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Abstract

Recently, reinforcement learning (RL)-based
tuning has shifted the trajectory of Multimodal
Large Language Models (MLLMs), particu-
larly following the introduction of Group Rel-
ative Policy Optimization (GRPO). However,
directly applying it to medical tasks remains
challenging for achieving clinically grounded
model behavior. Motivated by the need to align
model response with clinical expectations, we
investigate four critical dimensions that affect
the effectiveness of RL-based tuning in medical
visual question answering (VQA): base model
initialization strategy, the role of medical se-
mantic alignment, the impact of length-based
rewards on long-chain reasoning, and the influ-
ence of bias. We conduct extensive experiments
to analyze these factors for medical MLLMs,
providing new insights into how models are
domain-specifically fine-tuned. Additionally,
our results also demonstrate that GRPO-based
RL tuning consistently outperforms standard
supervised fine-tuning (SFT) in both accuracy
and reasoning quality.

1 Introduction

Encouraged by its success in Large Language Mod-
els (LLMs), researchers have extended Group Rel-
ative Policy Optimization (GRPO) (Shao et al.,
2024) to multimodal domains such as image under-
standing, audio processing, Ul design, and physical
world interaction (Chen et al., 2025; Shen et al.,
2025a; Lai et al., 2025; Lu et al., 2025; Xia and
Luo, 2025; Zhao et al., 2025; Azzolini et al., 2025).
Specifically, studies like (Huang et al., 2025; Zhou
et al., 2025a) report promising results, including
emergent reasoning in compact models. However,
applying GRPO-based RL to medical visual ques-
tion answering (VQA), which demands clinically
accurate outputs, remains underexplored.

In this work, we analyze GRPO-based RL
for medical Multimodal Large Language Model
(MLLMs) across five critical aspects:

(1) Training from Scratch vs. Fine-Tuning.
Training from scratch allows for unconstrained rea-
soning exploration, but initializing from an instruc-
tionally fine-tuned model stabilizes training and ac-
celerates convergence (Zhang et al., 2023a; Chung
et al., 2024). To investigate this trade-off, we con-
duct experiments comparing both approaches. Our
results show that prior instruction supervised fine-
tuning (SFT) improves both answer accuracy and
domain alignment.

(2) Rewarding Medical Semantic Accuracy.
Generic rewards for format or output correctness
are insufficient for clinical tasks. We introduce
a medical semantic reward using LLM-generated
evaluations, guided by prompt engineering. This
significantly boosts both response quality and clini-
cal alignment.

(3) Does Longer Reasoning alone Help? Al-
though many studies have shown that deep rea-
soning can be beneficial (Cheng et al., 2024; Ku-
mar et al., 2025), we found that relying solely on
length-based rewards (i.e., Extended Chain Reward
(ECR) and Correctness-Weighted Length Reward
(CWR)) often leads to verbose and less accurate
answers. This observation calls into question the
effectiveness of using length-based rewards along
as a mechanism to promote meaningful long-form
reasoning in medical VQA.

(4) Does bias exist in medical MLLMs? Nor-
malization is commonly used to stabilize training.
However, recent study (Liu et al., 2025) suggest
that the question-level normalization may inadver-
tently bias model behavior, encouraging the gen-
eration of longer but incorrect responses by am-
plifying the per-token gradient signal. To further
evaluate its impact in medical VQA, we implement
Dr.GRPO (Liu et al., 2025). Our results demon-
strate its effectiveness in improving both answer
accuracy and token efficiency.

(5) SFT vs. GRPO-based RL tuning. SFT is a
widely adopted strategy to enhance the reasoning



ability of MLLMs. To compare its effectiveness
against GRPO-based RL tuning, we implemented
three different SFT approachs and additionally eval-
uated two publicly available MLLMs. Our results
show that the GRPO-based RL tuning consistently
outperforms SFT methods, yielding higher answer
accuracy and more clinically grounded responses.

Our main contributions can be summarized as

follows:

* We present a systematic analysis of GRPO-
based RL in medical MLLMs, focusing on ini-
tialization strategies, medical semantic align-
ment, the impact of length-based rewards and
bias-related behaviors.

* We validate our findings through large-scale
experiments on medical VQA benchmarks,
offering practical insights into aligning RL
with clinically meaningful behavior.

