively. In particular, the blocks down.2.1 and up.0.1 stand out.
It seems like most colors and textures are added in up.0.1, which in the community is already
known as “style” block Spinelli (2024). Ablating down.2.1, which is also already known in the
community as “composition” block, impacts the entire image composition, including object sizes,
orientations and framing. The effects of ablating other blocks such as mid.0 and up.0.0 are more
subtle. For mid.0 it is difficult to describe in words and up.0.0 seems to add local details to the
image while leaving the overall composition mostly intact.

D SAE TRAINING RESULTS

We trained several SAEs with different sparsity levels and sparse layer sizes and observed no
dead features. To assess reconstruction quality, we processed 100 random LAION-COCO prompts
through a one-step SDXL Turbo process, replacing the additive component of the corresponding
transformer block with its SAE reconstruction.

The explained variance ratio and the output effects caused by reconstruction are shown in Table 2.
Fig. 4 presents random examples of reconstructions from an SAE with the following hyperparam-
eters: k = 10, nf = 5120, trained on down.2.1. The reconstruction causes minor deviations in
the images, and the fairly low LPIPS (Zhang et al., 2018) and pixel distance scores also support
these findings. However, to prevent these minor reconstruction errors from affecting our analysis of
interventions, we decided to directly add or subtract learned directions from dense feature maps.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 2: Distances and explained variance ratio in generated images. “Mean” represents the average
pixel Manhattan distance between original and reconstruction-intervened images, with a maximum
possible value of 765. “Median” represents the median Manhattan distance per pixel, averaged over
all images. ’LPIPS’ refers to the average LPIPS score, measuring perceptual similarity. “Explained
variance ratio” denotes the ratio of variance explained by the trained SAEs to the total variance.

k nf Configuration Mean | Median LPIPS Explained Variance Ratio (%)

5

640

down 83.29 | 50.04 0.3383 56.0
mid 52.64 | 26.82 0.2032 43.4
up0 55.89 | 30.69 0.2276 44.8
up 52.67 | 34.53 0.2073 50.3

5120

down 74.68 | 41.49 0.3036 67.8
mid 48.82 | 24.60 0.1845 50.8
up0 49.19 | 25.86 0.1969 57.2
up 47.50 | 31.11 0.1775 59.5

10

640

down 73.65 | 41.79 0.2893 62.8
mid 46.80 | 23.10 0.1772 51.5
up0 48.43 | 25.80 0.1908 52.5
up 43.06 | 26.85 0.1638 58.7

5120

down 64.97 | 34.77 0.2582 73.7
mid 44.02 | 21.72 0.1627 58.8
up0 42.08 | 21.54 0.1624 64.2
up 39.77 | 24.84 0.1453 67.1

20

640

down 59.29 | 31.47 0.2291 69.9
mid 39.95 | 19.44 0.1459 60.0
up0 40.15 | 21.06 0.1499 60.9
up 31.97 | 18.15 0.1196 66.7

5120

down 56.37 | 29.04 0.2190 78.8
mid 37.28 | 17.82 0.1328 66.5
up0 35.73 | 18.03 0.1302 70.6
up 30.31 | 17.22 0.1104 74.2

Figure 4: Images generated from 10 random prompts taken from the LAION-COCO dataset are
shown in the first row. In the second row, down.2.1 updates are replaced by their SAE recon-
structions (k = 10, nf = 5120). The third row visualizes the differences between the original and
reconstructed images.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E CASE STUDY I: MOST ACTIVE FEATURES ON A PROMPT

Here we provide a version of the case study in Sec. 4.2 but with the top-9 features.

Combining all our feature visualization techniques, in Fig. 5, we depict the features with the highest
average activation when processing the prompt: “A cinematic shot of a professor sloth wearing
a tuxedo at a BBQ party”. We discuss each transformer block, sorted from easiest to hardest to
interpret.

Down.2.1. We start with down.2.1, which indeed seems to contribute towards the image com-
position. Several features seem to relate directly to phrases of the prompt: 4539 “professor sloth”,
4751, 1226, “wearing a tuxedo”, 2881, 567, 3119, 2345 “party”.

