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ABSTRACT

In object detection, varying annotation protocols across datasets can result in
annotation mismatches, leading to inconsistent class labels and bounding regions.
Addressing these mismatches typically involves manually identifying common
trends and fixing the corresponding bounding boxes and class labels. To alleviate
this laborious process, we introduce the label transfer problem in object detection.
Here, the goal is to transfer bounding boxes from one or more source datasets to
match the annotation style of a target dataset. We propose a data-centric approach,
Label-Guided Pseudo-Labeling (LGPL), that improves downstream detectors in
a manner agnostic to the detector learning algorithms and model architectures.
Validating across four object detection scenarios, defined over seven different
datasets and three different architectures, we show that transferring labels for a
target task via LGPL consistently improves the downstream detection in every
setting, on average by 1.88 mAP and 2.65 AP75. Most importantly, we find
that when training with multiple labeled datasets, carefully addressing annotation
mismatches with LGPL alone can improve downstream object detection better than
off-the-shelf supervised domain adaptation techniques that align instance features.1

1 INTRODUCTION

Supervised learning via large carefully annotated datasets are pivotal for object detection applications
such as autonomous driving (Feng et al., 2019). A natural strategy for creating a large dataset is to
mix multiple different datasets. However, different datasets have different annotation protocols which
specify dataset-specific interpretations of accurate class labels and bounding boxes. These differing
protocols result in annotation mismatches when mixing multiple datasets to train a model, which
consequently hampers downstream performance.

Annotation mismatches are pervasive between object detection datasets. While prior works addressing
image domain mismatches (Acuna et al., 2022; 2021; Li et al., 2022; Yao et al., 2021; Wu et al., 2022)
are widely explored, annotation mismatches are relatively less discussed (Wang et al., 2020; Wood
et al., 2021), especially in object detection. In Fig. 1 (left), Mapillary Vistas Dataset (MVD) (Neuhold
et al., 2017) annotates cyclists as ‘riders’, while Waymo Open Dataset (Waymo) (Sun et al., 2020)
combines riders and bicycles into the ‘cyclist’ class. On the other hand, nuImages (Caesar et al.,
2020) annotates bikes on sidewalks, but Waymo excludes these per the annotation instructions. In
addition to the ontological mismatches, discrepancies of annotation instructions, human-machine
misalignment, and cross-modality labels result in unique annotation mismatches.

This work characterizes four types of annotation mismatches and introduces a generic algorithm
that addresses the annotation mismatches and consistently enhances the downstream performance
of several object detectors. Given a source dataset used to augment a target dataset, our goal is to
train a label transfer model to modify the source labels so that the source labels are more target-like,
i.e. following the target annotation protocols. Label transfer aligns the annotation mismatches
in a data-centric manner and can serve as a pre-processing step in the existing training workflow,
regardless of the downstream detector architectures and learning algorithms as shown in Fig. 1 (right).

⇤Work done while Yuan-Hong Liao was an intern at NVIDIA
1Project website will be at: https://andrewliao11.github.io/label-transfer
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Figure 1: Left: Varying annotation protocols across datasets can result in annotation mismatches,
leading to inconsistent labels. For example, MVD Neuhold et al. (2017), nuImages Caesar et al.
(2020), and Waymo Sun et al. (2020) disagree with what a cyclist represents. Yellow dashed bounding
boxes are not annotated. Right: Label transfer is a data-centric approach that transfers the labels
from one dataset to match another dataset’s annotation protocol, which can be considered as a
pre-processing step in the existing training workflow.

We find that intuitive and existing data-centric strategies for our new problem generally do not
leverage all available information. For example, we may use a model trained on the target data to
generate pseudo-labels on the source images (Arazo et al., 2019; Lee, 2013), but this discards the
existing source labels. On the other hand, statistical normalization (Wang et al., 2020) aligns boxes
statistics but ignores the image content. However, both practices leverage only partial information
from the source dataset, which we show can lead to suboptimal results.

We propose a data-centric approach, Label-Guided Pseudo-Labeling (LGPL), that leverages full
information in the source dataset to generate consistent and accurate transfer. LGPL repurposes the
standard two-stage object detector architectures for label transfer. We quantify the effectiveness
of our label transfer model by training a detector on the combination of the target dataset and the
label-transferred source dataset and evaluating on the target domain. Our contributions include: (1)
We formalize the label transfer problem and propose a taxonomy characterizing the annotation mis-
matches across object detection datasets. (2) We develop a data-centric algorithm, LGPL, that extends
the concept of pseudolabeling by leveraging source dataset bounding boxes and class information for
label transfer. (3) We validate our approach on four transfer scenarios across seven datasets. LGPL
consistently outperforms baselines in every scenario, whereas baseline approaches sometimes perform
worse than simply not transferring labels at all. Finally, we show LGPL outperforms off-the-shelf
supervised domain adaptation (Prabhu et al., 2023), showing that our data-centric framework is a
successful alternative to model-centric strategies for addressing data distribution shifts.

2 RELATED WORK

Image distributions misalignment. Approaches such as MMD (Yan et al., 2017), domain adversarial
learning (Hoffman et al., 2018), and self-training (Li et al., 2022) align the image distributions during
training. Our work focuses on aligning annotation mismatches in a data-centric manner, which can be
considered as a pre-processing step in the existing training workflow. Similarly, Arruda et al. (2019)
adopts image translation as a pre-processing step to align image distributions.

Label space misalignment. Combining heterogeneous label spaces over multiple datasets requires
careful manual splitting and merging (Lambert et al., 2020). Zhou et al. (2021) avoid the laborious
manual work by learning a common label spaces for all datasets considered. Recently, Chen et al.
(2023); Meng et al. (2023) use language as a bridge between diverse object detection datasets (Radford
et al., 2021; Ilharco et al., 2021) by learning a label space that encourages positive transfer between
datasets. Our work differ with the above multi-dataset detection approaches in: 1) We consider
scenarios where the class label spaces are matched but the annotation protocols are different, therefore,
leading to annotation mismatches (see Section 3). 2) We optimize the target performances, while
multi-dataset detection optimizes the average performances of all datasets considered. This work
shows that even when the class label spaces are well-aligned, leveraging datasets from different
sources might still suffer from annotation mismatches.

