
Under review as a conference paper at ICLR 2022

MISTAKE-DRIVEN IMAGE CLASSIFICATION WITH
FASTGAN AND SPINALNET

Anonymous authors
Paper under double-blind review

ABSTRACT

Image classification with classes of varying difficulty can cause performance dis-
parity in deep learning models and reduce the overall performance and reliability
of the predictions. In this paper, we address the problem of imbalanced perfor-
mance in image classification, where the trained model has performance deficits
in some of the dataset’s classes. By employing Generative Adversarial Networks
(GANs) to augment these deficit classes, we finetune the model towards a bal-
anced performance among the different classes and an overall better performance
on the whole dataset. Specifically, we combine a light-weight GAN method, Fast-
GAN (Liu et al., 2021), for class-wise data augmentation with Progressive Spinal-
Net (Chopra, 2021) and Sharpness-Aware Minimization (SAM) (Foret et al.,
2020) for training. Unlike earlier works, during training, our method focuses
on those classes with lowest accuracy after the initial training phase. Only these
classes are augmented to boost the accuracy, which leads to better performance.
Due to the use of a light-weight GAN method, the GAN-based augmentation is
viable and effective for mistake-driven training even for datasets with only few im-
ages per class, while simultaneously requiring less computation than other, more
complex GAN methods. Our extensive experiments, including ablation studies on
all key components, show competitive or better accuracy than the previous state-
of-the-art on five datasets with different sizes and image resolutions.

1 INTRODUCTION

Supervised training of deep learning models, like the image classification models we consider in
this paper, is the most efficient training approach, but also the most data-intensive. To mitigate
this issue, alternative techniques are commonly applied, e.g., transfer learning from a pretrained
model to a new domain (Ridnik et al., 2021) or data augmentation to expand the available dataset
synthetically (Shorten & Khoshgoftaar, 2019). One particular data augmentation technique is to
use Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) that learn to produce new
data that is similar to the distribution of the GAN’s training data. GAN-based augmentation has
been shown to be successful in aiding the training process (Bowles et al., 2018; Wang et al., 2018c;
Tanaka & Aranha, 2019) and has found practical adoption in other research domains (Frid-Adar
et al., 2018; Sasmal et al., 2020).

One challenge and limitation of GAN-based augmentation is either the high computational cost to
augment each class of the dataset individually or the selection of the classes to augment that best
support the model training. In this paper, we focus on a mistake-driven training procedure (see
Figure 1) that utilizes GAN-based data augmentation only after the initial model training, albeit
transfer learning or training from scratch, and augments only those classes with the lowest accuracy,
where the model shows performance weaknesses. This keeps the effort for class-wise GAN training
at a lower level than a full-sized data augmentation procedure but still contributes to the model
improvement by focusing on the most significant deficits accuracy-wise. The mistake-driven training
method is fully compatible with any other training regime as it does not interfere directly with the
model training or finetuning step except by querying the model during evaluation and enhancing the
dataset for finetuning.

Due to this explicit focus on model weaknesses as well as the careful selection of the components
in the mistake-driven training pipeline, our method is computationally efficient and shows compet-
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Figure 1: The workflow of the mistake-driven training process. After the initial training, the model
is validated to identify the weakest classes, which are then expanded through GAN-based augmen-
tation. The final finetuning step adjusts the performance imbalance between classes and boosts the
overall performance.

itive performance on a number of benchmarks. First, we employ the progressive SpinalNet neural
network architecture (Kabir et al., 2020; Chopra, 2021) as the image classification model, build on a
backbone model, e.g. a pretrained Wide-ResNet (Zagoruyko & Komodakis, 2016) or EfficientNet-
B7 (Tan & Le, 2019) as used in the experiments. Afterward, the class-wise accuracy on the validation
set is computed, and the worst-performing classes are identified. For each of these classes, a sample-
efficient GAN is trained, here we choose the light-weight FastGAN method (Liu et al., 2021), and
use it to generate new samples. Finally, the already trained model is finetuned under consideration of
the newly generated samples to improve and balance the model performance among the previously
worst-performing classes.

We perform an extensive experimental evaluation to test the influence of each component in the
mistake-driven training pipeline and our component selection of backbone models, activation func-
tions, and model optimizers. The method is evaluated on five widely used image classification
datasets and exceeds the previous state-of-the-art accuracy on four of them.

