
(Distributed) Fractional Gradient Descent with Matrix Stepsizes for Non-Convex
Optimisation

Alokendu Mazumder1*, Keshav Vyas2, Punit Rathore1

1 Robert Bosch Center for Cyber Physical Systems, Indian Institute of Science, Bengaluru, India.
2 Independent Researcher, India.

Abstract

Fractional derivatives generalise integer-order derivatives,
making them relevant for studying their convergence in
descent-based optimisation algorithms. However, existing
convergence analysis of fractional gradient descent is lim-
ited in both methods and settings. This paper bridges these
gaps by establishing convergence guarantees for fractional
gradient descent on a broader class of non-convex functions,
known as matrix-smooth functions. We leverage the matrix
smoothness properties of the function to prove convergence
and accelerate the fractional gradient descent iterates. We
propose two novel stochastic fractional descent algorithms,
named Compressed Fractional Gradient Descent (CFGD),
incorporating a matrix-valued stepsize to minimise matrix-
smooth non-convex objectives. Our theoretical analysis cov-
ers both single-node and distributed settings and shows that
matrix stepsizes better capture the structure of the objective,
leading to faster convergence than scalar stepsizes. Addition-
ally, we highlight the importance of matrix stepsizes to lever-
age model structure effectively. To the best of our knowledge,
this is the first work to introduce fractional gradient descent
in a federated/distributed setting.

1 Introduction
Minimising smooth and non-convex functions is a funda-
mental challenge in applied mathematics, with broad ap-
plications across various domains. Many machine learn-
ing algorithms rely on solving optimisation problems for
both training and inference, often involving structural con-
straints or non-convex objectives to accurately address high-
dimensional or non-linear tasks. However, non-convex prob-
lems are generally NP-hard, leading to the common strategy
of relaxing them into convex problems and applying tradi-
tional optimisation techniques.

Despite the promise shown by direct approaches to non-
convex optimisation, their convergence properties remain
poorly understood, posing challenges for large-scale appli-
cations. While convex optimisation is more extensively stud-
ied and easier to solve, the non-convex setting is of greater

*Alokendu Mazumder is supported by the Kotak AI-ML Cen-
ter PhD Fellowship and the Prime Minister’s Research Fellowship,
India.
Accepted at the 1st Workshop on Federated Learning for Critical
Applications (FLCA), in conjunction with AAAI 2026, Singapore.

practical relevance, often becoming the primary computa-
tional bottleneck in real-world problems.

In this paper, we consider the general minimisation prob-
lem:

min
x∈Rd

f(x), (1)

where f : Rd → R is a differentiable function. For this
problem to have a finite solution we will assume throughout
the paper that f is bounded from below.
Assumption 1. There exists f∗ ∈ R such that f(x) ≥ f∗

for all x ∈ Rd.
The stochastic gradient descent (SGD) (Moulines and

Bach 2011; Bubeck et al. 2015; Gower et al. 2019) algo-
rithm is one of the most common algorithms to solve this
problem. In its most general form, it can be written as

xt+1 = xt − αgt (2)

where gt is the unbiased stochastic estimator of ∇f(xt)
and α > 0 is a positive scalar stepsize. A particular case
of interest is the compressed gradient descent (CGD) al-
gorithm (Khirirat, Feyzmahdavian, and Johansson 2018),
where the estimator gt is taken as a compressed alternative
of the initial gradient:

gt = C(∇f(xt)). (3)

The compressor C is designed as a sparse estimator to
minimise communication overhead in distributed and fed-
erated environments. This compressor is stochastic, thereby
introducing stochasticity into the fractional gradient de-
scent iterates. This compressor reduces communication
costs, addressing a major bottleneck in distributed optimisa-
tion (Konečnỳ 2016). Given the resource constraints of mod-
ern devices, various practical compression strategies are uti-
lized, including compressing model updates from the server
to clients and reducing computational loads during local
training. While these strategies are complementary, gradi-
ent compression offers the most significant practical ben-
efit (Kairouz et al. 2021), primarily due to slower client
upload speeds and the advantages of gradient averaging.
This work focuses on compressing fractional gradients. The
stochasticity in fractional gradient descent in this work is
introduced by the compressor. Thus, it can be considered a
particular case of stochastic fractional gradient descent.

An important subclass of compressors is sketches.
Sketches are linear operators defined on Rd, represented as
C(w) = Sw for any w ∈ Rd, where S is a random ma-
trix. A common example is the Rand-k compressor, which
randomly selects k entries from its input and scales them
with a scalar multiplier to ensure the estimator remains un-
biased. Instead of transmitting all d coordinates of the gra-
dient, only a subset of size k is communicated, reducing the
communication cost by a factor of d/k. Formally, Rand-k is
defined as S =

∑k
j=1

d
keije

⊤
ij

, where ij denotes the selected
coordinates of the input vector. For a detailed overview of
compression techniques, refer to (Safaryan, Shulgin, and
Richtárik 2022).

A particularly interesting development in optimisation is
the use of fractional gradient descent (FGD) (Wei et al.
2020; Shin, Darbon, and Karniadakis 2021), where frac-
tional derivatives replace traditional integer-order deriva-
tives. Fractional derivatives combine integer-order deriva-
tives with fractional integrals, with integrals easily gen-
eralised via the Cauchy repeated integral formula. Un-
like standard derivatives, fractional derivatives—studied ex-
tensively (David, Linares, and Pallone 2011; Oldham and
Spanier 1974; Luchko 2023)—extend the concept of differ-
entiation, offering a more flexible and nuanced mathematical
tool.

The basic concept of a fractional derivative is a combina-
tion of derivatives of integer order and fractional integrals.
The fractional derivative that will be studied in this paper
is the Caputo derivative, which has nice analytic properties.
The definition from (Shin, Darbon, and Karniadakis 2021) is
as follows where Γ is the gamma function generalising the
factorial.
Definition 1. The Caputo derivative of f : R → R of order
β ∈ (0, 1) is (n = ⌈β⌉):

Dβ
b =

(sgn(x− b))n−1

Γ(n− β)

∫ x

b

fn(τ)

|x− τ |β−n+1
dτ. (4)

Notice that it depends directly on the ordinary nth-order
derivative of f , basically you take the classical slope at every
past time τ , weight it by the power-law kernel (x−τ)β−n+1,
and integrate. Unlike a local derivative fn(x), the Caputo
derivative “remembers” the entire history of fn(x), yield-
ing a non-local, memory-driven operator. This generalisa-
tion has found applications across various fields, raising an
intriguing question: Can the same principles be applied to
optimisation, just as integer-order derivatives are used in
gradient descent?

Experimental results suggest that fractional methods have
potential advantages in optimisation compared to integer-
order methods (Shin, Darbon, and Karniadakis 2021). With
carefully chosen hyperparameters, these methods can sig-
nificantly outperform standard gradient descent, indicat-
ing promising avenues for further research. This paper fo-
cuses on the Caputo derivative-based fractional derivatives,
known for their favorable analytic properties. The Adaptive
Terminal Caputo Fractional Gradient Descent (AT-CFGD)
method (Shin, Darbon, and Karniadakis 2021) empirically
outperforms standard gradient descent in convergence rate.

Their experiments demonstrate that training neural networks
with AT-CFGD achieves faster convergence and lower test-
ing error than traditional methods. With specifically chosen
hyperparameters, fractional gradient descent can outperform
standard gradient descent, suggesting that further study on
the application of fractional derivatives to optimisation has
significant potential.

In addition to assuming that the function f is bounded
from below, we also assume it to be L-matrix smooth. This
assumption allows us to leverage the full information en-
coded in both the smoothness matrix L and the stepsize ma-
trix D.
Assumption 2 (Matrix Smoothness). There exists L ∈ Sd

+
such that

f(x) ≤ f(w) + ⟨∇f(w), w − x⟩+ 1

2
⟨L(w − x), w − x⟩

(5)

holds for all x,w ∈ Rd

The concept of matrix smoothness, which generalises
scalar smoothness, has proven to be highly effective for en-
hancing the training of supervised models. By leveraging
smoothness matrices alongside novel communication sparsi-
fication strategies, it addresses the communication overhead
in distributed optimisation (Safaryan, Shulgin, and Richtárik
2022; Li, Karagulyan, and Richtárik 2023a). This method
was applied to three distributed optimisation algorithms in
the convex setting, leading to substantial communication
savings and consistently outperforming existing baselines.
These results demonstrate the utility of incorporating matrix
smoothness to enhance distributed optimisation techniques.

A particularly useful instance is when the smoothness ma-
trix is block-diagonal, which is relevant in various applica-
tions, such as neural networks (NN). In this scenario, each
block corresponds to a specific layer of the network, with the
smoothness of the nodes within the jth layer captured by
a matrix Lj . Unlike scalar smoothness, matrix smoothness
emphasizes the similarity among certain entries while allow-
ing for differences in others, reflecting the increasing com-
plexity of information across layers while maintaining sim-
ilarity among nodes within the same layer. This behaviour
has been visually observed in previous studies (Yosinski
et al. 2015; Zintgraf et al. 2017).

Another motivation for using a layer-dependent stepsize is
rooted in physics. In nature, the propagation speed of light
varies in media of different densities due to frequency vari-
ations. Similarly, different layers in neural networks carry
different information, metric systems, and scaling. Thus, the
stepsizes need to be chosen accordingly to achieve optimal
convergence.

Building on the findings that demonstrate fractional gra-
dient descent can achieve faster convergence than standard
gradient descent with appropriate hyperparameters (Shin,
Darbon, and Karniadakis 2021), we propose extending frac-
tional gradient descent to distributed and federated settings
and analysing its performance. To facilitate this extension,
we first compress the fractional gradient and define gt as:

gt = C(∂β,δ
b f(xt)), (6)

where δ ∈ R and ∂β,δ
b f(x) is the fractional gradient (defined

clearly in Section 1) of order β ∈ (0, 1).
In particular, we propose two novel matrix stepsized

CFGD algorithms and analyse their convergence proper-
ties for non-convex matrix-smooth functions in single node
as well as in distributed settings. We empirically show
that fractional gradient descent converges faster with matrix
stepsizes. As mentioned earlier, we place special emphasis
on the block-diagonal case. Our sketches are inspired by (Li,
Karagulyan, and Richtárik 2023a).

To the best of our knowledge, this is the first work to ex-
tend fractional gradient descent to distributed settings and
a broader class of functions, known as matrix-smooth func-
tions.

Related Work
Many successful convex optimisation techniques have been
adapted for use in the non-convex setting. Examples include
adaptivity (Dvinskikh et al. 2019; Zhang et al. 2020), vari-
ance reduction (J Reddi et al. 2016; Zhang et al. 2020), and
acceleration (Guminov et al. 2019). A key paper for our
work is (Shin, Darbon, and Karniadakis 2021), which pro-
vides a unified analysis scheme for fractional gradient de-
scent in non-convex scenarios, but is limited to determinis-
tic settings. Comprehensive overviews of fractional gradient
descent in non-convex optimisation are given in (Shin, Dar-
bon, and Karniadakis 2021; Aggarwal 2024).

Matrix-Based Step Size Methods Newton’s method is a
classical example of a matrix stepsized method and has been
widely used in optimisation (Gragg and Tapia 1974; Miel
1980; Yamamoto 1987). However, calculating the stepsize
as the inverse Hessian at each iteration is computationally
intensive. Quasi-Newton methods, such as those proposed
by (Broyden 1965; Dennis and Moré 1977; Al-Baali and
Khalfan 2007; Al-Baali, Spedicato, and Maggioni 2014),
use simpler estimators to approximate the inverse Hessian.
One example is the Newton-Star algorithm (Islamov, Qian,
and Richtárik 2021), discussed further in Section 2.

Sketched gradient descent, introduced by (Gower and
Richtárik 2015), employs unbiased compressors through
a sketch-and-project approach and was initially analysed
in the context of the linear feasibility problem. Subse-
quent work expanded this with a variance-reduced ver-
sion (Hanzely, Mishchenko, and Richtárik 2018).

In neural networks, many studies have explored layer-
wise optimisation of the training loss. For instance, (Zheng
et al. 2019) propose using different scalar stepsizes for each
layer, while (Yu et al. 2017; Ginsburg et al. 2019) suggest
layer-wise normalization for Stochastic Normalized Gra-
dient Descent. Additionally, layer-wise compression tech-
niques for distributed settings have been investigated (Dutta
et al. 2020; Wang, Safaryan, and Richtárik 2022).

Distributed Compressed Gradient Descent
(DCGD) (Khirirat, Feyzmahdavian, and Johansson 2018)
has seen many improvements, such as those in (Horvóth
et al. 2022). Federated (FL) learning algorithms with
unbiased compressors have also gained attention (Alistarh
et al. 2017; Mishchenko et al. 2024; Gorbunov et al. 2021;

Mishchenko et al. 2022; Maranjyan, Safaryan, and Richtárik
2022; Horváth et al. 2023) in recent years. Recently, the
det-CGD algorithm (Li, Karagulyan, and Richtárik 2023a)
leverages matrix stepsizes to perform compressed gradient
descent for non-convex objectives and matrix-smooth
problems in a federated manner. The authors establish the
algorithm’s convergence to a neighborhood of a weighted
stationarity point under a convex condition for the sym-
metric and positive-definite matrix stepsize. In addition to
DCGD, the well-known non-convex distributed learning
algorithm MARINA (Gorbunov et al. 2021) was later
extended with matrix-based step-sizes in det-MARINA (Li,
Karagulyan, and Richtárik 2023b). det-MARINA can be
seen as variance variance-reduced extension of det-CGD.
Our work is motivated by the original det-CGD algo-
rithm (Li, Karagulyan, and Richtárik 2023a), rather than its
variance-reduced variant. In future work, we will develop a
variance-reduced version of our proposed methods.

Takeaway 1: Techniques like leveraging layer-wise struc-
tures, using matrix-based stepsizes, or employing compres-
sion mechanisms have not yet been explored in the context
of fractional gradient descent.

Fractional Gradient Descent Replacing the derivative in
gradient descent with a fractional derivative does not guar-
antee convergence to the optimum. The convergence in frac-
tional gradient descent depends significantly on the choice
of terminal (Wei et al. 2020, 2017; Aggarwal 2024), b. Fixed
b values can result in non-zero gradients at convergence
points. To address this, methods have been proposed (Wei
et al. 2020; Shin, Darbon, and Karniadakis 2021; Aggarwal
2024) that adjust the terminal or the derivative order to en-
sure convergence to the optimal point. Alternatively, some
approaches generalise gradient flow by modifying the time
derivative to a fractional derivative, avoiding terminal de-
pendence issues (Hai and Rosenfeld 2021).