Annotation mismatches. Factors such as how data is collected or specific instructions given to
annotators can lead to idiosyncratic annotations for different datasets. Beyer et al. (2020); Yun
et al. (2021); Recht et al. (2019) address these undesirable properties in ImageNet through careful
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Figure 2: Examples of annotation mismatches. We identify four factors contributing to annotation
mismatches. Multiple factors can influence annotation mismatches within a dataset. Yellow dash
bounding boxes are not annotated.

scrutiny and re-annotations. Rottmann & Reese (2023); Wood et al. (2021) smooth the labels and
perform label adaptation to close the gap between synthetic and real-world semantic segmentation
datasets. Our work focuses on addressing the annotation mismatches in object detection datasets,
which involves producing class labels and bounding regions for every instance. We provide a detailed
explanation of annotation mismatches in the context of object detection datasets in Section 3.

3 TAXONOMY OF ANNOTATION MISMATCHES IN OBJECT DETECTION

In this section, we pinpoint four fundamental types of annotation mismatches observed in five
real-world and two synthetic datasets.

Class semantics. Datasets can differ in the class ontology, meaning an object can be left unlabeled
or labeled as a different class depending on the dataset. For example, Waymo (Sun et al., 2020)
considers a ‘bicycle’ (or equivalently ‘cyclist’) as a combination of a bicycle and a rider, excluding
parked bicycles. In contrast, nuImages and nuScenes (Caesar et al., 2020) annotate all visible bicycles.
Additionally, differences in class semantics can lead to variations in labeling. For instance, Waymo
combines the bicycle and rider into a single bounding box, while Cityscapes (Cordts et al., 2016)
assigns separate classes for ‘bicycle’ and ‘cyclist’.

Annotation instructions. Annotators may receive specific instructions that disagree between datasets.
For example, in Waymo, construction vehicle bounding boxes include hydraulic arms, while nuImages
omits them, leading to smaller bounding boxes. Moreover, nuImages annotators were instructed
to estimate occluded parts, producing amodal bounding boxes (Nanay, 2018), whereas Waymo
annotations are limited to visible pixels.

Human-machine misalignment. Automatically annotated synthetic image datasets, constructed
using 3-D simulated scenes, exhibit discrepancies compared to human-annotated datasets. For
instance, on Synscapes (Wrenninge & Unger, 2018), objects that are heavily occluded, truncated,
or distant from the camera are perfectly annotated, which does not occur in human annotations.
Consequently, learning from synthetic datasets with abundant occluded annotations can lead to object
detector hallucinations.

Cross-modality labels. Real datasets may also utilize auxiliary modalities for annotation. For
example, 3-D datasets can be converted to 2-D by projecting 3-D bounding boxes (e.g., nuScenes),
and segmentation annotations can be used to automatically produce bounding boxes (e.g., Cityscapes,
MVD (Neuhold et al., 2017)). However, integrating side information can introduce idiosyncrasies,
including pixel-based bounding boxes that ignore occluded regions (see Annotation instructions
above) or the production of oversized, occluded, or truncated boxes due to object geometry and
changes in viewing perspectives during 2D projection of 3D scenes.

Combining multiple datasets may yield a mixture of annotation mismatches. We analyze the severity
of annotation mismatches in Appendix A.3. Rather than developing custom solutions to address
each mismatch individually, we focus on developing a solution for learning to address any common
annotation mismatch trend between two object detection datasets.
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Figure 3: Label-Guided Pseudo-Labeling consists of an image encoder fimg, a box generator fgen,
and a label transfer model ftrans. Left: We train the box generator on the source dataset to generator
source-like bounding boxes, and train the label transfer model on the target dataset to capture the
target annotation biases. Right: During inference, the label transfer model takes the source labels as
inputs. We construct the label-transferred source datasets via thresholding.

4 METHOD

We propose Label-Guided Pseudo-Labeling (LGPL), a data-centric algorithm. LGPL extends the
concept of pseudo-labeling and addresses any annotation mismatch between two object detection
datasets. We first introduce the notation and the label transfer problem (Sec. 4.1) and provide
background knowledge (Sec. 4.2). Finally, we present LGPL in Section 4.3.

4.1 PROBLEM FORMULATION

Notation. Let X and Y denote an input and output space, respectively. In K-class object detection,
the input are images x 2 X and the output is a set of N annotated objects y := (b, c) comprised of
2-D bounding boxes b 2 RN⇥4 and class labels c 2 [K]N , where g : X ! Y denotes a potentially
noisy ground truth labeling function that depends on the annotation protocols of a specific dataset
(e.g. semantics, annotator instructions, auxiliary modalities).

The label transfer problem. Suppose we are given two datasets, a source Dsrc := {(x, gsrc(x))}
and target Dtgt := {(x, gtgt(x))}, of input-output pairs defined by two different ground truth labeling
functions gsrc and gtgt, respectively. Without loss of generality, we assume that the datasets have
different images but share the same class label space [K], i.e., if the class label spaces differ, then we
only need to consider the common classes.

A label transfer model is a function ftrans : X ⇥ Y ! Y that takes as input a image-label pair from
the source dataset and generates a bounding box and a class label that matches the target labeling
function, i.e., in an ideal setting 8x 2 Dsrc, ftrans(x, gsrc(x)) = gtgt(x). After training, a label transfer
model can map the source dataset to a new label-transferred dataset whose labels are ‘target-like’,
which we then use to augment the target dataset and train a downstream object detector. However, the
main challenge in training the label transfer model is the lack of paired supervision, i.e. a training
dataset of triplets (x, gsrc(x), gtgt(x)). We propose LGPL in Sec 4.3 to address this.

In this work, we assume that (1) the class labels are the same between the source and the target
labeling functions and (2) the source labeling function either detects or over-detects all the objects
specified in the target labeling function. This reflects our observations from the common annotation
mismatches, (e.g. transferring labels from a simulated dataset to a real-world dataset, see Section 3
and Section A.3 for our empirical validation). Under this assumption, label transfer simplifies to two
sub-problems: given bounding boxes and class labels for a source dataset image, (1) determine if
each object would be labeled under the target annotation protocol; and (2) determine an appropriate
target-like shape of the bounding box.