The contribution of our paper is threefold:

1. During training, our method focuses on those classes with the lowest accuracy after the
initial training phase. Only these classes are augmented to boost the accuracy, which leads
to better performance.

2. Due to the light-weight GAN method, the GAN-based augmentation is viable and effective
for mistake-driven training even for datasets with only a few example images per class,
while simultaneously requiring less computation than other, more complex GAN methods.

3. Our extensive experiments, including ablation studies, show competitive or better accuracy
than the previous state-of-the-art on five datasets.

2 RELATED WORK

This section relates the presented work to the recent literature on data augmentation using GANs.
There are two types of image augmentation methods that help in increasing the accuracy of the
model and making the model more robust. The first one is a geometrical transformation-based
augmentation, and the other one is generative adversarial-based augmentation.

Geometrical Transformation & Data Augmentation In the past decade, various data augmen-
tation techniques have been used to improve classification prediction accuracy. The most common
ones are those based on geometrical transformations (Shorten & Khoshgoftaar, 2019) e.g., cropping,
flipping, rotation, color space, noise injection, and translation. These geometrical transformations
increase the training dataset and improve the test accuracy (Perez & Wang, 2017). These data aug-
mentation techniques are a best practice for training deep neural networks, especially in computer
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vision tasks where a vast number of augmentations are available and can be combined. Cubuk et al.
(2019) further introduces a method to perform this combination, called AutoAugment automatically,
that learns dataset-specific augmentation strategies to increase the final model accuracy.

Synthetic Data Generation Using Generative Models Generative models, GANs in this context,
have shown growing capability in generating very realistic data. These generated synthetic images
can be utilized for data augmentation in data classification. Researchers have been attempting to
enhance high-resolution images with GANs but with little success due to the enormous amount of
data required to train GANs.

Data augmentation with GANs has recently received increasing attention from the research commu-
nity. Some research works have attempted to supplement images using GANs for data classification
(Tanaka & Aranha, 2019). However, with limited data, utilizing GANs to augment data becomes
a strenuous process. Rashid et al. (2019), proposed to augment the ISIC skin lesion classification
dataset using GANs. The results produced by data augmentation using GANs outperform ResNet
and densenet models. In another line of work, Sasmal et al. (2020) used DCGAN for generating
synthetic colonoscopic images. The generated images help in data augmentation to perform better
polyp classification. Furthermore, Bejiga & Melgani (2018) suggests a GAN-based domain adapta-
tion technique for aerial image classification. They use GANs for unsupervised domain adaptation
of aerial remote sensing images. In the same field of work, Saha et al. (2021) developed TilGAN for
the classification of images showing til, i.e., tumor-infiltrating lymphocytes and non-til images.

In addition to the previous research works, Zeng et al. (2020) propose to use GANs for augmenting
data to detect disease severity. In another line of work, GANs were used for data augmentation in the
field of multi-domain learning (Yamaguchi et al., 2020). These multi-domain GANs learn both the
outer and target datasets simultaneously and generate new samples for the target tasks. A detailed
survey on the use of GANs for data augmentation is presented by Shorten & Khoshgoftaar (2019).
In this paper, our focus is to augment high-resolution images with a limited dataset which can further
be used for finetuning the model. However, if the amount of the training data is not a constraining
factor, IDA GAN (Yang & Zhou, 2021) and Polarity GAN (Deepshikha & Naman, 2020) can be
utilized for data augmentation, too.

Data Augmentation with Limited Data GANs generally require massive datasets for training;
limited data makes learning the underlying model arduous. Moreover, training GANs with limited
data can easily lead to overfitting (Bowles et al., 2018), which makes the training more difficult.
Transfer learning can be used to avoid the problem of overfitting of GANs, which also results in bet-
ter performance (Bengio, 2012). Apart from the traditional way of augmenting data using geometric
transformations, some GANs use observations that have been forged (Wang et al., 2018b) for gen-
erating new samples. Even though generating new images with limited data using GANs remains a
challenging task, but at least the risk of overfitting can be reduced by using a pretrained model on a
huge dataset and using that pretrained model for training GANs can produce some good quality im-
ages Wang et al. (2018b). However, using this technique sometimes leads to mode collapse, which
is further fixed by Liu et al. (2021) using skip connections while training.

