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Abstract

Large Language Models (LLMs) are increasingly being adopted as tools for learn-
ing; however, most tools remain text-only, limiting their usefulness for domains
where visualizations are essential, such as mathematics. Recent work shows that
LLMs are capable of generating code that compiles to educational figures, but
a major bottleneck remains: scalable evaluation of these diagrams. We address
this by proposing DiagramIR: an automatic and scalable evaluation pipeline for
geometric figures. Our method relies on intermediate representations (IRs) of
LaTeX TikZ code. We compare our pipeline to other evaluation baselines such as
LLM-as-a-Judge, showing that our approach has higher agreement with human
raters. This evaluation approach also enables smaller models like GPT-4.1-Mini to
perform comparably to larger models such as GPT-5 at a 10x lower inference cost,
which is important for deploying accessible and scalable education technologies.

1 Introduction
Large Language Models (LLMs) have garnered significant attention for their potential to enhance
education [1, 2], and recent studies have shown that students are increasingly adopting AI as part of
their learning process [3, 4]. Despite this, the current wave of LLM-assisted learning tools remains
narrow: most rely on chatbot-style interfaces, where text is the sole input and output. While this
paradigm has been useful for non-visual subjects, it can be limiting for highly visual subjects like
mathematics, where diagrams and spatial reasoning play a key role in students’ understanding of
problems and concepts [5].

Recent work has examined how LLMs can be used to generate pedagogically-useful mathematical
diagrams [6, 7], but they face a critical challenge: evaluation. Evaluating whether a mathematical
figure is useful is challenging: it involves (1) evaluating whether the diagram aligns with the prompt,
(2) whether the diagram is mathematically and visually sound, and (3) whether the diagram is
pedagogically meaningful given the context. The first and third aspects are difficult given their
subjective nature and the complexity of pedagogical evaluation, requiring further study. We focus
in this paper on the second aspect: scalable evaluation of whether a diagram is mathematically and
visually sound. Current techniques largely rely on human evaluation [6], which provide high quality
insights for static projects, but cannot be deployed scalably in live chatbot-like application settings.

One promising direction in these settings has been to apply LLM-as-a-Judge methods, which have
proven effective in text-based evaluation tasks [8]. However, extending this paradigm to diagrams
introduces unique obstacles. Unlike text, diagrams require reasoning over geometry, proportions,
and spatial layout, which are all features that LLMs cannot directly process without translation
into symbolic or textual representations. Multimodal Language Models (MLMs)[9] are a natural
alternative, but benchmarks like MathVista [10] and MathVerse [11] demonstrate that current MLMs
remain unreliable at solving problems about, or even interpreting mathematical visuals. As a result,
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Figure 1: Different evaluation approaches for TikZ-generated code. The left shows TikZ code as the
common input. Top: We asked human evaluators to rate the TikZ compiled images based on the
rubric discussed in Section 2.2. Middle: LLM-as-a-Judge uses either the TikZ code, the rendered
image, or both to make judgments. Bottom: In our back-translation method, an LLM translates the
TikZ code into an intermediate representation (IR) with multiple fields, after which automatic checks
(e.g., whether the diagram is fully in canvas or whether outlines are closed) are run. A diagram is
considered valid if all check pass.

diagram judgments made by LLMs or MLMs can be inconsistent, mathematically incorrect, or
misaligned with pedagogical intent. And notably, closed-source and larger frontier models have
been shown to be more effective at LLM-as-a-Judge techniques [8]. However, their high costs and
limited accessibility make them impractical for real-world educational deployments, especially in
resource-constrained settings. For education technology to be truly equitable, evaluation methods
must work reliably with open models and lightweight pipelines that can be deployed at scale at low
costs.

This gap highlights the need for task-specific, automated pipelines for evaluating mathematical
diagrams. In our work, we present DiagramIR: an automatic pipeline that evaluates TikZ-generated
diagrams using back-translation [12, 13, 14] and grammar-based mathematical and spatial checks.
Specifically, our contributions are as follows:

1. We introduce a back-translation pipeline to automatically and scalably evaluate mathematical
and spatial criteria of diagrams (Section 2.3). This novel method outperforms LLM-as-a-
Judge on agreement with human evaluation, with stronger performance across all models,
which is essential for educational deployments (Section 3).

2. We utilize a 398-item evaluation dataset of real-world mathematical diagram generations
from teachers (Section 2.1), demonstrating an approach for the continued development and
improvement of automatic evaluation pipelines for mathematical diagrams.

2 Methods
2.1 Evaluation Dataset - Geometric Diagrams

Given the downstream educational application of our pipeline, we ground our evaluation dataset
in real-world data. Specifically, we use conversational data from Coteach2, an AI assistant for
mathematics educators that uses the Illustrative Mathematics K–12 Math v.360 curriculum. For the
dataset to reflect the types of diagrams teachers most commonly generate, we pulled 6, 000 random
conversations between teachers and the tool. The most frequent type of diagram request category
were geometric constructions, which is why we choose to focus on 2D and 3D shapes in this work.

2https://coteach.ai/
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We sampled 398 instances of geometric constructions (i.e. pairs of (teacher’s request, generated
code)), resulting in 208 2D diagrams (triangles, circles, and rectangles) and 190 3D shape diagrams
(prisms and cubes). We utilize 12 diagrams for human-eval calibration and pipeline development,
leaving 386 for our test set. Since our entire dataset is derived from natural teacher-LLM interactions,
we can evaluate the quality of diagrams used “in the wild”. The diagrams in the dataset represent a
variety of error types (see Appendix A2.1, which informed the design of our evaluation rubric.