Turning off features (A. -6.0 column) removes elements from and changes elements in the scene
in ways that mostly make sense when comparing with the heatmap (hmap column) and the top
examples (C columns): 1674 removes the light chains in the back, 4608 the umbrellas/tents, 4539
the 3D animation-like sloth face, 567 people in the background, 3119, 2345 some of the light chains,
and, 4751 changes the type of suit, 1226 the shirt. Similarly, enhancing the same features (A. 6.0
column) enhances the corresponding elements and sometimes changes them.

Activating the features on the empty prompt often creates related elements. Note that, for the fixed
random seed we use, the empty prompt itself looks like a painting of a piece of nature with a lot of
green and brown. Therefore, while the prompt is empty the features active during the forward pass
are not and due to the layers that we don’t intervene on still contribute to the images.

While top dataset examples (C.0, C.1 columns) and also empty prompt intervention (B. column)
mostly agree with the feature activation heatmaps (hmap column), some of them add additional
insight, e.g., 2881, which activates on the suit, seems to correspond to (masqueraded) characters in
a (festive) scene, 3119 seems to be about party decorations in general and not just light chains, 2345
seems to react to other celebration backgrounds as well.

Up.0.1. The up.0.1 transformer block indeed seems to contribute substantially to the style of
the image. They are hard to relate directly to phrases in the prompt, yet indirectly they do relate.
E.g., the illumination (2727) and shadow (500, 1700) effects probably have something to do with “a
cinematic shot” and the animal hair texture (2314) with “sloth”. Beyond that several features seem
to mainly contribute to the glowing lights in the background (1295, 4238, 2341).

Interestingly, turning on the up.0.1 features on the entire empty prompt (B. column) results in
texture-like images. In contrast, when activating them locally (A. columns) their contribution to
the output is highly localized and keeps most of the remaining image largely unchanged. For the
up.0.1 we find it remarkable that often the ablation and amplification are counterparts: 500 (light,
shadow), 2727 (shadow, light), 3936 (blue, orange), 2314 (less grey hair, more brown hair).

Up.0.0. To the best of our knowledge, up.0.0’s responsibility is less understood. First, we observe
that it acts very locally and we think that it often requires relevant other features from the previous
and subsequent transfomrer blocks effectively influence the image. Turning it on the empty prompt
results in abstract looking images, which are hard to relate to the other columns, which is why we
excluded this visualization technique for this transformer block and instead included an additional
example.

Most top dataset examples and their activations (C columns) are highly interpretable: 3603 party
decoration, 5005 upper part of tent, 775 buttons on suit, 153 lower animal jaw, 1550 collars, 2648
pavilions, 1604 right part of the image, 564 bootie. Many of the features have a expected causal
effect on the generation when ablating/enhancing (B. columns): 3603, 5005, 775, 153, 1550, 564,
but not all: 2221, 2648, 1604. To sum up, this transformer block seems to mostly add local details
to the generation and when interventions are performed locally they are effective.

Mid.0. Again to the best of our knowledge, mid.0’s role is also not well understood. We find
it harder to interpret because most interventions on the mid.0 have very subtle effects. Again,
we did not include the intervention in which we turn on the features on the empty prompt because
interventions of this kind in mid.0 barely affect the generation.

While effects of interventions are subtle, dataset examples (C. columns) and heatmap (hmap column)
all mostly agree with each other and are specific enough to be interpretable: 4755 bottom right part

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Top 9 features of down.2.1 (b) Top 9 features of mid.0

(c) Top 9 features of up.0.0 (d) Top 9 features up.0.1

Figure 5: The top 9 features of down.2.1 (a), mid.0 (b), up.0.0 (c) and up.0.1 (d) for
the prompt: “A cinematic shot of a professor sloth wearing a tuxedo at a BBQ party.” Each row
represents a feature. The first column depicts a feature heatmap (highest activation red and lowest
nonzero one blue). The column titles containing “A” show feature modulation interventions, the
ones containing “B” the intervention of turning on the feature on the empty prompt, and the ones
containing “C” depict top dataset examples. Floating point values in the title denote � and � values.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

of faces, 4235 left part of (animal) faces, 1388 people in the background, 1935 is active on chests,
473 mostly active on the image border, 2322 again seems to have to do with backgrounds that also
contain people, 3067 active on the neck or neck accessories, and, 5102 outlines the left border of the
main object in the scene. The feature 3018 is difficult to interpret.

Our observations indicate that mid.0’s features are more abstract, indicate where things are10 and
potentially how they relate to each other.