3 BACKGROUND

3.1 SHARPNESS-AWARE MINIMIZATION

In deep learning models, we need to optimize the loss function such that the DL model can converge
to global minima. To reach the minima, many optimization algorithms such as stochastic gradient
descent, Adam (Kingma & Ba, 2014), and RMSProp are being used as a design choice for optimiz-
ing the loss function. Zhang et al. (2016) show that DL models could memorize the training data
and easily overfit to it, due to which the trained model lack generalization ability. However, when
a DL model converges to an abrupt global minimum, the value of the loss function remains high in
the neighborhood of the global minimum, causing the DL model to lose its generalization ability.

For the better generalization of DL models, Sharpness-Aware Minimization (SAM) was proposed
(Foret et al., 2020), where the optimization goal is reformulated such that it considers the output
of loss functions from not only the minimum but also at its neighboring points. In that way, SAM
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minimizes both loss value and loss sharpness. Finally, the minimization of loss value and loss
sharpness is done using gradient descent by learning those parameters that converge to a global
minima, which has nearly the same loss value at the neighboring points.

3.2 PROGRESSIVE SPINAL NETWORKS

In the human biological network, the spine performs the preprocessing of the input, which then goes
to the brain for the final output (D’Mello & Dickenson, 2008). By taking inspiration from the human
spinal cord, Kabir et al. (2020) proposed spinal networks.

As the human brain receives information from various sensory neurons, and these signals are pro-
cessed by the human spine before reaching the brain. Progressive SpinalNet consists of a processing
unit and concatenating unit. The input to the Progressive SpinalNet Fully Connected (FC) layer is
the CNN features. The processing unit can be a single hidden layer or multiple hidden layers. Each
layer receives some portion from the input. The output of the processing unit is concatenated, and
the following processing unit receives the concatenated output as an input. The gradients are easily
propagated back to the first FC layer from the last FC layer due to connections between the layers.
This helps in dealing with the vanishing gradient problem. The size of each layer is progressively
increased, and the output size is the same for all the FC layers. The Progressive SpinalNet can be
deeper as it does not suffer from a vanishing gradient. Contradicting the traditional way of feedfor-
ward neural networks, they used forward and introduced sideways and zig-zag interactions, which
leads to better network predictions.

3.3 GENERATIVE ADVERSARIAL NETWORKS

The task of Generative Adversarial Networks (GANs) is to learn the distribution of the training
data and generate new samples. GAN learns the distribution of the input data ρdata and generates
synthetic images which have nearly the same distribution as the input image. The GAN architecture
consists of basically two deep neural network architecture: (a): the generative network G and (b): the
discriminator network D. The generator takes a noise vector z as an input from a known distribution
ρz , generally a uniform distribution and outputs G(z) which maps to the space of distribution ρg . The
generator G tries to produces more realistic images as the training progresses, and the discriminator
D improves its ability to discriminate between synthetic and authentic images. Finally, the generator
aims to generate images that have the same distribution as the input images, i.e., ρg = ρdata. This
basically leads to min-max optimization problem where the discriminator network D is trained to
maximize log(D(x)), where D(x) is the output of the discriminator and the generator network is
trained as to minimize log(1-D(G(z)). So, the objective function for GANs is a min-max objective
function:

min
G

max
D

J(D,G)& = Ex∼px
[log(D(x))] + Ez,∼pz

[log(1−D(G(Z))]

Furthermore, the computation cost to train Vanilla GANs is exorbitant, and it takes a large amount of
training data to learn the distribution of training data. This limits GANs and its variants to generate
high fidelity images when the training data is less, and we have fewer computational resources.

To train GAN with limited data and low computational resources, Liu et al. (2021) proposed light-
weight GAN, which can generate high fidelity images even when the training data is significantly
less (50-100 images).

3.3.1 LIGHT-WEIGHT GAN

When training images are limited, creating high-fidelity synthetic images using GANs becomes a
challenging task. Training GANs with limited data and inadequate computational resources can
lead to over-fitting of the model and mode collapse (Arjovsky & Bottou, 2017; Zhang & Khoreva,
2018). In order to address the issue of mode collapse and overfitting while training GANs with fewer
images, Liu et al. (2021) proposed a light-weight GAN method, named FastGAN, that uses skip-
connections. These Skip-Layer Excitations (SLE) improves model weight gradient flow for more
robust training. In a single action, SLE combines the power of style-modulation, skip-connection,
and channel attention. They designed a Discriminator (D), which consists of a decoder and a feature
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encoder. At each resolution in G, the light-weight GAN architecture utilizes a single convolution
layer, including a modified skip-connection module known as the (SLE) module. As this SLE
module aids in producing high-fidelity images, the requirement for high computational resources
reduces. This also assists in making the model shallower, resulting in fewer parameters and requiring
less computational resources, leading to faster training and smoother gradient flow.