4.2 PRELIMINARIES ON TWO-STAGE OBJECT DETECTION

We first briefly review two-stage object detection algorithms as our label transfer algorithm will
later leverage this framework. A two-stage object detector (e.g. Faster-RCNN (Ren et al., 2015),
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Cascade-RCNN (Cai & Vasconcelos, 2018)) consists of an image encoder fimg, a region proposal
network (RPN) fRPN, and a region-of-interest (RoI) head fRoI. In the first stage, the RPN learns to
generate bounding box candidates from extracted image features via an RPN loss LRPN that combines
of a regression loss between anchors and predicted boxes with a binary cross entropy loss for correctly
proposing a region. In the second stage, the RoI head learns to refine these bounding box candidates
and classify the object in the region via an RoI loss LRoI that combines a K-way cross entropy loss
and a regression loss between ground truth and candidate boxes. By chaining these two networks
with the image encoder, we can input an image to predict a set of bounding boxes and class labels.

4.3 LABEL-GUIDED PSEUDO-LABELING

The main challenge of label transfer is the lack of paired supervision. We now introduce our label
transfer algorithm, which relies on the observation that an RPN trained on a given dataset will
generate RoIs resembling the annotation style of the given dataset. For example, if a dataset labels
cyclists to include the rider and bicycle, then the RPN will generate regions covering both. Drawing
on this observation, we re-purpose the RPN and RoI head as a box generator fgen and a label transfer
model ftrans, respectively. For the sake of brevity, we extend the notations by allowing fgen and
ftrans to take images as input, leveraging the shared image encoder fimg. The box generator learns to
generate source-like bounding regions for the target dataset. The label transfer model learns to (1)
map source-like regions to the corresponding target bounding boxes and (2) determine the validity
of the bounding regions. At inference time, we discard the box generator and use the label transfer
model to directly map source labels to their target style. Fig. 3 summarizes this workflow.

Learning to create source-like bounding boxes. To learn to map from source-like to target-like
boxes via supervised learning, we require a training dataset of triplets (x, gsrc(x), gtgt(x)). Since this
is unavailable from either of our two datasets, the box generator synthesizes source-like proposals
fgen(z) that approximate the bounding boxes of the gsrc(x) for the target dataset. The box generator
can be trained simply by the standard RPN loss over the source dataset only.

Learning to transfer labels. Recall from our main assumption that label transfer does not require
generating a correct class label, but only determining whether the object should be labeled as well
as the corresponding bounding box. To train this transfer model, we use triplets (x, y0, gtgt(x)|y0 =
[fgen(x), c]) where c ⇠ [K]|fgen(x)| is a set of randomly sampled class labels, for all x 2 Dtgt.
Assigning these random class labels to each proposal in training ensures that ftrans learns to correctly
determine whether the region should be labeled (e.g. rectifying annotation mismatches from highly-
occluded objects).

The label transfer model is architecturally different from the conventional RoI head, as our new head
must receive class labels concatenated with box features. Moreover, inspired by two-stage object
detectors, our model sidesteps the combinatorial complexity of the set-to-set problem of predicting
multiple labels for an image. Here, we employ a class-conditional assigner, which assigns a training
target to each input detection label by matching the class label and comparing the IoU. This assigner
is useful in crowded scenes where multiple objects can overlap with the candidate bounding box.

Training and inference. We summarize the training of fimg, fgen, and ftrans in LGPL as

f⇤
img, f

⇤
gen, f

⇤
trans  argmin

fimg,fgen,ftrans

X

x,y2Dsrc

LRPN(x, y, fimg, fgen) +
X

x,y0,y2Dtrans

LRoI(x, y
0, y, fimg, ftrans)

Dtrans  {(x, [StopGrads(fgen(x)), c], y)|c ⇠ [K]|fgen(x)|, (x, y) 2 Dtgt}
(1)

where LRPN is the standard RPN loss and LRoI involves a class-conditional assigner and binary
classification specified as above. Furthermore, as we are training with both datasets simultaneously,
we apply the stop gradient operator on fgen(x), x 2 Dtgt to prevent gradient leakage from the target
dataset to the box generator. During inference, we replace the box generator with the source labels,
including bounding boxes and class labels b, c. The output consists of the transferred bounding boxes
b̂ and their validity scores ŝ. We construct the label-transferred source datasets via thresholding the
validity scores: Dtransferred-src := {(x, b̂, c)|ŝ � �c} where �c is a classwise threshold.

Extensions. The proposed LGPL can be easily extended to more specialized settings. When the two
image domains are drastically different, e.g., synthetic images versus real-world images, we apply an
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additional ↵-weighted S-CycConf (Prabhu et al., 2023) loss to Eq. 1 to align the instance features
from two domains. When there are multiple source datasets, we train a LGPL for each source and
target pair and apply transfer separately.

5 EXPERIMENTS

We detail the experiment setups and quantitatively analyze the level of annotation mismatches in
Sec. 5.1. We describe the five baselines and two evaluation metrics in Sec. 5.2. We provide the main
experimental results in Sec. 5.3 and find that LGPL is the only method that consistently addresses the
annotation mismatches across four scenarios and three downstream detectors. We further find that
LGPL outperforms off-the-shelf supervised domain adaptation techniques.

5.1 DATASETS

We create four scenarios from five real-world datasets: Cityscapes (Cordts et al., 2016), Mapillary Vis-
tas Dataset (MVD) (Neuhold et al., 2017), Waymo (Sun et al., 2020), nuScenes, and nuImages (Caesar
et al., 2020); and two synthetic datasets: Synscapes (Wrenninge & Unger, 2018) and Internal-Dataset,
an internal dataset that we leave blinded for anonymity. If two datasets have different class label sets,
we take the common classes. Below, we detail the four scenarios:

1) nuScenes! nuImages (10): This contains ‘cross-modality’ mismatches as the 2-D bound-
ing boxes from nuScenes are obtained by converting the 3-D bounding boxes, creating oversized,
occluded, or highly-truncated boxes on nuScenes. We sub-sample 16k images from nuImages.

2) Synscapes! Cityscapes (7): This contains ‘class semantics’ and ‘human-machine misalign-
ment’ mismatches. Cyclists and bicycles have separate labels in Cityscapes, but the ‘cyclist’ label in
Synscapes contains both. Further, Synscapes bounding boxes are generated programmatically and
include highly occluded or truncated objects. For label transfer, we exclude the ‘train’ class in this
scenario since it is too sparse in Cityscapes.

3) Internal-Dataset! nuImages† (3): This contains ‘human-machine misalignment’ mismatches,
as bounding boxes in Internal-Dataset are generated programmatically and include many highly
occluded or truncated objects. We take three common classes between the datasets.