F FEATURES INCLUDING PROMPTS

Feature plots. We provide the prompts for Fig. 6 in Table 3. Further we provide the same plots
for the last six feature indices of each transformer block in Fig. 7 and the corresponding prompts in
Table 4. Additionally, provide some cherry picked features for down.2.1 and up.0.1 in Fig. 8
and the corresponding prompts in Table 5.

Intervention plots. Additionally, we provide plots in which we turn on features from Fig. 8 but in
unrelated prompts (as opposed to top dataset example prompts that already activate the features by
themselves). For simplicity here we simply turn on the features across all spatial locations, which
does not seem to be a well suitable strategy for up.0.1, which usually acts locally. To showcase,
the difference we created one example image in Fig. 10, in which we manually draw localized masks
to turn on the corresponding features.

G ANNOTATION PIPELINE DETAILS

We used GPT-4o to caption learned features on down.2.1. For each feature, the model was shown
a series of 5 unrelated images, a progression of 9 images, the i-th of those corresponds to ⇠ i · 10%
average activation value of the maximum. Finally, we show 5 images corresponding to the highest
average activations. Since some features are active on particular parts of images, the last 9 images
are provided alongside their so-called ”coldmaps”: a version of an image with weakly active and
inactive regions being faded and concealed.

The images were generated by 1-step SDXL Turbo diffusion process on 500000 random prompts of
LAION-COCO dataset.

G.1 TEXTUAL PROMPT TEMPLATE

Here is the prompt template for the VLM.

System. You are an experienced mechanistic interpretability researcher that is
labeling features from the hidden representations of an image generation model.
User. You will be shown a series of images generated by a machine learning
model. These images were selected because they trigger a specific feature of a
sparse auto-encoder, trained to detect hidden activations within the model. This
feature can be associated with a particular object, pattern, concept, or a place on
an image. The process will unfold in three stages:
1. **Reference Images:** First, you’ll see several images *unrelated* to the fea-
ture. These will serve as a reference for comparison.
2. **Feature-Activating Images:** Next, you’ll view images that activate the fea-
ture with varying strengths. Each of these images will be shown alongside a ver-
sion where non-activated regions are masked out, highlighting the areas linked to
the feature.
3. **Strongest Activators:** Finally, you’ll be presented with the images that
most strongly activate this feature, again with corresponding masked versions to
emphasize the activated regions.

10SDXL Turbo does not utilize positional encodings for the spatial locations in the feature maps. Therefore,
we did a brief sanity check and trained linear probes to detect i, j given Din

ij . These probes achieved high
accuracy on a holdout set: 97.9%, 98.48%, 99.44%, 95.57% for down.2.1, mid.0, up.0.0, up.0.1.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Your task is to carefully examine all the images and identify the thing or concept
represented by the feature. Here’s how to provide your response:
- **Reasoning:** Between ‘<thinking>‘ and ‘</thinking>‘ tags, write up to
400 words explaining your reasoning. Describe the visual patterns, objects, or
concepts that seem to be consistently present in the feature-activating images but
not in the reference images.
- **Expression:** Afterward, between ‘<answer>‘ and ‘</answer>‘ tags,
write a concise phrase (no more than 15 words) that best captures the common
thing or concept across the majority of feature-activating images.
Note that not all feature-activating images may perfectly align with the concept
you’re describing, but the images with stronger activations should give you the
clearest clues. Also pay attention to the masked versions, as they highlight the
regions most relevant to the feature.
User. These images are not related to the feature: Reference Images
User. This is a row of 9 images, each illustrating increasing levels of feature
activation. From left to right, each image shows a progressively higher activation,
starting with the image on the far left where the feature is activated at 10% relative
to the image that activates it the most, all the way to the far right, where the feature
activates at 90% relative to the image that activates it the most. This gradual
transition highlights the feature’s growing importance across the series. {Feature-
Activating Images}
User. This row consists of 9 masked versions of the original images. Each masked
image corresponds to the respective image in the activation row. Areas where the
feature is not activated are completely concealed by a white mask, while regions
with activation remain visible.) {Feature-Activating Images Coldmaps}
User. These images activate the feature most strongly. {Strongest Activators}
User. These masked images highlight the activated regions of the images that
activate the feature most strongly. The masked images correspond to the images
above. The unmasked regions are the ones that activate the feature. {Strongest
Activators Coldmaps}

G.2 EXAMPLE OF PROMPT IMAGES

The images used to annotate feature 0 are shown in Fig. 11.

