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Abstract001

Recently, reinforcement learning (RL)-based002
tuning has shifted the trajectory of Multimodal003
Large Language Models (MLLMs), particu-004
larly following the introduction of Group Rel-005
ative Policy Optimization (GRPO). However,006
directly applying it to medical tasks remains007
challenging for achieving clinically grounded008
model behavior. Motivated by the need to align009
model response with clinical expectations, we010
investigate four critical dimensions that affect011
the effectiveness of RL-based tuning in medical012
visual question answering (VQA): base model013
initialization strategy, the role of medical se-014
mantic alignment, the impact of length-based015
rewards on long-chain reasoning, and the influ-016
ence of bias. We conduct extensive experiments017
to analyze these factors for medical MLLMs,018
providing new insights into how models are019
domain-specifically fine-tuned. Additionally,020
our results also demonstrate that GRPO-based021
RL tuning consistently outperforms standard022
supervised fine-tuning (SFT) in both accuracy023
and reasoning quality.024

1 Introduction025

Encouraged by its success in Large Language Mod-026

els (LLMs), researchers have extended Group Rel-027

ative Policy Optimization (GRPO) (Shao et al.,028

2024) to multimodal domains such as image under-029

standing, audio processing, UI design, and physical030

world interaction (Chen et al., 2025; Shen et al.,031

2025a; Lai et al., 2025; Lu et al., 2025; Xia and032

Luo, 2025; Zhao et al., 2025; Azzolini et al., 2025).033

Specifically, studies like (Huang et al., 2025; Zhou034

et al., 2025a) report promising results, including035

emergent reasoning in compact models. However,036

applying GRPO-based RL to medical visual ques-037

tion answering (VQA), which demands clinically038

accurate outputs, remains underexplored.039

In this work, we analyze GRPO-based RL040

for medical Multimodal Large Language Model041

(MLLMs) across five critical aspects:042

(1) Training from Scratch vs. Fine-Tuning. 043

Training from scratch allows for unconstrained rea- 044

soning exploration, but initializing from an instruc- 045

tionally fine-tuned model stabilizes training and ac- 046

celerates convergence (Zhang et al., 2023a; Chung 047

et al., 2024). To investigate this trade-off, we con- 048

duct experiments comparing both approaches. Our 049

results show that prior instruction supervised fine- 050

tuning (SFT) improves both answer accuracy and 051

domain alignment. 052

(2) Rewarding Medical Semantic Accuracy. 053

Generic rewards for format or output correctness 054

are insufficient for clinical tasks. We introduce 055

a medical semantic reward using LLM-generated 056

evaluations, guided by prompt engineering. This 057

significantly boosts both response quality and clini- 058

cal alignment. 059

(3) Does Longer Reasoning alone Help? Al- 060

though many studies have shown that deep rea- 061

soning can be beneficial (Cheng et al., 2024; Ku- 062

mar et al., 2025), we found that relying solely on 063

length-based rewards (i.e., Extended Chain Reward 064

(ECR) and Correctness-Weighted Length Reward 065

(CWR)) often leads to verbose and less accurate 066

answers. This observation calls into question the 067

effectiveness of using length-based rewards along 068

as a mechanism to promote meaningful long-form 069

reasoning in medical VQA. 070

(4) Does bias exist in medical MLLMs? Nor- 071

malization is commonly used to stabilize training. 072

However, recent study (Liu et al., 2025) suggest 073

that the question-level normalization may inadver- 074

tently bias model behavior, encouraging the gen- 075

eration of longer but incorrect responses by am- 076

plifying the per-token gradient signal. To further 077

evaluate its impact in medical VQA, we implement 078

Dr.GRPO (Liu et al., 2025). Our results demon- 079

strate its effectiveness in improving both answer 080

accuracy and token efficiency. 081

(5) SFT vs. GRPO-based RL tuning. SFT is a 082

widely adopted strategy to enhance the reasoning 083
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ability of MLLMs. To compare its effectiveness084

