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Abstract

The ability to predict changes in binding free energy (∆∆Gbind) for mutations at
protein-protein interfaces (PPIs) is critical for the understanding genetic diseases
and engineering novel protein-based therapeutics. Here, we present Binding Ora-
cle: a structure-based graph transformer for predicting ∆∆Gbind at PPIs. Binding
Oracle fine-tunes Stability Oracle with Selective LoRA: a technique that syner-
gizes layer selection via gradient norms with LoRA. Selective LoRA enables the
identification and fine-tuning of the layers most critical for the downstream task,
thus, regularizing against overfitting. Additionally, we present new training-test
splits of mutational data from the SKEMPI2.0, Ab-Bind, and NABE databases that
use a strict 30% sequence similarity threshold to avoid data leakage during model
evaluation. Binding Oracle, when trained with the Thermodynamic Permutations
data augmentation technique , achieves SOTA on S487 without using any evolution-
ary auxiliary features. Our results empirically demonstrate how sparse fine-tuning
techniques, such as Selective LoRA, can enable rapid domain adaptation in protein
machine learning frameworks.

1 Introduction

Selective protein-protein interfaces (PPIs) are the fundamental interaction that underpins most
biological processes and diseases. Numerous studies have highlighted how disease-related mutations
are over-represented at PPIs [1, 2, 3, 4]. Engineered antibodies, such as monoclonal antibodies and
CAR-T cells, highlight the importance of PPIs in modern medicine where they are designed to fight
viral infections, as immunotherapies for cancer, prevent organ transplant rejection, and more other
applications [5, 6, 7, 8]. The impact of a mutation on binding affinity between two proteins can be
measured by the difference in binding free energy (∆∆Gbind) before and after mutation. Currently,
accurate experimental measurements of the ∆∆Gbind of a mutation are laborious, expensive, and
time-consuming. As such, computational methods capable of accurately predicting the ∆∆Gbind of
a mutation are critical for scientific advancements. An accurate ∆∆Gbind computational method can
accelerate important therapeutic activities such as identifying disease-causing missense mutations
from genetic screens and engineering therapeutic proteins to treat diseases.

Machine learning is rapidly revolutionizing the computational landscape in biological and physical
sciences, with Alphafold2 being the quintessential example [9]. For PPIs, several machine learning
frameworks have already been proposed [10, 11, 12, 13, 14] and are primarily trained on the largest
experimental database of mutational ∆∆Gbind for structurally solved PPIs, SKEMPI 2.0 [15].
Unfortunately, SKEMPI2.0 has two limiting aspects: (1) it is majorly composed of mutations to
alanine (∼55%) and (2) only a small amount of mutations in the dataset actually increase the binding
affinity of the complex (which is often the main goal in PPI engineering). These data issues, along with
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the small size of SKEMPI2.0 has hindered the development of robust machine learning frameworks
capable of generalization. However, such data issues are not unique to ∆∆Gbind but are observed in
most biological domains where machine learning can be have the largest impact. Put simply, as of
2023 there is just not enough publicly available functional data for supervised learning.

The computational biology community has recently started leveraging self-supervised learning
followed by transfer learning techniques in order to narrow the data gap. This is highlighted in
recent structure-based frameworks, such as GearBind [13], GeoPPI [12] and Deep Local Analysis
(DLA)-mutation [14]. Both GearBind and GeoPPI use self-supervision to pre-train graph neural
networks on perturbed protein structures using a contrastive and reconstruction loss, respectively,
and then fine-tune an MLP and GBT, respectively, on ∆∆Gbind data. However, these methods
evaluate their model using complex-level cross validation, which is known to result in data leakage
[16, 17], making it hard to gauge model generalization. Similarly, DLA-mutation first pre-trains a
self-supervised 3D convolutional neural network (3DCNN) on masked local chemical environments
(masked microenvironments) of residues and then fine-tunes an MLP on ∆∆Gbind data. Like DLA-
mutation, our framework also makes use of masked microenvironments for pre-training and leverages
the same test set allowing direct comparison. However, DLA-mutation requires both the wildtype
and mutant structure, uses Rosetta’s backrub protocol to sample the conformational landscape of
the local environment, and relies on evolutionary auxiliary features — which are often not available
for antibodies — to achieve state-of-the-art (SOTA) results. Furthermore, DLA-mutation fails to
incorporate several other machine learning advancements that have been shown to improve model
performance and speed up training and inference for supervised models.