G.3 EXAMPLES OF GENERATED CAPTIONS

We present the captions generated by GPT-4o for the first and last 10 features in Table 6.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) down.2.1 (b) mid.0 (c) up.0.0 (d) up.0.1

Figure 6: We visualize 6 features for down.2.1 (a), mid.0 (b), up.0.0, and up.0.1. We
use three columns for each transformer block and three rows for each feature. For down.2.1
and up.0.1 we visualize the two samples from the top 5% quantile of activating dataset examples
(middle) together a feature ablation (left) and a feature enhancement (right), and, activate the feature
on the empty prompt with � = 0.5, 1, 2 from left to right. For mid.0 and up.0.0 we display three
samples with ablation and enhancement. Captions are in Table 3.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 3: Prompts for the top 5% quantile examples in Fig. 6

Block Feature Prompt

down.2.1 0 A file folder with the word document management on it.
0 Two blue folders filled with dividers.
1 A kitchen with an island and bar stools.
1 An unfinished bar with stools and a wood counter.
2 The Taj Mahal, or a white marble building in India.
2 The Taj Mahal, or a white marble building in India.
3 A man and woman standing next to each other.
3 Two men in suits hugging each other outside.
4 An old Forester whiskey bottle sitting on top of a wooden table.
4 Red roses and hearts on a wooden table.
5 A beaded brooch with pearls and copper.
5 An image of a brooch with diamonds.

mid.0 0 The Boss TS-3W pedal has an electronic tuner.
0 An engagement ring with blue sapphire and diamonds.
0 The women’s pink sneaker is shown.
1 A white ceiling fan with three blades.
1 A ceiling fan with three blades and a light.
1 The ceiling fan is dark brown and has two wooden blades.
2 The black dress is made from knit and has metallic sleeves.
2 The back view of a woman wearing a black and white sports bra.
2 The woman is wearing a striped swimsuit.
3 An old-fashioned photo frame with a little girl on it.
3 The woman is sitting in her car with her head down.
3 The contents of an empty bottle in a box.
4 An old painting of a man in uniform.
4 The model wears an off-white sweatshirt with green panel.
4 The Statue of Liberty stands tall in front of a blue sky.
5 Cheese and crackers on a cutting board.
5 Two cufflinks with coins on them.
5 Three pieces of luggage are shown in blue.

up.0.0 0 Three wine glasses with gold and silver designs.
0 Three green wine glasses sitting next to each other.
0 New Year’s Eve with champagne, gold, and silver.
1 The birdhouse is made from wood and has a brown roof.
1 The garage is white with red shutters.
1 Two garages with one attached porch and the other on either side.
2 An elegant white lace purse with gold clasp.
2 The red handbag has gold and silver designs.
2 A pink and green floral-colored purse.
3 A magazine rack with magazines on it.
3 The year-in-review page for this digital scrap.
3 The planner sticker kit is shown with gold and black accessories.
4 A clock with numbers on the face.
4 A silver watch with roman numerals on the face.
4 An automatic watch with a silver dial.
5 Four pieces of wooden furniture with blue and white designs.
5 The green chair is in front of a white rug.
5 The wish chair with a black seat.

up.0.1 0 The wooden toy kitchen set includes bread, eggs, and flour.
0 The office chair is brown and black.
1 An aerial view of the white sand and turquoise water.
1 An aerial view of the beach and ocean.
2 The patriarch of Ukraine is shown speaking to reporters.
2 German Chancellor Merkel gestures as she speaks to the media.
3 Four pictures showing dogs wearing orange vests.
3 Two dogs are standing on the ground next to flowers.
4 A man standing in front of a wooden wall.
4 A blue mailbox sitting on top of a wooden floor.
5 The baseball players are posing for a team photo.
5 The baseball players are holding up their trophies.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(a) down.2.1 (b) mid.0 (c) up.0.0 (d) up.0.1