2.2 Rubric Construction

We developed a rubric that aims to capture criteria that (i) correspond to the most frequent failure
modes observed in generated diagrams, (ii) are unambiguous, observable, and (iii) compatible with
both human and LLM judging. The rubric targets two axes: mathematical correctness and spatial
correctness. We designed the rubric by first reviewing a small sample of Coteach diagrams and
open-coding recurrent failure modes (off-frame content, mislabeled angles, etc.). Then, we iteratively
refined the criteria through calibration rounds where we scored parts of the Coteach dataset using our
rubric to identify gaps. Our final rubric is shown in Table 1.

Criterion Allowed values

Mathematical correctness
Labeled angles match drawn angles Yes | No | N/A
Labeled lengths/areas match proportions Yes | No | N/A
Spatial correctness
Diagram is fully in frame Yes | No
Elements are scaled to be readable Yes | No
Labels are associated with correct elements Yes | No | N/A
Elements do not problematically overlap Yes | No

Table 1: The rubric created for assessing the mathematical and spatial correctness of math diagrams.
The rubric was used for human annotation, and was mirrored in the automated pipeline.

2.3 Intermediate Representations and Back Translation

To represent the key features of mathematical diagrams in a generalizable manner, we build an
intermediate representation (IR) of the diagrams. Our use of an IR is inspired by compiler design,
where source code is first translated into a structured, machine-interpretable form before further
analysis and optimization [15, 16]. Similarly, by mapping TikZ into a standardized IR of shapes and
relationships, we decouple varied formatting differences and drawing patterns from deterministic
verification, allowing rule-based checks to operate on a 1:1 mapping between diagram entities and IR
fields. The IR schema and example diagrams and their IRs are available in Appendix A2.2.

The core idea behind our pipeline relies on back-translation, an idea inspired by its counterpart in
Neural-Machine Translation, which entails translation from the target language (in our case, TikZ
code) to the source language (the intermediate representation). This enables the mapping of high-
entropy TikZ into a low-entropy, schema-constrained “pivot language” (our IR) where deterministic
checks are easy to write. By back-translating into an IR, we (i) factor out surface form (code
formatting, macro usage), (ii) localize errors to explicit types, (iii) enable validators that run without
a large model, and (iv) gain auditability and reproducibility, since the checks explain precisely why a
diagram passes or fails. Conceptually, this mirrors back-translation in NMT [12, 13, 14]: information
is projected into a representation where constraints are easier to enforce. Practically, it decouples
perception from verification: an LLM performs the semantic analysis (TikZ→IR), while rule-based
checks perform the evaluation task A2.4.

2.4 LLM-as-a-Judge

We compare our pipeline to an LLM-as-a-Judge pipeline (including both LLMs and MLMs) that asks
the LLM to act as an impartial judge and evaluate each of the rubric criteria for three conditions: just
the diagram, just the TikZ code, and both the diagram and the TikZ code. For all LLM-as-a-Judge
conditions, we set temperature to 0 and and top-p to 1. For GPT-5, we used the “low reasoning” mode
to control latency. The prompt used can be found in Appendix A2.6.
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Models Back-translation LLM-as-a-Judge (code+image)

Cohen’s κ Time (s) Cost ($) Cohen’s κ Time (s) Cost ($)

GPT-4.1 0.562 25.78 6.75 0.399 14.50 3.61
GPT-5 0.555 36.46 10.29 0.498 26.20 4.85
GPT-4.1 Mini 0.483 12.16 0.47 0.388 8.55 0.82
GPT-5 Mini 0.527 42.14 2.12 0.465 12.66 0.86

Table 2: Comparison of models across two evaluation approaches. For each method, Cohen’s κ
measures agreement with human ratings, Time reports the avg time required to evaluate a diagram
in the dataset, and Cost reports the total API cost of evaluation for the dataset. Back-translation
evaluates diagrams by using an LLM to translate the TikZ code to an Intermediate Representation,
which programmatic checks are run on, while LLM-as-a-Judge evaluates diagrams from their code
and image. We provide similar comparison tables using LLM-as-a-Judge provided only with TikZ
code and with image in Appendix A1.

3 Results
Table 2 compares back-translation with LLM-as-a-Judge across four models. We find that back-
translation outperforms LLM-as-a-Judge in its strongest setting (where it uses both code and image
input), demonstrating comparable agreement with human raters (κ = 0.48 − 0.56)[17] while
LLM-as-a-Judge shows weaker agreement (κ = 0.39− 0.47). However, because back-translation
decouples parsing the TikZ code from verifying its correctness, even the weakest model, GPT-4.1-
Mini, demonstrates similar performance with back-translation as compared to the best LLM-judge
(GPT-5) at 10.3x lower the cost ($0.47 vs. $4.83). This is notable, given that for AI-based education
tools to be accessible and scalable, they need to be built at the lowest cost possible.

In Table 3, we compare the performance of back-translation for specific checks with that of LLM-
as-a-Judge supplied with an image and code. We measure Cohen’s κ against human ratings. We
see that for most checks, back-translation results in higher human agreement than LLM-as-a-judge.
Notably, back-translation performs better for both spatial checks, despite the LLM-as-a-judge being
provided the image to judge with. LLM-as-a-judge considerably outperforms backtranslation for the
mathematical check about angle labels (0.829 vs. 0.652). This is likely because programmatically
checking the positioning of angle labels in relation to surrounding geometric objects is tricky.
However, given an image, it is easy to check whether or not an angle is labeled properly.