Here, we present a sparse fine-tuning approach that can be applied to pre-trained models when the
downstream functional data is limited. Our sparse fine-tuning approach, dubbed selective LoRA,
synergizes layer selection via gradient norms with LoRA to optimize fine-tuning while regularizing
overfitting. Additionally, we present PPI datasets with train-test splits that use a strict 30% sequence
similarity threshold to avoid data leakage during model evaluation. We demonstrate that applying
selective LoRA to Stability Oracle [18] — a structure-based graph transformer framework for
thermodynamic ∆∆G prediction — enables us to quickly fine-tune on protein-protein and protein-
nucleotide interface datasets. Train on one A100, it takes us ∼2 minutes to finetune. Our fine-tuned
model, Binding Oracle, when trained with Thermodynamic Permutation data augmentation [18],
achieves SOTA on the S487 test set. These results demonstrate how sparse fine-tuning techniques can
enable rapid domain adaptation in protein machine learning frameworks.

2 Methods

In this section, we delve into our methodology. We begin by discussing our approach to layer
fine-tuning and the intricacies of LoRA fine-tuning, as shown in Figure 1. We refer the readers to
Appendix A for the introduction about our pre-trained ∆∆G prediction model, an exploration of our
data augmentation strategies and how we make new datasets and avoid data leakage.

LoRA Although numerous methods for efficiently fine-tuning large models exist, their performance
often slightly trails the traditional approaches. An exception to this trend is the Low Rank Adaptation
(LoRA) [19] method, which, in certain cases, even outperforms full fine-tuning in terms of accuracy
and other metrics. Instead of modifying every weight in a pre-trained model, LoRA optimizes two
compact matrices that approximate the primary weight matrix. Once fine-tuned, these matrices,
forming the LoRA adapter, seamlessly integrate with the pre-trained model, enhancing its predictive
capabilities. In this study, we incorporate the LoRA technique for select MLP layers within the
model’s backbone. By integrating LoRA in this manner, we aim to harness its capabilities for efficient
fine-tuning, better generalization, and optimizing the performance of these specific layers while
maintaining the integrity of the pre-trained knowledge.

Finetuning Layer Selection Previous research has highlighted that fine-tuning certain layers in
a neural network might not significantly impact performance [20]. Consequently, various layer
selection techniques have been proposed for refining models for transfer learning [21, 22, 23, 24].
In this study, we utilized the gradient norms on our training data to select the layers for fine-tuning.
We compute each criterion for each tensor based on its flattened gradient g and parameters θ. We

2



+

Linear: NxN

△
△

G
bi

nd

......

Training Loss LoRA on Selected LayerLayer Selection

Trainable

Freeze

Freeze

Freeze

Freeze

Freeze Pretrained
 Linear Layer

Finetune LoRA
Weight

Linear: RxN

Trainable

|| Grad ||2: 0.010 0.120 0.140 0.009 0.0120.008

Linear: NxR

Figure 1: Left. The layer selection illustration: We only finetune selected layers and the final
regression head. Right. The LoRA visualization: While we retain the pre-trained MLP weights, we
fine-tune the low-rank matrices, as indicated by the purple elements in the figure. N and R denotes
the feature dimension and the low-rank value, repsectively.

measure the ratio of gradient norm to parameter norm,

Score =
∥θ′ − θ∥2
∥θ∥2

, where θ′ = θT , θ0 = θ, θt+1 ← θt − αgt, (1)

where T is the time step, α is step size and gt denotes t−step gradient. Here, we prioritize layers
exhibiting larger gradients for selection. This strategy stems from our underlying hypothesis: layers
with pronounced gradient magnitudes are likely to carry more pertinent information for the task. In
our problem set, we have few number of data, and therefore it’s easy to calculate the exact gradient
on all the training data and accumulate it over several iterations.

Block Index 1 2 3 4

Attention KQV 0.003 0.004 0.002 0.005
Projection 0.004 0.003 0.004 0.003

MLP Linear1 0.004 0.012 0.004 0.013
Linear2 0.005 0.011 0.002 0.014

Table 1: We present the scores as defined by (1), computed for all dense layers in the four transformer
blocks of our pre-trained model (SO). ‘KQV’ denotes the projection layer for Key, Query, Value
embeddings; ‘Projection’ denotes the projection layer that follows the attention layer. ‘Linear1’ and
‘Linear2’ denotes the two linear layers. We define the time step as T = 5 and α = 10−3.