Following is the definition of the skip-layer excitation module:

y = F (xlow,Wi)× xhigh (1)

where x and y are the input and output feature maps and {Wi} are the trainable weights.

xlow and xhigh are two distinct dimensional inputs in SLE. xlow is first down-sampled into (4×4)
along the spatial-dimensions by an adaptive average-pooling layer in F, then further down-sampled
into (1×1) by a convolution-layer.

4 MISTAKE-DRIVEN IMAGE CLASSIFICATION

We introduce a novel method for mistake-driven image classification as well as a selection of recent
methodological advancements as key components in its implementation. We first present the gen-
eral, high-level mistake-driven training workflow compatible with any image classification training
procedure and then introduce the specific implementation and its components.

Training Workflow The basic workflow of our mistake-driven image classification methodology
is outlined in Figure 1 and more precisely defined in Algorithm 1. First, the initial model is trained in
a standard procedure (line 1), either from scratch or in a transfer learning manner from a pre-trained
backbone model. Afterward, it is validated using the validation dataset (line 2). From the validation
results, the class-wise accuracy is computed (line 3) to identify the worst-performing classes (line
4). For each of these worst-performing classes, a class-specific GAN is trained on all samples in
Dtrain that belong to this class (line 7). Once the GAN has been trained, it is used to generate new
training samples for this class (line 8), which are added to the new, augmented dataset (line 9). This
step can be accelerated by parallel execution, as the individual class-specific GANs are independent
of each other. Finally, the initially trained model is finetuned with the new, augmented dataset (line
11) and is available as the final model for usage (line 13) or testing (line 12).

Algorithm 1 Algorithm for Mistake-Driven Training
Require: Dataset D with size |D| and n classes, split into train/val/test sets;

nWPC: number of worst-performing classes to augment;
nSamples: number of new samples for each class;

1: Train model m with dataset Dtrain and Dval . Either from scratch or transfer from backbone
2: Validate model m with dataset Dval

3: CWA← Compute Class-Wise Accuracy
4: WPC← Bottom nWPC classes in CWA . Select worst-performing classes (WPC)
5: ND← Dtrain . Initialize new dataset from original dataset
6: for each class C ∈ WPC do
7: Train class-specific GAN on Dtrain data for class C
8: G← Generate nSamples new samples for class C
9: ND← ND ∪G . Add generated samples to dataset

10: end for
11: Finetune model m with augmented dataset ND
12: Test model m with dataset Dtest (optional)
13: Return model m

The number of worst-performing classes to augment nWPC is a hyperparameter of the mistake-driven
training procedure and balances the expansion of the dataset for finetuning versus the computational
cost of the method, due to the class-wise GAN training. If nWPC = n, the method corresponds to
a full GAN-based data augmentation procedure, if nWPC = 0, mistake-driven training is disabled.
However, for the practical use of mistake-driven training it should be set as nWPC ∈ [0, 0.5n].
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The other method-specific hyperparameter is nSamples (line 7), which controls how many new
samples are created per class. We found nSamples = |C|/2, i.e. expanding the class size by 50%,
to be a suitable choice.

Components The overall efficiency and final accuracy of the trained model is influenced not only
by the training procedure, but, of course, especially the GAN method for the data augmentation
step and the other selected components, such as the deep neural network model architecture, the
backbone model for transfer learning, or the general training hyperparameters.

The GAN method is a crucial part in the training pipeline as it should be fast and data-efficient, as it is
trained in a class-wise manner with only a subset of the total dataset size, and still well-performing
to generate new samples that aid the finetuning process for the initially weak classes. All these
characteristics are covered by the light-weight FastGAN method introduced by Liu et al. (2021)
and described in Section 3.3.1. During preliminary experiments, we found the FastGAN training
to be considerably faster and more data-efficient with few images than other GAN techniques, e.g.,
TransferGAN (Wang et al., 2018a) or StyleGAN (Karras et al., 2019), as also shown by Zhao et al.
(2020), including a reduction in training time by a factor 4 from around 8 to 2 hours on the same
hardware. We show a selection of generated samples during mistake-driven training in comparison
to images generated by other GAN techniques in Appendix A.2.

