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Abstract. Vision Transformers (ViTs) have shown promising results in
computer vision tasks, challenging CNN architectures on image classi-
fication, segmentation and object detection. However, their quadratic
complexity O(N?), where N is the token sequence length, hinders their
deployment on edge devices. To tackle this challenge, researchers have
proposed various compressing schemes that exploit sparsity and redun-
dancies. In this paper, we focus on one of these strategies, named token
merging, which consists of dynamically and progressively combining simi-
lar tokens during inference, leading to computational savings. Most of the
proposed methods compute similarities between all tokens before picking
the highest score that leads to the merging decision. This contradicts the
intuition that spatially close tokens are more similar than distant ones.
In our paper, we show that the distribution of cosine similarity scores of
adjacent token pairs is higher than the distribution of similarity scores of
distant tokens. Based on this observation, we propose LoTM, a Local To-
ken Merging approach where we constrain the merging window to a pair
of adjacent tokens only. Our model is evaluated on a classification task
using the ImageNet-1K dataset, as it outperforms most state-of-the-art
approaches in accuracy given the same computational budget without
requiring further training.

Keywords: Deep learning - Vision Transformers - Adaptive inference -
Neural network compression.

1 Introduction

The remarkable success of Transformers in Natural Language Processing (NLP),
as demonstrated by Vaswani et al. [26], has captured the attention of researchers
in computer vision. As a result, numerous efforts have been made to adopt the
Transformer as an alternative deep neural network architecture for computer
vision tasks. A pioneering example is Vision Transformer (ViT) by Dosovitskiy
et al. [7], which utilizes a fully Transformer-based architecture for image classifi-
cation. ViT works by dividing an image into several local patches, thus creating
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Fig. 1: Distribution of cosine similarity between pairs of tokens over 50k instances
of ImageNet-1K validation set. (a) The similarity is computed between two adja-
cent tokens, i.e., spatially related tokens. (b) The similarity is computed between
non-overlapping windows of four tokens. (¢) The similarity is computed between
all tokens of the sequence.

a visual sequence for the Transformer to process. Its self-attention mechanism
evaluates the relationships between these patches, aggregating their information
to form a high-level representation suitable for image recognition.

Following ViT, many variants have been developed [20, 25,27, 28, 30]. For
instance, DeiT [25] achieved state-of-the-art performance on the ImageNet-1K
benchmark [5] without requiring pre-training on an extensive dataset like JFT-
300M [24]. T2T-ViT [31], also trained from scratch on ImageNet-1K, enhances lo-
cal and global information exchange via a T2T module before the transformer en-
coder. CrossViT [3] leverages multi-scale features within the vision transformer,
while TNT [8] delves into the attention mechanisms within individual patches,
breaking them down into smaller components. CrossFormer [33] introduces a
novel approach using patches of varying sizes to establish cross-scale attention,
showing significant improvements across key vision benchmarks.

These advancements have established vision transformers as strong alterna-
tives to traditional Convolutional Neural Networks (CNNs) [15] in vision tasks,
with notable examples including the Swin Transformer [18] and Twins [4]. How-
ever, compared to CNNs, vision transformers often do not significantly reduce
computational costs and sometimes even require more resources.

Given the quadratic computational complexity of transformers O(N?), a log-
ical approach is to reduce the number of tokens in the transformer to potentially
speed up processing. Indeed, by selectively reducing the number of tokens propa-
gated through the network, the goal is to achieve computational efficiency with-
out compromising information integrity. Recent advancements have introduced
two main strategies: The first involves pruning tokens based on their impor-
tance, typically identified through analysis of the attention scores of the CLS
class embedding, where essential tokens are retained while less critical ones are
discarded. The second strategy suggests merging tokens based on their similarity,
where it fuses top-k most similar tokens at each Transformer layer. Moreover,
recent works have proposed using both compression paradigms at once [2,14].
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Fig.2: Overview of LoTM architecture. By focusing on adjacent tokens, LoTM
ensures that local structures within the image are preserved when applying token
merging. This strategy effectively maintains the spatial integrity of the image
information through the model. LoTM is applied on {4*" 7t" 11t} layers.