In practice, our pretrained model has a backbone architecture that consist of 4 graph-transformer
blocks and we calculate the (1) for every dense layer in the backbone. As observed in Table 1, four
linear layers (two in the MLP of block 2 and two in block 4) exhibit higher gradient norms than the
rest. Therefore, we focus on fine-tuning only these layers with LoRA. In the future, we will extend
this finetuning framework and verify whether it works for LLMs and large diffusion models.

3 Results

In order to evaluate the performance of our proposed model, Binding Oracle (BO), we carry out a
series of experiments aimed at answering several important questions. 1) Can we match or outperform
existing methods which make use evolutionary features? 2) What is the proper approach to fine-tune
our pre-trained model on binding ∆∆G? We refer the readers to the Appendix B for results about
complex/mutation-level cross validation, data augmentation, different training and test sets, and
detailed discussions about generalization to other interfaces like protein-nucleotide and protein-ligand

Comparing with Baselines on Current Benchmarks S487 [25] is a commonly-used test dataset with
487 mutations from 56 complexes. As demonstrated in Table 2, we compare the Pearson correlation
coefficient and root-mean-squared-error (RMSE) for all methods on this dataset. We observe that our
newly proposed Binding Oracle (BO) surpasses all existing methods, encompassing both traditional
computational tools and recently introduced deep learning techniques. When compared with the
pretrained model, Stability Oracle (SO), BO enhances the Pearson correlation coefficient by 22%
and reduces the RMSE by 6%. More importantly, BO consistently delivers superior results when
comparing with the recent SOTA method, Deep Local Analysis (DLA-mutation) [14], while having a
much improved runtime. Beyond correlation metrics, it’s noteworthy that DLA-mutation exhibits two
distinct disadvantages relative to our approach: Firstly, DLA-mutation necessitates 3D structures for
both the wild-type and mutation, adding computational overhead during data preparation. Secondly,
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the reliance on supplementary evolutionary features by DLA-mutation further increases the time
costs, while BO does not make use of any evolutionary input features and relies solely on the structure.

Method iSee FoldX mCSM SAAMBE DLA-mutation Stability Oracle Binding Oracle
Pearson ↑ 0.25 0.34 0.25 0.40 0.42 0.38 0.45
RMSE ↓ 1.32 1.53 1.35 - 1.31 1.34 1.27

Table 2: Pearson correlation coefficient and RMSE for several literature methods, Stability Oracle,
and Binding Oracle on S487. Metrics for iSee, FoldX, mCSM literature methods are from [26, 25].

Performance of Different Finetuning Methods We showcase the impact various strategies for
fine-tuning across regression and classification metrics in Table 3. The results demonstrate: ❶
End-to-end fine-tuning results in diminished performance. We suspect this is due to the small size
of the training set and domain transfer from ∆∆G to ∆∆Gbind. ❷ Both layer selection and LoRA
fine-tuning contribute positively. ❸ Synergizing layer selection with LoRA fine-tuning (BO) results
in improved performance for every metric.

Method Pearson ↑ Spearman ↑ RMSE ↓ Accuracy ↑ Precision ↑ Recall ↑ AUC ↑
Stability Oracle (Zero-Shot) 0.38 0.38 1.34 0.76 0.49 0.27 0.70
Freeze backbone 0.37 0.38 1.27 0.75 0.47 0.26 0.70
End-to-end fine-tuning 0.34 0.34 1.42 0.70 0.42 0.25 0.68
End-to-end LoRA fine-tuning 0.42 0.42 1.30 0.77 0.48 0.28 0.71
Selected layer fine-tuning 0.39 0.39 1.32 0.76 0.47 0.28 0.70
Binding Oracle (Selective LoRA) 0.45 0.45 1.27 0.78 0.55 0.29 0.72

Table 3: Regression and classification metrics on the S487 test set for the fine-tuned Stability Oracle
models. Freeze backbone: fine-tune only the regression head; End-to-end fine-tuning: fine-tune every
layer in the backbone and regression head; End-to-end LoRA fine-tuning: fine-tune every layer in the
backbone and regression head with LoRA; Selected layer fine-tuning: fine-tune the selected backbone
layers; Binding Oracle: fine-tune the selected backbone layers with LoRA.