Fractional derivatives can be defined in various
ways (David, Linares, and Pallone 2011), with the Ca-
puto and Riemann-Liouville derivatives being the most
common. Some works (Sheng et al. 2020) simplify by using
a first-degree approximation of the fractional derivative,
while others take convex combinations of fractional and in-
teger derivatives (Khan et al. 2018). Extensions of fractional
gradient descent, such as a fractional Adam optimiser, have
been proposed but often rely on crude approximations (Shin,
Darbon, and Karniadakis 2023). For a deeper understanding
of the convergence analysis of fractional gradient-based
methods, we refer readers to (Elnady et al. 2025).

Fractional gradient descent has been applied to machine
learning, showing improved performance in training neural
networks (Han and Dong 2023; Wang et al. 2017). It has also
been used to train convolutional neural networks (Wang, He,
and Zhu 2022; Sheng et al. 2020) and models like radial
basis function neural networks (Khan et al. 2018) and finite
impulse response models with missing data (Tang 2023).

However, much of the literature is limited to specific func-
tion types or lacks strong convergence guarantees. Com-
prehensive theoretical results are rare, with some excep-
tions (Hai and Rosenfeld 2021; Wang et al. 2017). Our goal

is to develop a rigorous methodology to establish conver-
gence results for fractional gradient descent in more general
non-convex settings. Fractional derivatives, often defined via
integration, fall within the broader framework of nonlocal
calculus, explored in optimisation theory (Nagaraj 2020).

Takeaway 2: Fractional gradient descent has been stud-
ied primarily for specific function types (Shin, Darbon, and
Karniadakis 2021; Aggarwal 2024) but has shown poten-
tial in neural network training (Wang et al. 2017; Sheng
et al. 2020; Han and Dong 2023). Empirical results are lim-
ited, and we aim to provide a comprehensive theoretical and
empirical analysis of fractional gradient descent for matrix
smooth functions.

Contributions
Our paper contributes in the following ways:
1. We propose two novel matrix stepsize CFGD stochas-

tic algorithms in Section 2, representing the first analy-
sis of fractional gradient descent with fixed matrix step-
size for nonconvex optimisation. A unified theorem in
Section 3 guarantees stationarity for minimising matrix-
smooth non-convex functions, showing our algorithms
improve on the scalar stepsize alternatives.

2. We establish a general O(1/
√
T) convergence result to

a stationary point in all our theorems, showing that frac-
tional gradient descent with well-chosen hyperparame-
ters is more natural for optimising matrix smooth func-
tions and empirically achieves faster convergence than
integer order gradient-based algorithms.

3. Assuming less expensive server-to-client communica-
tion (Konečnỳ 2016; Kairouz et al. 2021), we propose
distributed versions of our algorithms in Section 4, fol-
lowing the standard FL scheme, and prove weighted
stationarity guarantees. Our theorem recovers the re-
sult for distributed CGD (DCGD) in the scalar case
and DCGD with matrix stepsize (Li, Karagulyan, and
Richtárik 2023a) and improves it empirically.

4. We validate our theoretical results with experiments, with
plots and framework provided in the supplementary ma-
terial.

Preliminaries
Notations and Symbols Euclidean norm on Rd is defined
as ∥.∥. Bold capital letters denote matrices. Id and 0d de-
notes d× d identity matrix and zero matrix respectively. Let
Sd
++ (resp. Sd

+) be set of d × d symmetric positive definite
(resp. semi-definite) matrices. Given B ∈ Sd

++ and x ∈ Rd,
we write ∥x∥B :=

√
⟨Bx, x⟩, where ⟨., .⟩ is the standard

Euclidean inner product on Rd. For matrix B ∈ Sd
++, we

define by λmax(B) (resp. λmin(B)) the largest (resp. small-
est) eigenvalue of the matrix B. Let Bj ∈ Rdj×dj and
d =

∑l
j=1 dj . The matrix B = Diag(B1, . . . ,Bl) is defined

as a block diagonal d×d matrix where the jth block is equal
to Bj . We will use diag(B) ∈ Rd×d to denote the diagonal
of any matrix B ∈ Rd×d. Given a function f : Rd → R. Its
gradient and its Hessian at point x ∈ Rd are respectively de-
notes as ∇f(x) and ∇2f(x). For any matrix M, |M| denotes

its determinant. The ith coordinate of a vector v is denoted
by v(i).

Fractional Gradient Descent In this paper, we focus
on a modified version of the AT-CFGD method proposed
by (Shin, Darbon, and Karniadakis 2021), specifically from
the standpoint of matrix smooth functions. The fractional
gradient descent method is defined for a function f : Rd →
R with parameters β ∈ (0, 1) and δ ∈ R as follows:

xt+1 = xt − α∂β,δ
b f(xt), (7)

where ∂β,δ
b f(x) can be written as:

∂β,δ
b f(x) =

[
∂β,δ
b(1)

f1,x

(
x(1)

)
, . . . , ∂β,δ

b(d)
fd,x

(
x(d)

)]
.

(8)

Here, fk,x(y) = f(x + (y − x(k))e(k)) with e(k) is
the unit vector in the kth coordinate, x(k) is the kth

coordinate value of the vector x and ∂β,δ
b(k)fk,x(y) =

1

Dβ

b(k)
y

(
Dβ

b(k)fk,x(y) + δ|y − b(k)|D1+β
b(k) fk,x(y)

)
.

The intuition behind this method is based on Theorem
2.3 in (Shin, Darbon, and Karniadakis 2021), which ex-
plains that, for a Taylor expansion of fk,x around b, the
term ∂β,δ

b(k)f(y) represents the derivative of a smoothed func-
tion. For m ≥ 2, the mth term is scaled by the coefficient
Cm,β,δ =

(
Γ(2−β)Γ(m)
Γ(m+1−β) + δ Γ(2−β)Γ(m)

Γ(m−β)

)
. The value of δ in-

fluences the asymptotic behaviour of these coefficients w.r.t
m. While the first term tends to zero as m → ∞, the second
term exhibits an asymptotic rate of δ(m − β)β , following
Wendel’s double inequality (Qi and Luo 2013).

To fully specify this method, it is crucial to determine
how to select b. Several works in the literature estimate b
by modelling it as a function of the iteration index t. For
example, (Shin, Darbon, and Karniadakis 2021) recommend
choosing bt = xt−z for some positive integer z. In this work,
we adopt the approach from (Aggarwal 2024), where each
coordinate of bt should satisfy∣∣∣x(i)

t − b
(i)
t

∣∣∣ = µt
df

dx(i)
(xt) ∀i ∈ [d], (9)

with µt ∈ R ∀t carefully chosen. We set µt = −0.0675 for
all t in all of our experiments. Additionally, we set δ = 0 in
all our experiments to avoid the computation of higher-order
gradients, as it is computationally expensive. In practice, the
fractional gradient ∂β,δ

bt
f(xt), as given in (7), can be com-

puted efficiently using Gauss-Jacobi quadrature, as detailed
in (Shin, Darbon, and Karniadakis 2021).

2 Compressed Fractional Gradient Descent
with Matrix Stepsize

Below we propose the two main algorithms (CFGD):

xt+1 = xt − DAt∂
β,δ
bt

f(xt), (CFGD-1)

and

xt+1 = xt − BtD∂β,δ
bt

f(xt). (CFGD-2)

D ∈ Sd
++ is the fixed stepsize matrix. The sequences of

random matrices At and Bt are assumed to satisfy the fol-
lowing:
Assumption 3. The random matrices (sketches) that appear
in our proposed algorithms are i.i.d., unbiased, symmetric
and positive semi-definite. Mathematically,

At,Bt ∈ Sd
+, At

i.i.d.∼ A and Bt
i.i.d.∼ B

E [At] = E [Bt] = Id, for every t ∈ N.
One can see that fractional GD is a special case of CFGD-

1 and CFGD-2. Indeed, if At = Bt = Id and D = γId, then
xt+1 = xt − γ∂β,δ

bt
f(xt).

Newton Star (NS) method (Islamov, Qian, and Richtárik
2021) demonstrated that under convexity assumptions, it
achieves local quadratic convergence to the unique solution
x∗. The update rule for the NS method is given by:

xt+1 = xt −
(
∇2f(x∗)

)−1 ∇f(xt). (NS)
The NS method, despite its impressive convergence prop-

erties, is largely impractical in real-world applications due
to its reliance on the Hessian matrix evaluated at the opti-
mal point x∗. Accessing this matrix is typically infeasible in
most practical scenarios. However, the method underscores
an important idea: employing a constant matrix stepsize has
the potential to enhance the convergence speed of gradient-
based algorithms. This observation opens a promising av-
enue for further investigation, particularly in the context of
fractional gradient descent algorithms, where such an anal-
ysis remains underexplored.

The update rules for Algorithms CFGD-1 and CFGD-
2 differ in the sequence in which the sketch and stepsize
are applied. Notably, these two algorithms become identical
when the matrix multiplication of the sketch and stepsize is
commutative. In fact, a straightforward relationship shows
that by setting

Bt = DAtD−1, (10)
the updates in CFGD-1 and CFGD-2 become identical. By
defining Bt as in (10), we recover the unbiasedness con-
dition E [Bt] = DE [At]D−1 = Id. However, in general
DE [At]D−1 is not necessarily symmetric, which contra-
dicts to Assumption 3. Hence, CFGD-1 and CFGD-2 are
not equivalent for our purposes.

3 Convergence Analysis of CFGD
Before starting the main results, we present a stepsize con-
dition for CFGD-1 and CFGD-2

E [AtDLDAt] ⪯ D, (11)
and

E [DBtLBtD] ⪯ D. (12)

In vanilla, usually γ < L−1 is standard condition for con-
vergence. The above equations can be considered as matrix
counterparts to stepsizes. We begin by defining an important
proposition that is essential for understanding the main the-
orems. The below proposition is a special case of Lemma 19
of (Aggarwal 2024).

Proposition 1. If f : Rd → R is continuously differentiable
and L smooth, β ∈ (0, 1], then

|∇(i)f(x)− ∂β,δ
b(i)

f(x)| ≤ K|x(i) − b(i)| ∀i ∈ [d], (13)

where K = λmax(L)(1−β)
(2−β)

Below is the main convergence theorem for both algo-
rithms in the single-node regime.
Theorem 1. Suppose f : Rd → R is continuously dif-
ferentiable, L-smooth, and satisfies Assumptions 1 – 3. Let
β ∈ (0, 1). Define K as in Proposition 1. Then, for each
t ≥ 0

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2D

]
≤ (f(x0)− f∗)

cT
(14)

if one of the below conditions is true:
• The vectors xt and bt are the iterates of CFGD-1 and (9)

respectively, µ ∈
(−4.236

K , 0.236
K

)
and D satisfies (11);

• The vectors xt and bt are the iterates of CFGD-2 and (9)
respectively, µ ∈

(−4.236
K , 0.236

K

)
and D satisfies (12).

where c =
{
(1−Kµ)− (1+Kµ)2

2

}
Notably, Theorem 1 provides the same convergence rate

for any D ∈ Sd
++, even though the matrix norms on the

left-hand side are not directly comparable across different
matrices. To make the right-hand side of (14) comparable,
it is essential to normalize the matrix D used for measuring
the gradient norm. Following the determinant normalization
method proposed by (Li, Karagulyan, and Richtárik 2023a),
we divide both sides of (14) by |D|1/d, resulting in the fol-
lowing form:

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2 D

|D|1/d

]
≤ (f(x0)− f∗)

c|D|1/dT
(15)

This normalization is meaningful because adjusting the ma-
trix to D

|D|1/d ensures that its determinant is 1, allowing the
norm on the left-hand side to be comparable to the standard
Euclidean norm. Importantly, the volume of the normalized
ellipsoid {x ∈ Rd : ∥x∥2D/|D|1/d ≤ 1} is independent of the
choice of D ∈ Sd

++. Consequently, the results in (14) remain
comparable across different choices of D, as the right-hand
side of (14) reflects the volume of the ellipsoid containing
the gradient.

Optimal Matrix Stepsize for CFGD-1 and CFGD-2
In this section, we discuss selecting the optimal matrix step-
size to minimise iteration complexity. Maximizing the deter-
minant of D is key to reducing the gradient norm in (15), but
each algorithm has a unique constraint on D: (11) for CFGD-
1 and (12) for CFGD-2. The maximisation is straightfor-
ward for CFGD-2 but more complex for CFGD-1, which we
tackle first.

According to (15), the optimal D is defined as the solution
of the following constrained optimisation problem:

maximize log |D|
subject to E [AtDLDAt] ⪯ D, (16)

D ∈ Sd
++.

Proposition 2. The optimisation problem (16) w.r.t stepsize
matrix D ∈ Sd

++, is a concave optimisation problem with
convex set.

This proposition is taken from (Li, Karagulyan, and
Richtárik 2023a). One can easily convert the maximisation
problem into minimisation and the objective function will
become convex. Then it will be a convex optimisation prob-
lem with a convex set. The proof of this proposition is
deferred to the supplementary material due to space con-
straints.

The CVXPY package (Diamond and Boyd 2016) could
be used to solve (16), but only after transforming it into
a disciplined convex programming (DCP) form as outlined
by (Grant, Boyd, and Ye 2006). However, in general, (11)
does not meet the DCP criteria. To enable the use of CVXPY,
further modifications specific to this problem are required.

Finding the optimal stepsize for CFGD-2 is easier, in fact,
we notice that (12). It is equivalent to

D ⪯ (E [BtLBt])
−1

. (17)

On careful inspection, it is easy to identify that the map g :
B → BLB is convex on Sd

++. Hence, Jensen’s inequality
implies

E [BtLBt] ⪰ E [Bt]LE [Bt] ⪰ L ≻ Od.