4) MVD-� + nuImages-�!Waymo-� (1): This contains ‘class semantics’ and ‘annotation
instructions’ mismatches for the ‘cyclist’ class �. Motorcyclists, bicyclists, and bicycles have
separate labels in MVD, but they are all considered ‘cyclist’ in Waymo and nuImages. Further, as
opposed to nuImages and MVD, Waymo ignores bicycles not on the road (See Fig. 2). To align the
class label space, we treat motorcyclists, bicyclists, and bicycles as the ‘cyclist‘ class.

We quantify the level of annotation mismatches by re-annotating a subset of nuScenes, MVD-�, and
nuImages-� according to the target annotation protocols and refer them as “gold transferred labels”.
TIDE analysis (Bolya et al., 2020) highlights that every scenario presents a drastically different label
transfer problem, urging a general-purpose label transfer model. We detail the labeling procedure of
gold transferred labels and the full TIDE analysis in Appendix A.

5.2 BASELINES AND EVALUATION METRICS

Baselines. To validate the effectiveness of LGPL, we consider two training-free transfer policies: No
transfer and Statistical Normalization (SN), and two learning-based transfer policies: Pseudo-labeling
(PL) and Pseudo-labeling & Noise-filtering (PL & NF). We also explore adopting image segmentation
foundation model, SAM (Kirillov et al., 2023), for label transfer.

1) No transfer: This uses the pre-existing source labels.

2) Statistical normalization (SN): Wang et al. (2020) demonstrate the efficacy of rescaling
bounding boxes in LiDAR-based 3-D object detection. We re-purpose their SN to 2-D detection by
scaling source dataset bounding boxes to match the mean height and width of the target dataset.

3) Pseudo-labeling (PL): Lee (2013) creates pseudolabels for the source dataset using a detector
first trained on only the target dataset. The pseudolabels are refined with standard techniques such as
non-maximum suppression and then used to augment the target dataset.
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Label transfer model YOLOv3 Def-DETR Faster-RCNN

No transfer 31.24 39.65 41.25
SN 31.95 39.59 40.79
PL 28.67 39.12 40.49
PL & NF 33.26 40.97 40.68

Source = nuScenes
Target = nuImages

LGPL (Ours) 34.8 +3.56 41.52 +1.87 42.6 +1.35

No transfer 26.87 32.93 38.74
SN 25.53 32.7 36.91
PL 28.86 30.67 37.88
PL & NF 28.27 33.04 39.05

Source = Synscapes
Target = Cityscapes

LGPL (Ours) 29.29 +2.42 34.45 +1.58 39.71 +0.97

No transfer 39.17 46.79 47.91
SN 39.07 47.05 48.05
PL 37.87 47.41 48.5
PL & NF 39.85 47.67 48.2

Source = Internal-Dataset
Target = nuImages†

LGPL (Ours) 41.17 +2 48.4 +1.61 48.89 +0.98

Table 1: Downstream-mAP of detectors trained with transferred labels. LGPL outperforms
all baselines on all scenarios and architectures. Surprisingly, most baselines consistently fail to
outperform ‘No transfer’ and LGPL is the only approach that consistently beats ‘No transfer’. We
use small font to denote the mAP difference versus ‘No transfer’, red color to indicate methods that
are worse than ‘No transfer’, and bold the best performing label transfer models.

Label transfer model YOLOv3 Def-DETR Faster-RCNN

No transfer 22.21 26.12 31.14
SN 20.55 24.86 30.12
PL 22.22 23.05 29.58
PL & NF 23.78 27.69 30.69

Source = MVD-� +
nuImages-�

Target = Waymo-�
LGPL (Ours) 25.09 +2.88 27.86 +1.74 32.74 +1.61

Table 2: Multi-source la-
bel transfer. When mul-
tiple source datasets are
presented, LGPL outper-
forms all baselines on all
architectures as well.

4) Pseudo-labeling & Noise-filtering (PL & NF): This baseline improves PL by using the
pre-existing source labels to filter out noisy RPN proposals by the pseudo-labeler. Inspired by Mao
et al. (2020), we remove any RPN proposals that have small IoUs ( 0.5) with the source labels.

5) SAM-transfer model: SAM (Kirillov et al., 2023) is a general-purpose segmentation foundation
model, generating accurate class-agnostic segmentation masks from prompts. We adopt SAM for
label transfer by prompting it with source bounding boxes, keeping the class labels intact, and taking
the bounding boxes induced by the predicted segmentation mask as the transferred bounding boxes.
Since SAM-transfer model fixes only the localization errors, we consider nuScenes! nuImages for
SAM-transfer model. The rest of the scenarios require determining the label validity under target
annotation protocols, which is challenging for SAM-transfer model.

Evaluation metrics. We consider two metrics to evaluate the performance of a label transfer model:

1) Downstream-mAP: Training a detector with a source dataset that matches the target dataset’s
annotation protocol should perform better than training with a dataset that does not. To evaluate a
label transfer model, we first train a downstream detector on a combined label-transferred source and
target dataset to evaluate a label transfer model. Then, we use the performance of the downstream
detector as the evaluate metric, denoted as downstream-mAP. Training can be augmented by domain
adaptation algorithms if needed. For robustness, we validate on three popular detector architectures:
YOLOv3 (Redmon & Farhadi, 2018), Deformable DETR (Def-DETR) (Zhu et al., 2021), and Faster-
RCNN (Ren et al., 2015). For every experiment, we run three times except for Def-DETR due to the
long training time.

2) Transfer-mAP: Given access to gold transferred labels for the source dataset that match the
target protocol, we can directly measure the mAP of a label transfer model’s output labels w.r.t. the
gold transferred labels. Interestingly, we will show that although this metric bypasses the need to train
a downstream detector in evaluation, it may not correlate well with the downstream performance.
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Label transfer model YOLOv3 Def-DETR Faster-RCNN

No transfer 28.03 40.6 43.13
SN 29.16 40.7 42.36
PL 27.06 40.5 42.56
PL & NF 32.36 43.2 42.73

Source = nuScenes
Target = nuImages

LGPL (Ours) 34.23 +6.2 43.4 +2.8 44.63 +1.5

No transfer 22.03 26.2 34.86
SN 19.03 24.6 32.93
PL 22.43 23.1 31.49
PL & NF 24.46 28.3 34.2

Source = MVD-� +
nuImages-�

Target = Waymo-�
LGPL (Ours) 26.03 +4 29.4 +3.2 36.66 +1.8

Table 3: Downstream-AP75 of detectors trained with
transferred labels. We highlight the differences over ‘No
transfer’ in smaller font and color the performance deterio-
ration in red.