This paper delves into the second approach. In contrast to classical token
merging approaches that fuse tokens based on a similarity measure between all
token pairs in the input sequence, such as PatchMerger [23], or top-k closest
tokens to a centroid like K-Medoids [19], our method restricts the merging strat-
egy to pairs of spatially related tokens, i.e., adjacent ones. This is based on the
intuition that tokens in proximity are likely to exhibit higher similarity.

To validate our intuition, we present three illustrations in Figure 1, which
show the distribution of cosine similarity between tokens at the first layer of a
DeiT-S [25] model, after the Multi-head Self-Attention (MSA) module, on the
ImageNet-1K validation set. Figure 1(a) depicts the distribution of cosine simi-
larity between adjacent tokens, which follows a bimodal shape, with most simi-
larity scores greater than 0.5, indicating higher similarity. Figure 1(b) shows the
distribution of cosine similarity between non-overlapping windows of four tokens.



4 K. Haroun et al.

This distribution also follows a bimodal shape but is more uniform compared to
Figure 1(a), indicating lower similarity scores. Finally, Figure 1(c) presents the
distribution of cosine similarity values across all tokens in the sequence, which
conforms to a normal distribution. These results demonstrate that tokens exhibit
higher similarity when they are spatially closer.

Based on this observation, we propose to restrict the merging of tokens to
pairs of adjacent tokens to minimize information loss. To this end, we intro-
duce LoTM, a local token merging strategy that progressively merges adjacent
tokens based on their similarity scores. Notably, LoTM does not require any
additional training; it is an off-the-shelf approach that can be easily deployed.
Our contributions are as follows:

— We present LoTM, a local token merging strategy that leverages local infor-
mation by restricting the token merging strategy to pairs of adjacent tokens.

— We highlight through statistical analysis the value of considering adjacent
token pairs as merging candidates.

— We empirically evaluate LoTM on ImageNet-1K dataset, where it achieves
state-of-the-art performance against several methods.

2 Related works

2.1 Vision Transformers

The first work that introduced Transformers to vision tasks is Dosovitskiy et
al. [7]. They have achieved state-of-the-art performance after pre-training on
large datasets like JFT-300M [24] and ImageNet-21K [5]. However, its effective-
ness diminishes on mid-sized datasets such as ImageNet-1K [5], where it slightly
underperforms compared to ResNet [11] models of similar size. This is primarily
due to transformers lacking inherent image priors like locality and translation
equivariance, which are crucial for generalization with limited data [21]. DeiT [25]
addressed this issue by modifying the Transformer architecture and employing
Knowledge Distillation (KD) [12], achieving improved accuracy on ImageNet-1K.
Some work [3,16] has focused on leveraging local image information to enhance
performance, while other approaches [18,20] have explored deep-narrow archi-
tectures resembling CNNs to extract multi-scale features for downstream tasks.

Given the quadratic complexity O(N?) inherent in Transformers, researchers
have sought to optimize computations through various strategies, such as prun-
ing tokens based on their importance score or merging tokens based on their
similarity scores. The following sections will provide an overview of these state-
of-the-art approaches.

2.2 Token pruning

Token pruning progressively discards tokens, given a pruning strategy. Top-k
was first used, where only k tokens with the highest attention scores are kept
at each reduction stage [9]. EVIT [17] extends Top-k pruning by creating a
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"fused" token at each stage, computed by averaging the pruned tokens weighted
by their CLS token attention scores. Evo-ViT [29] introduces a slow-fast token
evolution method to retain more image information during the pruning process.
DynamicViT [22] utilizes an MLP predictor to dynamically sample important
tokens, trained using continuous relaxation [13] and knowledge distillation [12].