Whereas the other components are exchangeable depending on the circumstances, we focus on the
application of mistake-driven training on top of the recent methodologies from the literature to
push the boundaries of the state-of-the-art in image classification. Therefore, we select Progressive
SpinalNet as the key neural network architecture, as it has been shown empirically to be suitable for
transfer learning and finetuning tasks (Kabir et al., 2020; Chopra, 2021), combined with Sharpness-
Aware Minimization (Foret et al., 2020) for model optimization. As part of our experimental evalua-
tion, we further consider alternative choices to evaluate the general ability of mistake-driven training
to boost neural network models by only considering the weakest classes.

5 EXPERIMENTATION EVALUATION

We perform an extensive experimental evaluation of the proposed mistake-driven training method-
ology. To evaluate the contribution of each individual component in the methodology, we perform
ablation studies where we remove or replace the component with alternatives.

5.1 EXPERIMENTAL SETUP

We perform experiments on five widely known datasets: CIFAR-10 (Krizhevsky et al., 2014),
Caltech-101 (Fei-Fei et al., 2004), Stanford Cars (Krause et al., 2013), and Architectural Her-
itage (Llamas et al., 2017). A description of each dataset is given in Appendix ??. For datasets with
more than 20 classes, i.e. Caltech-101 and Cars, we set the number of worst-performing classes to
select nWPC = d0.2ne to limit the computational cost of the method, otherwise, i.e. for CIFAR-10,
HAM10000, and Heritage, we set nWPC = d0.5ne. The number of newly generated samples per
class is always nSamples = d0.5 |C|e, i.e. 50% of the class size rounded towards the next-biggest
integer.

We train the model, both initially and during finetuning, for 20 epochs, except for CIFAR-10 with
30 epochs, and with a batch size of 28 for Caltech-101, HAM10000, and CIFAR-10, respectively 20
for Cars and Heritage. All other hyperparameters were kept to their default values as proposed by
their respective authors. There was no additional preprocessing of the images performed. We report
the accuracy averaged over three runs with different random seeds.

All of our experiments were performed on a Nvidia Geforce RTX 2080 Ti GPU. We used the Pytorch
and Keras frameworks for our experiments.

5.2 EXPERIMENTAL RESULTS

As the main experiment, we evaluate our main configuration, consisting of progressive SpinalNet
with a Wide-ResNet-101 (Zagoruyko & Komodakis, 2016) backbone pre-trained on ImageNet and
SELU activation function, and sharpness-aware minimization. We compare both against the same
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configuration without mistake-driven training, i.e., only the initial training on the dataset and the
state-of-the-art accuracy as reported in the literature. The results are shown in Table 1, the best-
reported accuracies over all experiments, including the ablation experiments, are marked in bold.
Our main configuration reaches new state-of-the-art accuracy on Caltech-101, Stanford Cars, and
HAM10000. On the architectural heritage dataset, we also reach a new state-of-the-art accuracy of
96.50%, although with a different configuration (see Section 5.3 below).

Table 1: Results for our main configuration of mistake-driven image classification with progressive
SpinalNet, Wide-ResNet backbone and sharpness-aware minimization (WRN+SELU+SAM).
State-of-the-art results are given as reported in the literature.

Configuration CIFAR-10 Caltech-101 Cars Heritage HAM10000

Ours 98.92 98.40 96.60 95.23 95.20
w/o Mistake-Driven Training 98.65 98.05 95.95 95.58 94.78

State-of-the-art 99.70 97.76 96.32 95.57 93.40

For experiments performed on the CIFAR-10 dataset, the SOTA accuracy has been reported by Foret
et al. (2020), in which the authors used EfficientNet L2 (Tan & Le, 2019) as a backbone for training
the model with SAM as an optimizer. These results were not matched with our training setup, but
we still observe an improvement in the final accuracy from mistake-driven training. One reason
why our method might be less effective for CIFAR-10 lies in the comparatively small 32x32 image
size, which constrains the expressiveness and effectiveness of the GAN method to generate new and
meaningful training data, compared to the other datasets. Still, CIFAR-10 serves as a good indicator
for the limitations of our methodology and gives a guideline for possible application areas. All other
datasets used in our experiments have higher-resolution images, which helps the GANs to generate
good-quality images.