Backtranslation (κ) Judge, image + code (κ)

Criterion gpt-4.1 gpt-4.1 mini gpt-5 gpt-5 mini gpt-4.1 gpt-4.1 mini gpt-5 gpt-5 mini

Mathematical checks
Labeled angles match
drawn angle

0.691 0.666 0.644 0.652 0.793 0.791 0.795 0.829

Lengths/areas match
proportions

0.449 0.480 0.429 0.422 0.581 0.596 0.673 0.616

Spatial checks
Diagram fully in frame 0.573 0.397 0.604 0.581 0.184 0.162 0.390 0.398
Elements scaled to be
readable

0.362 0.283 0.334 0.272 -0.017 0.000 0.043 0.097

Labels associated with
elements

0.812 0.697 0.715 0.687 0.789 0.780 0.768 0.757

No problematic overlap 0.489 0.377 0.608 0.549 0.062 0.000 0.315 0.094

Table 3: Rubric check-wise comparison between back-translation and LLM-as-a-judge supplied with
both image and code. For other LLM-as-a-Judge settings, we include results in Appendix A1.2

.
4 Limitations and Conclusion
In this paper we introduced DiagramIR, a novel approach leveraging back-translation for evaluating
TikZ diagrams via an intermediate representation and rule-based checks. By decoupling the task
of perception and verification (with verification being conducted by our rule-based checks), we
strengthen even the smallest LLMs to better assist with diagram evaluation. Across multiple models
and evaluation settings, we found that back-translation consistently achieved higher agreement with
human ratings compared to LLM-as-a-Judge. Notably, it enabled smaller, low-cost models to perform
on par with, or even better than, frontier models. This highlights the promise of domain-specific
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automatic evaluation pipelines that combine symbolic abstraction with lightweight inference, applied
to critical domains, such as education.

There are several limitations to our work. First, our rubric focuses on mathematical and spatial
correctness, leaving out pedagogical usefulness, which remains a critical but more subjective di-
mension of diagram quality. Second, the intermediate representation captures a restricted set of
geometric primitives and relations; more complex diagrams (e.g., multi-step constructions, coordinate
plots) may require iterating upon the schema and checks. Third, back-translation relies on LLMs for
parsing TikZ into IRs, which introduced stochastic errors during the IR generation step. While our
results suggest that even smaller models perform competitively, fine-tuning a small model specifically
for TikZ→IR translation could further reduce costs and improve reliability. Finally, our dataset is
grounded in one curriculum (Illustrative Mathematics), and additional validation on other domains
(e.g., physics diagrams, freehand sketches) is needed to establish broader generalizability.

Future work should explore extending the rubric toward pedagogical dimensions, expanding the IR to
cover a broader set of diagram constructs, and integrating the method into diagram-generation tools.

5 Acknowledgments

This work would not have been possible without the support of the Coteach team from Teaching Lab
Studio. We are especially grateful to Peter Edmonds for providing access to the Coteach data that
helped shape our dataset. We also thank the Gates Foundation (Grant #068816) and the Stanford
Institute for Human-Centered AI for funding this work. SM would also like to acknowledge the
Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation for their support.

References
[1] Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva,

Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt
for good? on opportunities and challenges of large language models for education. Learning
and individual differences, 103:102274, 2023.

[2] Lasha Labadze, Maya Grigolia, and Lela Machaidze. Role of ai chatbots in education: system-
atic literature review. International journal of Educational Technology in Higher education,
20(1):56, 2023.

[3] Kyrie Zhixuan Zhou, Zachary Kilhoffer, Madelyn Rose Sanfilippo, Ted Underwood, Ece
Gumusel, Mengyi Wei, Abhinav Choudhry, and Jinjun Xiong. " the teachers are confused
as well": A multiple-stakeholder ethics discussion on large language models in computing
education. arXiv preprint arXiv:2401.12453, 2024.

[4] Victor R Lee, Denise Pope, Sarah Miles, and Rosalía C Zárate. Cheating in the age of generative
ai: A high school survey study of cheating behaviors before and after the release of chatgpt.
Computers and Education: Artificial Intelligence, 7:100253, 2024.

[5] Mary Hegarty and Maria Kozhevnikov. Types of visual–spatial representations and mathematical
problem solving. Journal of educational psychology, 91(4):684, 1999.

[6] Rizwaan Malik, Rebecca Li Hao, Ritika Kacholia, and Dorottya Demszky. Mathematikz: A
dataset and benchmark for mathematical diagram generation. In Proceedings of the Twelfth
ACM Conference on Learning@ Scale, pages 95–104, 2025.

[7] Jaewook Lee, Jeongah Lee, Wanyong Feng, and Andrew Lan. From text to visuals: Using
llms to generate math diagrams with vector graphics. In International Conference on Artificial
Intelligence in Education, pages 336–349. Springer, 2025.

[8] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

5



[9] Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui
Zhang, Yao Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal llm-as-
a-judge with vision-language benchmark. In Forty-first International Conference on Machine
Learning, 2024.

[10] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao
Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical
reasoning of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

[11] Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
Pan Lu, Kai-Wei Chang, Peng Gao, and Hongsheng Li. MathVerse: Does Your Multi-modal
LLM Truly See the Diagrams in Visual Math Problems?, August 2024.

[12] Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation
models with monolingual data. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 86–96, Berlin, Germany, 2016.