Figure 4: Label transfer vs. image do-
main adaptation. LGPL improves over
image domain adaptations, S-DANN and
S-CycConf (Prabhu et al., 2023), by 1.6
and 1.24 downstream-mAP on average.

Source label Statistical Normalization Pseudo-Labeling
Pseudo-Labeling &  
Noise Filtering LGPL (Ours)

Motorcycle
Motorcycle

Bicycle
Bicycle

Bicycle

Motorcycle

Figure 5: Synscapes ! Cityscapes label transfer qualitative examples. Synscapes annotates
motorcycle as the cyclists and the motorbikes, while Cityscapes only annotates the motorbikes.
Unlike LGPL, the baseline label transfer model at times hallucinate or fail to produce accurate
bounding boxes. More qualitative results are in Appendix B.

Implementation details. We adopt same architectures for PL, PL & NF, and LGPL. Class-wise thresh-
olds �c are determined by digitizing confidence scores using the classic binning strategy (Sturges,
1926). Annotations falling into the last bin or with confidence score lower than 0.001 are dropped.
More details are provided in Appendices C and D.

5.3 MAIN RESULTS

. LGPL outperforms all other baseline methods for every architecture. Table 1 and Table 2
summarize our main results on downstream-mAP. Further, LGPL is the only approach that consis-
tently beats the ‘No transfer’ baseline. On average, LGPL outperforms ‘No transfer’ on YOLOv3 by
2.7, Def-DETR by 1.68, and Faster-RCNN by 1.22 downstream-mAP. In contrast, each of the other
baselines will sometimes be worse than simply not pre-processing labels.

. Transferring labels leads to higher-quality object detectors. Our TIDE analysis (Bolya et al.,
2020) of gold transferred labels reveals that annotation mismatches are almost exclusively either due
to Localization or Background errors on the bounding boxes (see Appendix A.3). Intuitively, label
transfer should be most effective for higher IoU thresholds where these errors are more prevalent.
In Table 3, we report AP75 for the downstream detector (see Appendix B for the full table). LGPL
remains the only label transfer model that consistently beats the ‘No transfer’ baseline by 4.14 for
YOLOv3, 2.65 for Def-DETR, and 1.15 for Faster-RCNN.

. LGPL outperforms off-the-shelf supervised domain adaptation. Domain adaptation is a
standard solution for training a model when there is a mismatch between a source and target data
distribution. We compare LGPL and two supervised domain adaptation (SDA) approaches S-DANN
and S-CycConf from Prabhu et al. (2023). See details of S-DANN and S-CycConf in Appendix C.1.
Both S-DANN and S-CycConf leverage the source and the target labels to align instance features.
Fig. 4 reports the relative gain versus the naïve ‘No transfer’ baseline on two scenarios consisting
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Label transfer model Transfer-mAP Average
Downstream-mAP

No transfer 24.4 37.38
SN 6.5 37.44
PL 37.6 36.09
PL & NF 42.8 38.03

Source = nuScenes
Target = nuImages

LGPL (Ours) 44.4 +20 39.64 +2.25

MVD-� nuImages-�
No transfer 11.1 24.3 26.49
SN 8 11.6 25.19
PL 25.2 52.5 24.95
PL & NF 30.8 +19.7 55.7 27.38

Source = MVD-� +
nuImages-�

Target = Waymo-�

LGPL (Ours) 25.8 63 +38.7 28.56 +2.07

Table 4: Transfer-mAP and
downstream-mAP. We find that
these two metrics do no strongly
correlate with Spearman correlation
coefficient RS = 0.6. (p-value
> 0.1). The ultimate goal of a label
transfer model is to enhance the per-
formance of object detectors; thus,
we recommend that future work pri-
oritizes downstream performance.

of both real-world and synthetic images. LGPL outperforms both domain adaptation approaches,
showing that closing annotation mismatches can be more effective than aligning image features.

Label transfer model Faster-RCNN

No transfer 41.25
SAM-transfer-b 38.04
SAM-transfer-l 38.09
SAM-transfer-h 38.29

Source = nuScenes
Target = nuImages

LGPL (Ours) 42.6

Table 5: Downstream-mAP of SAM-
adopted label transfer models.

. Off-the-shelf segmentation foundation models fall
short in label transfer. Table 5 demonstrates that SAM-
transfer models across different image backbones (vit-b,
vit-l, and vit-h) all hit the wall around 38 mAP, show-
ing that a target-specific label transfer model, e.g. LGPL,
outperforms a general-purpose segmentation foundation
model for label transfer. We observe that overly large
bounding boxes confuse SAM, making it less effective in
identifying the objects of interest and consequently reduc-
ing transfer quality.

. Qualitative analysis reveals the nature of errors. Fig. 5 visualizes examples of transferred
annotations from each method in Synscapes! Cityscapes. We find that SN partially rescales the
motorcycle, but PL mislabels the object and hallucinates a second bicycle. Via noise filtering, PL
& NF removes the second bicycle label, but still cannot address the class label mismatch. We show
more qualitative results in Appendix B and find that LGPL learns to correctly transfer the source
bounding boxes, drop the occluded ones, and preserve the correct labels.

. Measuring downstream-mAP is necessary for evaluating label transfer models. Table 4
reports transfer-mAP, which measures the mAP between the predicted transferred labels and the
gold transferred labels. We find that high improvements in transferred-mAP map to only minor
improvements in downstream-mAP, and moreover, the highest transferred-mAP does not always
map to the highest downstream-mAP. The Spearman Rank Correlation (Spearman, 1987) coefficient
between these scores is RS = 0.6 (p-value > 0.1), suggesting that is no significant correlation
between the two metrics. We conclude that visually analyzing the transferred labels is insufficient to
determine whether label transfer is effective, and we must train the downstream model to verify.

6 CONCLUSION

We introduce label transfer for object detection, which rectifies annotation mismatches by adapting
class labels and bounding boxes to the target annotation protocol. Our method, Label-Guided Pseudo-
Labeling (LGPL), adopts two-stage object detectors with careful design, allowing easy extensibility.
Once trained, LGPL can seamlessly integrate into existing training workflows, enhancing downstream
detection systems across various architectures and training objectives. Results consistently showcase
consistent improvements over the original source labels, yielding gains of 1.88 in downstream-mAP
and 2.65 in downstream-AP75. Additionally, our experiments demonstrate LGPL’s superiority over
off-the-shelf supervised domain adaptation techniques, which focus solely on aligning instance
features, in effectively improving downstream object detectors by addressing annotation mismatches.