* We find that GRPO-based RL tuning out-
performs traditional fine-tuning methods
(e.g.,SFT), highlighting its potential for de-
veloping more capable and aligned medical
MLLMs.

2 Preliminary

Instead of relying on an extra reward and value
model as in PPO (Schulman et al., 2017), GRPO
simplifies the process by using the average reward
from the policy model’s sampled responses as a
baseline for advantage estimation. Specifically,
given the an input question g, we first sample a
group of responses {01, 02, - - , 0} from the pol-
icy model g, and compute corresponding rewards
r:={ry,ra, - ,rqg}. Then GRPO seeks to opti-
mize the following objective and update the model
T, denoted as:
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Here, € and S denote the PPO clipping hyperparam-
eter and weight of KL-divergence regularization,

respectively. We omit the token-level average per
response in Eq. 1 for simplicity. Additionally, we
strictly follow DeepSeek-R1 (Guo et al., 2025), us-
ing rule-based reward (i.e., format and response
reward) as our base reward design.

3 Emperical Studies on RL tuning

We selected Qwen2-VL-2B (Wang et al., 2024)
as our base model. All experiments were con-
ducted on the subset of the PMC-VQA (Zhang
et al., 2023b) benchmark, including 10K training
samples and 7K testing samples. In this section, we
analyze and answer four key questions that influ-
ence the effectiveness of GRPO-based RL tuning in
medical VQA. The training parameters follow the
settings used in previous work (Zhou et al., 2025b),
and additional details are provided in Appendix A.
Here, response accuracy, similarity score, perplex-
ity (Chung, 2025), thinking reward (Jiang et al.,
2023), and thinking token length are considered as
metrics wherever such measurements are available.
We outline the details of metrics in Appendix B.

3.1 From Scratch vs. Fine-Tuning.

Recent studies on GRPO-based RL tuning in
MLLMs have typically relied on base models that
were already instruction fine-tuned (Chen et al.,
2025; Zheng et al., 2025; Shen et al., 2025b; Wang
and Peng, 2025). However, these models often fail
to exhibit the "aha moment" in their learning curves,
suggesting that instruction tuning may hinder the
reasoning exploration. Indeed, (Zhou et al., 2025b)
shows that cold-start GRPO-based RL without SFT
can more effectively promote reasoning behavior
in the MLLMs setting. To examine the role of do-
main knowledge, we compare GRPO-based RL on
Qwen2-VL-2B (trained from scratch) and Qwen2-
VL-2B-Instruct (instruction-tuned). As shown in
Tab. 1, the scratch-trained model has a higher sim-
ilarity score and a +1.61 gain in thinking reward,
meaning its reasoning is more aligned and useful.
However, it also shows lower accuracy and higher
perplexity Score, which suggests less correct and
less fluent answers.

This means that while training from scratch
encourages more reasoning, it lacks the medical
knowledge and language fluency that instruction
tuning provides (see Fig. S2 in Appendix C for
examples). These results show that how a model
is initialized affects its performance. Instruction-
tuned models give more accurate and fluent an-



Template for Semantic LLM Judgment

Prompt: Evaluate the following medical
statement for semantic correctness and clin-
ical coherence:

Given Statement: Reasoning Text (e.g., text
between <think></think>)

Answer ’Yes’ if the statement is medically
coherent and accurate, or ’No’ otherwise.
Answer:

Figure 1: Illustration of the prompt template used to
evaluate the effectiveness of medical semantic align-
ment. See more details in Sec. 3.2.

swers. For medical VQA, utilizing domain-specific
pretraining methods (e.g., cold-start, pretraining)
helps strike a balance between answer quality and
reasoning.

3.2 Medical Semantic Alignment.

Aligning the model’s reasoning path with the target
task can enhance the effectiveness of GRPO-based
RL tuning. To further investigate the impact of
medical semantic alignment in the medical VQA
setting, we introduce a semantic alignment reward
that encourages model responses to match the judg-
ments of predefined expert LLMs. Specifically, we
use Qwen2-VL-2B-Instruct as the base model and
employ BioGPT (Luo et al., 2022) and BioMis-
tral (Labrak et al., 2024) as the reference LLM:s.