[13] Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation
at scale. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 489–500, Brussels, Belgium, 2018.

[14] Marzieh Fadaee and Christof Monz. Back-translation sampling for neural machine translation.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 433–439, 2018.

[15] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In International symposium on code generation and optimization, 2004. CGO
2004., pages 75–86. IEEE, 2004.

[16] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers principles, techniques & tools.
Pearson Education, 2007.

[17] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20(1):37–46, 1960.

6



Appendix

A1 Additional Results 7

A1.1 Cohen’s κ, time, and cost for other LLM-as-a-Judge settings . . . . . . . . . . . . 7

A1.2 Rubric check-wise comparison for other LLM-as-a-judge settings . . . . . . . . . 7

A1.3 Confusion matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

A2 Additional Details on Methods 10

A2.1 Dataset Diagram Error Distributions as Determined by Human Evaluation . . . . . 10

A2.2 Intermediate Representation (IR) Examples . . . . . . . . . . . . . . . . . . . . . 10

A2.3 IR Schema and Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A2.4 Rule-based check pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A2.5 Backtranslation Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A2.6 LLM-as-a-Judge Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A1 Additional Results

A1.1 Cohen’s κ, time, and cost for other LLM-as-a-Judge settings

Models Back-translation LLM-as-a-Judge (code)
Cohen’s κ Time (s) Cost ($) Cohen’s κ Time (s) Cost ($)

GPT-4.1 0.563 25.74 6.76 0.395 9.13 3.30
GPT-5 0.556 36.93 10.30 0.427 25.32 5.85
GPT-4.1 Mini 0.483 12.69 0.47 0.388 10.25 0.69
GPT-5 Mini 0.527 42.26 2.25 0.406 12.77 0.84

Table 4: Back-translation vs LLM-as-a-Judge (code).

Models Back-translation LLM-as-a-Judge (image)
Cohen’s κ Time (s) Cost ($) Cohen’s κ Time (s) Cost ($)

GPT-4.1 0.563 25.74 6.76 0.365 12.28 2.77
GPT-5 0.556 36.93 10.30 0.442 19.37 3.75
GPT-4.1 Mini 0.483 12.69 0.47 0.366 7.29 0.64
GPT-5 Mini 0.527 42.26 2.25 0.442 10.88 0.72

Table 5: Comparison of models: Back-translation vs LLM-as-a-Judge (image).

A1.2 Rubric check-wise comparison for other LLM-as-a-judge settings

In Tables 6 and 7 we include results for checkwise comparisons of back-translation vs. LLM-as-a-
judge (code) and LLM-as-a-judge (image), respectively.

7



Rubric check Backtranslation Judge – code

GPT-4.1 GPT-4.1 Mini GPT-5 GPT-5 Mini GPT-4.1 GPT-4.1 Mini GPT-5 GPT-5 Mini

Angles labels 0.691 0.666 0.644 0.652 0.847 0.778 0.797 0.846
Lengths/areas 0.449 0.480 0.429 0.422 0.581 0.615 0.660 0.619
Diagram in frame 0.573 0.397 0.604 0.581 0.161 0.172 0.230 0.197
Readable size 0.362 0.283 0.334 0.272 0.000 -0.005 -0.005 -0.005
Labels associated 0.812 0.697 0.715 0.687 0.781 0.771 0.773 0.782
Problematic overlap 0.489 0.377 0.608 0.549 0.000 0.000 0.105 -0.005

Table 6: κ comparison: Backtranslation vs. LLM-as-a-Judge (code).

Rubric check Backtranslation Judge – image

GPT-4.1 GPT-4.1 Mini GPT-5 GPT-5 Mini GPT-4.1 GPT-4.1 Mini GPT-5 GPT-5 Mini

Angles labels 0.691 0.666 0.644 0.652 0.706 0.703 0.738 0.718
Lengths/areas 0.449 0.480 0.429 0.422 0.597 0.593 0.583 0.595
Diagram in frame 0.573 0.397 0.604 0.581 0.102 0.140 0.313 0.242
Readable size 0.362 0.283 0.334 0.272 -0.024 -0.005 0.218 0.334
Labels associated 0.812 0.697 0.715 0.687 0.776 0.765 0.661 0.727
Problematic overlap 0.489 0.377 0.608 0.549 0.034 0.000 0.140 0.034

Table 7: κ comparison: Backtranslation vs. LLM-as-a-Judge (image).

A1.3 Confusion matrices

In Tables 8 through 11, for each rubric check, we include the number of true positives, true negatives,
false positives (overly-cautious rule-based checks that mark something as incorrect when humans
marked it as correct), and false negatives (rule-based checks that mark a pass where humans found a
failure).

Criterion TP TN FP FN

Mathematical correctness
Labeled lengths/areas match proportions 33 (8.5%) 53 (13.7%) 38 (9.8%) 17 (4.4%)
Labeled angles match drawn angles 4 (1.0%) 28 (7.3%) 8 (2.1%) 6 (1.6%)
Spatial correctness
Diagram fully in frame 32 (8.3%) 320 (82.9%) 25 (6.5%) 9 (2.3%)
Elements are scaled to be readable 5 (1.3%) 363 (94.0%) 6 (1.6%) 12 (3.1%)
Labels associated with correct elements 11 (2.8%) 188 (48.7%) 3 (0.8%) 29 (7.5%)
Elements do not problematically overlap 61 (15.8%) 272 (70.5%) 25 (6.5%) 28 (7.3%)