Figure 7: We visualize last 6 features for down.2.1 (a), mid.0 (b), up.0.0, and up.0.1. We
use three columns for each transformer block and three rows for each feature. For down.2.1 and
up.0.1 we visualize two samples from the top 5% quantile of activating dataset examples (middle)
together a feature ablation (left) and a feature enhancement (right), and, activate the feature on the
empty prompt with � = 0.5, 1, 2 from left to right. For mid.0 and up.0.0 we display three
samples with ablation and enhancement. Captions are in Table 4.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 4: Prompts for the top 5 % quantile examples in Fig. 7

Block Feature Prompt

down.2.1 5114 Black and white Converse sneakers with the word black star.
5114 Black and white Converse sneakers with the word Chuck.
5115 A woman holding up a photo of herself.
5115 A man holding up a tennis ball in the air.
5116 The Nike Women’s U.S. Soccer Team DRI-Fit 1/4 Zip Top.
5116 The women’s gray and orange half-zip sweatshirt.
5117 A large group of people sitting in front of a basketball court.
5117 Hockey players are playing in an arena with spectators.
5118 The black and white plaid shirt is shown.
5118 The different colors and sizes of t-shirts.
5119 A ball of yarn on a white background.
5119 Two balls of colored wool are on the white surface.

mid.0 5114 People holding signs in front of a building.
5114 Two men dressed in suits and ties are holding up signs.
5114 A large group of people holding flags and signs.
5115 A kitchen with white cabinets and a blue stove.
5115 The kitchen is clean and ready for us to use.
5115 A kitchen with white cabinets and stainless steel appliances.
5116 The steering wheel and dashboard in a car.
5116 The interior of a car with dashboard controls.
5116 The dashboard and steering wheel in a car.
5117 Three men are celebrating a goal on the field.
5117 Two men in Red Bull racing gear standing next to each other.
5117 Two men are posing for the camera at an event.
5118 Someone is holding up their nail polish with pink and black designs.
5118 The nail is very cute and looks great with marble.
5118 White stily nails with gold and diamonds.
5119 The Mighty Thor comic book.
5119 The camera is showing its flash drive.
5119 A truck with bikes on the back parked next to a camper.

up.0.0 5114 The Acer laptop is open and ready to use.
5114 The Lenovo S13 laptop is open and has an image of a person jumping off the keyboard.
5114 A laptop with the words Hosting Event on it.
5115 A horse with a black nose and brown mane.
5115 The horse leather oil is being used to protect horses.
5115 An oil painting on a canvas of a horse.
5116 The sun is shining brightly over Saturn.
5116 A football player throws the ball to another team.
5116 Car door light logo sticker for Hyundai.
5117 An artistic black and silver sculpture with speakers.
5117 The pink brushes are sitting on top of each other.
5117 Four kings playing cards in the hand.
5118 A man is fixing an air conditioner.
5118 The black Land Rover is parked in front of a large window.
5118 A flat screen TV mounted on the wall above a fireplace.
5119 A table with many different tools on it.
5119 A camera with many different items including flash cards, lenses, and other accessories.
5119 The contents of an open suitcase and some clothes.

up.0.1 5114 An old Navajo rug with multicolored designs.
5114 The pillow is made from an old kilim.
5115 An image of noni juice with some fruits.
5115 A bottle and glass on the counter with green juice.
5116 Someone cleaning the shower with a sponge.
5116 A man on a skateboard climbing a wall with ropes.
5117 A man taking a selfie in front of some camera equipment.
5117 A person holding up a business card with the words cycle transportation.
5118 Two photos are placed on top of an open book.
5118 An open book with pictures of children and their parents.
5119 An engagement ring with diamonds on top.
5119 An oval ruby and diamond ring.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) down.2.1 (b) up.0.1

Figure 8: We visualize 6 features for down.2.1 (a) and up.0.1 (b). We use 5 columns for
each transformer block and three rows for each feature. We visualize three samples from the top
5% quantile of activating dataset examples (middle) together a feature ablation (left) and a feature
enhancement (right). Captions are in Table 5.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 5: Prompts for the top 5% quantile examples in Fig. 8