Since, both D and (E [BtLBt])
−1 are positive definite, then

the right-hand side of (15) is minimised exactly when

D = (E [BtLBt])
−1 ⪯ L−1. (18)

4 Distributed Setting
In this section, we describe the distributed versions of our al-
gorithms and present convergence guarantees for them. Let
us consider an objective function that is sum decomposable:

f(x) :=
1

n

n∑
j=1

fj(x),

where each fj : Rd → R is a differentiable function. We as-
sume that f satisfies Assumption 1 and the component func-
tions satisfy the below condition.
Assumption 4. Each component function fj is Lj smooth
and is bounded from below: fj(x) ≥ f∗

j for all x ∈ Rd.

This assumption implies f has matrix smoothness with
L̄ = 1

n

∑n
j=1 Lj ∈ Sd

++. In the standard federated learn-
ing setup (McMahan et al. 2016, 2017; Khirirat, Feyzmah-
davian, and Johansson 2018), jth client stores fj , computes
and compresses ∇fj in parallel, and sends it to the central
server. The server aggregates these gradients, updates the it-
erate, and broadcasts it to clients. See the pseudo-code below
for details.
Theorem 2. Let fj : Rd → R satisfy Assumption 4 and
let f satisfy Assumption 1 and 2 with smoothness matrix L.
Let β ∈ (0, 1). Define Kj ∀j ∈ [n] as in Lemma 1. If the
following conditions satisfy

• DLD ⪯ D

• |x(i,j)
t − b

(i,j)
t | = µj

∣∣∣ df
dx(i,j) (xt)

∣∣∣ , µj ∈
(

−4.236
Kj

, 0.236
Kj

)
, ∀i ∈ [d], j ∈ [n],

then, for some c, a > 0, the following convergence bound is
true for the iterates of Distributed CFGD-1 (Algorithm 1):

min
0≤t≤T−1

E
[
∥∇f(xt)∥2 D

|D|1/d

]
≤

(
1 + a2λD

n

)T

(f(x0)− f∗)

c|D|1/dT

+
a2λD∆

∗

c|D|1/dn
, (19)

where ∆∗ := f∗ − 1
n

∑n
j=1 f

∗
j ,

λD := max
j

{
λmax

(
E
[
L

1
2
j (Atj − Id)DLD (Atj − Id)L

1
2
j

])}
,

and a2 := max
j

(1 +Kjµj)
2.

The same conclusion holds for Algorithm 2 with a dif-
ferent constant λD, as shown in the supplementary material
along with the proofs for Theorem 2 and its counterpart for
Algorithm 2, based on (Khaled and Richtárik 2020). Exam-
ining the right-hand side of (19), we observe an exponential
dependence on K in the first term. However, 1 + a2λD/n,
influenced by the stepsize matrix D, depends quadratically
on D. Thus, λκD = κ2λD, rather than scaling linearly as in
|κD|1/d. By choosing a small coefficient κ, we ensure λD is
of order n/K, allowing us to bound the numerator in the first
term for a given K by selecting a sufficiently small matrix
stepsize.
Corollary 1. We reach an ϵ-stationarity, that is the right-
hand side of (19) is upper bounded by ϵ2, if the following
conditions are satisfied:

DLD ⪯ D, λD ≤ min

{
n

T
,
cnϵ2

2∆∗ |D|1/d
}
, a2 ≤ 1,

T ≥ 6(f(x0)− f∗)

c|D|1/dϵ2
. (20)

One can easily see that the conditions on D are convex in
nature. In order to minimise the iteration complexity for get-
ting ϵ2 error, one needs to solve the following optimisation
problem

maximize log |D|
subject to D satisfies (20). (21)

Choosing the optimal stepsize for Algorithm 1 is anal-
ogous to solving (16). Furthermore, this leads to a convex
matrix minimisation problem involving D. Similar to the
single-node case, computational methods can be employed
using the CVXPY package. However, some additional ef-
fort is required to transform (20) into the disciplined convex
programming (DCP) format.

The second term in (19) represents the convergence
neighbourhood, which is independent of iteration count but
depends on the number of clients n. Generally, this term,
∆∗/n, can grow unbounded as n → ∞. However, by select-
ing a sufficiently small κ > 0, one can ensure λD ≤ n/T , al-
lowing the neighbourhood term to approach zero as T → ∞
with an appropriate stepsize choice. Corollary 1 summarizes
these arguments; its proof can be found in the supplementary
material.

Algorithm 1: Distributed (CFGD-1) (DCFGD-1)

1: Input: x0, clients n, fractional order β ∈ (0, 1], step-
size matrix D, iterations T

2: for t = 0 to T − 1 do
3: Devices (j ∈ [n]):
4: sample Atj ∼ A
5: compute Atj ∂

β,δ
bt

fj(xt)

6: broadcast Atj ∂
β,δ
bt

fj(xt)
7: Server:
8: gt =

1
nD

∑n
j=1 Atj ∂

β,δ
bt

fj(xt)
9: xt+1 = xt − gt

10: broadcast xt+1

11: end for
12: Return: xT

Algorithm 2: Distributed (CFGD-2) (DCFGD-2)

1: Input: x0, clients n, fractional order β ∈ (0, 1], step-
size matrix D, iterations T

2: for t = 0 to T − 1 do
3: Devices (j ∈ [n]):
4: sample Btj ∼ B
5: compute Btj ∂

β,δ
bt

fj(xt)

6: broadcast Btj ∂
β,δ
bt

fj(xt)
7: Server:
8: gt =

1
n

∑n
j=1 BtjD ∂β,δ

bt
fj(xt)

9: xt+1 = xt − gt
10: broadcast xt+1

11: end for
12: Return: xT

Figure 1: Comparison of two distributed fractional gradient descent variants.

5 Experiments
In this section, we describe the settings and results of nu-
merical experiments to demonstrate the effectiveness of our
method. We perform several experiments under single node
case and distributed case. Single node experiments can be
found at Section E of the supplementary material.

Experimental Setup in Distributed Case
For the distributed case, we again use the logistic regres-
sion problem with a non-convex regulariser as our experi-
ment setting. The objective is given as:

f(x) =
1

n

n∑
j=1

fj(x); (22)

fj(x) =
1

mj

mj∑
p=1

log
(
1 + e−bj,p·⟨aj,p,x⟩

)
+ λ ·

d∑
t=1

x2
t

1 + x2
t

;

(23)

where x ∈ Rd is the model, (aj,p, bj,p) ∈ Rd × {−1,+1}
is one data point in the dataset of client j whose size is mj .
λ > 0 is a constant associated with the regulariser. For each
dataset used in the distributed setting, we randomly reshuf-
fled the dataset before splitting it equally to each client. We
estimate the smoothness matrices of function f and each in-
dividual function fj here as:

Lj =
1

mj

mj∑
j=1

aja
⊤
j

4
+ 2λ · Id; (24)

L =
1

n

n∑
j=1

Lj . (25)

The value of ∆∗ here is determined in the following way,
we first perform gradient descent on f and record the mini-
mum value in the entire run, f∗, as the estimate of its global
minimum, then we do the same procedure for each fj to ob-
tain the estimate of its global minimum f∗

j . After that, we
estimate ∆∗ using its definition.

Comparison with Standard DCGD and det-CGD

To ease the reading of this section we use DCFGD-1
(resp. DCFGD-2) to refer to Algorithm 1 (resp. Algo-
rithm 2). This experiment is designed to show that DCFGD-
1 and DCFGD-2 will have better iteration and communi-
cation complexity compared to standard DCGD (Khirirat,
Feyzmahdavian, and Johansson 2018), DCGD with scalar
stepsize and matrix smoothness, and det-CGD 1 (resp. det-
CGD 2) (Li, Karagulyan, and Richtárik 2023a) with ma-
trix stepsizes. We will use the standard DCGD here to re-
fer to DCGD with a scalar stepsize and a scalar smooth-
ness constant, and DCGD-mat to refer to the DCGD with
a scalar stepsize with matrix smoothness. We also compare
our proposed algorithm against det-MARINA (Li, Karag-
ulyan, and Richtárik 2023b), the variance reduced version
of det-DCGD. The Rand-1 sparsifier is used in all the algo-
rithms throughout the experiment. The error level is fixed as
ϵ2 = 10−4, the conditions for the standard DCGD to con-
verge can be deduced using Proposition 4 in (Khaled and
Richtárik 2020), we use the largest possible scalar stepsize
here for standard DCGD. The optimal scalar stepsize for
DCGD-mat and optimal diagonal matrix stepsize D for det-
DCGD 1, det-DCGD 2, DCFGD-1, and DCFGD-2, can be
determined using Theorem 2. The optimal diagonal matrix
stepsize for det-MARINA can be obtained from Corollary 4
of (Li, Karagulyan, and Richtárik 2023b). From the result of
Figure 2, we can see that both DCFGD-1 and DCFGD-2 out-
perform standard DCGD and DCGD-mat in terms of itera-
tion and communication complexity by a factor of more than
102, which confirms our theory. It also beats the state-of-the-
art det-DCGD-1 (resp. det-DCGD-2) (Li, Karagulyan, and
Richtárik 2023a) by a factor of 10 in iteration complexity.
Notice that DCFGD-1, DCFGD-2 are expected to perform
very similarly because the stepsize matrix and sketches are
diagonal which means that they are commutable.

Figure 2: Comparison of standard DCGD, DCFGD, det-CGD (Li, Karagulyan, and Richtárik 2023a) with optimal diagonal
stepsizes under rand-1 sketch, CFGD-1 (Ours) and CFGD-2 (Ours) with optimal diagonal stepsizes under rand-1 sketch, det-
MARINA (Li, Karagulyan, and Richtárik 2023b), DAG-GT (Han et al. 2024), and DMFW (Hou et al. 2022). The stepsize for
standard DCGD is determined from (det-DCGD) (Khaled and Richtárik 2020). Here GT,D := 1

T

∑T−1
t=0 ∥∇f(xt)∥2D/|D|1/d .

6 Conclusion
We propose two novel matrix stepsize-based fractional gra-
dient descent algorithms that empirically demonstrate faster
convergence compared to their scalar stepsize counterparts
and traditional gradient descent. Additionally, we extend
these algorithms to distributed and federated settings and
show that they outperform well-known distributed algo-
rithms, such as DCGD (Khirirat, Feyzmahdavian, and Jo-
hansson 2018) and det-CGD (Li, Karagulyan, and Richtárik
2023a), in both iteration complexity and communication ef-
ficiency. Our algorithms also perform competitively with the
variance reduced det-MARINA.

Future Work
In this paper, we focused exclusively on linear sketches as
the compression operator. However, many practical com-
pressors do not belong to this category. Extending Algo-
rithms CFGD-1 and CFGD-2 to accommodate general un-
biased compressors presents an exciting direction for fu-
ture research. Furthermore, inspired by the recent advance-
ments in adaptive stepsizes (Loizou et al. 2021; Orvieto,

Lacoste-Julien, and Loizou 2022; Schaipp, Gower, and Ul-
brich 2023), developing an adaptive matrix stepsize specifi-
cally tailored to our framework could prove to be a promis-
ing direction.

Also, we plan to develop a variance reduced version of our
proposed algorithm and benchmark it extensively against
other variance reduction based stochastic optimisers.

Limitations
We achieve the same theoretical convergence rate as SGD
because the fractional gradient is bounded in terms of the
first-order gradient. However, we emphasize that the bound
employed in this paper is more rigorous and technically
sound compared to the approximations used for the frac-
tional gradient in other works (Sheng et al. 2020; Khan et al.
2018).

References
Aggarwal, A. 2024. Convergence Analysis of Fractional
Gradient Descent. Transactions on Machine Learning Re-
search.

Al-Baali, M.; and Khalfan, H. 2007. An overview of
some practical quasi-Newton methods for unconstrained op-
timization. Sultan Qaboos University Journal for Science
[SQUJS], 12(2): 199–209.
Al-Baali, M.; Spedicato, E.; and Maggioni, F. 2014. Broy-
den’s quasi-Newton methods for a nonlinear system of equa-
tions and unconstrained optimization: a review and open
problems. Optimization Methods and Software, 29(5): 937–
954.
Alistarh, D.; Grubic, D.; Li, J.; Tomioka, R.; and Vojnovic,
M. 2017. QSGD: Communication-efficient SGD via gradi-
ent quantization and encoding. Advances in neural informa-
tion processing systems, 30.
Broyden, C. G. 1965. A class of methods for solving non-
linear simultaneous equations. Mathematics of computation,
19(92): 577–593.
Bubeck, S.; et al. 2015. Convex optimization: Algorithms
and complexity. Foundations and Trends® in Machine
Learning, 8(3-4): 231–357.
Chang, C.-C.; and Lin, C.-J. 2011. LIBSVM: a library for
support vector machines. ACM transactions on intelligent
systems and technology (TIST), 2(3): 1–27.
David, S. A.; Linares, J. L.; and Pallone, E. M. d. J. A.
2011. Fractional order calculus: historical apologia, basic
concepts and some applications. Revista Brasileira de En-
sino de Fı́sica, 33: 4302–4302.
Dennis, J. E., Jr; and Moré, J. J. 1977. Quasi-Newton meth-
ods, motivation and theory. SIAM review, 19(1): 46–89.
Diamond, S.; and Boyd, S. 2016. CVXPY: A Python-
embedded modeling language for convex optimization.
Journal of Machine Learning Research, 17(83): 1–5.
Dutta, A.; Bergou, E. H.; Abdelmoniem, A. M.; Ho, C.-Y.;
Sahu, A. N.; Canini, M.; and Kalnis, P. 2020. On the dis-
crepancy between the theoretical analysis and practical im-
plementations of compressed communication for distributed
deep learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, 3817–3824.
Dvinskikh, D.; Ogaltsov, A.; Gasnikov, A.; Dvurechensky,
P.; Tyurin, A.; and Spokoiny, V. 2019. Adaptive gradient
descent for convex and non-convex stochastic optimization.
arXiv preprint arXiv:1911.08380.
Elnady, S. M.; El-Beltagy, M.; Radwan, A. G.; and Fouda,
M. E. 2025. A comprehensive survey of fractional gradi-
ent descent methods and their convergence analysis. Chaos,
Solitons & Fractals, 194: 116154.
Ginsburg, B.; Castonguay, P.; Hrinchuk, O.; Kuchaiev, O.;
Lavrukhin, V.; Leary, R.; Li, J.; Nguyen, H.; Zhang, Y.; and
Cohen, J. M. 2019. Stochastic gradient methods with layer-
wise adaptive moments for training of deep networks. arXiv
preprint arXiv:1905.11286.
Gorbunov, E.; Burlachenko, K. P.; Li, Z.; and Richtárik, P.
2021. MARINA: Faster non-convex distributed learning
with compression. In International Conference on Machine
Learning, 3788–3798. PMLR.
Gower, R. M.; Loizou, N.; Qian, X.; Sailanbayev, A.;
Shulgin, E.; and Richtárik, P. 2019. SGD: General analysis