As illustrated in Fig. 1, we design a prompt
template in which the reference LLM is asked to
assess whether the reasoning enclosed within the
<think></think> tags is clinically grounded dur-
ing training. If the reasoning is valid, the LLM
responds with "Yes," and a reward of 1 is assigned;
otherwise, it responds with "No," and a reward of
0 is given. Results in Tab. 1 show that adding se-
mantic alignment improves both performance and
reasoning quality. Accuracy increases by 1.82%,
and the Similarity Score improves by 0.25, indi-
cating that the model’s reasoning becomes more
semantically aligned with reference answers. Over-
all, the integration of medical semantic rewards
leads to notable improvements in both accuracy
and reasoning depth. Example visualizations are
provided in Fig.S3 in Appendix C.

3.3 The Influence of Long-Chain Reasoning.

Chain-of-thought (CoT) reasoning has been shown
to improve performance in large language mod-

els (Team et al., 2025; Guo et al., 2025; LLMS), but
its role in medical VQA is less understood (Zhou
et al., 2025b; Zhang et al., 2024; Dong et al., 2024).
To explore this, we incorporated an Extended Chain
Reward (ECR) during GRPO-based RL tuning of
Qwen2-VL-2B-Instruct, alongside a medical se-
mantic alignment reward. ECR incentivizes longer
reasoning chains by assigning an additional reward
based on output length.

As shown in Tab. 1, adding ECR increases token
Length by 273.72 and improves Similarity Score
by 0.19 and thinking reward by 1.35. However,
these gains come at the expense of a 7.87% drop in
accuracy, indicating that the model begins to favor
more verbose and elaborate reasoning at the cost of
factual correctness. To mitigate this, we introduced
a Correctness-Weighted Length Reward (CWR),
which incentivizes long responses only when the
final answer is correct. This is achieved through
symbolic and string-based correctness checks. As
shown in Tab. 1, when combined with semantic
alignment, CWR enhances fluency and structure
coherence, as evidenced by improvements in per-
plexity and similarity Score. However, it remains
3.36% lower than the baseline GRPO model. Al-
though token length still increases considerably,
the model continues to exhibit tendencies toward
exploiting length-based incentives. These findings
suggest that relying on length-focused reward can
lead to verbosity. Striking an appropriate balance
between factual accuracy and high-quality reason-
ing remains a key challenge in medical VQA. Ad-
ditional illustrative examples are provided in Ap-
pendix C, Fig. S4.

3.4 Unbiased GRPO.

Normalization can distort model behavior. Token-
level normalization may weaken the effect of neg-
ative advantages, leading the model to generate
longer but incorrect answers. Question-level nor-
malization can exacerbate this issue, particularly
with overconfident questions (i.e., those that are
too easy or too hard). These effects raise concerns
about the reliability of reasoning in medical VQA.
To investigate this, we apply Dr. GRPO (Liu et al.,
2025), which removes standard deviation normal-
ization and token-level averaging. It computes ad-
vantage as a simple difference from the group mean
reward.

~
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Table 1: An illustration of all our experimental results. Specifically, Qwen2-VL-2B-Instruct, LLaVA-7B-v1.5
and Llama-3.2-11B-Vision-Instruct are used directly without additional fine-tuning. For experiments involving
fine-tuning, Qwen2-VL-2B-Instruct is used as the default base model unless otherwise specified (e.g., training
from scratch with Qwen2-VL-2B). Additional experimental details are provided in Sec.3.

Model Fine-Tuning Data Scale Accuracy T Similarity Scorest Perplexity Scores| Thinking Rewards? Thinking Token Length