For Caltech-101, the previous state-of-the-art accuracy was reported by Chopra (2021). Here we
achieve an improvement of 0.64% using the same model architecture. One part of the improve-
ment (0.29%) stems from using sharpness-aware minimization, and the other 0.35% originates from
mistake-driven training. For the Stanford Cars dataset, mistake-driven training boosts the accuracy
by 0.65% and exceeds the state-of-the-art from Ridnik et al. (2021) by 0.28%. On the architec-
tural heritage dataset, our main configuration has an accuracy gap of 0.34%, but a configuration of
Wide-ResNet, GELU activation function and Adam optimizer exceeds the SOTA of 95.57% from
Abed et al. (2020) by 0.93%, i.e. 96.50%, as we observe in the ablation experiments. Finally, for
the medical image dataset HAM10000, already the main configuration reaches new SOTA (94.78%),
compared to the previous result by Datta et al. (2021) (93.40%), but mistake-driven training further
improves the final result to 95.20%.

In conclusion, we identify improvements in final model accuracy from mistake-driven training that
can reach new state-of-the-art accuracies on several datasets. Parts of the improvement result from
recent advancements in model architectures, i.e., progressive SpinalNet, and model optimization,
i.e., SAM, but we observe a clear benefit from mistake-driven training and focusing on the worst-
performing classes rather than performing a full-sized GAN-based data augmentation procedure.

5.3 ABLATION EXPERIMENTS

We identified the general benefit and effectiveness of mistake-driven training for image classifica-
tion. To better understand the effects of the components in the training methodology and its setup,
we perform a series of ablation experiments where we remove or replace individual components.
For each of the experiments, we present the results with and without mistake-driven training involv-
ing GAN augmentation. In the following discussion, we show only the results for the individual
ablation experiments. Again, we highlight in bold the best results overall experiments reported in
this paper. The detailed results for all different configurations considered in the experiments are
shown comprehensively in Table 7 in Appendix A.3.

Number of Worst-Performing Classes The number of worst-performing classes were varied for
the Architectural Heritage dataset (10 classes) with the configuration WRN + GELU + Adam. We
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see that the number of worst-performing classes has an influence on the final performance, although
there is a point of saturation where augmenting additional classes does not further improve the final
performance. However, in any case the mistake-driven augmentation advances the accuracy over
using no augmentation.

Table 2: Experiments performed for number of worst performing classes: We changed the nWPC
to see its effect on the final accuracy.

Heritage Dataset (10-class) 2-class 4-class 5-class 6-class 7-class w/o

WRN + GELU + Adam 96.02 96029 96.50 96.50 96.30 95.22

Number of Samples to Generate Next, the number of samples to be generated per selected class
were varied, again using the Architectural Heritage dataset and the configuration WRN + GELU +
Adam. We observe that a minimum number of new samples is necessary to have a relevant impact
on the final accuracy, as it is to be expected. However, we also notice that when adding more than
50% new samples, we introduce an imbalance in the dataset and the total accuracy and especially
the accuracy of the non-augmented classes decreases.

Table 3: Experiments performed for number of samples to generate: We changed the generated
samples to see its effect on the final accuracy.

Heritage Dataset (10-class) 50% 25% 10% No Augmentation

WRN + GELU + Adam 96.50 96.01 95.94 95.22

Backbone Models We vary the choice of the pre-trained SpinalNet backbone model. Similar
to the experiments in Kabir et al. (2020) and Chopra (2021), we select Wide-ResNet-101 (WRN)
and EfficientNet-B7 (ENB7) (Tan & Le, 2019) pre-trained on ImageNet as backbone models. We
compare the configurations WRN+SELU+Adam and ENB7+SELU+Adam and show the results in
Table 4. A moderate boost from mistake-driven training is observed for both configurations, i.e., the
applicability of mistake-driven training is independent of the chosen model. The accuracy itself is
comparable for some datasets, i.e., CIFAR-10, Cars, and HAM10000, but for others, Wide-ResNet
clearly outperforms the EfficientNet model, i.e., Caltech-101 and Architectural Heritage.