Block Feature Prompt

down.2.1 4998 A cartoon bee wearing a hat and holding something.
4998 Two cartoon pictures of the same man with his hands in his pockets.
4998 A cartoon bear with a purple shirt and yellow shorts.
4074 An anime character with cat ears and a dress.
4074 Two anime characters, one with white hair and the other with red eyes.
4074 An anime book with two women in blue dresses.
2301 A man with white hair and red eyes holding a chain.
2301 An animated man with white hair and a beard.
2301 The character is standing with horns on his head.
56 Two men in uniforms riding horses with swords.
56 A woman riding on the back of a brown horse.
56 Two jockeys on horses racing down the track.
59 A red jar with floral designs on it.
59 An old black vase with some design on it.
59 A vase with birds and flowers on it.
89 StarCraft 2 is coming to the Nintendo Wii.
89 Overwatch is coming to Xbox and PS3.
89 The hero in Overwatch is holding his weapon.

up.0.1 4955 An African wild dog laying in the grass.
4955 The woman is posing for a photo in her leopard print top.
4955 An animal print cube ottoman with brown and white fur.
4977 A white tiger with blue eyes standing in the snow.
4977 A bottle and tiger are shown next to each other.
4977 A mural on the side of a building with a tiger.
3718 Giraffes are standing in the grass near a vehicle.
3718 Two giraffes standing next to each other in the grass.
3718 A giraffe standing next to an ironing board.
90 A lion is roaring its teeth in the snow.
90 A lion sitting in the grass looking off into the distance.
90 Two lions with flowers on their backs.
1093 The sun is shining over mountains and trees.
1093 Bride and groom in front of a lake with sun flare.
1093 The milky sun is shining brightly over the trees.
2165 The silhouette of a person riding a bike at sunset.
2165 The Dark Knight rises from his cave in Batman’s poster.
2165 A yellow sign with black design depicting a tractor.

Table 6: down.2.1 first 10 and last 10 feature captions.

Block Feature Caption

down.2.1 0 Organizational/storage items for documents and office supplies
1 Luxury kitchen interiors and designs
2 Architectural Landmarks and Monumental Buildings
3 Upper body clothing and attire
4 Rustic or Natural Wooden Textures or Surfaces
5 Intricately designed and ornamental brooches
6 Technical diagrams and instructional content
7 Feature predominantly activated by visual representations of dresses
8 Home decor textiles focusing on cushions and pillows
9 Eyewear: glasses and sunglasses
5110 Concept of containment or organized enclosure
5111 Groups of people in collective settings
5112 Modern minimalist interior design
5113 Indoor plants and greenery
5114 Feature sensitivity focused on sneakers
5115 Handling or manipulating various objects
5116 Athletic outerwear, particularly zippered sporty jackets
5117 Spectator Seating in Sporting Venues
5118 Textiles and clothing materials, focus on textures and folds
5119 Yarn and Knitting Textiles

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

(a) down.2.1 (b) up.0.1

Figure 9: We turn on the features from Fig. 8 on three unrelated prompts “a photo of a colorful
model”, “a cinematic shot of a dog playing with a ball”, and “a cinematic shot of a classroom with
excited students”.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(a) Intervention history (b) Result

Figure 10: Local edits using our research tool showcasing up.0.1’s ability to locally change tex-
tures in the image without affecting the remaining image. Multiple consecutive interventions are
possible (a). The first in (a) row depicts the original image and each subsequent row we add an
intervention by drawing a heatmap with a brush tool and then turning on the feature labelling the
row only on that area. The other number (240) is the absolute feature strength of the edit. Figure (b)
shows the final result in full resolution (512x512).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 11: The images used by GPT-4o to generate captions for feature 0. From top to bottom:
irrelevant images to feature 0; image progression from left to right, showing increasing activation
of SAE feature 0, with low activation on the left and high activation on the right; “Coldmaps”
representing the image progression; images corresponding to the highest activation of feature 0;
“Coldmaps” corresponding to these highest activation images.

34

	Introduction
	Background
	Sparse autoencoders
	Few step diffusion models: SDXL Turbo

	Sparse autoencoders for SDXL Turbo
	Qualitative analysis of the transformer blocks
	Feature visualization techniques
	Case study I: Most active features on a prompt
	Case study II: Random features

	Quantitative Interpreting the learned features
	Annotation Pipeline
	Experimental Details

	Related work
	Conclusion
	Superposition and Sparse autoencoders
	Few step diffusion models: SDXL Turbo
	Finding causally impactful transformer blocks
	SAE Training Results
	Case study I: Most active features on a prompt
	Features including prompts
	Annotation Pipeline Details
	Textual Prompt Template
	Example of Prompt Images
	Examples of Generated Captions