Total (all applicable) 152 (6.5%) 1888 (80.4%) 185 (7.9%) 123 (5.2%)
Table 8: Per-criterion confusion breakdown for GPT-5 against human evaluation. TP=both mark the
check as failing, TN=both mark it as passing, FP=model marks a failure humans do not, FN=model
marks a pass where humans found a failure. Row percentages use N = 386 diagrams; totals are
normalized by applicable slots (N = 2348), since some criteria do not apply to every diagram (e.g.,
angle labels).
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Criterion TP TN FP FN

Mathematical correctness
Labeled lengths/areas match proportions 34 (8.8%) 52 (13.5%) 39 (10.1%) 16 (4.1%)
Labeled angles match drawn angles 5 (1.3%) 28 (7.3%) 8 (2.1%) 5 (1.3%)
Spatial correctness
Diagram fully in frame 33 (8.5%) 314 (81.3%) 31 (8.0%) 8 (2.1%)
Elements are scaled to be readable 6 (1.6%) 361 (93.5%) 8 (2.1%) 11 (2.8%)
Labels associated with correct elements 12 (3.1%) 182 (47.2%) 9 (2.3%) 28 (7.3%)
Elements do not problematically overlap 58 (15.0%) 255 (66.1%) 42 (10.9%) 31 (8.0%)

Total (all applicable) 151 (6.4%) 1904 (81.1%) 169 (7.2%) 124 (5.3%)
Table 9: Per-criterion confusion breakdown for GPT-4.1 against human evaluation. TP=both mark the
check as failing, TN=both mark it as passing, FP=model marks a failure humans do not, FN=model
marks a pass where humans found a failure. Row percentages use N = 386 diagrams; totals are
normalized by applicable slots (N = 2348), since some criteria do not apply to every diagram (e.g.,
angle labels).

Criterion TP TN FP FN

Mathematical correctness
Labeled lengths/areas match proportions 32 (8.3%) 53 (13.7%) 38 (9.8%) 18 (4.7%)
Labeled angles match drawn angles 5 (1.3%) 26 (6.7%) 10 (2.6%) 5 (1.3%)
Spatial correctness
Diagram fully in frame 31 (8.0%) 319 (82.6%) 26 (6.7%) 10 (2.6%)
Elements are scaled to be readable 5 (1.3%) 358 (92.7%) 11 (2.8%) 12 (3.1%)
Labels associated with correct elements 13 (3.4%) 185 (47.9%) 6 (1.6%) 27 (7.0%)
Elements do not problematically overlap 60 (15.5%) 263 (68.1%) 34 (8.8%) 29 (7.5%)

Total (all applicable) 150 (6.4%) 1872 (79.7%) 201 (8.6%) 125 (5.3%)
Table 10: Per-criterion confusion breakdown for GPT-5-mini against human evaluation. TP=both
mark the check as failing, TN=both mark it as passing, FP=model marks a failure humans do not,
FN=model marks a pass where humans found a failure. Row percentages use N = 386 diagrams;
totals are normalized by applicable slots (N = 2348), since some criteria do not apply to every
diagram (e.g., angle labels).

Criterion TP TN FP FN

Mathematical correctness
Labeled lengths/areas match proportions 32 (8.3%) 44 (11.4%) 47 (12.2%) 18 (4.7%)
Labeled angles match drawn angles 5 (1.3%) 25 (6.5%) 11 (2.8%) 5 (1.3%)
Spatial correctness
Diagram fully in frame 26 (6.7%) 303 (78.5%) 42 (10.9%) 15 (3.9%)
Elements are scaled to be readable 5 (1.3%) 359 (93.0%) 10 (2.6%) 12 (3.1%)
Labels associated with correct elements 10 (2.6%) 178 (46.1%) 13 (3.4%) 30 (7.8%)
Elements do not problematically overlap 44 (11.4%) 259 (67.1%) 38 (9.8%) 45 (11.7%)

Total (all applicable) 125 (5.3%) 1872 (79.7%) 201 (8.6%) 150 (6.4%)
Table 11: Per-criterion confusion breakdown for GPT-4.1-mini against human evaluation. TP=both
mark the check as failing, TN=both mark it as passing, FP=model marks a failure humans do not,
FN=model marks a pass where humans found a failure. Row percentages use N = 386 diagrams;
totals are normalized by applicable slots (N = 2348), since some criteria do not apply to every
diagram (e.g., angle labels).
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A2 Additional Details on Methods

A2.1 Dataset Diagram Error Distributions as Determined by Human Evaluation

In Table 12, we show the frequency of errors represented in our dataset as measured by human
evaluation.

Rubric check Yes No N/A

Mathematical checks
Labeled lengths/areas match proportions 91 (23.6%) 50 (13.0%) 245 (63.5%)
Angle labels match arcs 36 (9.3%) 10 (2.6%) 340 (88.1%)

Spatial checks
Diagram fully in canvas 345 (89.4%) 41 (10.6%) –
Elements do not problematically overlap 297 (77.0%) 89 (23.1%) –
Elements are readable size 369 (95.6%) 17 (4.4%) –
Labels associated with correct elements 191 (49.5%) 40 (10.4%) 155 (40.2%)

Table 12: Distribution of rubric outcomes (counts with percentages), grouped by mathematical and
spatial checks.

A2.2 Intermediate Representation (IR) Examples

Figure 2: Examples of abbreviated intermediate representations (IRs) extracted from TikZ diagrams.
The triangle (left) and rectangular prism (right) illustrate how diagrams are mapped into structured
IRs of shapes, line segments, nodes, and symbols. For clarity, only key fields are shown here; the full
IR schema and detailed descriptions of all attributes are provided in the section below.