4 Conclusion

In this research, we explored the intricacies of fine-tuning Stability Oracle, a ∆∆G of unfolding
predictor trained on a subset of the cDNA megascale dataset [27], to instead predict the impact
on ∆∆Gbind for point mutations at protein-protein interfaces. In order to fine-tune on a domain
with limited publicly available data, we proposed a sparse fine-tuning approach that regularizes
against overfitting and enhances generalization. Our empirical results underscore the superiority of
our method over existing alternatives and enabled us to achieve SOTA results on the S487 test set
(ρ=0.45). Compared to DLA-mutation, our method has several advantages: 1) it does not require a
mutant structure; 2) it does not require expensive data preprocessing (i.e., Rosetta’s backrub protocol);
3) it does not use any evolutionary auxiliary features and solely relies on structural features; 4) we
observe consistent performance between mAb-AG and TCR-pMHC protein-protein interfaces and
modest generalization to protein-nucleotide interfaces; 5) the fine-tuning takes ∼2 minutes enabling
rapid experimentation of sparse-fine-tuning techniques and hyperparameter search.

Stability Oracle zero-shot capability (ρ=0.38 on S487) was somewhat surprising since the cDNA
dataset consist of single domain monomeric structures. Thus, demonstrating how fine-tuning from a
pre-trained model on ∆∆G of unfolding provides improved representations for ∆∆Gbind. However,
in the grand scheme of things selective LoRA only enabled a marginal improvement and much more
progress is still needed. This highlights how the lack of experimental PPI data, and its associated
biases, is the primary hurdle for achieving significant improvements in PPI predictions. Similar to the
stability community with cDNA-display proteolysis, a high throughput screening breakthrough, is
needed to generate large and diverse datasets for deep learning to have its AlphaFold2 moment.

Looking forward, we intend to further refine our model by exploring proper evaluation of the
protein-nucleotide interface, incorporation of ∆∆Gbind data for the protein-ligand interface, and
collaborations with experimentalist. Specifically, we aim to adapt and validate Binding Oracle ability
to stabilize antibody-antigen interactions for B and T cells. We hope to further bridge the gap for
ML-guided protein engineering, fostering an era of rapid and informed breakthrough discoveries.
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A Data Augmentation and Generation

Stability Oracle (SO) [18] is a structure-based deep learning framework that makes use of several
innovations in data and machine learning engineering specific to stability prediction. SO uses a
graph-transformer architecture that treats atoms as tokens and utilizes their pairwise distances to
inject a structural inductive bias into the attention mechanism. The input to SO consists of the local
chemistry surrounding a residue with the residue deleted (the masked microenvironment) and two
amino acid embeddings to represent a specific point mutation. This design decision enables Stability
Oracle to generate all 380 possible point mutations from a single microenvironment. In this study, we
utilize SO as our pre-trained model and subsequently fine-tune it to predict Kd changes associated
with single-point mutations in the binding site for a given protein.

One of the paramount advantages of the SO model deserves emphasis. Traditional structure-based
methods for ∆∆G prediction typically necessitate both a wild-type structure and a mutated variant.
Generating these structures, often done through computational tools, can be time-consuming, thereby
introducing substantial delays when deploying the model. In contrast, the SO model simplifies this
process by only requiring a wild-type structure. Remarkably, despite this streamlined input, SO still
manages to deliver superior results compared to its counterparts.