2.3 Token merging

Token merging progressively combines tokens based on a similarity or a distance
metric. ToMe [1] constructs a bipartite graph from the tokens, dividing them
into two equal-sized sets A and B, then connects each node from set A to the
most similar node in set B, and then merges the top-k most similar nodes by
averaging their tokens. K-Medoids [19] is an iterative hard-clustering method
where cluster centers minimize the Euclidean distance within clusters, updating
clusters iteratively based on the closest center. The method initializes the cluster
centers based on the CLS token attention scores. DPC-KNN [32] computes each
token’s density and minimum distance to a higher density point to define cluster
centers, averaging assigned elements. SiT [34] uses a small network to predict an
assignment matrix for a convex combination of input tokens, forming clusters.
Sinkhorn [10] uses randomly initialized learnable vectors as queries, applying the
Sinkhorn-Knopp algorithm to similarities between tokens and queries to form
an assignment matrix. PatchMerger [23|, similar to the approach of Haurum
et al. [10], constructs the assignment matrix by calculating the dot product
between queries and tokens, followed by a softmax operation to ensure a convex
combination.

However, clustering methods such as DP-KNN [32] and Sinkhorn [10] con-
sider a window of top-k tokens when merging around a centroid. Other methods,
such as PatchMerger [23], consider the similarity between a query token and all
remaining tokens, resulting in an unconstrained merging window that fuses ad-
jacent and distant tokens alike. Following our observation in Figure 1, LoTM
differs from the previous works, where we exclusively merge adjacent token pairs
according to their cosine similarity scores. This contributes to minimizing infor-
mation loss when merging, as experimentally shown in Section 5.

3 Transformer architecture

In Vision Transformers (ViTs), a 2D image I € R¥*W*C ig divided into N
independent patches I,qtch at a resolution of p x p. Each patch is then projected
into a d.-dimensional embedding, creating a visual sequence X € RV *9e_ Similar
to BERT [6], ViT introduces a learnable class token X, € R!*9 into the input
sequence, combining it with X to form X, = [X.s, X]. ViT uses a Transformer
encoder with L layers to learn a representation of the image, utilizing Multi-head
Self-Attention (MSA) and Multi-Layer Perceptron (MLP) modules alternatively,
as described below.
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3.1 Multi-head Self-Attention (MSA)

Let X € RV¥*4e denote the input sentence®, where N represents the sequence
length and d. the embedding dimension. Initially, in a self-attention layer, query
(Q), key (K), and value (V) matrices are computed from X using linear trans-
formations:

[Q7K7 V] = Xqu’vv (1)

where Wy, € R4*3dn i5 3 parameter that can be learned, and dj, represents the
dimensionality of each self-attention head. Subsequently, the attention map A is
generated by scaling the inner product of @Q and K, followed by normalization
using a softmax function:

A = Softmax <%> , (2)

where A € RV*N and A;; denote the attention score between the i-th query Q;
and the j-th key K. The self-attention mechanism then operates on the value
vectors V' to produce an output matrix:

0= AV, (3)

where O € RV*4: Tn a Multi-head Self-Attention layer with d./d; heads, the
final outputs are computed by linearly projecting the concatenated self-attention

outputs:
Z = [01§O2;~-~§Ode/dh]Wp7'oj7 (4)

where Wp,,; € R%*d is another learnable parameter, and [-] denotes the con-
catenation operation.

3.2 Multi-Layer Perceptron (MLP)

Let Z represent the output from the MSA layer. The MLP layer consists of two
fully-connected layers with a Gaussian Error Linear Unit (GELU) non-linearity,
it can be represented as:

Zip = GELU(ZWye1)Wyez, (5)

where Wy € Rée*4de and Wiea € R*@eXde are learnable parameters.

3.3 Complexity of a Transformer layer

Let #(N,d,) be the number of Floating Point Operations (FLOPs) with respect
to the sequence length N and the embedding dimension d.. The computational
burden in an MSA layer is primarily due to the projection of @, K,V matrices,

3 For simplicity, we omit the learnable class token (CLS).
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the calculation of the attention map A, the self-attention operation O, and a
linear projection Wp,.; for the concatenated self-attention outputs. The overall
FLOPs for an MSA layer amount to:

¢MSA(N7 de) = ¢qu(N7 de) + ¢A(N; de) + ¢O(N7 de) + ¢proj(N7 de)
= 3Nd? + N?d, + N?d, + Nd>
= 4Nd? + 2N?d, (6)
In an MLP layer, the majority of FLOPs are attributed to the two fully-
connected (FC) layers. The first FC layer, f.;, projects each token from R to