Limitations. Our proposed label transfer problem assumes that we do not need to transfer class
labels or generate new bounding boxes not provided by the source dataset. In practice, systematic
class label transfer may be performed by alternate pre-processing. We envision future work to explore
jointly correcting class label mismatches and bounding boxes.
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We detail the dataset statistics and additional analysis of each scenario in Section A. Then, we provide
full experimental results and qualitative results in Section B. We evaluate the label-transferred source
datasets by the downstream performances. We provide additional details of the downstream detector
in Section C. Lastly, we provide implementation details in Section D for reproducibility.

A DATASET ANALYSIS

A.1 DATASET DETAILS

In this section, we describe the details of the seven datasets and the dataset statistics in Table 6:

• Cityscapes Cordts et al. (2016) contains 2975 training and 500 validation images. The
dataset provides fine pixel-level annotations labeled by in-house annotators. We obtain the
pixel-based bounding boxes from the semantic segmentation masks.

• Mapillary Vistas Dataset (MVD) Neuhold et al. (2017) contains 18,000 images with
pixel-accurate and instance-specific human annotations over 124 categories. We obtain the
pixel-based bounding boxes from the semantic segmentation mask

• Waymo Open dataset (Waymo) Sun et al. (2020) contains 1950 segments in diverse geogra-
phies and conditions and exhausively annotated with 2-D and 3-D bounding boxes using
production-level labeling tools . We sub-sample every 10th frame as our dataset, ending up
with around 80,000 images.

• nuScenes Caesar et al. (2020) contains 1000 driving scenes in Boston and Singapore. Around
84,000 keyframes are labeled with 3-D bounding boxes labeled by in-house annotators. We
obtain the 2-D bounding boxes by projecting the 3-D bounding boxes to the 2-D plane

• nuImages Caesar et al. (2020) is a stand-alone large-scale image dataset with 67,000 images.
The dataset provides 2-D bounding boxes labeled by in-house annotators.

• Synscapes Wrenninge & Unger (2018) is a photorealistic synthetic dataset that is designed
to be structurally similar to Cityscapes Cordts et al. (2016), containing 25,000 images. We
use the 2-D bounding provided in the dataset.

• Internal-Dataset is a photorealistic private synthetic dataset of 48,000 driving scenes.

A.2 SCENARIO DETAILS

In this section, we describe the details of how we use them to construct the four object detection
scenarios:

• nuScenes! nuImages: This scenario presents ‘cross-modality labels’ annotation mismatch.
We obtain the 2-D bounding boxes from existing 3-D bounding boxes in nuScenes, which
leads to oversize, occluded, or highly-truncated boxes or boxes. Both datasets are collected
with the same sensor and similar annotation instructions, leading to minimum annotation
mismatches in ‘class semantics’ and ‘annotation instructions’. We use all ten classes
in nuImages including car, truck, trailer, bus, construction vehicle, bicycle, motorcycle,
pedestrian, traffic cone, and barrier.

• Synscapes! Cityscapes: This scenario presents ‘class semantics’ and ‘human-machine
misalignment’ annotation mismatches. Since there is no class rider in Synscapes, we exclude
it in this scenario, resulting in a seven-way object detection problem. Additionally, all label
transfer model do not transfer the class ‘train’ since there are only 168 ‘train’ instances,
accounting for 0.3% of all Cityscapes annotations. Cityscapes labels ‘cyclist’, ‘motorcycle’,
and ‘bicycle’ into three separate classes, whereas the ‘motorcycle’ and ‘bicycle’ in Synscapes
include riders. The seven classes include person, car, truck, bus, train, motorcycle, and
bicycle.

• Internal-Dataset ! nuImages†: The scenario presents ‘human-machine misalignment’
annotation mismatch. We take three common classes from both datasets, including car,
bicycle, and pedestrian.
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#classes #source images #instances per
source image #target images #instances per

target image

nuScenes! nuImages 10 84390 6.85 15591 8.02
Synscapes! Cityscapes 7 25000 46.17 2975 18.17
Internal-Dataset! nuImages† 3 47994 7.33 80291 5.14
MVD-� + nuImages-�!Waymo-� 1 8622 1.7 3649 1.41

Table 6: Datasets statistics.

Waymo nuImages nuScenes Cityscapes MVD Synscapes

Waymo - CS, AI CS, AI, CM CS, CM CS, CM CS, HMM
nuImages - - CM CS, CM CS, CM CS, HMM
nuScenes - - - CS, CM CS, CM CS, HMM, CM
Cityscapes - - - - - CS, HMM, CM
MVD - - - - - CS, HMM, CM
Synscapes - - - - - -

Table 7: Annotation mismatches of each pair of object detection datasets. Almost every pair of
datasets has annotation biases, and among all types of annotation biases and CS is the most common
one. Notice that we do not aim to exhaustively find out all the annotation mismatches. Instead, we
describe the most obvious ones in this table. CS: Class semantics; AI: Annotation instructions; HMM:
Human-machine misalignment; CM: Cross-modality labels.

• MVD-� + nuImages-�! Waymo-�: This scenario presents ‘class semantics’ and
‘annotation instructions’ annotation mismatches. We take the cyclist class from each dataset
and subsample the images accordingly. MVD has two separate classes ‘bicyclist’ and ‘other
rider’, which we map to a superclass ‘cyclist’. The class ‘bicycle’ in nuImages consists of
all vision bikes in the scenes and includes all the riders and passengers, if any, on the bikes.
On the other hand, the class ‘cyclist’ exclude bikes parked on sidewalks.

We pinpoint four different types of annotation mismatches from our comprehensive survey in Section 3.
In Table 7, we provide our comprehensive study on the annotation biases of each pair of datasets.

A.3 QUANTIFYING ANNOTATION MISMATCHES WITH GOLD TRANSFERRED LABELS

In section 3, we propose the taxonomy for common annotation mismatches. To understand the
annotation mismatches quantitatively , we analyze two scenarios: nuScenes! nuImages and MVD-
� +nuImages-� ! Waymo-�. We manually annotated nuScenes, MVD-�, nuImages-�
according to their target annotation protocols and refer them as gold transferred labels. Specifically,
we first draw all the bounding boxes on the images and ask the expert annotators to resize or remove
the bounding boxes. For example, the annotators need to remove the bicycle labels if they are parked
on the sidewalk in nuImages-�.