against GRPO-based RL tuning, we implemented085

three different SFT approachs and additionally eval-086

uated two publicly available MLLMs. Our results087

show that the GRPO-based RL tuning consistently088

outperforms SFT methods, yielding higher answer089

accuracy and more clinically grounded responses.090

Our main contributions can be summarized as091

follows:092

• We present a systematic analysis of GRPO-093

based RL in medical MLLMs, focusing on ini-094

tialization strategies, medical semantic align-095

ment, the impact of length-based rewards and096

bias-related behaviors.097

• We validate our findings through large-scale098

experiments on medical VQA benchmarks,099

offering practical insights into aligning RL100

with clinically meaningful behavior.101

• We find that GRPO-based RL tuning out-102

performs traditional fine-tuning methods103

(e.g.,SFT), highlighting its potential for de-104

veloping more capable and aligned medical105

MLLMs.106

2 Preliminary107

Instead of relying on an extra reward and value108

model as in PPO (Schulman et al., 2017), GRPO109

simplifies the process by using the average reward110

from the policy model’s sampled responses as a111

baseline for advantage estimation. Specifically,112

given the an input question q, we first sample a113

group of responses {o1, o2, · · · , oG} from the pol-114

icy model πθold and compute corresponding rewards115

r := {r1, r2, · · · , rG}. Then GRPO seeks to opti-116

mize the following objective and update the model117

πθ, denoted as:118

JGRPO(θ) := Eq∼pQ,{oi}Gi=1∼πθold
(O|q){

1

G

G∑
i=1

min

[
πθ(oi|q)
πθold(oi|q)

Âi,

clip
(

πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

)
Âi

]
− β ·DKL(πθ||πref)

}
,

(1)119

where the advantage is denoted as:120

Âi :=
ri −mean(r)

std(r)
(2)121

Here, ϵ and β denote the PPO clipping hyperparam-122

eter and weight of KL-divergence regularization,123

respectively. We omit the token-level average per 124

response in Eq. 1 for simplicity. Additionally, we 125

strictly follow DeepSeek-R1 (Guo et al., 2025), us- 126

ing rule-based reward (i.e., format and response 127

reward) as our base reward design. 128

3 Emperical Studies on RL tuning 129

We selected Qwen2-VL-2B (Wang et al., 2024) 130

as our base model. All experiments were con- 131

ducted on the subset of the PMC-VQA (Zhang 132

et al., 2023b) benchmark, including 10K training 133

samples and 7K testing samples. In this section, we 134

analyze and answer four key questions that influ- 135

ence the effectiveness of GRPO-based RL tuning in 136

medical VQA. The training parameters follow the 137

settings used in previous work (Zhou et al., 2025b), 138

and additional details are provided in Appendix A. 139

Here, response accuracy, similarity score, perplex- 140

ity (Chung, 2025), thinking reward (Jiang et al., 141

2023), and thinking token length are considered as 142

metrics wherever such measurements are available. 143

We outline the details of metrics in Appendix B. 144

3.1 From Scratch vs. Fine-Tuning. 145

Recent studies on GRPO-based RL tuning in 146

MLLMs have typically relied on base models that 147

were already instruction fine-tuned (Chen et al., 148

2025; Zheng et al., 2025; Shen et al., 2025b; Wang 149

and Peng, 2025). However, these models often fail 150

to exhibit the "aha moment" in their learning curves, 151

suggesting that instruction tuning may hinder the 152

reasoning exploration. Indeed, (Zhou et al., 2025b) 153

shows that cold-start GRPO-based RL without SFT 154

can more effectively promote reasoning behavior 155

in the MLLMs setting. To examine the role of do- 156

main knowledge, we compare GRPO-based RL on 157

Qwen2-VL-2B (trained from scratch) and Qwen2- 158

VL-2B-Instruct (instruction-tuned). As shown in 159

Tab. 1, the scratch-trained model has a higher sim- 160

ilarity score and a +1.61 gain in thinking reward, 161

meaning its reasoning is more aligned and useful. 162

However, it also shows lower accuracy and higher 163

perplexity Score, which suggests less correct and 164

less fluent answers. 165

This means that while training from scratch 166

encourages more reasoning, it lacks the medical 167

knowledge and language fluency that instruction 168

tuning provides (see Fig. S2 in Appendix C for 169

examples). These results show that how a model 170

is initialized affects its performance. Instruction- 171

tuned models give more accurate and fluent an- 172
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Template for Semantic LLM Judgment

Prompt: Evaluate the following medical
statement for semantic correctness and clin-
ical coherence:
Given Statement: Reasoning Text (e.g., text
between <think></think>)
Answer ’Yes’ if the statement is medically
coherent and accurate, or ’No’ otherwise.
Answer:

Figure 1: Illustration of the prompt template used to
evaluate the effectiveness of medical semantic align-
ment. See more details in Sec. 3.2.

swers. For medical VQA, utilizing domain-specific173

pretraining methods (e.g., cold-start, pretraining)174

helps strike a balance between answer quality and175

reasoning.176

3.2 Medical Semantic Alignment.177

Aligning the model’s reasoning path with the target178

task can enhance the effectiveness of GRPO-based179

RL tuning. To further investigate the impact of180

medical semantic alignment in the medical VQA181

setting, we introduce a semantic alignment reward182

that encourages model responses to match the judg-183

ments of predefined expert LLMs. Specifically, we184

use Qwen2-VL-2B-Instruct as the base model and185

employ BioGPT (Luo et al., 2022) and BioMis-186

tral (Labrak et al., 2024) as the reference LLMs.187

As illustrated in Fig. 1, we design a prompt188

template in which the reference LLM is asked to189

assess whether the reasoning enclosed within the190

<think></think> tags is clinically grounded dur-191

ing training. If the reasoning is valid, the LLM192

responds with "Yes," and a reward of 1 is assigned;193

otherwise, it responds with "No," and a reward of194

0 is given. Results in Tab. 1 show that adding se-195

mantic alignment improves both performance and196

reasoning quality. Accuracy increases by 1.82%,197

and the Similarity Score improves by 0.25, indi-198

cating that the model’s reasoning becomes more199

semantically aligned with reference answers. Over-200

all, the integration of medical semantic rewards201

leads to notable improvements in both accuracy202

and reasoning depth. Example visualizations are203

provided in Fig.S3 in Appendix C.204

3.3 The Influence of Long-Chain Reasoning.205

Chain-of-thought (CoT) reasoning has been shown206

to improve performance in large language mod-207

els (Team et al., 2025; Guo et al., 2025; LLMS), but 208

its role in medical VQA is less understood (Zhou 209

et al., 2025b; Zhang et al., 2024; Dong et al., 2024). 210

To explore this, we incorporated an Extended Chain 211

Reward (ECR) during GRPO-based RL tuning of 212

Qwen2-VL-2B-Instruct, alongside a medical se- 213

mantic alignment reward. ECR incentivizes longer 214

reasoning chains by assigning an additional reward 215

based on output length. 216

As shown in Tab. 1, adding ECR increases token 217

Length by 273.72 and improves Similarity Score 218

by 0.19 and thinking reward by 1.35. However, 219

these gains come at the expense of a 7.87% drop in 220

accuracy, indicating that the model begins to favor 221

more verbose and elaborate reasoning at the cost of 222

factual correctness. To mitigate this, we introduced 223

a Correctness-Weighted Length Reward (CWR), 224

which incentivizes long responses only when the 225

final answer is correct. This is achieved through 226

symbolic and string-based correctness checks. As 227

shown in Tab. 1, when combined with semantic 228

alignment, CWR enhances fluency and structure 229

coherence, as evidenced by improvements in per- 230

plexity and similarity Score. However, it remains 231

3.36% lower than the baseline GRPO model. Al- 232

though token length still increases considerably, 233

the model continues to exhibit tendencies toward 234

exploiting length-based incentives. These findings 235

suggest that relying on length-focused reward can 236

lead to verbosity. Striking an appropriate balance 237

between factual accuracy and high-quality reason- 238

ing remains a key challenge in medical VQA. Ad- 239

ditional illustrative examples are provided in Ap- 240

pendix C, Fig. S4. 241

3.4 Unbiased GRPO. 242

Normalization can distort model behavior. Token- 243

level normalization may weaken the effect of neg- 244

ative advantages, leading the model to generate 245

longer but incorrect answers. Question-level nor- 246

malization can exacerbate this issue, particularly 247

with overconfident questions (i.e., those that are 248

too easy or too hard). These effects raise concerns 249

about the reliability of reasoning in medical VQA. 250

To investigate this, we apply Dr. GRPO (Liu et al., 251

2025), which removes standard deviation normal- 252

ization and token-level averaging. It computes ad- 253

vantage as a simple difference from the group mean 254

reward. 255

Âi := ri −mean(r) (3) 256
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Table 1: An illustration of all our experimental results. Specifically, Qwen2-VL-2B-Instruct, LLaVA-7B-v1.5
and Llama-3.2-11B-Vision-Instruct are used directly without additional fine-tuning. For experiments involving
fine-tuning, Qwen2-VL-2B-Instruct is used as the default base model unless otherwise specified (e.g., training
from scratch with Qwen2-VL-2B). Additional experimental details are provided in Sec.3.