R*de while the second FC layer, f.o, maps each token back to R% . Consequently,
the total FLOPs for an MLP layer can be expressed as:

Oyrp(N,d.) = @y, (N,d.) + @5, (N,d.) = 4Nd? + 4Nd? =8Nd>  (7)

By integrating Eq. (6) and Eq. (7), we can derive the overall FLOPs for a
single Transformer layer:

&L (N,d.) = Prsa (N, de) + Purp (N, d.) = 12Nd? + 2N?d, (8)

Note that the complexity in Eq (8) does not take into account the projection
of image patches into token embeddings.

4 Method

4.1 Token merging

Z € RN*de represents the out token sequence of MSA. As defined in Section 2,
Token merging progressively combines tokens based on a similarity measure.
Given a similarity metric s : R% x R — R:

Zi Zj
$(2i, 2§) = 71 9
2 = el ©)
Where (z;,z;) is a pair of tokens. Let Z be a set of indices such as: Z C
{1,..., N} representing tokens to be merged, token merging computes the mean
of these tokens:

1
Zmerged = T Z Z; (10)
2=
This merged token Zmyerged then replaces the original tokens in Z, reducing

the sequence length. For instance, if we have two sets of indices Z; and Zs, the
process is formalized as:
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1)
Zmerged — ‘Il| Z merged |1-2| Z Z; (11)

i€y 1€Ly

The resultant token sequence after merging becomes:

7' =1Z;|j ¢ UL u{z) } (12)

merged’ merged

where Z’' has a reduced number of tokens after the merging operation, which
can either be performed at each layer, or at specific layers.

4.2 Local Token Merging (LoTM)

In Local Token Merging, depicted in Figure 2, we restrict the merging candidates
only to adjacent tokens, i.e., spatially related tokens, and merge the top-k most
similar pairs. This method reduces the overall token count while preserving local
spatial information.

The similarity metric s : R% x R% — R between each pair of adjacent tokens
is defined as:

Zi " Zi41

I for e {1,3,5,...,N — 1} (13)
lzillllzital

8(2i, 2i41) =

Let k be a hyperparameter representing the number of pairs to merge. Given

the previous similarity scores, we pick the top-k most similar adjacent token
pairs:

{(i1,i1 + 1), (G2,32 + 1), ..., (ig, 9k + 1)} = Top-k{s(z;, zi+1)} (14)

For each selected pair (i,7 + 1), we merge the tokens by averaging their
representations:
1
zl(n)crgcd 2 (Zi + zi+1) (15)

At last , we replace the original tokens in each selected pair with the merged
(@)

token Zerged:

The resultant token sequence after merging becomes:

= J ‘ -7 ¢ U {Z’ﬂ’ In + 1} U {follie)rged7 rrllizzrged’ o merged} (16>

Where Z’ has a reduced number of tokens after merging k adjacent pairs. In
our proposal, we perform the merging operation on three layers: {41 7th 11th}.

5 Experiments

5.1 Dataset, models and evaluation metrics

We evaluate the effectiveness of our local token merging method on the ImageNet-
1K [5] dataset, which contains 50k samples in the validation set. We use three
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Table 1: LoTM performance comparison on DeiT [25] models at different k values

for topk.
DeiT-T DeiT-S DeiT-B

topk Top-1(%) FLOPs(G)  topk Top-1(%) FLOPs(G)  topk Top-1(%) FLOPs(G)
0 72.20 1.26 0 79.82 4.65 0 81.85 17.60
10 72.16 1.16 10 79.82 4.21 10 81.85 16.54
20 71.96 1.07 20  79.82 3.92 20  81.70 15.48
30  71.57 0.97 30  79.62 3.63 30 81.44 14.43
40  70.76 0.88 40  79.19 3.26 40  80.82 13.97
44 70.00 0.85 44 T78.87 3.11 44  80.46 12.90
48  68.70 0.81 48 78.81 2.90 48  80.01 12.34

Vision Transformer backbones proposed by Touvron et al. [25]: DeiT-Tiny, DeiT-
Small, and DeiT-Base, all of which are pre-trained. Our best results are obtained
by applying LoTM to the 4" 7t" 11*" layers across all DeiT variants.