and improved rates. In International conference on machine
learning, 5200–5209. PMLR.
Gower, R. M.; and Richtárik, P. 2015. Randomized itera-
tive methods for linear systems. SIAM Journal on Matrix
Analysis and Applications, 36(4): 1660–1690.
Gragg, W. B.; and Tapia, R. A. 1974. Optimal error bounds
for the Newton–Kantorovich theorem. SIAM Journal on Nu-
merical Analysis, 11(1): 10–13.
Grant, M.; Boyd, S.; and Ye, Y. 2006. Disciplined Convex
Programming Global Optimization: From Theory to Imple-
mentation ed L Liberti and N Maculan.
Guminov, S.; Nesterov, Y. E.; Dvurechensky, P.; and Gas-
nikov, A. 2019. Accelerated primal-dual gradient descent
with linesearch for convex, nonconvex, and nonsmooth op-
timization problems. In Doklady Mathematics, volume 99,
125–128. Springer.
Hai, P. V.; and Rosenfeld, J. A. 2021. The gradient descent
method from the perspective of fractional calculus. Mathe-
matical Methods in the Applied Sciences, 44(7): 5520–5547.
Han, D.; Liu, K.; Lin, Y.; and Xia, Y. 2024. Distributed
Adaptive Gradient Algorithm With Gradient Tracking for
Stochastic Nonconvex Optimization. IEEE Transactions on
Automatic Control, 69(9): 6333–6340.
Han, X.; and Dong, J. 2023. Applications of fractional gra-
dient descent method with adaptive momentum in BP neu-
ral networks. Applied Mathematics and Computation, 448:
127944.
Hanzely, F.; Mishchenko, K.; and Richtárik, P. 2018. SEGA:
Variance reduction via gradient sketching. Advances in Neu-
ral Information Processing Systems, 31.
Horváth, S.; Kovalev, D.; Mishchenko, K.; Richtárik, P.; and
Stich, S. 2023. Stochastic distributed learning with gradient
quantization and double-variance reduction. Optimization
Methods and Software, 38(1): 91–106.
Horvóth, S.; Ho, C.-Y.; Horvath, L.; Sahu, A. N.; Canini,
M.; and Richtárik, P. 2022. Natural compression for dis-
tributed deep learning. In Mathematical and Scientific Ma-
chine Learning, 129–141. PMLR.
Hou, J.; Zeng, X.; Wang, G.; Sun, J.; and Chen, J. 2022.
Distributed momentum-based Frank-Wolfe algorithm for
stochastic optimization. IEEE/CAA Journal of Automatica
Sinica, 10(3): 685–699.
Islamov, R.; Qian, X.; and Richtárik, P. 2021. Distributed
second order methods with fast rates and compressed com-
munication. In International conference on machine learn-
ing, 4617–4628. PMLR.
J Reddi, S.; Sra, S.; Poczos, B.; and Smola, A. J. 2016. Prox-
imal stochastic methods for nonsmooth nonconvex finite-
sum optimization. Advances in neural information process-
ing systems, 29.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2021. Advances and open problems
in federated learning. Foundations and trends® in machine
learning, 14(1–2): 1–210.

Khaled, A.; and Richtárik, P. 2020. Better theory for SGD
in the nonconvex world. arXiv preprint arXiv:2002.03329.
Khan, S.; Naseem, I.; Malik, M. A.; Togneri, R.; and Ben-
namoun, M. 2018. A fractional gradient descent-based rbf
neural network. Circuits, Systems, and Signal Processing,
37: 5311–5332.
Khirirat, S.; Feyzmahdavian, H. R.; and Johansson, M.
2018. Distributed learning with compressed gradients. arXiv
preprint arXiv:1806.06573.
Konečnỳ, J. 2016. Federated Learning: Strategies for
Improving Communication Efficiency. arXiv preprint
arXiv:1610.05492.
Li, H.; Karagulyan, A.; and Richtárik, P. 2023a. Det-CGD:
Compressed gradient descent with matrix stepsizes for non-
convex optimization. arXiv preprint arXiv:2305.12568.
Li, H.; Karagulyan, A.; and Richtárik, P. 2023b. MARINA
Meets Matrix Stepsizes: Variance Reduced Distributed Non-
Convex Optimization. In International Workshop on Feder-
ated Learning in the Age of Foundation Models in Conjunc-
tion with NeurIPS 2023.
Loizou, N.; Vaswani, S.; Laradji, I. H.; and Lacoste-Julien,
S. 2021. Stochastic polyak step-size for sgd: An adaptive
learning rate for fast convergence. In International Con-
ference on Artificial Intelligence and Statistics, 1306–1314.
PMLR.
Luchko, Y. 2023. General fractional integrals and derivatives
and their applications. Physica D: Nonlinear Phenomena,
133906.
Maranjyan, A.; Safaryan, M.; and Richtárik, P. 2022. Grad-
skip: Communication-accelerated local gradient methods
with better computational complexity. arXiv preprint
arXiv:2210.16402.
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-efficient learning of
deep networks from decentralized data. In Artificial intelli-
gence and statistics, 1273–1282. PMLR.
McMahan, H. B.; Yu, F.; Richtarik, P.; Suresh, A.; Bacon,
D.; et al. 2016. Federated learning: Strategies for improving
communication efficiency. In Proceedings of the 29th Con-
ference on Neural Information Processing Systems (NIPS),
Barcelona, Spain, 5–10.
Miel, G. J. 1980. Majorizing sequences and error bounds for
iterative methods. Mathematics of Computation, 34(149):
185–202.
Mishchenko, K.; Gorbunov, E.; Takáč, M.; and Richtárik, P.
2024. Distributed learning with compressed gradient differ-
ences. Optimization Methods and Software, 1–16.
Mishchenko, K.; Malinovsky, G.; Stich, S.; and Richtárik, P.
2022. Proxskip: Yes! local gradient steps provably lead to
communication acceleration! finally! In International Con-
ference on Machine Learning, 15750–15769. PMLR.
Moulines, E.; and Bach, F. 2011. Non-asymptotic analysis
of stochastic approximation algorithms for machine learn-
ing. Advances in neural information processing systems, 24.
Nagaraj, S. 2020. Optimization and learning with nonlocal
calculus. arXiv preprint arXiv:2012.07013.

Oldham, K.; and Spanier, J. 1974. The fractional calculus
theory and applications of differentiation and integration to
arbitrary order. Elsevier.
Orvieto, A.; Lacoste-Julien, S.; and Loizou, N. 2022. Dy-
namics of sgd with stochastic polyak stepsizes: Truly adap-
tive variants and convergence to exact solution. Advances in
Neural Information Processing Systems, 35: 26943–26954.
Qi, F.; and Luo, Q.-M. 2013. Bounds for the ratio of two
gamma functions: from Wendel’s asymptotic relation to Ele-
zović-Giordano-Pečarić’s theorem. Journal of Inequalities
and Applications, 2013: 1–20.
Safaryan, M.; Shulgin, E.; and Richtárik, P. 2022. Un-
certainty principle for communication compression in dis-
tributed and federated learning and the search for an optimal
compressor. Information and Inference: A Journal of the
IMA, 11(2): 557–580.
Schaipp, F.; Gower, R. M.; and Ulbrich, M. 2023. A
stochastic proximal polyak step size. arXiv preprint
arXiv:2301.04935.
Sheng, D.; Wei, Y.; Chen, Y.; and Wang, Y. 2020. Con-
volutional neural networks with fractional order gradient
method. Neurocomputing, 408: 42–50.
Shin, Y.; Darbon, J.; and Karniadakis, G. E. 2021. A Caputo
fractional derivative-based algorithm for optimization. arXiv
preprint arXiv:2104.02259.
Shin, Y.; Darbon, J.; and Karniadakis, G. E. 2023. Accel-
erating gradient descent and Adam via fractional gradients.
Neural Networks, 161: 185–201.
Stich, S. U. 2019. Unified optimal analysis of the (stochas-
tic) gradient method. arXiv preprint arXiv:1907.04232.
Tang, J. 2023. Fractional Gradient Descent-Based Auxiliary
Model Algorithm for FIR Models with Missing Data. Com-
plexity, 2023(1): 7527478.
Wang, B.; Safaryan, M.; and Richtárik, P. 2022. Theoreti-
cally better and numerically faster distributed optimization
with smoothness-aware quantization techniques. Advances
in Neural Information Processing Systems, 35: 9841–9852.
Wang, J.; Wen, Y.; Gou, Y.; Ye, Z.; and Chen, H. 2017.
Fractional-order gradient descent learning of BP neural net-
works with Caputo derivative. Neural networks, 89: 19–30.
Wang, Y.; He, Y.; and Zhu, Z. 2022. Study on fast speed
fractional order gradient descent method and its application
in neural networks. Neurocomputing, 489: 366–376.
Wei, Y.; Chen, Y.; Cheng, S.; and Wang, Y. 2017. A note
on short memory principle of fractional calculus. Fractional
Calculus and Applied Analysis, 20(6): 1382–1404.
Wei, Y.; Kang, Y.; Yin, W.; and Wang, Y. 2020. General-
ization of the gradient method with fractional order gradient
direction. Journal of the Franklin Institute, 357(4): 2514–
2532.
Yamamoto, T. 1987. A convergence theorem for Newton-
like methods in Banach spaces. Numerische Mathematik,
51: 545–557.
Yosinski, J.; Clune, J.; Nguyen, A.; Fuchs, T.; and Lipson,
H. 2015. Understanding neural networks through deep visu-
alization. arXiv preprint arXiv:1506.06579.

Yu, A. W.; Huang, L.; Lin, Q.; Salakhutdinov, R.; and Car-
bonell, J. 2017. Block-normalized gradient method: An em-
pirical study for training deep neural network. arXiv preprint
arXiv:1707.04822.
Zhang, J.; Karimireddy, S. P.; Veit, A.; Kim, S.; Reddi, S.;
Kumar, S.; and Sra, S. 2020. Why are adaptive methods
good for attention models? Advances in Neural Information
Processing Systems, 33: 15383–15393.
Zheng, Q.; Tian, X.; Jiang, N.; and Yang, M. 2019. Layer-
wise learning based stochastic gradient descent method
for the optimization of deep convolutional neural network.
Journal of Intelligent & Fuzzy Systems, 37(4): 5641–5654.
Zintgraf, L. M.; Cohen, T. S.; Adel, T.; and Welling, M.
2017. Visualizing deep neural network decisions: Prediction
difference analysis. arXiv preprint arXiv:1702.04595.

Supplementary Material

Contents

A. Single node case . 13
A.1 Proof of Proposition 1 . 13
A.2 Proof of Theorem 1 . 14
A.1 Proof of Proposition 2 . 16

B. Layer-wise case . 17
B.1 Proof of Theorem 2 . 17
B.2 Interpretations from Table 1 . 19

C. Distributed case . 20
C.1 Proof of Theorem 2 . 20
C.2 Proof of Corollary 1 . 24
C.3 Analysis of distributed CFGD-2 . 25
C.4 Optimal stepsize of distributed CFGD-2 . 27

D. Proofs of Technical Lemmas . 27
D.1 Proof of Lemma 6 . 27
D.2 Proof of Lemma 7 . 27
D.3 Proof of Lemma 8 . 27
D.4 Proof of Lemma 9 . 28
D.5 Proof of Lemma 10 . 28
D.6 Proof of Lemma 11 . 28

E. Experiments . 29
E.1 Single node case . 29
E.3 Experiments on two-layer neural network . 29
E.2 Tuning of fractional gradient parameter β . 30

This supplementary material is part of the submission (Distributed) Fractional Gradient Descent with Matrix Stepsizes for
Non-Convex Optimisation

A Single node case
Proof of Proposition 1
Proof sketch: Lemma 1 relates the first-order derivative with the β ∈ (0, 1] order fractional derivative at each coordinate. We
first start by relating L-smoothness with scalar smoothness and then establish the inequality given in Lemma 1. Before proving
the Lemma 1, we introduce some useful auxiliary lemmas.
Lemma 1. Let f : Rd → R be a continuously differentiable function. If f is L-smooth, where L ∈ Sd

+ (the set of d × d
symmetric positive semidefinite matrices), then f is also λmax(L)-smooth, where λmax(L) is the maximum eigenvalue value of
L.

Proof. The proof is trivial. One can use the eigenvalue-inequality of the matrix L in (5).

Now we will relate first-order gradient and fractional gradient coordinate-wise (i.e. for every i ∈ [d]). Before establishing a
relationship, we present the following lemma:

Lemma 2. If f : Rd → R is continuously differentiable and L smooth, then for each of its coordinate i ∈ [d], ∇(i)f(x) is
λmax(L) continuous.

Proof. From Lemma 1, f is λmax(L) smooth .

∥∇f(x)−∇f(y)∥2 ≤ λmax(L)∥x− y∥2√√√√ d∑
i=1

(
df

dx(i)
− df

dy(i)

)2

≤ λmax(L)∥x− y∥2

Since RHS is a real number and LHS is a sum of squares. The above inequality should hold individually for all i ∈ [d].

Lemma 3 ((Aggarwal 2024)). Suppose f : Rd → R is continuously differentiable and L smooth. Let β ∈ (0, 1] and t ∈ Rd.
Define ϕ

(i)
x (t) as:

ϕ(i)
x (t) = f(t)− f(x)−∇(i)f(x)(t(i) − x(i)).

Then, we have:

Dβ
b(i)

f(x)− ∇(i)f(x)(x(i) − b(i))

Γ(2− β)
∣∣x(i) − b(i)

∣∣ = −ϕ
(i)
x (b)

Γ(1− β)
∣∣x(i) − b(i)

∣∣ − βsign
(
x(i) − b(i)

)
Γ(1− β)

∫ x(i)

b(i)

ϕ
(i)
x (t)∣∣x(i) − t(i)

∣∣β+1
dt(i)

for all i ∈ [d].