A2.3 IR Schema and Attributes

The IR schema defines a structure for the key properties of shape diagrams.

Listing 1: Intermediate Representation
# Core type definitions
Coord2D = conlist(float, min_length=2, max_length=2) # [x, y]
Coord3D = conlist(float, min_length=3, max_length=3) # [x, y, z]
Coord2Dor3D = Union[Coord2D, Coord3D]

# Core classes, others omitted for brevity
class Transform(BaseModel):

shift: Optional[Coord2Dor3D] = None
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scale: Optional[Union[float, List[float]]] = None
rotate: Optional[float] = None
# xshift, yshift omitted for brevity

class Node(BaseModel):
at: Coord2Dor3D
text: str
anchor: Optional[Literal[’mid’, ’above’, ’below’, ’left’, ’right’,

’above left’, ’above right’, ’below left’,
’below right’]] = None

transform: Optional[Transform] = None
fill: Optional[str] = None

class Shape2D(BaseModel):
vertices: List[Coord2D]
type: Literal[’triangle’, ’polygon’]
cycle: bool
transform: Optional[Transform] = None
fill: Optional[str] = None

class Shape3DPart(BaseModel):
type: Literal[’3D-part’]
id: int
vertices: List[Coord3D]
cycle: bool
transform: Optional[Transform] = None
fill: Optional[str] = None

class LineSegment(BaseModel):
from_: Coord2Dor3D = Field(alias=’from’)
to: Coord2Dor3D
style: Optional[Literal[’solid’, ’dashed’, ’dotted’]] = ’solid’
text: Optional[str] = None
transform: Optional[Transform] = None

class Arc(BaseModel):
center: Coord2Dor3D
start_angle: float
end_angle: float
radius: float
transform: Optional[Transform] = None
fill: Optional[str] = None

# Main IR structure
class TikzIR(BaseModel):

tikzpicture_options: Optional[CoordinateSystem] = None
clips: Optional[List[Clip]] = None
shapes: Optional[List[Union[Shape2D, Shape3DPart, Ucube]]] = None
line_segments: Optional[List[LineSegment]] = None
nodes: Optional[List[Node]] = None
circles: Optional[List[Circle]] = None
rectangle_primitives: Optional[List[RectanglePrimitive]] = None
arcs: Optional[List[Arc]] = None

The schema consists of a main TikzIR class containing optional lists of geometric primitives
(nodes, shapes, line segments, arcs, etc.), each with their own coordinate specifications and optional
transformation parameters.

A2.4 Rule-based check pseudo code
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Algorithm 1 Check: Labeled lengths/areas match proportions
1: Extract all numeric labels from IR nodes and segment annotations
2: Collect all line segments and polygons (shapes + rectangles)
3: for each numeric label L with value v do
4: Find nearest segment S and distance dS
5: Find containing polygon P
6: if dS ≤ 12pt then
7: Associate L with segment S as a length label
8: else if L inside P then
9: Associate L with polygon P as an area label

10: else if dS <∞ then
11: Associate L with segment S as a length label
12: end if
13: end for
14: for each pair of length labels (Li, Lj) on segments (Si, Sj) do
15: mi ← measured length of Si, mj ← measured length of Sj

16: if |mi · vj −mj · vi| > ϵ ·max(mi · vj ,mj · vi) then
17: Report mismatch
18: end if
19: end for
20: (Repeat pairwise check for area labels on polygons)

Algorithm 2 Check: Labeled angles match drawn angles
1: Extract all arcs and their geometric properties from IR
2: Extract all angle labels (nodes containing degree symbols)
3: if no arcs and no angle labels then
4: return N/A
5: end if
6: for each angle label L with text containing numeric value θL do
7: Find nearest arc A by geometric distance
8: d← distance from L to A
9: τ ← adaptive tolerance based on arc size

10: if d > τ then
11: Report label too far from arc
12: continue
13: end if
14: Parse numeric angle θL from label text
15: Compute arc sweep angle θA
16: if |θA − θL| > ϵ then
17: Report angle mismatch
18: end if
19: end for
20: Check right-angle symbols (small squares) against 90° angles
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Algorithm 3 Check: Diagram fully in frame
1: Initialize working canvas from page bounds or clip regions in IR
2: if working canvas is empty then
3: return FAIL
4: end if
5: Buffer canvas by tolerance τ (default: 2pt)
6: for each geometric entity E in IR (shapes, circles, segments, arcs) do
7: Convert E to geometry G using coordinate system
8: if G ̸⊆ working canvas then
9: Report E exceeds canvas bounds

10: return FAIL
11: end if
12: end for
13: for each text node N with non-empty text do
14: Convert N to bounding box geometry G
15: if G ̸⊆ working canvas then
16: Report node exceeds canvas bounds
17: return FAIL
18: end if
19: end for
20: return PASS

Algorithm 4 Check: Elements are scaled to be readable
1: Collect all geometric entities (shapes, circles, segments, arcs, nodes)
2: Compute overall diagram bounding box from union of all geometries
3: dmin ← min(width, height) of diagram bbox
4: τ ← dmin × r where r is relative threshold (default: 0.02)
5: for each entity E with geometry G do
6: if G is line-like then
7: m← length of G
8: else
9: m← min(width, height) of G bbox