Model Fine-Tuning Data Scale Accuracy ↑ Similarity Scores↑ Perplexity Scores↓ Thinking Rewards↑ Thinking Token Length

Qwen2-VL-2B-Instruct - 47.29 - - - -
SFT-based Training

— LoRA 10K 45.98 - - - -
— Full Fine-Tuning 10K 52.00 - - - -
— DPO Fine-Tuning 10K 46.97 - - - -

Training from Scratch
Qwen2-VL-2B

— GRPO 10K 51.56 0.49 (±0.19) 14.16 (±2.80) 9.27 (±2.09) 141.46 (±69.10)
RL-based Training

Qwen2-VL-2B-Instruct
— GRPO 10K 58.04 0.21 (±0.24) 13.28 (±19.64) 7.66 (±2.49) 66.41 (±74.34)
— GRPO + Semantic Alignment 10K 59.86 0.46 (±0.19) 36.54 (±10.97) 8.07 (±2.63) 64.42 (±24.02)
— GRPO + Semantic Alignment + ECR 10K 50.17 0.65 (±0.07) 20.54 (±2.92) 9.42 (±1.91) 338.14 (±95.69)
— GRPO + Semantic Alignment + CWR 10K 54.68 0.61 (±0.11) 18.45 (±2.40) 7.82 (±3.52) 224.06 (±73.72)
— Dr.GRPO 10K 61.09 0.24 (±0.25) 11.10 (±12.63) 4.17 (±3.76) 76.11 (±80.27)

Other Models
LLaVA-7B-v1.5 - 11.8 0.19 (±0.24)∗ - - -
Llama-3.2-11B-Vision-Instruct - 22.92 0.33 (±0.27)∗ - - -