Dataset Generation Due to known data-leakage issues plaguing most training-test splits in the
literature, we curated or own training and test sets to ensure we our results are not inflated due
to data leakage. First we curated all available data at the protein-protein and protein-nucleotide
interfaces from the SKEMPI2.0 [15], Ab-Bind [28], and NABE databases [29]. Mutations from
SKEMPI 2.0, Ab-Bind, and NABE were combined to produce a dataset with 5504 non-redundant
single point mutations at protein-protein and protein-nucleotide interfaces. Before combining the
datasets, Skempi had all mutations not collected by the SPR, ITC, FL, IASP, and SFFL experimental
techniques, high-order mutations, and mutations from the prolactin-prolactin receptor complex
removed, resulting in 3858 single mutations. From combining the three datasets, we had 5,596
mutations with 536 having duplicate entries that needed further processing. Duplicated mutations
that had discrepancy between their ∆∆G sign were discarded. Duplicated mutations with neutral
and stabilizing entries (∆∆G < 0.5 kcal/mol) and discrepancy larger than 0.5 were also discarded
since we could not confidently discern if this mutation was neutral, destabilizing, or stabilizing. For
the remaining duplicates, the ∆∆G with the largest magnitude was assigned as the ∆∆G label in
order to bias predictions from being narrowly distributed around 0 kcal/mol. This deduplication
procedure resulted in 92 mutations being discarded and a final dataset of 5504 mutations (B5504)
from 670 PDB entries. This procedure was repeated for just the protein-protein interface databases
(SKEMPI2.0 and Ab-Bind). Here, the final dataset consist of 3705 mutations (B3705) from 263 PDB
entries.

Training-Test Split Generation With our B5504 dataset, we used the S487 [25] dataset to seed
our test set and guide or train-test split. We used MMSeqs2 [30] to remove any proteins with over
a 30% sequence similarity in B5504 to S487, which were then added to S487. This procedure was
repeated to iteratively prune any sequences originally in B5504 similar to the growing test set until
no sequences were removed. This resulted in the binding training and test sets with 3542 (B3542)
and 1962 (T1962) mutations, respectively, with a maximum overlap of 30% sequence similarity. The
procedure was repeated with S487 and B3705, our dataset lacking protein-nucleotide mutations. This
resulted in a training and test sets of solely protein-protein interactions with 1816 (B1816) and 1889
(T1889) mutations, respectively, with a maximum overlap of 30% sequence similarity.

Data Augmentation While fine-tuning with sparsity proves beneficial for few-shot transfer, in-
corporating data augmentation further enhances model generalization. Our training and test sets
are made up of a heavily biased mutation type distribution and the ∆∆G labels are significantly
imbalanced towards destabilizing mutations. In our work, we use the data augmentation technique,
Thermodynamic Permutations (TP) proposed in Stability Oracle [18]. Thermodynamic Permutations,
similar to Thermodynamic Reversibility (TR) [31], are based on the state function property of Gibbs
free energy [32]. For a specific position in a protein, TP expands n empirical ∆∆G measurements
into n(n− 1) thermodynamically valid measurements, which can increase a dataset by up to an order
of magnitude depending on the number of residues that have multiple amino acids experimentally
characterized. Below are the TP results for B3542, B1816, T1962, and T1889. When we used TP
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on the two training sets, we find that 40 residues in the dataset have been deep mutational scanned.
Thus, these 40 residues generate 13680 additional ∆∆G data points and bias the datasets towards
these 40 microenvironments. We refer the readers to Table 4 for details about our dataset.

Dataset #PDB #Mutations #Residues #Permutation Mutations #All Mutations
B1816 147 1,816 885 14,532 16,348
B3542 540 3,542 2,457 15,128 18,670
T1889 116 1,889 1,647 748 2,637
T1962 130 1,962 1,720 748 2,710

Table 4: Description about the data augmentation details. B3542 and B1816 serve as our training
datasets, whereas T1889 and T1962 function as test sets. The term ‘#PDB’ represents the count of
unique pdb IDs. ‘#Mutations’ indicates the total number of mutations present in the original dataset,
and ‘#Residues’ specifies the total residue count. It’s worth noting that certain residues might exhibit
multiple mutations, allowing for permutation-based augmentation. The ‘#Permutation Mutations’
denotes the volume of data that can be generated using this technique.

B Additional Experiments

Hyperparameter Configuration We trained our model using a batch size of 256, learning rate of
10−5, weight decay of 10−5, LoRA rank of 8 and 150 iterations with Adam [33] optimizer for all the
experiments in this section. It takes approximately 2 minutes to train the model on an NVIDIA 80G
A100 using a single GPU, and less than 1 minute to generate the graphs and run inference on T1962
test set (1,962 inputs). All the results in this section are averaged over three trials.

Model Size We finetune our BO model based on the Stability Oracle model, whose backbone
contains 816K model parameters, and the regression head contains 202K model parameters. In this
work, we tune the regression head and 8K parameters in the backbone (1% backbone parameters.)