10: end if
11: if m < τ then
12: Record E as undersized
13: end if
14: end for
15: if any undersized elements then
16: return FAIL with list of smallest elements
17: else
18: return PASS
19: end if
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Algorithm 5 Check: Labels associated with correct elements
1: Collect shapes, segments, and arcs as candidate elements
2: Extract shape boundaries (edges) for polygon shapes
3: Collect all text nodes as labels, classify each as: angle, numeric, or text
4: if no labels present then
5: return N/A
6: end if
7: for each label L with type t do
8: Identify candidate elements based on type:
9: angle labels→ arcs

10: numeric labels→ segments and shape edges
11: text labels→ all elements, prefer containment
12: Rank candidates by (distance, priority), where priority depends on label type
13: C ← closest candidate element
14: d← distance from L to C
15: τ ← adaptive tolerance based on element size
16: if d > τ then
17: Report label not associated with any element
18: continue
19: end if
20: Check for ties (multiple candidates within small margin)
21: Associate L with C
22: end for
23: return PASS if all labels associated, else FAIL

Algorithm 6 Check: Elements do not problematically overlap
1: Collect all text nodes with bounding boxes
2: Collect all shape boundaries, segment boundaries, arc boundaries
3: Identify 3D faces
4: (Text-text overlaps)
5: for each pair of text nodes (Ni, Nj) with different text do
6: if bboxes intersect with area > 0.05×min(areai, areaj) then
7: Report problematic text overlap
8: end if
9: end for

10: (Text-geometry overlaps)
11: for each text node N do
12: for each boundary B (shape edge, segment, or arc) do
13: if B intersects N bbox with length > 0.4× perimeter of N then
14: Report text obscured by line
15: end if
16: end for
17: end for
18: (3D depth ordering)
19: for each pair of 3D faces (Fi, Fj) do
20: if faces project to overlapping 2D regions then
21: Compute mean z-coordinates and surface normals
22: if depth ordering inconsistent (back face occludes front face) then
23: Report problematic 3D overlap
24: end if
25: end if
26: end for
27: return PASS if no issues, else FAIL

A2.5 Backtranslation Prompt
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Listing 2: TikZ to IR Backtranslation Prompt

You are a deterministic parser that extracts geometric entities from TikZ code into
JSON that matches the provided schema.

### Rules
1. Extract ONLY entities explicitly present in the TikZ code.
2. Omit empty fields (do not include keys with empty lists).
3. Preserve exact numerical coordinates from the code. Resolve and compute if

necessary (e.g. \def or \newcommand), but DO NOT infer extra ones that are not
present in the code or complete partial shapes.

4. For shapes array, list vertices in the order they are drawn, set "cycle": true if
the draw command ends with ‘-- cycle‘.

5. For rectangle_primitives array, set "is_right_angle_symbol": true when the
rectangle is drawn as a right-angle marker (e.g., tiny square sharing corners
with two incident edges or comments mentioning a right angle). Otherwise set it
to false. If a \draw explicitly passes the ’right angle symbol’ option, do not
add it as a rectangle_primitive.

6. For 3D parts (shapes w/ 3D coords) and Ucubes, use one integer id per physical
solid (e.g., 1, 1, 1). Faces or unit cube entries that belong to the same
blockespecially those emitted inside the same scope/loopmust reuse that id;
only assign a new id when you are describing a genuinely different solid.

7. When you encounter the helper macro ‘\Ucube‘ (or any change of coordinates that
draws the front/right/top faces of a unit cube), output a single shape object
with ‘"type": "Ucube"‘ instead of three separate 3D-part entries. The cube
should include its ‘id‘, ‘size‘ (usually ‘[1,1,1]‘ unless the macro scales it),
the scope transform (‘scale‘, ‘shift‘, ‘xshift‘, ‘yshift‘), and ‘fill‘. Do not
emit the individual faces separately.

8. If a scope applies transformations (shift, scale, xshift, yshift, rotate),
include them in the optional transform object. Do not numerically apply the
transform.

9. Transform separation:
- ‘transform.shift‘ only TikZ’s ‘shift={...}‘ argument.
- ‘transform.xshift‘ only TikZ’s ‘xshift=...‘.
- ‘transform.yshift‘ only TikZ’s ‘yshift=...‘.
These must NEVER be combined. If xshift/yshift values are omitted or folded into

‘shift‘, the JSON is invalid.
10. For node options such as ‘rotate=...‘, set the node’s ‘node_rotate‘ field. Keep

scope-level rotations in ‘transform‘ and do not duplicate them in ‘node_rotate‘.

11. For tikzpicture_options, map x, y, and z to the corresponding options, or fill
out ’scale’ if the options include scale.

12. Loop expansion: Expand every ‘\foreach‘ loop literally. Substitute each variable
with its values and emit the corresponding repeated scopes and draw commands.

Never summarize or replace with a generic cube output must reflect exactly the
iterations.

13. For custom commands, resolve the command using this table:
IM_MACROS = [

"\TFP": "4.875in",
"\TTP": "4.2in",
"\TwoThirdsPage": "4.2in",
"\HP": "3.25in",
"\HalfPage": "3.25in",
"\THP": "2.1in",
"\ThirdPage": "2.1in",
"\QP": "1.625in",

"\QuarterPage": "1.625in",
]

13. Resolve relative coordinate syntax precisely: when you encounter forms like
‘+(...)‘, ‘++(...)‘, or ‘($(P)!t!(Q)$)‘, evaluate them to absolute coordinates
using previously defined points. For ‘++‘, remember it updates the current
point before the next coordinate is processed.