Proof. Proof is via integration by parts following the logic of Proposition 3.1 of (Hai and Rosenfeld 2021).
As f is L smooth, it implies ∇(i)f is λmax(L) continuous (using Lemma 2) for all i ∈ [d]. Note, for β ∈ (0, 1],

Dβ
b(i)

x(i) = x(i)−b(i)

Γ(2−β)|x(i)−b(i)| . Also, for the ith coordinate, we have dϕ
(i)
x (t) = (∇(i)f(t) − ∇(i)f(x))dt(i). Now, we begin

with the following:

Dβ
b(i)

f(x)−∇(i)f(x)Dβ
b(i)

(
x(i)
)
=

1

Γ(1− β)

∫ x(i)

b(i)

∣∣∣x(i) − t(i)
∣∣∣−β

(∇(i)f(t)−∇(i)f(x))dt(i)

=
1

Γ(1− β)

∫ x(i)

b(i)

∣∣∣x(i) − t(i)
∣∣∣−β

dϕ(i)
x (t)

=

[∣∣x(i) − t(i)
∣∣−β

ϕ
(i)
x (t)

Γ(1− β)

]x(i)

t(i)=b(i)

− β

Γ(1− β)

∫ x(i)

b(i)

∣∣∣x(i) − t(i)
∣∣∣−β−1

sgn(x(i) − t(i))ϕ(i)
x (t)dt(i)

=

[
ϕ
(i)
x (t)

Γ(1− β)
∣∣x(i) − t(i)

∣∣β
]x(i)

t(i)=b(i)

− βsgn(x(i) − t(i))

Γ(1− β)

∫ x(i)

b(i)

ϕ
(i)
x (t)∣∣x(i) − t(i)

∣∣β+1
dt(i)

The first term vanishes as t(i) → x(i). One can show this using L’Hopital’s rule:

lim
x(i)→t(i)

ϕ
(i)
x (t)

Γ(1− β)
∣∣x(i) − t(i)

∣∣β = lim
x(i)→t(i)

∇(i)f(t)−∇(i)f(x)

βΓ(1− β)
∣∣x(i) − t(i)

∣∣β−1
sgn(x(i) − t(i))

= 0

The last equality is due to β − 1 ≤ 0.

Lemma 4 (Relationship between first-order derivative and fractional derivative (Aggarwal 2024)). Suppose f : R → R is
continuously differentiable. Let β ∈ (0, 1]. If f is L smooth, then for each coordinate i ∈ [d] it satisfies:∣∣∣∣∣ ∇(i)f(x)

(
x(i) − b(i)

)
Γ(2− β)

∣∣x(i) − b(i)
∣∣β −Dβ

b(i)
f(x)

∣∣∣∣∣ ≤ λmax(L)
Γ(1− β)(2− β)

∣∣∣x(i) − b(i)
∣∣∣2−β

Proof. Note that λmax(L)-smooth implies that ϕ(i)
x (t) ≤ λmax(L)

2 |x(i) − t(i)|2. Also, 2− β > 0 since β ∈ (0, 1]. Thus,

∇(i)f(x)(x(i) − b(i))

Γ(2− β)|x(i) − b(i)|β
−Dβ

b(i)
f(x) =

ϕ
(i)
x (b)

Γ(1− β)|x(i) − b(i)|β
+

β sgn(x(i) − b(i))

Γ(1− β)

∫ x(i)

b(i)

ϕ
(i)
x (t)

|x(i) − t(i)|1+β
dt(i)

≤ λmax(L)|x(i) − b(i)|1−β

2Γ(1− β)
+

β λmax(L)sgn(x(i) − b(i))

2Γ(1− β)

∫ x(i)

b(i)
|x(i) − t(i)|1−β dt(i)

=
λmax(L)|x(i) − b(i)|2−β

2Γ(1− β)
+

β λmax(L)sgn(x(i) − b(i))

2Γ(1− β)
· |x

(i) − b(i)|2−β

2− β

=
λmax(L)
2Γ(1− β)

|x(i) − b(i)|2−β

(
1 +

β

2− β

)
=

λmax(L)
Γ(1− β)(2− β)

|x(i) − b(i)|2−β .

The other direction of the inequality follows by the same logic, using instead ϕ
(i)
x (t) ≥ −λmax(L)

2 |x(i) − t(i)|2 and applying
≥ instead of ≤.

Proposition 1. If f : Rd → R is continuously differentiable and L smooth, β ∈ (0, 1], then

|∇(i)f(x)− ∂β,δ
b(i)

f(x)| ≤ K|x(i) − b(i)| ∀i ∈ [d] (26)

where K = λmax(L)(1−β)
(2−β)

Proof. Using Lemma 4, rearranging terms gives this bound directly.

Proof of Theorem 1
Theorem 1. Suppose f : Rd → R is continuously differentiable, L-smooth, and satisfies Assumptions 1 – 3. Let β ∈ (0, 1).
Define K as in Lemma 1. Then, for each t ≥ 0

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2D

]
≤ (f(x0)− f∗)

cT
(27)

if one of the below conditions is true:

• The vectors xt and bt are the iterates of CFGD-1 and (9) respectively, µ ∈
(−4.236

K , 0.236
K

)
and D satisfies (11);

• The vectors xt and bt are the iterates of CFGD-2 and (9) respectively, µ ∈
(−4.236

K , 0.236
K

)
and D satisfies (12).

where c =
{
(1−Kµ)− (1+Kµ)2

2

}
Proof. Throughout the proof we will use the notation [vi] to denote the vector of d elements with ith element vi. We note that
all the results for single variable f hold since f also satisfies the single variable λmax(L)-smooth definition in each component
(Lemma 1 and Lemma 2). We start with L-smooth property of f .

(i) From Assumption 2 with x = xt+1 = xt − DAt∇f(xt) and y = xt, we get

E [f(xt+1) | xt] ≤ E
[
f(xt) +

〈
∇f(xt),−DAt∂

β,δ
bt

f(xt)
〉]

+
1

2
E
[〈

L
(
−DAt∂

β,δ
bt

f(xt)
)
,−DAt∂

β,δ
bt

f(xt)
〉
| xt

]
= f(xt)−

〈
∇f(xt),DE[At]∂

β,δ
bt

f(xt)
〉
+

1

2

〈
E [AtDLDAt] ∂

β,δ
bt

f(xt), ∂
β,δ
bt

f(xt)
〉
.

From the unbiasedness of the sketch At,

E [f(xt+1) | xt] ≤ f(xt)−
〈
∇f(xt),D∂β,δ

bt
f(xt)

〉
+

1

2
E
[
⟨AtDLDAt⟩ ∂β,δ

bt
f(xt), ∂

β,δ
bt

f(xt)
]

(11)

≤ f(xt)−
〈
∇f(xt),D∂β,δ

bt
f(xt)

〉
+

1

2

〈
D∂β,δ

bt
f(xt), ∂

β,δ
bt

f(xt)
〉

(13)

≤ f(xt)−
〈[

∇(i)f(xt)
]
,D
[
∇(i)f(xt)−K

∣∣∣x(i)
t − b

(i)
t

∣∣∣]〉
+

1

2

〈
D
[
∇(i)f(xt) +K

∣∣∣x(i)
t − b

(i)
t

∣∣∣] , [∇(i)f(xt) +K
∣∣∣x(i)

t − b
(i)
t

∣∣∣]〉
≤ f(xt)−

〈[
∇(i)f(xt)

]
,D
[
∇(i)f(xt)

]〉
+
〈[

∇(i)f(xt)
]
,DK

∣∣∣x(i)
t − b

(i)
t

∣∣∣〉
+

1

2

〈
D
[
∇(i)f(xt) +K

∣∣∣x(i)
t − b

(i)
t

∣∣∣] , [∇(i)f(xt) +K
∣∣∣x(i)

t − b
(i)
t

∣∣∣]〉
(9)

≤ f(xt)− ⟨∇f(xt),D∇f(xt)⟩+ ⟨∇f(xt),DKµ∇f(xt)⟩

+
1

2

〈
D
[
∇(i)f(xt) +Kµ∇(i)f(xt)

]
,
[
∇(i)f(xt) +Kµ∇(i)f(xt)

]〉
≤ f(xt)− ⟨∇f(xt),D∇f(xt)⟩+ ⟨∇f(xt),DKµ∇f(xt)⟩

+
1

2
⟨D(1 +Kµ)∇f(xt), (1 +Kµ)∇f(xt)⟩

≤ f(xt)− (1−Kµ)⟨∇f(xt),D∇f(xt)⟩+
1

2
(1 +Kµ)2⟨∇f(xt),D∇f(xt)⟩

≤ f(xt)−
{
(1−Kµ)− (1 +Kµ)2

2

}
⟨∇f(xt),D∇f(xt)⟩

≤ f(xt)−
{
(1−Kµ)− (1 +Kµ)2

2

}
∥f(xt)∥2D. (28)

We can observe that the term
(
(1−Kµ)− (1+Kµ)2

2

)
is a quadratic expression in µ. To prove convergence, we require

this term to be positive. Ensuring the positivity of this entire expression by adjusting µ is a standard technique, similar to
the commonly used approaches for proving the convergence of SGD, such as imposing step-size conditions like γt ≤ 1/L.
This practice is well-established and aligns with typical strategies employed in optimisation theory. By solving the quadratic
inequality, one can determine that µ should lie in the interval µ ∈

(−4.236
K , 0.236

K

)
for the term to be positive. We denote the

term
(
(1−Kµ)− (1+Kµ)2

2

)
by c.

Next, by substracting f∗ from both side of (28), taking expectation and applying the tower property, we get
E [f(xt+1)]− f∗ = E [E [f(xt+1) | xt]]− f∗

(28)

≤ E
[
f(xt)− c∥f(xt)∥2D

]
− f∗

= E[f(xt)]− f∗ − cE
[
∥f(xt)∥2D

]
.

We let ∆t+1 := E [f(xt+1)]−f∗ , the last inequality can be written as ∆t+1 ≤ ∆t−cE
[
∥f(xt)∥2D

]
. Summing these inequalities

for t = 0, 1, . . . , T − 1, we get a telescoping effect leading to

∆T ≤ ∆0 − c

T−1∑
t=0

E
[
∥f(xt)∥2D

]
.

To rearrange the terms of this inequality, divide both sides by T |D|1/d, and use the inequality ∆T ≥ 0.
(ii) Similar to the previous case, from Assumption 2 with x = xt+1 = xt − BtD∇f(xt) and y = xt, we get

E [f(xt+1) | xt] ≤ E
[
f(xt) +

〈
∇f(xt),−BtD∂β,δ

bt
f(xt)

〉]
+

1

2
E
[〈

L
(
−BtD∂β,δ

bt
f(xt)

)
,−BtD∂β,δ

bt
f(xt)

〉
| xt

]
= f(xt)−

〈
∇f(xt),E[Bt]D∂β,δ

bt
f(xt)

〉
+

1

2

〈
E
[
D(Bt)

⊤LBtD
]
∂β,δ
bt

f(xt), ∂
β,δ
bt

f(xt)
〉
.

From Assumption 2 and (12), we have

E [f(xt+1) | xt] ≤ f(xt)−
〈
∇f(xt),D∂β,δ

bt
f(xt)

〉
+

1

2

〈
D∂β,δ

bt
f(xt), ∂

β,δ
bt

f(xt)
〉

The remainder of the proof follows a similar procedure as previously demonstrated in (i). Thus, we obtain the same upper bound
on E [f(xt+1) | xt] as in (28). Following the steps from the first part, we conclude the proof.

Proof of Proposition 2
Before beginning to prove the proposition, we introduce a useful lemma about positive definite matrices.

Lemma 5. For positive definite matrices D1, D2, and L, the following inequality holds:

D1LD2 + D2LD1 ≤ D1LD1 + D2LD2.

Proof. Given D1, D2, and L are positive definite matrices, for any nonzero vector x, we have x⊤D1x > 0, x⊤D2x > 0, and
x⊤Lx > 0. Let’s analyse the matrix M given by:

M = D1LD1 + D2LD2 − D1LD2 − D2LD1.

We need to show that M is positive semidefinite. This means we need to show that for any nonzero vector x, x⊤Mx ≥ 0.
Consider the quadratic form:

x⊤Mx = x⊤(D1LD1 + D2LD2 − D1LD2 − D2LD1)x.

Let’s rewrite the terms in the quadratic form using the substitution y = D1x and z = D2x:

x⊤D1LD1x = y⊤Ly,

x⊤D2LD2x = z⊤Lz,

x⊤D1LD2x = y⊤LD2x = y⊤Lz,

x⊤D2LD1x = z⊤LD1x = z⊤Ly.

Using these substitutions, the quadratic form becomes:

x⊤Mx = y⊤Ly + z⊤Lz − y⊤Lz − z⊤Ly.

Since L is positive definite, L can be written as L = U⊤U for some invertible matrix U. Substituting L = U⊤U into the
quadratic form, we get:

y⊤Ly = y⊤U⊤Uy = (Uy)⊤(Uy) = ∥Uy∥2,

z⊤Lz = z⊤U⊤Uz = (Uz)⊤(Uz) = ∥Uz∥2,

y⊤Lz = y⊤U⊤Uz = (Uy)⊤(Uz).

Thus, the quadratic form becomes:

x⊤Mx = ∥Uy∥2 + ∥Uz∥2 − (Uy)⊤(Uz)− (Uz)⊤(Uy).

Since (Uy)⊤(Uz) is a scalar, we have:
(Uy)⊤(Uz) = (Uz)⊤(Uy).

Therefore, the quadratic form simplifies to:

x⊤Mx = ∥Uy∥2 + ∥Uz∥2 − 2(Uy)⊤(Uz) = ∥Uy − Uz∥2.

Since ∥Uy − Uz∥2 ≥ 0 for all vectors y and z, we have:

x⊤Mx = ∥Uy − Uz∥2 ≥ 0.

Thus, x⊤Mx ≥ 0 for any nonzero vector x, which means that M is positive semidefinite. Hence, we have:

D1LD2 + D2LD1 ≤ D1LD1 + D2LD2.

This completes the proof.

Proposition 2. The optimisation problem (16) w.r.t stepsize matrix D ∈ Sd
++, is a concave optimisation problem with convex

set.

Proof. Given, L ∈ Sd
++, At

i.i.d∼ A and E[At] = Id ∀t, we have to prove that the the set X :={
D | E [AtDLDAt] ⪯ D,D ∈ Sd

++

}
is convex.