Mutation-level and Complex-level Train-test Split In literature, some researchers make mutation-
level or complex-level train-test split to verify their model performance. Here, mutation-level means
the same residue does no appear in both the training and test set, complex-level means the same
complex only appears in the training or test set. In Table 5, we demonstrate the performance of our
Binding Oracle model in this setting, where we do 5-fold train-test split and report the performance.
Mutation-level or complex-level train-test split makes the metrics much better than our setting (based
on sequence similarity).

Data Pearson ↑ Spearman ↑ RMSE ↓ Accuracy ↑ Precision ↑ Recall ↑ AUC ↑
Complex Level 0.65 0.73 1.48 0.73 0.88 0.32 0.81
Mutation Level 0.70 0.77 1.32 0.81 0.80 0.42 0.83

Table 5: We display BO’s performance for 5-fold cross-validation (with mutation-level or complex-
level split) on B1816 dataset.
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Figure 2: Evaluating the impact of Thermodynamic Permutation data augmentation of Binding
Oracle, when training on B3542 and B1816 datasets.
Performance of Different Training Datasets In Table 6, we showcase the efficacy of models
when trained on various datasets. The ‘iSee Training’ dataset, proposed by iSee [25] and used by
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DLA-mutation [14], was used for training here as well in order to have direct comparison with these
two ML frameworks. Additionally, we introduced two new training sets with less than 30% sequence
similarity to S487: B1816 and B3542. Training on both B1816 and B3542 results in improved
regression and classification and B3542 extends generalization to protein-nucleotide interactions. In
the future we plan to propose a formal test set for evaluating the protein-nucleotide interactions.

Dataset Pearson ↑ Spearman ↑ RMSE ↓ Accuracy ↑ Precision ↑ Recall ↑ AUC ↑
Stability Oracle (Zero-Shot) 0.38 0.38 1.34 0.76 0.49 0.27 0.70
Binding Oracle (iSee Training) 0.42 0.43 1.31 0.80 0.41 0.28 0.71
Binding Oracle (B3542) 0.43 0.43 1.27 0.84 0.53 0.35 0.71
Binding Oracle (B1816) 0.45 0.45 1.27 0.78 0.55 0.29 0.72

Table 6: Binding Oracle’s performance on several regression and classification metrics when trained
on different datasets and evaluated on S487.

Thermodynamic Permutation Data Augmentation Due to the limited amount of training data, we
explored if Thermodynamic Permutations (TP) could alleviate known biases that plague experimental
∆∆G datasets curated from the literature, such as incomplete mutation type sampling, oversampling
of mutations "to", and the strong imbalance between stabilizing and destabilizing mutations [16]. TP
expands the B1816 dataset with 14532 additional mutations and results in improved performance
(Figure 2). This improvement is also observed when applied to the B3542 dataset, which contains
an additional 1.7k protein-nucleotide mutations (Figure 2). This results demonstrate how TP aug-
mentation is particularly advantageous when dealing with small and bias datasets. It should be noted
that due to the particular composition of SKEMPI2.0, most of the TP-based mutations (13680 of the
14532) come from 40 residues that have had all 20 amino acids characterized. Thus, in this situation,
TP biases the training towards a small amount of microenvironment that have had all 20 amino
acids characterized (microenvironment bias). Nonetheless, TP augmentation results in improved
performance on test sets with less than 30% sequence similarity.

Performance on New Test Sets While S487 allows us to evaluate performance against the literature,
the test set is small and is heavily biased with mutations "to" alanine . To attenuate these biases
and better assess the ability of Binding Oracle to generalize, we extend S487 with any additional
∆∆G mutational data from similar proteins (>30% sequence similarity) to generate T1889 and
T1962, where T1962 includes a small amount of protein-nucleotide mutations. Figure 3 depicts the
performance of the pre-trained model, Stability Oracle, and Binding Oracle on a variety of training
sets when evaluated on T1889, T1962, and their TP augmented versions. These results depict that
sparse fine-tuning of Stability Oracle to ∆∆Gbind datasets can provide marginal improvements and
highlight how data-scarcity is the primary limitation for making robust and generalizable models.
Furthermore, Binding Oracle performance drops when compared to the smaller S487 test set (shown in
Table 3), demonstrating the need for larger more diverse test sets to better gauge model generalization.
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Figure 3: Comparative Analysis of the Binding Oracle Trained on Diverse Datasets, Evaluated on
T1962 and T1889. Detailed numbers are shown in Table 7 in appendix.