Table 4: Backbone Models: We exchange Wide-ResNet-101 for EfficientNet-B7. Abbreviations:
WRN - Wide-ResNet, ENB7 - EfficientNet B7

Configuration CIFAR-10 Caltech-101 Cars Heritage HAM10000

WRN + SELU + Adam 98.56 98.10 88.85 95.65 93.81
w/o Mistake-Driven Training 98.45 97.52 88.46 94.72 93.50

ENB7 + SELU + Adam 98.56 95.23 88.83 94.15 93.42
w/o Mistake-Driven Training 98.23 94.63 87.97 92.10 93.17

Optimizer Our full setup includes Sharpness-Aware Minimization (SAM) to minimize the loss
during training. As an alternative baseline, we choose the Adam training technique (Kingma &
Ba, 2014) instead. The results are shown in Table 5. Again, mistake-driven training and GAN-
based augmentation of the worst-performing classes boost the final accuracy in all cases, except
for the Architectural Heritage dataset. Here, we observe a slight decrease of 0.35% in accuracy
from mistake-driven training in combination with SAM. We also observe the benefit of using SAM,
which by itself leads to better performance on all datasets compared to standard Adam. This is
especially visible for the Stanford Cars dataset, where using SAM improves the accuracy by 7.49%
respectively 7.75% when mistake-driven training is also used.
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Table 5: Optimizer: We exchange sharpness-aware minimization for standard Adam.
Configuration CIFAR-10 Caltech-101 Cars Heritage HAM10000

WRN + SELU + SAM 98.92 98.40 96.60 95.23 95.20
w/o Mistake-Driven Training 98.65 98.05 95.95 95.58 94.78

WRN + SELU + Adam 98.56 98.10 88.85 95.65 93.81
w/o Mistake-Driven Training 98.45 97.52 88.46 94.72 93.50

Activation Functions We further consider the choice of the activation function in the trained net-
work and its effect on the final accuracy. Besides the main choice of the Scaled Exponential Linear
Unit (SELU) activation function (Klambauer et al.), we alternatively consider the Gaussian Error
Linear Unit (GELU) (Hendrycks & Gimpel, 2020) and Rectified Linear Unit (RELU) activation
functions:

SELU(x) = λ

{
x if x > 0

αex-α if x ≤ 0

GELU(x) = x · 1
2

(
1 + erf

(
x√
2

))
RELU(x) = max(x, 0)

We show the results in Table 6. Similar to the previous experiments, mistake-driven training consis-
tently boosts the final accuracy. Additionally, in the configuration of Wide-ResNet (WRN), GELU,
and Adam, the model reaches a new state-of-the-art accuracy on the architectural heritage dataset
with 96.50% accuracy compared to the previous 95.57% reported by Abed et al. (2020).

While our main configuration without mistake-driven training achieves a higher accuracy than
WRN+GELU+Adam without mistake-driven training and already matches the SOTA (95.58% vs.
95.57%), we observe no boost from mistake-driven training in the main configuration, whereas it is
observable for the changed configuration and leads to a further improvement in accuracy.

Table 6: Optimizer: We exchange the SELU activation function for GELU and RELU.
Configuration CIFAR-10 Caltech-101 Cars Heritage HAM10000

WRN + SELU + Adam 98.56 98.10 88.85 95.65 93.81
w/o Mistake-Driven Training 98.45 97.52 88.46 94.72 93.50

WRN + GELU + Adam 98.20 97.50 89.44 96.50 94.25
w/o Mistake-Driven Training 97.92 97.22 88.46 95.22 94.03

WRN + RELU + Adam 98.70 97.45 91.16 95.65 93.63
w/o Mistake-Driven Training 98.19 97.28 88.83 95.37 93.28

State-of-the-art 99.70 97.76 96.32 95.57 93.40

6 CONCLUSION

This paper proposes a novel, mistake-driven training technique for image classification. Our pro-
posed method uses pre-trained models as a base for training and, after initial training, extracts classes
with high losses for class-wise augmentation and solves the problem of imbalanced class perfor-
mance. A challenge in this process is the high resolution of images that we consider as datasets in
combination with a limited data regime. Therefore, we rely on the light-weight FastGAN method
for GAN-based data augmentation, which is both data-efficient and fast and thereby highly suitable
for our method. We have also implemented the sharpness-aware minimization optimizer, and the
results reveal that we obtain the highest performance when using the SAM optimizer in most cases.
In our experiments, except for the CIFAR-10 dataset, our proposed training method outperforms all
the previous SOTA accuracies. While we have focused on image classification in this work, we plan
to generalize the method to other classification tasks in the future.
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Reproducibility Statement The presented method and experiments are based upon freely avail-
able and widely used methods and datasets, enabling the reproduction of the method and the reported
results. We will also release the source code for the experiments once the paper is accepted.
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A APPENDIX