For comparison, we use two main metrics: top-1 accuracy (%) and compu-
tational cost in terms of FLOPs. The latter, described in Section 3, represents
the number of operations performed by the model for a single inference. In our
experiments, FLOPs are calculated using the fucore* toolkit.

5.2 Implementation details

Our method operates during inference, reducing the number of tokens in a pre-
trained model where images are initially split into 14x14 tokens, without re-
quiring any additional training. We conduct experiments on the ImageNet-1K
dataset with a batch size of 128. The hyperparameter k represents the number of
tokens to merge at each selected layer. We compare LoTM to several state-of-the-
art token reduction methods, including SiT [34], Sinkhorn [10], PatchMerger 23],
K-Medoids [19], DPC-KNN ([32], and ToMe [1].

5.3 Experiment results

Table 1 shows that LoTM results in a small accuracy drop while achieving
a significant reduction in FLOPs. For the DeiT-T model, the most resource-
constrained variant, we observe that the computational cost can be reduced
to as low as 0.88 GFLOPs (k=40) while maintaining an accuracy above 70%,
with only a 1.44% decrease in accuracy. This represents considerable computa-
tional savings, particularly in ultra resource-constrained environments. In the
case of the DeiT-S model, which serves as a mid-tier option, the accuracy re-
mains stable, decreasing slightly from 79.82% to 79.19% (k=40). Meanwhile, the
computational cost is reduced from 4.65 GFLOPs to 3.26 GFLOPs, i.e., 30%
reduction in complexity. Lastly, the DeiT-B model, intended for scenarios where

4 https://github.com/facebookresearch /fvcore
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Fig. 3: Comparison of LoTM to other state-of-the-art methods on DeiT-S model.
This figure shows the accuracy of various strategies given a computational bud-

get. Our model minimizes information loss when merging adjacent tokens, this
translates into higher accuracy compared to most state-of-the-art approaches.

accuracy is critical, shows a baseline accuracy of 81.85%. Our method reduces
its complexity by a third, maintaining accuracy above 80% for k—48.

In Figure 3, we compare LoTM to other state-of-the-art token merging ap-
proaches on the DeiT-S backbone across various computational budgets. LoTM
outperforms most of these approaches, demonstrating its effectiveness by mini-
mizing information loss through the merging of highly similar tokens. In Table 2,
we evaluate the same backbone with a reduction ratio of 30% in terms of FLOPs.
Our model performs better than Sinkhorn [10], PatchMerger [23|, and SiT [34],
which show accuracy drops of 14.8%, 3.0%, and 2.3%, respectively. Additionally,
our model slightly surpasses DPC-KNN [32] and K-Medoids [19], which have ac-
curacy drops of 0.95% and 1.06%, respectively. The only method outperforming
LoTM is ToMe [1], with a mere 0.17% drop in accuracy. However, it is important
to note that ToMe [1] requires training from scratch for 300 epochs on the DeiT
model ®, demanding significantly more computational resources and GPU power
compared to LoTM, which does not require additional training.

In Table 3, we provide a comparative analysis of LoTM against several state-
of-the-art token merging approaches implemented on the DeiT-B backbone, us-
ing a fixed reduction ratio of 30% in terms of FLOPs. The results highlight
LoTM'’s effectiveness in maintaining high accuracy while significantly reducing

® The reported results for ToMe [1] on DeiT [25] models are cited from the paper and
were not independently reproduced.
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Table 2: Comparison of LoTM with state-of-the-art approaches in token merging
on DeiT-S. The reduction ratio is set to 30%.

Models Top-1(%) Top-1 | (%) FLOPs(G)

Baseline [25] 79.82 - 4.65
Sinkhorn [10] 64.02 14.8 3.26
PatchMerger [23] 75.80 3.0 3.26
SIiT [34] 7752 2.3 3.26
DPC-KNN [32] 78.85 0.95 3.26
K-Medoids [19] 78.74 1.06 3.26
ToMe [1] 79.63 0.17 3.26

LoTM 79.19 0.63 3.26

computational demands. Specifically, LoTM achieves an accuracy of 80.01%,
representing a modest 1.84% drop from the baseline accuracy of 81.85%. This
minimal decrease in accuracy is notable given the substantial reduction in FLOPs
from 17.60 to 12.34 GFLOPs.