Qwen2-VL-2B-Instruct
SFT-based Training

47.29

— LoRA 10K 45.98
— Full Fine-Tuning 10K 52.00
— DPO Fine-Tuning 10K 46.97
Training from Scratch
Qwen2-VL-2B
— GRPO 10K 51.56 0.49 (£0.19) 14.16 (£2.80) 9.27 (£2.09) 141.46 (£69.10)
RL-based Training
Qwen2-VL-2B-Instruct
— GRPO 10K 58.04 0.21 (£0.24) 13.28 (+£19.64) 7.66 (£2.49) 66.41 (£74.34)
— GRPO + Semantic Alignment 10K 59.86 0.46 (£0.19) 36.54 (£10.97) 8.07 (£2.63) 64.42 (+£24.02)
— GRPO + Semantic Alignment + ECR 10K 50.17 0.65 (£0.07) 20.54 (+£2.92) 9.42 (£1.91) 338.14 (£95.69)
— GRPO + Semantic Alignment + CWR 10K 54.68 0.61 (£0.11) 18.45 (£2.40) 7.82 (£3.52) 224.06 (£73.72)
— Dr.GRPO 10K 61.09 0.24 (£0.25) 11.10 (£12.63) 4.17 (£3.76) 76.11 (£80.27)
Other Models
LLaVA-7B-v1.5 11.8 0.19 (£0.24)*
Llama-3.2-11B-Vision-Instruct 22.92 0.33 (£0.27)%

This formulation provides a more stable and inter-
pretable reward signal by reducing the influence of
response length and preventing overly sharp gradi-
ents. We integrate Dr.GRPO into the GRPO-based
RL tuning of Qwen2-VL-2B-Instruct, using the
same training setup. As shown in Tab. 1, Dr.GRPO
achieves the highest accuracy among all configura-
tions, surpassing the standard GRPO baseline by
3.05%. It also yields improvements in both Per-
plexity and Similarity Score, indicating enhanced
fluency and semantic alignment. These results sug-
gest that removing normalization mechanisms facil-
itates more stable training dynamics and improves
the alignment between reasoning quality and an-
swer correctness. Overall, Dr. GRPO provides a
more reliable and interpretable optimization signal,
supporting the generation of clinically relevant and
efficient responses in medical VQA.

4 SFT vs. GRPO-based RL tuning

Given that SFT is another widely used approach
to endow MLLMs with reasoning ability, an im-
portant question arises in the context of clinically
meaningful RL-tuned MLLMs: Which performs
better in medical VOQA — GRPO-based RL or SFT-
based training? To explore this comparison, we fol-
low prior SFT work (Lee, 2024), evaluating three
SFT strategies (i.e., full fine-tuning, LoORA (Hu
et al., 2022) and DPO fine-tuning (Rafailov et al.,
2023)) against the GRPO-based RL tuning, along
with the aforementioned modification. In all above
experiments, Qwen2-VL-Instruct serves as the base
model. In addition to our fine-tuned models, we in-
clude two publicly available MLLMs: LLaVA-7B-
v1.5 (Liu et al., 2023) and Llama-3.2-11B-Vision-

Instrct (Grattafiori et al., 2024), both of which are
already trained using supervised fine-tuning.

In a medical VQA setting, GRPO-based RL
tuning consistently outperforms SFT-based ap-
proaches. As shown in Tab. 1, the two public
MLLMs exhibit a clear gap in accuracy and se-
mantic alignment compared to our tuned models.
Among the SFT methods, full fine-tuning achieves
the highest accuracy of 52.00. However, applying
GRPO-based RL tuning to the same base model re-
sults in a significant improvement in performance.
These results suggest that while SFT enables the
model to imitate reasoning patterns observed in
data, it remains limited in its capacity to induce
genuine reasoning ability. Moreover, we also ob-
serve that models lose CoT reasoning ability after
undergoing SFT (examples refer to Appendix C,
Fig. S5). In contrast, GRPO-based RL training
allows the MLLMs to automatically explore and
exploit medically meaningful reasoning behavior.

5 Conclusion

In this work, we investigate the gap between GRPO-
based RL tuning and clinically grounded MLLMs.
We first examine the effectiveness of instructional
fine-tuning, medical semantic alignment, and unbi-
ased GRPO in improving answer accuracy, while
also critically assessing the limitations of length-
based rewards in promoting long-chain reasoning.
Additionally, our findings show that GRPO-based
RL consistently enhances the reasoning ability of
medical MLLMs. We believe that this study offers
valuable insights for advancing the development
of clinically meaningful MLLMs and can inform
future research in the medical Al community.



6 Limitations

Despite the promising results of applying GRPO-
based reinforcement learning to medical MLLMs,
our study has several limitations that open avenues
for future research:

1. Scalability to Larger Datasets: Our experi-
ments are conducted on a subset of the med-
ical dataset (PMC-VQA). While this setting
allows for focused evaluation, it may limit the
generalizability of our findings. Future work
should consider expanding the study to larger
and more diverse medical datasets, which may
expose new challenges in model robustness
and alignment with real-world clinical vari-
ability.