A.1 DATASETS

CIFAR-10 The CIFAR-10 dataset (Krizhevsky et al., 2014) contains 60,000 colored images of size
32x32 pixels divided into ten classes with each 6,000 images. The dataset is split 50,000/10,000 into
training and test set.

Caltech-101 This dataset (Fei-Fei et al., 2004) is the most imbalanced dataset with 101 different
classes. This dataset has colored images of size 300x200 pixels. The number of images in each class
varies from 40 to 800. However, on average, each class has about 50 images.

Note: Due to the imbalance between classes in this dataset, after initial training, out of 101, we
extracted the bottom 20 classes with the most misclassification rate and used only those classes for
our final experiments. This is done assuming that if our model gives good results on the worst-
performing classes, it will give high-quality results on the well-performing classes.

Stanford Cars The Stanford cars dataset (Krause et al., 2013) consists of 16,185 colored images
representing 196 different classes. The data is divided into 8,144 training photos and 8,041 testing
images, with about a 50-50 distribution between training and testing for each class.

Architectural Heritage There are three types of architectural heritage elements datasets (Llamas
et al., 2017). One with 64x64 image size, second with 128x128 image size, and third with 224x224
image size. In our experiments, we have used the second dataset with an image size of 128x128.
The dataset consists of 10,235 images for all ten classes.
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HAM10000 Skin Lesions HAM dataset (Tschandl, 2018) stands for humans against a ma-
chine which consists of 10,000 dermatoscopic training images. It consisted of colored images of
1872x1053 pixels, which were then manually cropped to 800x600 pixels centering the lesion.

A.2 EXEMPLARY GENERATED IMAGES

Figure 2: CIFAR-10: A comparison between original and generated images for CIFAR-10 dataset;
(a) Original images, (b) Generated images using FastGANs.

Figure 3: Caltech-101: A comparison between original and generated images for Caltech-101
dataset; (a) Original images, (b) Generated images using FastGANs. (c) Generated images using
pretrained GANs (Zhao et al., 2020).

Figure 4: Cars: A comparison between original and generated images for Stanford Cars dataset;
(a) Original images, (b) Generated images using FastGANs. (c) Generated images using pretrained
GANs (Zhao et al., 2020).
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Figure 5: Heritage: A comparison between original and generated images for Architectural Heritage
dataset; (a) Original images, (b) Generated images using FastGANs. (c) Generated images using
pretrained GANs (Zhao et al., 2020).

Figure 6: HAM10000: A comparison between original and generated images for Skin Cancer
MNIST: HAM-10000 dataset; (a) Original images, (b) Generated images using FastGANs. (c)
Generated images using pretrained GANs (Zhao et al., 2020).

A.3 DETAILED RESULTS FOR EXPERIMENTS

Table 7: Experimental results of mistake-driven image classification in different configurations.
Abbreviations: WRN - Wide-ResNet, ENB7 - EfficientNet B7

Configuration CIFAR-10 Caltech-101 Cars Heritage HAM10000

WRN + SELU + SAM 98.92 98.40 96.60 95.23 95.20
w/o Mistake-Driven Training 98.65 98.05 95.95 95.58 94.78

WRN + SELU + Adam 98.56 98.10 88.85 95.65 93.81
w/o Mistake-Driven Training 98.45 97.52 88.46 94.72 93.50

WRN + GELU + Adam 98.20 97.50 89.44 96.50 94.25
w/o Mistake-Driven Training 97.92 97.22 88.46 95.22 94.03

WRN + RELU + Adam 98.70 97.45 91.16 95.65 93.63
w/o Mistake-Driven Training 98.19 97.28 88.83 95.37 93.28

ENB7 + SELU + Adam 98.56 95.23 88.83 94.15 93.42
w/o Mistake-Driven Training 98.23 94.63 87.97 92.10 93.17

State-of-the-art 99.70 97.76 96.32 95.57 93.40
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