With the gold transferred labels, we perform TIDE analysis (Bolya et al., 2020) to dissect the gaps
presented between the pre-existing labels and the gold transferred labels. Note that since both set of
labels are carefully annotated by human, error types like duplication, classification, etc. are close
to zero. Table 8 shows that nuScenes ! nuImages has a high localization error of 11.1, while
nuImages-�! Waymo-� has more hallucinated background labels with background error of
54.24. MVD-�!Waymo-� suffers from high localization and background errors of 14.26 and
30.32, respectively. The TIDE analysis highlights that every scenario presents a drastically different
label transfer problem, urging a general-purpose label transfer model.

The taxonomy relates the annotation mismtaches with the difference in bounding boxes. For example,
Table 7 and the TIDE analysis in Table 9 together reveal that the cross-modality (CM) mismatch in
nuScenes nuImages leads to severe bounding box shift, but relatively little over-detection issues.
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#images #transferred instances
per image

#source instances
per image

nuScenes 114 4.95 6.85
MVD-� 125 0.87 2.11
nuImages-� 150 0.14 1.42

Table 8: Statistics of gold transferred labels.

Source = nuScenes
Target = nuImages

Source = MVD-�
Target = Waymo-�

Source = nuImages-�
Target = Waymo-�

Localization 11.1 14.26 0.
Background 0.83 30.32 54.24

Table 9: TIDE analysis of the pre-existing source labels w.r.t. gold transferred labels. TIDE Bolya
et al. (2020) analyzes the source of errors between two set of detection labels. The higher the number
is, the more prevalent the type of errors exist between labels. Other errors types are close to zero.

B ADDITIONAL EXPERIMENTAL RESULTS

We provides the full table of Table 1 in Table 10. The standard deviation across three runs shown
in smaller font. We provide additional ‘Target only’ results as the reference numbers. Note that for
‘Target only’, we train the detector only on the target dataset. We exclude Deformable DETR Zhu et al.
(2021) since it requires longer training compared to other two detectors. We observe that the standar
deviations of LGPL are no more than 0.33, which validates the robustness of LGPL’s improvements.

We provide the full table of Table 3 in Table 11. We provide additional ‘Target only’ results as
the reference numbers. Note that for ‘Target only’, we train the detector only on the target dataset.
Similar to our conclusion in Section 5.3, LGPL brings greater improvements when evaluated with
higher IoU, i.e. downstream-AP75.

Aside from the above quantitative results, we provide additional qualitative results in Fig. 6, Fig. 7,
Fig. 8, and Fig. 9

C DOWNSTREAM EVALUATION

For Faster-RCNN Ren et al. (2015) and Deformable DETR Zhu et al. (2021), we adopt ResNet-50 He
et al. (2016) as the image backbone For YOLOv3 Redmon & Farhadi (2018), we adopt DarkNet-53
as the image backbone. We sweep the learning rate for each downstream detector with grid search,
while other hyper-parameters remain unchanged from the origin papers. When the source and the
target image domains are drastically different, Synscapes ! Cityscapes and Internal-Dataset !
nuImages†, we apply image domain adaptation and use ↵image to balance the task loss and the image
domain adaptation loss. For each experiment, we run on three random seeds, except for Deformable
DETR due to its long training time. We describe the range of the hyper-parameters sweep in Table 12.

For Faster-RCNN and Deformable DETR, we resize the image to (1800, 900) and randomly flip the
image horizontally in the Synscapes! Cityscapes scenario, and resize the image to (1600, 900) and
randomly flip the image horizontally in the other three scenarios. For YOLOv3, we resize the image
to (1500, 800) and randomly flip the image horizontally in all scenarios.

C.1 SUPERVISED DOMAIN ADAPTATION (PRABHU ET AL., 2023)

Typical domain adaptation approaches assume the access to a large amount of labelled data from the
source distribution and unlabeled or sparsely labelled data from the target distribution. In contrast,
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Label transfer model YOLOv3 Faster-RCNN

Target only 27.72 ± 0.05 30.85 ± 0.24
No transfer 31.24 ± 0.48 41.25 ± 0.13
SN 31.95 ± 0.18 40.79 ± 0.1
PL 28.67 ± 0.31 40.49 ± 0.05
PL & NF 33.26 ± 0.02 40.68 ± 0.27

Source = nuScenes
Target = nuImages

LGPL (Ours) 34.8 ± 0.13 42.6 ± 0.1

Target only 19.46 ± 0.23 25.76 ± 0.46
No transfer 26.87 ± 0.67 38.74 ± 0.15
SN 25.53 ± 0.19 36.91 ± 0.43
PL 28.86 ± 0.57 37.88 ± 0.32
PL & NF 28.27 ± 0.38 39.05 ± 0.2

Source = Synscapes
Target = Cityscapes

LGPL (Ours) 29.29 ± 0.17 39.71 ± 0.16

Target only 35.25 ± 0.23 40.14 ± 0.33
No transfer 39.17 ± 0.13 47.91 ± 0.14
SN 39.07 ± 0.23 47.99 ± 0.09
PL 37.87 ± 0.07 48.59 ± 0.08
PL & NF 39.85 ± 0.09 48.19 ± 0.12

Source = Internal-Dataset
Target = nuImages†

LGPL (Ours) 41.17 ± 0.18 48.89 ± 0.11

Target only 19.27 ± 0.2 23.64 ± 0.25
No transfer 22.21 ± 0.38 31.14 ± 0.12
SN 20.55 ± 0.43 30.12 ± 0.11
PL 22.22 ± 0.22 29.58 ± 0.46
PL & NF 23.78 ± 0.92 30.69 ± 0.5

Source = MVD-� +
nuImages-�

Target = Waymo-�

LGPL (Ours) 25.09 ± 0.23 32.74 ± 0.33

Table 10: Downstream-mAP of detectors trained with transferred labels. LGPL outperforms all
baselines on all scenarios and architectures. Further, it is the only approach that consistently beats
‘No transfer’. We use small font to denote the standard deviation over three runs, red color to indicate
methods that are worse than ‘No transfer’, and bold the best performing label transfer models.
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Label transfer model YOLOv3 Def-DETR Faster-RCNN

Target only 25.53 38 28.16
No transfer 28.03 40.6 43.13
SN 29.16 40.7 42.36
PL 27.06 40.5 42.56
PL & NF 32.36 43.2 42.73