Let (D1,D2) ∈ X . Which implies:

E [AtD1LD1At] ⪯ D1 (29)
E [AtD2LD2At] ⪯ D2 (30)

We have to show that αD1 + (1− α)D2 ∈ X for all α ∈ (0, 1). For that, the matrix αD1 + (1− α)D2 need to satisfy the two
properties of set X . (i) E[At(αD1 + (1− α)D2)L(αD1 + (1− α)D2)At] ⪯ αD1 + (1− α)D2 and (ii) αD1 + (1− α)D2 is a
positive definite matrix. We start with (i) below.

E[At(αD1 + (1− α)D2)L(αD1 + (1− α)D2)At] = E[α2AtD1LD1At + (1− α)2AtD2LD2At

+ α(1− α)AtD1LD2At + α(1− α)AtD2LD1At]

⪯ E[α2AtD1LD1At + (1− α)2AtD2LD2At

+ α(1− α)At(D1LD1 + D2LD2)At] (Using Lemma 5)

⪯ α2E[AtD1LD1At] + (1− α)2E[AtD2LD2At]

+ α(1− α)E[At(D1LD1 + D2LD2)At] (Using linearity of expectation)

⪯ α2E[AtD1LD1At] + (1− α)2E[AtD2LD2At]

+ α(1− α)E[AtD1LD1At] + α(1− α)E[AtD2LD2At]

⪯ (α2 + α(1− α)E[AtD1LD1At] + ((1− α)2 + α(1− α))E[AtD2LD2At]

⪯ (α2 + α(1− α)D1 + ((1− α)2 + α(1− α))D2 (Using (29) and (30))
⪯ αD1 + (1− α)D2

For (ii), proving that the matrix αD1 + (1− α)D2 is positive definite is trivial. Hence, we conclude our proof.

B Layer-wise case
In this section, we examine the block-diagonal structure of L for both CFGD-1 and CFGD-2. Specifically, we introduce
hyperparameters for CFGD-1 that are optimised for neural network training. Assume L is block-diagonal, represented by
L = Diag(L1, . . . ,Ll), where each Li is a positive definite matrix. This setup generalises the traditional smoothness condi-
tion; for example, in simpler cases, each Li could be a scaled identity matrix LIdi

. Inspired by (Li, Karagulyan, and Richtárik
2023a), we also use block-diagonal structures for the sketches and the stepsize matrices, setting D = Diag(D1, . . . ,Dl) and
At = Diag(At1, . . . ,Atk), with each Di and Aik being positive definite. Note that the left side of the inequality in (16) is
quadratic in D, while the right side depends linearly on D. Therefore, for any positive definite matrix W, there exists a scalar
ω > 0 such that:

ω2λmax (E [AtWLWAt]) ≤ ωλmin(W).

Thus, for the scaled matrix ωW, we deduce:

E [At(ωW)L(ωW)At] ⪯ ω2λmax (E [AtWLWAt]) Id
⪯ ωλmin(W)Id ⪯ ωW. (31)

The following theorem is based on applying this observation to the blocks of matrices D, L, and At within CFGD-1.

Proof of Theorem 2
Theorem 2. Suppose f : Rd → R meets Assumptions 1 and 2, and L has a layer-separable structure such that L =
Diag(L1, . . . ,Ll), with each Li ∈ Sdi

++. Choose random matrices At1, . . . ,Atl ∈ Sd
+ that satisfy Assumption 3 for each layer

i = [l], and set At = Diag(At1, . . . ,Atl). Additionally, select matrices W1, . . . ,Wl ∈ Sd
++ and positive scalars ω1, . . . , ωl

such that:

ωi ≤ λ−1
max

(
E
[
W−1/2

i AtiWiLiWiAtiW−1/2
i

])
∀i ∈ [l]. (32)

Define W := Diag(W1, . . . ,Wl), Ω := Diag(ω1Id1
, . . . , ωlIdl

), and D = ΩW . Then, for some c > 0 we have:

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2 ΩW

|ΩW|1/d

]
≤ (f(x0)− f∗)

c|ΩW|1/dT
. (33)

Proof. Note that
E [AtDLDAt] = Diag(Qt1, . . . ,Qtl),

where
Qti = ω2

i E [AtiWiLiDiAti] .

In other words,

E [AtDLDAt] =


Qt1 0 · · · 0
0 Qt2 · · · 0
...

...
. . .

...
0 0 · · · Qtl

 ,

which means that (11) holds iff Qti ⪯ ωiWi for all i ∈ [l], which holds iff (32) holds. Therefore, Theorem 1 applies, and we
conclude that

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2ΩW

]
≤ (f(x0)− f∗)

cT
. (34)

Here, c > 0 is from Theorem 1. To obtain (33), it remains to multiply both sides of (34) by 1
|ΩW|1/d .

In particular, if the scalars {ωi}li=1 are chosen to be equal to their maximum allowed values from (32), then the convergence
factor of (33) is equal to

|ΩW|
−1
d =

[
l∏

i=1

λdi
max

(
E
[
W−1/2

i AtiWiLiWiAtiW−1/2
i

])]
|W|

−1
d .

The setup of Theorem 2 is adapted from (Li, Karagulyan, and Richtárik 2023a).

Interpretations from Table 1

Table 1: Summary of communication complexities of CFGD-1 and CFGD-2 with different sketches and stepsize matrices. The
Di here for CFGD-1 is Wi with the optimal scaling determined using Theorem 2, for CFGD-2 it is the optimal stepsize matrix
defined in (18). The constant (f(x0)−f∗)

cϵ2 is hidden, l is the number of layers, ki is the mini-batch size for the i-th layer if we
use the rand-k sketch. The notation L̃i,k is defined as d−k

d−1 diag(Li) +
k−1
d−1Li. This table is taken from (Li, Karagulyan, and

Richtárik 2023a), but it perfectly fits in our case and the proposed algorithms.

No. The method (Ait,Di) l ≥ 1, di, ki,
∑l

i=1 ki = k, layer structure l = 1, k, general structure

1 CFGD-1
(
Id, ωL−1

i

)
d · |L|1/d d · |L|1/d

2 CFGD-1
(
Id, ω diag−1(Li)

)
d · | diag(L)|1/d d · |L|1/d

3 CFGD-1 (Id, ωIdi
) d ·

(∏l
i=1 λ

di
max(Li)

)1/d
d · λmax(L)

4 CFGD-1 (rand-1, ωIdi
) l ·

(∏l
i=1 d

di
i (maxj(Li)jj)

di

)1/d
d ·maxj(Ljj)

5 CFGD-1
(
rand-1, ωL−1

i

)
l ·

∏l
i=1 d

di
i λ

di
max

(
L

1
2
i diag(L−1

i)L
1
2
i

)
∏l

i=1 |L−1|

 d ·
λmax

(
L

1
2 diag(L−1)L

1
2

)
|L−1|1/d

6 CFGD-1
(
rand-1, ω diag−1(Li)

)
l ·
(∏l

i=1 d
di
i∏d

j=1(L−1
jj)

)
d · | diag(L)|1/d

7 CFGD-1
(
rand-ki, ω diag−1(Li)

)
k ·
(∏l

i=1

(
di

ki

)di

| diag(L)|
)1/d

d · | diag(L)|1/d

9 CFGD-2
(
Id,L−1

i

)
d · |L|1/d d · |L|1/d

10 CFGD-2
(

rand-1, diag−1(Li)
di

)
l ·
(∏l

i=1 d
di
i

)1/d
| diag(L)|1/d d · | diag(L)|1/d

11 CFGD-2
(

rand-k, ki

di
L̃
−1

i,ki

)
k ·

(∏l
i=1

(
di

ki

) di
d

)(∏l
i=1 |L̃i,ki

|
)1/d

d · |L̃1,k|1/d

12 GD
(
Id, λ−1

max(L)Id
)

– d · λmax(L)

13 FGD
(
Id, λ−1

max(L)Id
)

– d · λmax(L)

The communication complexity of the gradient descent (GD) algorithm, as shown in row 13, is given by dλmax(L), where
λmax(L) represents the smoothness constant of the function. In comparison, CFGD-1 and CFGD-2, which utilize matrix step
sizes without compression, given in row 1 and row 9 respectively, exhibit superior performance in both iteration and commu-
nication complexities when compared to GD. However, certain results in the table require a more detailed examination, which
we provide below. For the rest of this section, we will exclude the constant factor (f(x0) − f∗)/cϵ2 from the communication
complexity, as it is common to all scenarios in the table and does not affect comparative analysis.

Comparison of row 5 and 7 We theoretically establish that the communication complexity presented in row 5 is consistently
higher than that in row 7. This result is supported by the following proposition.
Proposition 3. ((Li, Karagulyan, and Richtárik 2023a)) For any matrix L ∈ Sd

++, the following inequality holds:

λmax

(
L

1
2 diag(L−1)L

1
2

)
· |L| 1d ≥ |diag(L)| 1d .

Proof. The inequality given above in Proposition 3 can be reformulated as

λmax

(
L · diag(L−1)

)
≥ |L−1 · diag(L)| 1d .

We use the notation
M1 = L · diag(L−1), M2 = L−1 · diag(L),

and notice that for any i ∈ [d], we have
(M1)ii = (L)ii · (L−1)ii = (M2)ii.

As a result,

λmax(M1) ≥

(
d∏

i=1

(M1)ii

) 1
d

=

(
d∏

i=1

(M2)ii

) 1
d

≥ |M2|
1
d ,

where the first inequality follows from the fact that each diagonal element is upper-bounded by the maximum eigenvalue,
while the second one is derived from the fact that the product of the diagonal elements provides an upper bound for the
determinant.

From Proposition 3, it immediately follows that the result in row 7 is better than row 5 in terms of both communication and
iteration complexity.

Comparison of row 6 and 7 In this section, we present examples of matrices L to demonstrate that rows 6 and 7 are not
usually comparable. Let d = 2 and L ∈ S2

++.
If we choose

L =

(
16 0
0 1

)
,

then
|diag(L)| 1d = 4, λmax(L)

1
2 |L| 1

2d = 8.

Again, if we choose

L =

(
16 3.9
3.9 1

)
,

then
|diag(L)| 1d = 4, λmax(L)

1
2 |L| 1

2d ≈ 3.88.

From this example, one can conclude that the relationship between rows 6 and 7 can vary depending on the choice of L.

C Distributed Case
Proof of Theorem 2
We first present some simple technical lemmas whose proofs are deferred to Section D of this supplementary material. Let us
recall that D ∈ Sd

++ is the stepsize matrix, L,Lj ∈ Sd
++ are the smoothness matrices for f and fj respectevely, for all j ∈ [n],

where n is the number of clients.
Lemma 6 (Variance Decomposition). ((Li, Karagulyan, and Richtárik 2023a)) For any random vector x ∈ Rd, and any matrix
M ∈ Sd

+, the following identity holds:

E
[
∥x− E[x]∥2M

]
= E

[
∥x∥2M

]
− ∥E[x]∥2M. (35)

Lemma 7. ((Li, Karagulyan, and Richtárik 2023a)) Assume {aj}nj=1 is a set of independent random vectors in Rd, which
satisfy

E[aj] = 0, ∀j ∈ [n].

Then, for any M ∈ Sd+, we have

E


∥∥∥∥∥∥ 1n

n∑
j=1

aj

∥∥∥∥∥∥
2

M

 =
1

n2

n∑
j=1

E
[
∥aj∥2M

]
. (36)

Lemma 8. ((Li, Karagulyan, and Richtárik 2023a)) For any vector x ∈ Rd, and sketch matrix S ∈ Sd
+ taken from some

distribution S over Sd
+, which satisfies

E[S] = Id,

then for any matrix M ∈ Sd
+, we have the following identity:

E
[
∥Sx− x∥2M

]
= ∥x∥2E[SMS]−M. (37)

Lemma 9. ((Li, Karagulyan, and Richtárik 2023a)) If we have a differentiable function f : Rd → R, that is L-matrix smooth
and lower bounded by f∗, if we assume L ∈ Sd

+, then the following inequality holds:

⟨∇f(x),L−1∇f(x)⟩ ≤ 2
(
f(x)− f∗). (38)

Theorem 3. Let fj : Rd → R satisfy Assumption 4 and let f satisfy Assumption 1 and 2 with smoothness matrix L. Let
β ∈ (0, 1). Define Kj ∀j ∈ [n] as in Lemma 1. If the following conditions are satisfied
• DLD ⪯ D
• |x(i,j)

t − b
(i,j)
t | = µj

∣∣∣ ∂f
∂x(i,j) (xt)

∣∣∣ , µj ∈
(

−4.236
Kj

, 0.236
Kj

)
, ∀i ∈ [d], j ∈ [n].

then, for some c, a > 0, the following convergence bound is true for the iterates of CFGD-1:

min
0≤t≤T−1

E
[
∥∇f(xt)∥2 D

|D|1/d

]
≤

(
1 + a2λD

n

)T

(f(x0)− f∗)

c|D|1/dT
+

a2λD∆
∗

c|D|1/dn
.

where ∆∗ := f∗ − 1
n

∑n
j=1 f

∗
j ,

λD := max
j

{
λmax

(
E
[
L

1
2
j (Atj − Id)DLD (Atj − Id)L

1
2
j

])}
and a2 := max

j
(1 +Kjµj)

2.

Proof. Let the gradient estimator of our algorithm be defined as:

g(xt) :=
1

n

n∑
j=1

Atj∂
β,δ
bt

fj(xt), (39)

as a result, the update rule in the distributed case can then be written as:

xt+1 = xt − Dg(xt).

Notice that we have:

E[g(xt) | xt] =
1

n

n∑
j=1

E[Atj]∂
β,δ
bt

fj(xt) =
1

n

n∑
j=1

∂β,δ
bt

fj(xt) = ∂β,δ
bt

f(xt) (40)

We start by applying the L-matrix smoothness of f :

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
1

2
⟨L(xt+1 − xt), (xt+1 − xt)⟩

≤ f(xt) + ⟨∇f(xt),−Dg(xt)⟩+
1

2
⟨L(−Dg(xt)), (−Dg(xt))⟩

≤ f(xt) + ⟨∇f(xt),−Dg(xt)⟩+
1

2
⟨LDg(xt),Dg(xt)⟩.