### Example
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TikZ:
‘‘‘latex
\foreach \x in {0,1} {
\begin{scope}[scale=0.5, shift={(\x,0,0)}, xshift=-2in, yshift=-3in]
\draw (0,0,0) -- (1,0,0) -- (1,1,0) -- (0,1,0) -- cycle;

\end{scope}
}
‘‘‘

JSON:

‘‘‘json
{
"shapes": [
{
"type": "3D-part",
"vertices": [[0,0,0],[1,0,0],[1,1,0],[0,1,0]],
"cycle": true,
"id": 1,
"transform": {
"scale": 0.5,
"shift": [0,0,0],
"xshift": "-2in",
"yshift": "-3in"

}
},
{
"type": "3D-part",
"vertices": [[0,0,0],[1,0,0],[1,1,0],[0,1,0]],
"cycle": true,
"id": 2,
"transform": {
"scale": 0.5,
"shift": [1,0,0],
"xshift": "-2in",
"yshift": "-3in"

}
}

]
}
‘‘‘

### TikZ
{tikz_code}

### Output
JSON only, no explanations.

A2.6 LLM-as-a-Judge Prompt

The prompt is designed to clearly communicate the criteria and the need to thoroughly and impartially
judge the diagram to allow the LLM to reason and evaluate, only differs between the three conditions
in “You are given an image of a math diagram and the LaTeX code for it” (the other conditions
including just an image or just the LaTeX code), and returns the evaluations in an analyzable format.

You are to act as an impartial large language model "judge". Your task is to
evaluate math diagrams using the rubric provided below. You are given an image
of a math diagram and the LaTeX code for it, which uses the TikZ LaTeX library.
Carefully reason through the diagram’s adherence to each rubric criterion

before reaching any conclusions. For each diagram you review:
- Analyze and internalize the full provided diagram and rubric.
- Systematically assess each rubric item, explaining your reasoning and specific

evidence from the diagram for each, and then output your evaluation. Strictly
output from the options for that rubric criterion that are provided below.
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Rubric:
Mathematical correctness:
Shape is closed (no gaps in outline): Yes | No - whether the diagram’s shape is

closed. This is independent from whether it is fully in frame (below) - is the
diagram formed that it would likely be closed regardless of its framing?

Labeled angles (if any) match the drawn angle: Yes | No | N/A - whether the labeled
angles in the diagram match their labeled value. Right angle markers without a
number also count. N/A if there are no labeled angles.

Labeled lengths (if any) match visual proportions: Yes | No | N/A - whether the
labeled lengths or areas shown in the diagram are reasonable lengths or areas
in relationship to each other. N/A if there are no labeled lengths or areas.

Core mathematical properties of the shape are correct: Yes | No - whether the core
mathematical properties of the shape are correct, independent of the criteria
above.

Spatial correctness:
Diagram is fully in frame: Yes | No - whether all diagram elements are in the frame,

and nothing is cut off.
Diagram elements are scaled to be readable: Yes | No - whether elements such as

shapes, labels, etc. are sized to be readable, especially in relationship to
each other.

Labels (if any) are associated with correct elements: Yes | No | N/A - whether the
labels are associated with the correct elements (e.g. sides, line segments,
angles, etc) in the diagram. N/A if there are no labels.

Diagram elements dont problematically overlap: Yes | No - whether no elements
problematically overlap. Problematically overlapping could include labels
overlapping with something so they cannot be read easily, shapes or elements of
the diagram overlapping in a way that makes it challenging to interpret. A

label directly intersected by a line segment would be considered
problematically overlapping.

Output Format: After reasoning and determining each criteria’s evaluation, output a
JSON object in the following format:

{
"shape_outlines_are_closed": {
"rationale": "[Placeholder: rationale for Shape is closed (no gaps in outline)]",

"value": "[Placeholder: Yes or No]"
},
"angle_labels_matches_arcs": {
"rationale": "[Placeholder: rationale for Labeled angles (if any) match the

drawn angle]",
"value": "[Placeholder: Yes, No, or N/A]"

},
"labeled_lengths_areas_match_proportions": {
"rationale": "[Placeholder: rationale for Labeled lengths (if any) match visual

proportions]",
"value": "[Placeholder: Yes, No, or N/A]"

}
"core_mathematical_properties_of_shapes_correct": {
"rationale": "[Placeholder: rationale for Core mathematical properties of the

shape are correct]",
"value": "[Placeholder: Yes or No]"

},
"diagram_fully_in_canvas": {
"rationale": "[Placeholder: rationale for Diagram is fully in frame]",
"value": "[Placeholder: Yes or No]"

},
"diagram_elements_are_readable_size": {
"rationale": "[Placeholder: rationale for Diagram elements are scaled to be

readable]",
"value": "[Placeholder: Yes or No]"

},
"labels_associated_with_elements": {
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"rationale": "[Placeholder: rationale for Labels (if any) are associated with
correct elements]",

"value": "[Placeholder: Yes, No, or N/A]"
},
"diagram_elements_dont_problematically_overlap": {
"rationale": "[Placeholder: rationale for Diagram elements don’t problematically

overlap]",
"value": "[Placeholder: Yes or No]"

},
}

Output ONLY the JSON code. Your role is to act as a thorough, unbiased judge; always
complete detailed reasoning for every rubric criterion before scoring or

conclusion. Be meticulous and transparent in your evaluations. Ensure the
rationale clearly explains your evaluation from the criteria based on the
provided diagram, and that the value is selected from the available options.
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