Table 3: Comparison of LoTM with state-of-the-art approaches in token merging
on DeiT-B. The reduction ratio is set to 30%.

Models Top-1(%) Top-1 | (%) FLOPs(G)

Baseline [25] 81.85 - 17.60
Sinkhorn [10] 63.36 18.49 12.34
PatchMerger [23] 74.52 7.33 12.34
SIT [34] 76.63 5.22 12.31
DPC-KNN [32] 79.06 2.79 12.34
K-Medoids [19] 79.98 1.87 12.34
ToMe [1] 81.05 0.80 12.34

LoTM 80.01 1.84 12.34

When compared to other token merging methods, LoTM notably outper-
forms Sinkhorn [10], PatchMerger [23], and SiT [34], which exhibit accuracy
drops of 18.49%, 7.33%, and 5.22%, respectively. Additionally, LoTM demon-
strates competitive performance relative to DPC-KNN and K-Medoids, which
have accuracy drops of 2.79% and 1.87%, respectively. Although LoTM’s accu-
racy reduction is slightly higher than K-Medoids [19], it remains on par with
DPC-KNN [32].

Despite the 1.84% accuracy drop observed with LoTM on the DeiT-B model,
our method is only outperformed by ToMe [1]. However, LoTM has a key ad-
vantage: it requires no additional training, making it more flexible and easily
deployable off-the-shelf compared ToMe on DeiT [25] model, which requires re-
training.
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Table 4: Comparison of LoTM with state-of-the-art approaches in token merging
on DeiT-T. The reduction ratio is set to 30%.

Models Top-1(%) Top-1 [ (%) FLOPs(G)

Baseline [25] 72.20 - 1.26
Sinkhorn [10] 53.10 19.01 0.88
PatchMerger [23] 66.81 5.39 0.88
SIiT [34] 68.99 3.21 0.88
DPC-KNN [32] 70.10 2.10 0.88
K-Medoids [19] 69.90 2.30 0.88
ToMe [1] 71.74 0.46 0.88

LoTM 70.76 1.44 0.88

Finally, Table 4 presents the results of LoTM on the DeiT-T model. Com-
pared to state-of-the-art methods, LoTM exhibits an accuracy drop of 1.44%,
which significantly outperforms Sinkhorn [10], PatchMerger [23], and SiT [34]. It
also slightly surpasses K-Medoids [19] and DPC-KNN [32] in terms of accuracy.
Although LoTM underperforms compared to ToMe [1] (that requires training)
by 0.98%, it is important to note that ToMe requires retraining, which, as stated
before, comes at the expense of a reduced flexibility and also additional energy
resources, for a gain of less than 1% in accuracy compared to our method.

6 Conclusion

In this paper, we introduced LoTM, a novel token merging strategy designed to
leverage local similarity for enhancing computational efficiency in Vision Trans-
formers (ViTs). Unlike traditional methods that compute similarities between all
tokens to guide the merging decision, our approach focuses on spatially related,
contiguous tokens. This localized strategy allows for more effective token merg-
ing, which significantly minimizes information loss, hence maintaining high accu-
racy while reducing computational complexity. Besides, our empirical evaluation
of LoTM on the ImageNet-1K dataset demonstrates that LoTM achieves state-
of-the-art performance across DeiT [25] variants that include DeiT-T, DeiT-S,
and DeiT-B. The results highlight the efficiency of our method, which achieves
higher or comparable performance than most other state-of-the-art techniques
without requiring further training.

Future work will extend local merging beyond adjacent tokens, considering
a wider pool of candidates for improved flexibility. We also aim to conduct an
experimental analysis to understand the effectiveness of local token merging.
Lastly, we plan to apply LoTM to semantic segmentation, leveraging its ability
to preserve spatial information with reduced computational cost.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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