Taking the expectation conditioned on xt, we get:

E[f(xt+1) | xt] ≤ f(xt)− ⟨∇f(xt),DE[g(xt) | xt]⟩+
1

2
E[⟨LDg(xt),Dg(xt)⟩ | xt]

≤ f(xt)− ⟨∇f(xt),D∂β,δ
bt

f(xt)⟩+
1

2
E [⟨LDg(xt),Dg(xt)⟩ |xt]

(13)

≤ f(xt)−
〈[

∇(i)f(xt)
]
,D
[
∇(i)f(xt)−K

∣∣∣x(i)
t − b

(i)
t

∣∣∣]〉+
1

2
⟨LDg(xt),Dg(xt)⟩︸ ︷︷ ︸

:=P

(41)

Applying Lemma 6 to the term P , we obtain:

P = E
[
∥g(xt)∥2DLD | xt

]
= E

[
∥g(xt)− E[g(xt) | xt]∥2DLD | xt

]
+ ∥E[g(xt) | xt]∥2DLD.

From the unbiasedness of the sketches, we have E[g(xt) | xt] = ∂β,δ
bt

f(xt), which yields:

P = E
[
∥g(xt)− E[g(xt) | xt]∥2DLD | xt

]
+ ∥∂β,δ

bt
f(xt)∥2DLD

= E


∥∥∥∥∥∥ 1n

n∑
j=1

(
Atj∂

β,δ
bt

fj(xt)− ∂β,δ
bt

fj(xt)
)∥∥∥∥∥∥

2

DLD

∣∣∣∣∣∣∣xt

+ ∥∂β,δ
bt

f(xt)∥2DLD.

Using Lemma 7, we have:

P =
1

n2

n∑
j=1

E
[∥∥∥Atj∂

β,δ
bt

fj(xt)− ∂β,δ
bt

fj(xt)
∥∥∥2

DLD
|xt

]
+ ∥∂β,δ

bt
f(xt)∥2DLD

≤ 1

n2

n∑
j=1

E
[∥∥∥Atj∂

β,δ
bt

fj(xt)− ∂β,δ
bt

fj(xt)
∥∥∥2

DLD
|xt

]
+ ∥∂β,δ

bt
f(xt)∥2D, (42)

The last inequality holds due to DLD ⪯ D.

Lemma 10. ((Li, Karagulyan, and Richtárik 2023a)) Let A i.i.d∼ A where A is a distribution over Sd
+ and E[A] = Id. The

following holds for any x ∈ Rd and any matrix G,

E
[
∥Gx− x∥2DLD

]
≤ λmax

(
G1/2E [(G − Id)DLD(G − Id)]G1/2

)
.∥x∥2G−1 . (43)

Plugging (42) into (41) and applying Lemma 9 and Lemma 10, we can write

E[f(xt+1) | xt] ≤ f(xt)−
〈[

∇(i)f(xt)
]
,D
[
∇(i)f(xt)−K

∣∣∣x(i)
t − b

(i)
t

∣∣∣]〉
+

1

2n2

n∑
j=1

E
[∥∥∥Atj∂

β,δ
bt

fj(xt)− ∂β,δ
bt

fj(xt)
∥∥∥2

DLD
|xt

]
+

1

2
∥∂β,δ

bt
f(xt)∥2D

(13)

≤ f(xt)−
〈[

∇(i)f(xt)
]
,D
[
∇(i)f(xt)

]〉
+
〈[

∇(i)f(xt)
]
,DK

∣∣∣x(i)
t − b

(i)
t

∣∣∣〉
+

1

2n2

n∑
j=1

E
[∥∥∥Atj∂

β,δ
bt

fj(xt)− ∂β,δ
bt

fj(xt)
∥∥∥2

DLD
|xt

]
+

1

2

〈
D
[
∇(i)f(xt) +K

∣∣∣x(i)
t − b

(i)
t

∣∣∣] , [∇(i)f(xt) +K
∣∣∣x(i)

t − b
(i)
t

∣∣∣]〉
(9)

≤ f(xt)− ⟨∇f(xt),D∇f(xt)⟩+ ⟨∇f(xt),DKµ∇f(xt)⟩

+
1

2n2

n∑
j=1

E
[∥∥∥Atj∂

β,δ
bt

fj(xt)− ∂β,δ
bt

fj(xt)
∥∥∥2

DLD
|xt

]
+

1

2
⟨D(1 +Kµ)∇f(xt), (1 +Kµ)∇f(xt)⟩

≤ f(xt)− (1−Kµ)∥∇f(xt)∥2D

+
1

2n2

n∑
j=1

E
[∥∥∥Atj∂

β,δ
bt

fj(xt)− ∂β,δ
bt

fj(xt)
∥∥∥2

DLD
|xt

]
+

(1 +Kµ)2

2
∥∇f(xt)∥2D

≤ f(xt)−
{
(1−Kµ)− (1 +Kµ)2

2

}
︸ ︷︷ ︸
:=c>0 =⇒ µ∈(−4.236

K , 0.236K)

∥∇f(xt)∥2D +
1

2n2

n∑
j=1

E
[∥∥∥Atj∂

β,δ
bt

fj(xt)− ∂β,δ
bt

fj(xt)
∥∥∥2

DLD
|xt

]

(43)

≤ f(xt)− c∥∇f(xt)∥2D +
1

2n2

n∑
j=1

λmax

(
L1/2
j E [(Atj − Id)DLD(Atj − Id)]L1/2

j

)
.∥∂β,δ

bt
fj(xt)∥2L−1

j

(9,13)

≤ f(xt)− c∥∇f(xt)∥2D +
1

2n2

n∑
j=1

λmax

(
L1/2
j E [(Atj − Id)DLD(Atj − Id)]L1/2

j

)
.(1 +Kjµj)

2∥∇fj(xt)∥2L−1
j

(38)

≤ f(xt)− c∥∇f(xt)∥2D +
1

n2

n∑
j=1

λmax

(
L1/2
j E [(Atj − Id)DLD(Atj − Id)]L1/2

j

)
(1 +Kjµj)

2(fj(xk)− f∗
j (xk))

From the definition of λD and a2 from Theorem 2, we bound f(xt+1) by

E[f(xt+1) | xt] ≤ f(xt)− c∥∇f(xt)∥2D +
1

n2

n∑
j=1

a2λD(fj(xk)− f∗
j (xk))

≤ f(xt)− c∥∇f(xt)∥2D +
a2λD

n

 1

n

n∑
j=1

fj(xt)−
1

n

n∑
j=1

f∗
j


≤ f(xt)− c∥∇f(xt)∥2D +

a2λD

n
(f(xt)− f∗) +

a2λD

n

f∗ − 1

n

n∑
j=1

f∗
j

 .

Substracting f∗ from both sides, we get

E[f(xt+1)− f∗ | xt] ≤ f(xt)− f∗ − c∥∇f(xt)∥2D +
a2λD

n
(f(xt)− f∗) +

a2λD

n

f∗ − 1

n

n∑
j=1

f∗
j


Now, taking expectation, applying the tower property and rearranging the terms, we get

E[f(xt+1)− f∗ | xt] ≤
(
1 +

a2λD

n

)
E[f(xt)− f∗]− cE

[
∥f(xt)∥2D

]
+

a2λD

n

f∗ − 1

n

n∑
j=1

f∗
j

 (44)

Say,

ζt = E[f(xt)− f∗], rt = E
[
∥f(xt)∥2D

]
, ∆∗ = f∗ − 1

n

n∑
j=1

f∗
j ,

then (44) boils down to

crt ≤
(
1 +

a2λD

n

)
ζt − ζt+1 +

a2λD

n
. (45)

In order to approach the final result, we now follow (Stich 2019; Khaled and Richtárik 2020)and define an exponentially
decaying weighting sequence {mt}Tt=−1, where T is the total number of iterations. We fix m−1 > 0 and define

mt =
mt−1

1 + a2λD/n
, ∀ t ≥ 0.

Multiplying both sides of (45) by mt, we get

cmtrt ≤ mt−1ζt −mtζt+1 +
a2λD∆∗

n
mt.

Summing up the inequalities from t = 0, . . . , T − 1, we get

c

T−1∑
t=1

mtrt ≤ m−1ζ0 −mT−1ζT +
a2λD∆∗

n

t−1∑
t=0

mt.

Define MT =
∑T−1

t=0 mt, and divide both sides by MT , we get

c min
0≤t≤T−1

rt ≤ c

∑T−1
t=0 mtrt
MT

rt ≤
m−1

MT
ζ0 +

a2λD∆∗

n
.

Notice that from the definition of mt, we know that the following inequality holds,

m−1

MT
≤ m−1

TmT−1
=

(1 + a2λD

n)T

T
.

As a result, we have

min
0≤t≤T−1

rt ≤

(
1 + a2λD

n

)T
cT

ζ0 +
a2λD∆∗

cn
.

Recalling the definition for rt and ζt, we get the following result,

min
0≤t≤T−1

E
[
∥∇f(xt)∥2D

]
≤

(1 + a2λD

n)T

cT
(f(x0)− f∗) +

a2λD∆∗

cn
.

Finally, we apply determinant normalization and get

min
0≤t≤T−1

E
[
∥∇f(xt)∥2D/|D|1/d

]
≤

(1 + a2λD

n)T

c|D|1/dT
(f(x0)− f∗) +

a2λD∆∗

c|D|1/dn
. (46)

This concludes the proof.

Proof of Corollary 1
Corollary 1. We reach an ϵ-stationarity, that is the right-hand side of (19) is upper bounded by ϵ2, if the following conditions
are satisfied:

DLD ⪯ D, λD ≤ min

{
n

T
,
cnϵ2

2∆∗ |D|1/d
}
, a2 ≤ 1, T ≥ 6(f(x0)− f∗)

c|D|1/dϵ2
. (47)

Proof. Under condition (20), the first term in RHS of (19) can be written as

1

c

(
1 +

a2λD

n

)T

≤ 1

c
e(a

2λD
T
n) ≤ 1

c
e ≤ 3

c

Now,

1
c

(
1 + a2λD

n

)T
(f(x0)− f∗)

|D|1/dT
≤

3
c (f(x0)− f∗)

|D|1/dT

≤
3
c (f(x0)− f∗)

|D|1/dT
ϵ2|D|1/d

6
c (f(x0)− f∗)

≤ ϵ2

2
.

For the second term in (19), we have

a2λD∆
∗

c|D|1/dn
≤ ∆∗

c|D|1/dn
.
cϵ2|D|1/dn

2∆∗ ≤ ϵ2

2
.

Finally, the LHS of (19) is upper bounded by

min
0≤t≤T−1

E
[
∥∇f(xt)∥2D/|D|1/d

]
≤ ϵ2

2
+

ϵ2

2
= ϵ2.

This concludes the proof.

Analysis of distributed CFGD-2
Now, we extend CFGD-2 to distributed case. Consider the iterates:

xt+1 = xt −
1

n

n∑
j=1

BtjD∂β,δ
bt

fj(xt), (48)

where D ∈ Sd
++ is the stepsize, and Ttj is a sequence of sketch matrices drawn i.i.d from some distributed B over Sd

+, it
satisfies

E[Btj] = Id. (49)

Analysis of distributed CFGD-2 (DCFGD-2)
In this section, we present the theory for Algorithm 2, which is an analogous to what we have seen for Algorithm 1. Before
proceeding further, we present the following lemma.
Lemma 11. ((Li, Karagulyan, and Richtárik 2023a)) For any sketch matrix Btj of client j randomly drawn from some distri-
bution B over Sd

+ which satisfies

E[Btj] = Id

the following holds for any x ∈ Rd for each j,

E
[
∥BtjDx− Dx∥2L

]
≤ λmax

(
E
[
L

1
2
j D (Btj − Id)L (Btj − Id)DL

1
2
j

])
.∥x∥2L−1

j

. (50)

Theorem 4. Let fj : Rd → R satisfy Assumption 4 and let f satisfy Assumption 1 and 2 with smoothness matrix L. Let
β ∈ (0, 1). Define Kj ∀j ∈ [n] as in Lemma 1. If the following conditions are satisfied

• DLD ⪯ D
• |x(i,j)

t − b
(i,j)
t | = µj

∣∣∣ df
dx(i,j) (xt)

∣∣∣ , µj ∈
(

−4.236
Kj

, 0.236
Kj

)
, ∀i ∈ [d], j ∈ [n].

then, for some c, a > 0, the following convergence bound is true for the iterates of CFGD-2:

min
0≤t≤T−1

E
[
∥∇f(xt)∥2 D

|D|1/d

]
≤

(
1 +

a2λ′
D

n

)T
(f(x0)− f∗)

c|D|1/dT
+

a2λ′
D∆

∗

c|D|1/dn
.

where ∆∗ := f∗ − 1
n

∑n
j=1 f

∗
j ,

λ′
D := max

j

{
λmax

(
E
[
L

1
2
j D (Btj − Id)L (Btj − Id)DL

1
2
j

])}
and a2 := max

j

(
1+Kjµj√

2

)2
.

Proof. We first define function g(x) as follows,

g(x) =
1

n

n∑
j=1

BtjD∂β,δ
bt

fj(xt).

As a result, Algorithm 2 can be written as

xt+1 = xt − g(xt).

Notice that

E[g(x)] =
1

n

n∑
j=1

E[Btj]D∂β,δ
bt

fj(xt) = D∂β,δ
bt

f(xt). (51)

We then start with the L matrix smoothness of function f ,

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
1

2
⟨L(xt+1 − xt), xt+1 − xt⟩

= f(xt) + ⟨∇f(xt),−g(xt)⟩+
1

2
⟨L(−g(xt)),−g(xt)⟩

= f(xt)− ⟨∇f(xt), g(xt)⟩+
1

2
⟨Lg(xt), g(xt)⟩.

We then take the expectation conditioned on xt,

E[f(xt+1) | xt] ≤ f(xt)− ⟨∇f(xt),E[g(xt) | xt]⟩+
1

2
E [⟨Lg(xt), g(xt)⟩ | xt]

= f(xt)− ⟨∇f(xt),D∂β,δ
bt

f(xt)⟩+
1

2
E [⟨Lg(xt), g(xt)⟩ | xt]︸ ︷︷ ︸

:=P

. (52)

Lemma 6 yields

P = E
[
∥g(xt)∥2L | xt

]
= E

[
∥g(xt)− E[g(xt) | xt]∥2L | xt

]
+ ∥E[g(xt) | xt]∥2L.