2. Model Size and Capacity: All experiments
in this work are conducted using Qwen2-
VL-2B, a relatively small multimodal model.
While this choice ensures training efficiency
and interpretability of RL dynamics, it may
not fully reflect the behavior of larger founda-
tion models. Extending GRPO-based tuning
to larger-scale MLLMs (e.g., >7B parame-
ters) could provide insights into the scalability
and generalization capabilities of our empiri-
cal study.

3. Incorporation of Expert-Labeled Chain-
of-Thought (CoT) Data: Currently, our ap-
proach does not leverage any expert-labeled
reasoning traces or CoT annotations dataset.
An interesting direction for future work is to
explore the integration of CoT data, either
through pretraining or cold-start initialization,
to enhance models’ reasoning capabilities be-
fore RL tuning. This could help bridge the gap
between language alignment and step-wise
clinical logic.

4. Reasoning Limitations SFT: As noted in our
findings, models fine-tuned via SFT alone of-
ten fail to acquire robust reasoning abilities,
especially in complex medical scenarios. This
highlights a fundamental limitation of super-
vised fine-tuning when reasoning is not explic-
itly annotated. Investigating alternative strate-
gies—such as integrating reasoning-aware ob-
jectives or hybrid SFT-RL pipelines—may of-
fer promising solutions to enhance multi-step
inference in medical MLLMs.
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A Implementation Details

For distributed training, we employed DeepSpeed
with ZeRO Stage 2 and bfloat16 mixed preci-
sion. All experiments were conducted on a sin-
gle machine equipped with four NVIDIA A100
GPUgs, each with 80GB of memory. We launched
four training processes using the standard Deep-
Speed multinode launcher and disabled offloading
for both optimizer and model parameters. The en-
vironment was configured for local execution with
static rendezvous, no CPU fallback, and no TPU
usage. The main training function was set to main,
and communication was established via port 44326.

We used either the Qwen2-VL-2B or
Qwen2-VL-2B-Instruct model as the back-
bone, trained on a multimodal subset of the
PMC-VQA dataset. The input resolution was
limited to 401,408 pixels, with a maximum
prompt length of 1024 tokens. Training was
conducted for two epochs using a per-device
batch size of 1 and gradient accumulation over 2
steps. Mixed-precision training with bfloat16
was enabled, while gradient checkpointing was
disabled. Flash Attention 2 was used for efficient
attention computation. Logging was performed at
every step, and checkpoints were saved every 100
steps.

The model was trained for a total of 1500 steps
with a learning rate of 1 x 10~° and a temperature
of 1.0. To facilitate Guided Response Preference
Optimization (GRPO), we set the maximum re-
sponse length to 700 tokens. At each optimization
step, 8 responses were sampled, and a KL diver-
gence coefficient of 0.04 was applied to regularize
training.

Table S2: Hyper-parameters

Setting Value
Batch Size per Device 1
Gradient Accumulation Steps 2
Training Steps 1500
Learning Rate 1x1076
Temperature 1.0
Maximum Response Length 700
Number of Responses per GRPO Step 8
KL Coefficient 0.04

B Evaluation Metrics

To comprehensively assess the quality of the
model’s intermediate reasoning, we employ a di-

verse set of metrics, including similarity score,
perplexity, thinking reward, and reasoning token
length.

B.1 Similarity Score

Similarity Score measures how well the model’s
reasoning aligns with the reference answer. We
compute the semantic similarity between the rea-
soning and the ground-truth answer using a pre-
trained cross-encoder model (cross-encoder/stsb-
roberta-base). This captures whether the model’s
internal reasoning is semantically consistent with
the correct final answer.

B.2 Perplexity Score

Perplexity evaluates the fluency and linguistic qual-
ity of the model’s reasoning. We compute perplex-
ity over the reasoning using a pretrained biomedi-
cal language model (microsoft/biogpt), following
a standard left-to-right likelihood estimation. This
metric captures how coherent and well-formed the
reasoning appears from a language modeling per-
spective. Lower perplexity indicates more fluent,
consistent, and syntactically stable reasoning.