This formulation provides a more stable and inter-257

pretable reward signal by reducing the influence of258

response length and preventing overly sharp gradi-259

ents. We integrate Dr.GRPO into the GRPO-based260

RL tuning of Qwen2-VL-2B-Instruct, using the261

same training setup. As shown in Tab. 1, Dr.GRPO262

achieves the highest accuracy among all configura-263

tions, surpassing the standard GRPO baseline by264

3.05%. It also yields improvements in both Per-265

plexity and Similarity Score, indicating enhanced266

fluency and semantic alignment. These results sug-267

gest that removing normalization mechanisms facil-268

itates more stable training dynamics and improves269

the alignment between reasoning quality and an-270

swer correctness. Overall, Dr. GRPO provides a271

more reliable and interpretable optimization signal,272

supporting the generation of clinically relevant and273

efficient responses in medical VQA.274

4 SFT vs. GRPO-based RL tuning275

Given that SFT is another widely used approach276

to endow MLLMs with reasoning ability, an im-277

portant question arises in the context of clinically278

meaningful RL-tuned MLLMs: Which performs279

better in medical VQA — GRPO-based RL or SFT-280

based training? To explore this comparison, we fol-281

low prior SFT work (Lee, 2024), evaluating three282

SFT strategies (i.e., full fine-tuning, LoRA (Hu283

et al., 2022) and DPO fine-tuning (Rafailov et al.,284

2023)) against the GRPO-based RL tuning, along285

with the aforementioned modification. In all above286

experiments, Qwen2-VL-Instruct serves as the base287

model. In addition to our fine-tuned models, we in-288

clude two publicly available MLLMs: LLaVA-7B-289

v1.5 (Liu et al., 2023) and Llama-3.2-11B-Vision-290

Instrct (Grattafiori et al., 2024), both of which are 291

already trained using supervised fine-tuning. 292

In a medical VQA setting, GRPO-based RL 293

tuning consistently outperforms SFT-based ap- 294

proaches. As shown in Tab. 1, the two public 295

MLLMs exhibit a clear gap in accuracy and se- 296

mantic alignment compared to our tuned models. 297

Among the SFT methods, full fine-tuning achieves 298

the highest accuracy of 52.00. However, applying 299

GRPO-based RL tuning to the same base model re- 300

sults in a significant improvement in performance. 301

These results suggest that while SFT enables the 302

model to imitate reasoning patterns observed in 303

data, it remains limited in its capacity to induce 304

genuine reasoning ability. Moreover, we also ob- 305

serve that models lose CoT reasoning ability after 306

undergoing SFT (examples refer to Appendix C, 307

Fig. S5). In contrast, GRPO-based RL training 308

allows the MLLMs to automatically explore and 309

exploit medically meaningful reasoning behavior. 310

5 Conclusion 311

In this work, we investigate the gap between GRPO- 312

based RL tuning and clinically grounded MLLMs. 313

We first examine the effectiveness of instructional 314

fine-tuning, medical semantic alignment, and unbi- 315

ased GRPO in improving answer accuracy, while 316

also critically assessing the limitations of length- 317

based rewards in promoting long-chain reasoning. 318

Additionally, our findings show that GRPO-based 319

RL consistently enhances the reasoning ability of 320

medical MLLMs. We believe that this study offers 321

valuable insights for advancing the development 322

of clinically meaningful MLLMs and can inform 323

future research in the medical AI community. 324
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6 Limitations325

Despite the promising results of applying GRPO-326

based reinforcement learning to medical MLLMs,327

our study has several limitations that open avenues328

for future research:329

1. Scalability to Larger Datasets: Our experi-330

ments are conducted on a subset of the med-331

ical dataset (PMC-VQA). While this setting332

allows for focused evaluation, it may limit the333

generalizability of our findings. Future work334

should consider expanding the study to larger335

and more diverse medical datasets, which may336

expose new challenges in model robustness337

and alignment with real-world clinical vari-338

ability.339

2. Model Size and Capacity: All experiments340

in this work are conducted using Qwen2-341

VL-2B, a relatively small multimodal model.342

While this choice ensures training efficiency343

and interpretability of RL dynamics, it may344

not fully reflect the behavior of larger founda-345

tion models. Extending GRPO-based tuning346

to larger-scale MLLMs (e.g., >7B parame-347

ters) could provide insights into the scalability348

and generalization capabilities of our empiri-349

cal study.350

3. Incorporation of Expert-Labeled Chain-351

of-Thought (CoT) Data: Currently, our ap-352

proach does not leverage any expert-labeled353

reasoning traces or CoT annotations dataset.354

An interesting direction for future work is to355

explore the integration of CoT data, either356

through pretraining or cold-start initialization,357

to enhance models’ reasoning capabilities be-358

fore RL tuning. This could help bridge the gap359

between language alignment and step-wise360

clinical logic.361

4. Reasoning Limitations SFT: As noted in our362

findings, models fine-tuned via SFT alone of-363

ten fail to acquire robust reasoning abilities,364

especially in complex medical scenarios. This365

highlights a fundamental limitation of super-366

vised fine-tuning when reasoning is not explic-367

itly annotated. Investigating alternative strate-368

gies—such as integrating reasoning-aware ob-369

jectives or hybrid SFT-RL pipelines—may of-370

fer promising solutions to enhance multi-step371

inference in medical MLLMs.372
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A Implementation Details545