Source = nuScenes
Target = nuImages

LGPL (Ours) 34.23 +6.2 43.4 +2.8 44.63 +1.5

Target only 17.56 27.5 21.76
No transfer 26.3 33 40.4
SN 23.56 33.6 38.66
PL 27.53 29.1 39.3
PL & NF 28.1 32.06 40.9 +0.5

Source = Synscapes
Target = Cityscapes

LGPL (Ours) 29.06 +2.76 35.1 +2.1 40.7

Target only 34.4 43.8 39.3
No transfer 37.43 49.4 51
SN 36.93 49.7 51.67
PL 35.53 50.6 51.93
PL & NF 39.1 50.7 51.06

Source = Internal-Dataset
Target = nuImages†

LGPL (Ours) 41.06 +3.63 51.9 +2.5 52 +1

Target only 19.36 18.6 24.86
No transfer 22.03 26.2 34.86
SN 19.03 24.6 32.93
PL 22.43 23.1 31.49
PL & NF 24.46 28.3 34.2

Source = MVD-� +
nuImages-�

Target = Waymo-�

LGPL (Ours) 26.03 +4 29.4 +3.2 36.66 +1.8

Table 11: Downstream-AP75 of detectors trained with tranferred labels. We highlight the
differences over ‘No transfer’ in smaller font and color the performance deterioration in red.

Hyper-parameter name Sweep range

YOLOv3 Learning rate 0.0001, 0.0002, 0.0003
↵image 0.1, 0.2, 0.3

Deformable DETR Learning rate 0.001, 0.002, 0.003
↵image 0.1, 0.2, 0.3

Faster-RCNN Learning rate 0.04, 0.05, 0.06
↵image 0.1, 0.2, 0.3

Table 12: The range of the hyper-parameters sweep for different downstream detectors

CARE Prabhu et al. (2023) formulates supervised domain adaptation problem, where the target
labelled data is accessible. This scenario is important in high-stakes industrial applications where the
annotation costs decrease due to its scale.

CARE proposes several ways to align the instance features for supervised domain adaptive object
detectors by explicitly leveraging the source and the target labels and extending several popular
unsupervised domain adaptation methods to their supervised version. We take S-DANN and S-
CycConf from CARE. Additionally, in contrast to CARE (Prabhu et al., 2023), we empirically find
that cycle confusion loss works slightly better than cycle consistency loss (Dwibedi et al., 2019) in
our scenarios.
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Original label Statistical Normalization Pseudo-Labeling Pseudo-Labeling &  
Noise Filtering LGPL (Ours)
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Figure 6: Qualitative results of nuScenes! nuImages. The top three examples show that LGPL
successfully transfers the original overly larget bounding boxes and removes the fully-occluded
objects. The last row shows that all approach fails to annotate the car with opened trunk, potential
due to the lack of similar examples in the training phase. The scores in the bracket represent the
validity in the target dataset.

D IMPLEMENTATION DETAILS OF LABEL TRANSFER MODELS

All data-driven label transfer models (PL, PL & NF, and LGPL) adopt Cascade-RCNN Cai &
Vasconcelos (2018) and use ImageNet-pretrained HRNet-w32 Sun et al. (2019) as the image backbone
with batch size 16. Cascade-RCNN extends Faster-RCNN Ren et al. (2015) with a multi-stage RoI
head. Following prior work, the IoU thresholds are set as 0.5, 0.6, and 0.7 at each stage. We add
CycConf loss Wang et al. (2021) with weight ↵ in Section 4.3 to align image features in Synscapes
! Cityscapes and Internal-Dataset ! nuImages†. The learning rate and ↵ are tuned with grid
search, while other hyper-parameters remain unchanged from the original Cascade-RCNN. We sweep
the learning rate with the values 0.01, 0.02, 0.03, 0.04 and ↵ with the values 0.01, 0.02, 0.03. All
experiments are run on NVIDIA Tesla V100 GPUs.

D.1 CHOICE OF CLASS-CONDITIONAL THRESHOLD �c

We first empirically found that adopting a class-agnostic threshold leads to performance worse than
“No transfer”. However, treating the class-conditional threshold as another set of hyperparameters
makes the hyperparameter search extremely computationally expensive since every evaluation requires
training a new object detector. We, therefore, choose �c by digitizing the confidence score (Sturges,
1926) for each class and apply it to all the label transfer models. Annotations falling into the last
bin or with a confidence score lower than 0.001 are dropped. In this way, the classes that are more
challenging get the lower thresholds and vice versa. We leave the choice of the class-conditional
threshold to future research.
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Original label Statistical Normalization Pseudo-Labeling Pseudo-Labeling &  
Noise Filtering LGPL (Ours)
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Figure 7: Qualitative results of nuImages-�!Waymo-�. The top three examples show that
LGPL successfully removes the bikes on the sidewalks by assigning them low confidence scores. The
last row shows a bike parked in front of a painted wall. All methods fail to remove the bike label
due to the painting in the background. Yellow dashed bounding boxes are removed due to the low
confidence scores. The scores in the bracket represent the validity in the target dataset.

Original label Statistical Normalization Pseudo-Labeling Pseudo-Labeling &  
Noise Filtering LGPL (Ours)
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Cyclist
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Figure 8: Qualitative results of MVD-�!Waymo-�. In the top row, PL and PL & NF fail
to recognize the complete motorcycle, while LGPL successfully transfers the bounding boxes to
encompass both the motorcycle and the motorcyclist. In the third row, PL & NF fails to detect
anything since there is no prediction that has an IoU of � 0.5 with any source bounding box. The
last row shows a person walking with a bike. According to the Waymo annotation instructions,
when a pedestrian is getting onto a bicycle, they are labeled as a cyclist if they are in the riding
position. To the best of our knowledge, this label should be removed, and only PL and PL & NF
successfully remove it. Due to its data-driven nature, LGPL encounters difficulties in these ambiguous
cases.Yellow dashed bounding boxes are removed due to the low confidence scores. The scores in the
bracket represent the validity in the target dataset.
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Original label Statistical Normalization Pseudo-Labeling Pseudo-Labeling &  
Noise Filtering LGPL (Ours)
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Figure 9: Qualitative results of Synscapes! Cityscapes. In the top row, both PL and PL & NF
recognize the motorcycle as a bicycle. The bottom three rows shows that all baselines approaches fail
to localize the object accurately. The scores in the bracket represent the validity in the target dataset.
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