B.3 Thinking Reward

Thinking Reward assesses the usefulness and rel-
evance of the model’s reasoning content. To com-
pute this score, we prompt a pretrained language
model (mistral-7B-instruct) with the question, ref-
erence answer, and the reasoning generated from
model, and ask it to assign a score from 1 to 10
based on the quality of the reasoning. This pro-
vides an external evaluation of whether the rea-
soning meaningfully contributes to answering the
question.

B.4 Thinking Token Length

Thinking Token Length quantifies the length of the
model’s reasoning by computing the total number
of tokens. This metric provides a basic measure of
reasoning verbosity and helps analyze the relation-
ship between reasoning length and quality.

C Visualization



Question: What does the Cardiac CT 3D rendering in image
A demonstrate? Choose between the following options: A:
High take-off LMCA and multiple crypts in the interventricular
septum , B: High take-off LMCA, C: High take-off LMCA from
another view, D: Multiple crypts in the inferior wall of the left
ventricle

GROP Training From scratch Qwen2-VL-2B

"<think>\nTo determine the correct answer,
let's analyze the Cardiac CT 3D rendering in
image A step by step:\n\nl. The image shows a
3D rendering of the heart.\n2. The blue arrows
point to the left main coronary artery

(LMCA) .\n3. The yellow arrows point to the
interventricular septum.\n4. The red arrow
points to the inferior wall of the left
ventricle.\n\nBased on this analysis, the
correct answer is:\n\nC: High take-off LMCA
from another view\n</think>\n\n

GROP Fine-tuning From Qwen2-VL-2B-Instruct

"<think>\nTo determine the correct answer,
let's analyze the cardiac CT 3D rendering in
image A. The image shows a 3D rendering of the
heart with a blue arrow pointing to a high
take-off left main coronary artery (LMCA) and
a yellow arrow pointing to multiple crypts in
the interventricular septum.\n</think>\n\n
<answer>

High take-off LMCA and multiple crypts in the
interventricular septum

</answer>"

Question: What s the image (d) showing? Choose
between the following options: A: Normal heart valves, B:
PFO during Valsalva maneuver, C: ASA, D: ASD "

GROP Training From scratch Qwen2-VL-2B

"<think>\nTo determine what image (d) is
showing, let's analyze the image step by
step:\n\nl. The image shows a transesophageal
echocardiogram (TEE) view.\n2. The image shows
a cross-sectional view of the heart.\n3. The
image shows a color Doppler flow pattern,
which is typically used to visualize blood
flow.\n4. The image shows a small opening,
which is characteristic of a patent foramen
ovale (PFO).\n5. The image shows a small area
of increased color flow, which is
characteristic of a patent foramen ovale shunt
(PFO-shunt) .\n\nBased on these observations,
the image (d) is showing a patent foramen
ovale during a Valsalva maneuver.\n</think>

GROP Fine-tuning From Qwen2-VL-2B-Instruct

"<think>\nTo determine what image (d) is
showing, let's analyze the information provided
in the image. The image shows a transesophageal
echocardiogram (TEE) view, and the highlighted
areas indicate the presence of a patent foramen
ovale (PFO) and an atrial septal defect

(ASD) .\n</think>

<answer> ASA </answer>"

Figure S2: Visual comparison of reasoning outputs on two medical imaging questions. Red highlights indicate
incorrect answers, while green highlights indicate correct answers. Although training Qwen2-VL-2B from scratch

with GRPO-based RL tuning model generates longer sequences, its reasoning is often redundant and inaccurate.
GRPO-based RL tuning based on Qwen2-VL-2B-Instruct produces more concise and clinically accurate reasoning,

leading to correct answers.



Question: Which instrument was used to obtain the
images? Choose between the following options:
A:Fluorescence microscope,

B:Transmission electron microscope,

5
£ : C:Scanning electron microscope,
S 9 D:Confocal microscope
4
GRPO
"<think>To determine the type of
B-integrin Bintegrin instrument used to obtain the images,

let's analyze the images and the
staining methods used.</think>
<answer> Confocal microscope </answer>"

GRPO + Medical Alignment

"<think>The images are fluorescence
microscopy images, which are typically
obtained using a Confocal
microscope.</think>

S b <answer>Confocal microscope</answer>"

C. 25 um coralyne
A9z +auAjesod wr gz 'q

Question: What is the name of the structure being
closed in the image? Choose between the following
options:

A:Incision site. ,

B:Abdominal wall. ,

C:Fascial defect. ,

D:Barbed suture.