For distributed training, we employed DeepSpeed546

with ZeRO Stage 2 and bfloat16 mixed preci-547

sion. All experiments were conducted on a sin-548

gle machine equipped with four NVIDIA A100549

GPUs, each with 80GB of memory. We launched550

four training processes using the standard Deep-551

Speed multinode launcher and disabled offloading552

for both optimizer and model parameters. The en-553

vironment was configured for local execution with554

static rendezvous, no CPU fallback, and no TPU555

usage. The main training function was set to main,556

and communication was established via port 44326.557

We used either the Qwen2-VL-2B or558

Qwen2-VL-2B-Instruct model as the back-559

bone, trained on a multimodal subset of the560

PMC-VQA dataset. The input resolution was561

limited to 401,408 pixels, with a maximum562

prompt length of 1024 tokens. Training was563

conducted for two epochs using a per-device564

batch size of 1 and gradient accumulation over 2565

steps. Mixed-precision training with bfloat16566

was enabled, while gradient checkpointing was567

disabled. Flash Attention 2 was used for efficient568

attention computation. Logging was performed at569

every step, and checkpoints were saved every 100570

steps.571

The model was trained for a total of 1500 steps572

with a learning rate of 1× 10−6 and a temperature573

of 1.0. To facilitate Guided Response Preference574

Optimization (GRPO), we set the maximum re-575

sponse length to 700 tokens. At each optimization576

step, 8 responses were sampled, and a KL diver-577

gence coefficient of 0.04 was applied to regularize578

training.579

Table S2: Hyper-parameters

Setting Value
Batch Size per Device 1
Gradient Accumulation Steps 2
Training Steps 1500
Learning Rate 1× 10−6

Temperature 1.0
Maximum Response Length 700
Number of Responses per GRPO Step 8
KL Coefficient 0.04

B Evaluation Metrics580

To comprehensively assess the quality of the581

model’s intermediate reasoning, we employ a di-582

verse set of metrics, including similarity score, 583

perplexity, thinking reward, and reasoning token 584

length. 585

B.1 Similarity Score 586

Similarity Score measures how well the model’s 587

reasoning aligns with the reference answer. We 588

compute the semantic similarity between the rea- 589

soning and the ground-truth answer using a pre- 590

trained cross-encoder model (cross-encoder/stsb- 591

roberta-base). This captures whether the model’s 592

internal reasoning is semantically consistent with 593

the correct final answer. 594

B.2 Perplexity Score 595

Perplexity evaluates the fluency and linguistic qual- 596

ity of the model’s reasoning. We compute perplex- 597

ity over the reasoning using a pretrained biomedi- 598

cal language model (microsoft/biogpt), following 599

a standard left-to-right likelihood estimation. This 600

metric captures how coherent and well-formed the 601

reasoning appears from a language modeling per- 602

spective. Lower perplexity indicates more fluent, 603

consistent, and syntactically stable reasoning. 604

B.3 Thinking Reward 605

Thinking Reward assesses the usefulness and rel- 606

evance of the model’s reasoning content. To com- 607

pute this score, we prompt a pretrained language 608

model (mistral-7B-instruct) with the question, ref- 609

erence answer, and the reasoning generated from 610

model, and ask it to assign a score from 1 to 10 611

based on the quality of the reasoning. This pro- 612

vides an external evaluation of whether the rea- 613

soning meaningfully contributes to answering the 614

question. 615

B.4 Thinking Token Length 616

Thinking Token Length quantifies the length of the 617

model’s reasoning by computing the total number 618

of tokens. This metric provides a basic measure of 619

reasoning verbosity and helps analyze the relation- 620

ship between reasoning length and quality. 621

C Visualization 622

8



Figure S2: Visual comparison of reasoning outputs on two medical imaging questions. Red highlights indicate
incorrect answers, while green highlights indicate correct answers. Although training Qwen2-VL-2B from scratch
with GRPO-based RL tuning model generates longer sequences, its reasoning is often redundant and inaccurate.
GRPO-based RL tuning based on Qwen2-VL-2B-Instruct produces more concise and clinically accurate reasoning,
leading to correct answers.
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Figure S3: Examples showing that medical alignment improves visual reasoning. Correct answers are shown
in green, incorrect in red, and medical knowledge is highlighted in yellow. With medical alignment, the model
produces more accurate and informed responses by grounding its reasoning in domain-specific knowledge.
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Figure S4: Examples of incorrect but verbose reasoning in long-chain answers. Although the model generates
extensive intermediate thinking steps, the reasoning is often repetitive, includes irrelevant details, and ultimately
leads to an incorrect answer.

Figure S5: Comparison between the original Qwen2-VL-2B-Instruct and its LoRA fine-tuned variant. While the
original model generates step-by-step visual reasoning to support its prediction, the LoRA-SFT version directly
outputs the answer without any intermediate explanation.

11


	Introduction
	Preliminary
	Emperical Studies on RL tuning
	From Scratch vs. Fine-Tuning.
	Medical Semantic Alignment.
	The Influence of Long-Chain Reasoning.
	Unbiased GRPO.

	SFT vs. GRPO-based RL tuning
	Conclusion
	Limitations
	Implementation Details
	Evaluation Metrics
	Similarity Score
	Perplexity Score
	Thinking Reward
	Thinking Token Length

	Visualization