From the unbiasedness of the sketches, we have E[g(xt) | xt] = D∂β,δ
bt

f(xt), which yields:

P = E
[
∥g(xt)− D∂β,δ

bt
fj(xt)∥2L | xt

]
+ ∥D∂β,δ

bt
f(xt)∥2L

= E


∥∥∥∥∥∥ 1n

n∑
j=1

(
BtjD∂β,δ

bt
fj(xt)− D∂β,δ

bt
fj(xt)

)∥∥∥∥∥∥
2

L

∣∣∣∣∣∣∣xt

+ ∥∂β,δ
bt

f(xt)∥2DLD.

Using Lemma 7, we have:

P
(36)
=

1

n2

n∑
j=1

E
[∥∥∥BtjD∂β,δ

bt
fj(xt)− D∂β,δ

bt
fj(xt)

∥∥∥2
L
|xt

]
+ ∥∂β,δ

bt
f(xt)∥2DLD

≤ 1

n2

n∑
j=1

E
[∥∥∥BtjD∂β,δ

bt
fj(xt)− D∂β,δ

bt
fj(xt)

∥∥∥2
L
|xt

]
+ ∥∂β,δ

bt
f(xt)∥2D. (Using the condition DLD ⪯ D.)

By applying Lemma 11

P ≤ 1

n2

n∑
j=1

λmax

(
E
[
L

1
2
j D (Btj − Id)L (Btj − Id)DL

1
2
j

])
∥∂β,δ

bt
fj(xt)∥2L−1

j

+ ∥∂β,δ
bt

f(xt)∥2D

(9,13)

≤ 1

n2

n∑
j=1

λmax

(
E
[
L

1
2
j D (Btj − Id)L (Btj − Id)DL

1
2
j

])
(1 +Kjµj)

2∥∇fj(xt)∥2L−1
j

+ (1 +Kµ)2∥∇f(xt)∥2D

(38)

≤ a2λ′
D
2

n

f(xt)−
1

n

n∑
j=1

f∗
j

+ (1 +Kµ)2∥∇f(xt)∥2D

We plug the upper bound of P back to (52), we get

E[f(xt+1) | xt] ≤ f(xt)− ⟨∇f(xt),D∂β,δ
bt

f(xt)⟩+
a2λ′

D
n

f(xt)−
1

n

n∑
j=1

f∗
j

+
(1 +Kµ)2

2
∥∇f(xt)∥2D

(9,13)

≤ f(xt)− (1−Kµ)∥∇f(xt)∥2D +
a2λ′

D
n

f(xt)−
1

n

n∑
j=1

f∗
j

+
(1 +Kµ)2

2
∥∇f(xt)∥2D

≤ f(xt)−
{
(1−Kµ)− (1 +Kµ)2

2

}
︸ ︷︷ ︸
:=c>0 =⇒ µ∈

(
−4.236

Kj
, 0.236Kj

)
∥∇f(xt)∥2D +

a2λ′
D

n

f(xt)−
1

n

n∑
j=1

f∗
j



≤ f(xt)− c∥∇f(xt)∥2D +
a2λ′

D
n

(f(xt)− f∗) + a2λ′
D

n

f∗ − 1

n

n∑
j=1

f∗
i

 .

Taking expectation, subtracting f∗ from both sides, and using the tower property, we get

E [f(xt+1)− f∗] ≤ E [f(xt)− f∗]− cE
[
∥∇f(xt)∥2D

]
+

a2λD

n
E [f(xt)− f∗] +

a2λD∆
∗

n
.

Following similar steps as in the proof of Theorem 2, we are able to get

min
0≤t≤T−1

E
[
∥∇f(xt)∥2D

]
≤

(
1 + a2λD

n

)⊤
cT |D|1/d

(f(x0)− f∗) +
a2λD∆

∗

c|D|1/dn
. (53)

This concludes the proof.

Similar to Algorithm 1, we can choose the parameters of the algorithm to avoid the exponential blow-up in the convergence
bound above. The following corollary sums up the convergence conditions for Algorithm 2.
Corollary 2. We reach an error level of ϵ2 in (53) if the following conditions are satisfied:

DLD ⪯ D, λ′
D ≤ min

{
n

T
,
cnϵ2

2∆∗ |D|1/d
}
, a2 ≤ 1, T ≥ 6(f(x0)− f∗)

c|D|1/dϵ2
. (54)

The proof of this corollary is exactly the same as for Corollary 1.

Optimal stepsise of distributed CFGD-2 (DCFGD-2)
To minimze the iteration complexity of Algorithm 2, the following optimisation problem needs to be solved

maximize log |D|
subject to D satisfies (54).

One can simply see that the conditions on D in (54) is convex in nature. One simple way to solve for stepsize matrix D is to
follow the procedure suggested for solving (16). That is, fix W ∈ Sd

++ and find a real scalar ω > 0 such that D = ωW.

D Proofs Of Technical Lemmas
Proof of Lemma 6
Proof. We have

E
[
∥x− E[x]∥2M

]
= E

[
(x− E[x])⊤M(x− E[x])

]
= E

[
x⊤Mx− E[x]⊤Mx− x⊤ME[x] + E[x]⊤ME[x]

]
= E

[
x⊤Mx

]
− 2E[x]⊤ME[x] + E[x]⊤ME[x]

= E
[
x⊤Mx

]
− E[x]⊤ME[x]

= E
[
∥x∥2M

]
− ∥E[x]∥2M,

which concludes the proof.

Proof of Lemma 7
Proof. We have

E

∥∥∥∥∥ 1n
n∑

i=1

ai

∥∥∥∥∥
2

M

 =
1

n2

n∑
i=1

E [⟨ai,Mai⟩] +
1

n2

∑
i̸=j

E [⟨ai,Maj⟩]

=
1

n2

n∑
i=1

E
[
∥ai∥2M

]
+

1

n2

∑
i̸=j

⟨E [ai] ,ME [aj]⟩

=
1

n2

n∑
i=1

E
[
∥ai∥2M

]
.

This concludes the proof.

Proof of Lemma 8
Proof. Notice that

E[Sx] = E[S]x = x.

We start with variance decomposition in the matrix norm:

E
[
∥Sx− x∥2M

] (35)
= E

[
∥Sx∥2M

]
− ∥x∥2M

= E [⟨Sx,MSx⟩]− ⟨x,Mx⟩
= ⟨x,E[SMS]x⟩ − ⟨x,Mx⟩
= ⟨x, (E[SMS]− M)x⟩
= ∥x∥2E[SMS]−M .

Proof of Lemma 9
Proof. We follow the definition of L-matrix smoothness of the function f , that for any y, x ∈ Rd, we have

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ 1

2
⟨y − x,L(y − x)⟩.

We plug in y = x− L−1∇f(x), and get

f∗ ≤ f(y) ≤ f(x)− ⟨∇f(x),L−1∇f(x)⟩+ 1

2
⟨∇f(x),L−1∇f(x)⟩.

Rearranging terms, we get

∥∇f(x)∥2L−1 ≤ 2
(
f(x)− f∗),

which completes the proof.

Proof of Lemma 10
Proof.

E
[
∥Gx− x∥2DLD

]
= E [⟨(G − Id)x,DLD(G − Id)x⟩]
= x⊤E[(G − Id)DLD(G − Id)]x

= x⊤U− 1
2

(
U

1
2E[(G − Id)DLD(G − Id)]U

1
2

)
U− 1

2x

≤ λmax

(
U

1
2E[(G − Id)DLD(G − Id)]U

1
2

)∥∥∥U− 1
2x
∥∥∥2

= λmax

(
U

1
2E[(G − Id)DLD(G − Id)]U

1
2

)
∥x∥2U−1 .

This completes the proof.

Proof of Lemma 11
Proof.

E
[
∥BtjDx− Dx∥2L

]
= E [⟨(BtjD − Id)x,L(BtjD − Id)x⟩]
= x⊤DE[(Btj − Id)⊤L(Btj − Id)]Dx

= x⊤L− 1
2

j

(
L

1
2
j E[(Btj − Id)⊤L(Btj − Id)]L

1
2
j

)
L− 1

2
j x

≤ λmax

(
L

1
2E[(Btj − Id)⊤L(Btj − Id)]DL

1
2

)
∥L− 1

2
j x∥2

= λmax

(
L

1
2E[(Btj − Id)⊤L(Btj − Id)]DL

1
2

)
∥x∥2L−1

j

.

This completes the proof.

E Experiments
Single node case
For the single node case, we study the logistic regression problem with a non-convex regulariser. The objective is given as

f(x) =
1

n

n∑
j=1

log
(
1 + e−bj .⟨aj ,x⟩

)
+ λ.

d∑
i=1

x2
i

1 + x2
i

x ∈ Rd represent the model, and let (ai, bi) ∈ Rd×{−1,+1} denote a single data point from a dataset of size n. The parameter
λ > 0 is a tunable hyperparameter that controls the strength of the regularisation term. For our numerical experiments, we utilize
several datasets available in the LibSVM repository (Chang and Lin 2011). The smoothness matrix of f is estimated as follows

L =
1

n

n∑
j=1

aja
⊤
j

4
+ 2λ.Id. (55)

Experiments on two-layer neural network
We study the logistic regression problem with a non-convex regulariser using a two-layer neural network (without bias). The
objective is given as:

f(x1, x2) =
1

n

n∑
j=1

log
(
1 + e−bj ·⟨aj ,x1+x2⟩

)
+ λ ·

(
d∑

t=1

x2
1t

1 + x2
1t

+

d∑
t=1

x2t
t

1 + x2
2t

)
(56)

where x ∈ Rd is the model, (aj , bj) ∈ Rd × {−1,+1} is one data point in the dataset whose size is n. The constant λ > 0 is
the hyperparameter associated with the regulariser. We conduct numerical experiments using several datasets from the LibSVM
repository (Chang and Lin 2011). We estimate the smoothness matrix of function f here as

L =


1

4n

n∑
j=1

aja
⊤
j + 2λ Id

1

4n

n∑
j=1

aja
⊤
j

1

4n

n∑
j=1

aja
⊤
j

1

4n

n∑
j=1

aja
⊤
j + 2λ Id


2d×2d

(57)

From Fig 3, we can clearly observe that even in a two-layer network setup, our proposed algorithms (Eqs. CFGD-1 and
CFGD-2) outperform both CGD and the state-of-the-art det-CGD family, demonstrating their architecture-agnostic robustness.

Comparison to standard FGD, CFGD with scalar stepsize and CFGD with scalar stepsize and matrix
smoothness
The goal of the first experiment is to demonstrate that by employing matrix step sizes, both CFGD-1 and CFGD-2 achieve
improved iteration and communication complexities compared to standard FGD and CFGD with scalar stepsize. Specifically,
we evaluate FGD and CFGD with a scalar step size ω and scalar smoothness constant L = λmax(L), as well as CFGD with the
step size ω · Id and a smoothness matrix L. In Figure 4, we use the term standard FGD and standard CFGD to refer to FGD
and CFGD respectively with scalar step sizes and scalar smoothness constants, and CFGD-mat to refer to CFGD with scalar
step sizes and a smoothness matrix.

The metric GT,D, which appears on the y-axis labels in the Figure 4, is defined as:

GT,D :=
1

T

T−1∑
t=0

∥∇f(xt)∥2 D
|D|1/d

,

where GT,D represents the average matrix norm of the gradient of f over the first T iterations, shown on a logarithmic scale.
Here, the weight matrix is scaled to have a determinant of 1, making it comparable to the standard Euclidean norm. This
normalization ensures that the results are meaningful.

The outcomes illustrated in Figure 4 indicate that CFGD-mat outperforms standard FGD and CFGD in terms of both iteration
complexity and communication complexity. Furthermore, both CFGD-1 and CFGD-2, when using optimal diagonal matrix step
sizes, exhibit superior performance compared to standard FGD, CFGD and CFGD-mat, corroborating the theoretical results.

The scaling factors ω1, ω2, and ω3 for CFGD-1 are derived using Theorem 2 with ℓ = 1. For CFGD-1, the matrix step size is
computed according to Equation (17). The experiment also shows that CFGD-1 and CFGD-2 perform similarly when diagonal
step sizes are used, which aligns with expectations given that the random-1 sketch ensures commutability between the step size
matrix and the sketch matrix, as both are diagonal.

Additionally, CFGD-1 with D2 = ω2.L−1 consistently underperforms compared to D4 = ω4.diag−1(L). This behaviour is
consistent with the analysis in Section B of the supplementary material, where it was noted that row 5 (corresponding to D2 in
Table 1) always yields inferior results compared to row 7 (corresponding to D4).

Figure 3: Comparison of standard CGD, standard CFGD, det-CGD 1, det-CGD 2 with CFGD-1 and CFGD-2. Throughout the
experiments, the Rand-1 sketch is used in all methods. All experiments are performed on a simple two-layer neural network
given by the equation 56. All stepsize used are block diagonal approximation of L given in equation 57. These matrix stepsize
are chosen as per Theorem 2.

Tuning fractional gradient parameter β

One of the critical hyperparameters for fractional gradient descent is the fractional power β ∈ (0, 1). We conduct an ex-
tensive search for β on both the distributed CFGD-2 (DCFGD-2)and simple CFGD-2 (CFGD-2) setups, using the stepsize
D = ω.diag−1(L). This configuration represents the best-performing algorithm and stepsize combination in both single-node
and distributed settings.

From Figure 5, we observe that the algorithms perform well as β → 0. However, as β → 1, their performance aligns
closely with that of simple SGD-based variants, which is intuitive. For instance, the performance of DCFGD-2 with β = 0.9
is nearly identical to DCGD-2, an SGD variant. This trend remains consistent across both single-node and distributed settings.
Additionally, tuning β reveals that the performance of both algorithms does not change significantly, indicating a relatively low
dependency on β.

Figure 4: Comparison of standard FGD, standard CFGD, CFGD-mat, CFGD-1 with D1 = ω1 · diag−1(L), CFGD-1 with
D2 = ω2 · L−1, CFGD-1 with D3 = ω3 · L−1/2, and CFGD-2 with D4 = ω4 · diag−1(L). Here, ω1, ω2, ω3 are the optimal
scaling factors for CFGD-1 in their respective cases, and D4 represents the optimal matrix step size for CFGD-2. Throughout
the experiments, the Rand-1 sketch is used in all methods.

Figure 5: Tuning the fractional gradient parameter β for DCFGD-2 and DCGD-2 with stepsize of type D4 = ω.diag−1(L).