GRPO + Medical Alighment

GRPO "<think>The image shows a surgical
procedure involving the abdominal cavity,
"<think>\nTo determine the name of the where a suture is being used to close a
structure being closed in the image, let's defect in the abdominal wall. The suture
analyze the image step by is being used to close a fascial defect,

step.\n</think>\n\n ) which is a common surgical procedure in
abdominal surgery.</think>

<answer>Fascial defect.</answer>"

Figure S3: Examples showing that medical alignment improves visual reasoning. Correct answers are shown
in green, incorrect in red, and medical knowledge is highlighted in yellow. With medical alignment, the model
produces more accurate and informed responses by grounding its reasoning in domain-specific knowledge.
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To determine which section shows the impacted canine
and its relationship with adjacent teeth, let's analyze the
images:

1. Axial section (a): Shows the jaw and teeth in a single
view... ... useful for locating teeth in the arch.

2. Panoramic-like image (b): Provides an overview of the
jaw... ...but lacks detailed spatial info.

3. Sagittal sections (c): Show side views of the teeth and
bone... ...useful for depth and adjacency.

Question: Which section shows the impacted 4. Both A and C (d): Combines horizontal position from (a)

canine and its relationship with the adjacent teeth? and depth/t{etail fron.1 (©)... N A . .

A: Axial section , B: Image analogous to a Based on this, the axial section (a) is chosen for identifying
panoramic radiography , C: Sagittal sections , D: the impacted canine and its relation to adjacent teeth.
BothAandC Answer: Axial section

Correct Answer: Sagittal sections

To determine what is mobilized in step C, let's review the
sequence:

1. Step A: Shows the spermatic cord, including spermatic
vessels and gubernaculum.

2. Steps B: All focus on the spermatic cord, particularly
the spermatic vessels and gubernaculum.

3. Step C: The image shows a view of the spermatic cord,
but it appears to be... ...

4. Step D: The image shows a view of the spermatic cord,
but it appears to be more focused on the spermatic ... ...
5. Step E: The image shows a view of the spermatic cord,
but it appears to be more ... ...

6. Step F: The image shows a view of the spermatic cord,
but it appears to be more focused on the spermatic ... ...
vessels proximally , B: Spermatic vessels distally , From the analysis, it clear that in step C, the focusiis ... ...

C: Gubernaculum proximally , D: Gubernaculum Answer : Spermatic vessels distally
distally Correct Answer: Spermatic vessels proximally

Question: What is mobilized in step C? Choose
between the following options: A: Spermatic

Figure S4: Examples of incorrect but verbose reasoning in long-chain answers. Although the model generates
extensive intermediate thinking steps, the reasoning is often repetitive, includes irrelevant details, and ultimately
leads to an incorrect answer.

Prompt

Output the thinking process in <think> </think>
and final answer in <answer> </answer> tags.

Qwen2-VL-2B-Instruct

“<think>To determine the area of the body that the CT scanis
focusing on, let‘s analyze the images step by step.\n\n1. **Image
a**: This image shows a cross-sectional view of the abdomen.\n2.
**Image b**: This image shows a cross-sectional view of the
abdomen.\n3. **Image c**: This image shows a cross-sectional
view of the abdomen.\n4. **Image d**: This image shows a cross-
sectional view of the abdomen. All the images show a cross-
sectional view of the abdomen. Therefore, the CT scan is focusing
on the abdomen.</think>

<answer>B: Abdomen</answer>"

SFT with LoRA Training

<answer>Abdomen</answer>

Question: What area of the body is the CT
scan focusing on? Choose between the
following options: A:Thorax, B:Abdomen,
C:Head, D:Limbs

Figure S5: Comparison between the original Qwen2-VL-2B-Instruct and its LoRA fine-tuned variant. While the
original model generates step-by-step visual reasoning to support its prediction, the LoRA-SFT version directly
outputs the answer without any intermediate explanation.
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