Results on Different Biological Function Types To further assess the generalization of the Binding
Oracle framework, we showcase its performance across the functionally distinct interfaces in the
T1962 test set. In Table 8, we can observe that the BO model has similar performance across a
spectrum of functional interfaces. Notably, the results for the protein-nucleotide interface are worse
compared to the two protein-protein interfaces (mAb-Ag/TCR-pMHC), in particular the regression
metrics. We hypothesize this is due the small size of the evaluation set. Thus, making it difficult
to assess how well Binding Oracle generalizes to protein-nucleotide interfaces and is an avenue
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Model Pearson ↑ Spearman ↑ RMSE ↓ Accuracy ↑ Precision ↑ Recall ↑ AUC ↑
T1962

Stability Oracle (Zero-Shot) 0.37 0.29 1.46 0.72 0.22 0.33 0.66
Binding Oracle (B1816) 0.41 0.34 1.45 0.70 0.48 0.30 0.67
Binding Oracle (B3542) 0.37 0.32 1.45 0.74 0.30 0.32 0.66
Binding Oracle (iSee Training) 0.40 0.32 1.48 0.72 0.39 0.33 0.66

T1962 + TP
Stability Oracle (Zero-Shot) 0.38 0.29 1.62 0.71 0.38 0.37 0.67
Binding Oracle (B1816) 0.41 0.32 1.60 0.73 0.40 0.39 0.68
Binding Oracle (B3542) 0.38 0.31 1.59 0.73 0.35 0.39 0.68
Binding Oracle (iSee Training) 0.41 0.32 1.62 0.71 0.43 0.37 0.68

T1889
Stability Oracle (Zero-Shot) 0.37 0.30 1.47 0.72 0.23 0.33 0.66
Binding Oracle (B1816) 0.41 0.34 1.45 0.70 0.50 0.34 0.67
Binding Oracle (B3542) 0.40 0.32 1.44 0.72 0.48 0.32 0.67
Binding Oracle (iSee Training) 0.41 0.32 1.50 0.71 0.47 0.33 0.66

T1889 + TP
Stability Oracle (Zero-Shot) 0.39 0.30 1.61 0.72 0.41 0.35 0.68
Binding Oracle (B1816) 0.42 0.34 1.45 0.72 0.47 0.36 0.69
Binding Oracle (B3542) 0.41 0.32 1.60 0.71 0.45 0.37 0.69
Binding Oracle (iSee Training) 0.41 0.32 1.55 0.72 0.45 0.38 0.69

Table 7: Comparative Analysis of the Binding Oracle trained on Diverse Datasets. The values
presented are averages from three trials.

we will further explore for improvements in the future. DLA-mutation[14] did a similar analysis
using their complex level train-test split model where they report pearson correlations of 0.11 and
0.24 for mAb-AG and TCR-pMHC, respectively. And, although we achieve 0.31 and 0.32 person
correlations for mAb-AG and TCR-pMHC, respectively, these results are not comparable to DLA-
mutation’s results due to their smaller test set and data leakage from their complex level splitting.
However, what is comparable is the discrepancy in performance between mAb-AG and TCR-pMHC
for DLA-mutation and Binding Oracle. Here, Binding Oracle seems to generalize well while
DLA-mutation has significantly worse performance on mAb-AG compared to TCR-pMHC. This
demonstrates how Binding Oracle is much better at generalizing across the two protein-protein
interfaces compared to DLA-mutation. We were unable to obtain protease-inhibitor metadata to
conduct that comparison and the remaining data in T1962 is labeled with unknown.

Data #Mutation Pearson ↑ Spearman ↑ Accuracy ↑ Recall ↑ Precision ↑ AUC ↑
Pr-NA 73 0.12 0.16 0.72 0.67 0.31 0.69
mAb-AG 489 0.31 0.31 0.78 0.64 0.37 0.73
TCR-pMHC 397 0.32 0.32 0.76 0.49 0.22 0.70
Unknown 1003 0.35 0.34 0.79 0.53 0.27 0.71

Table 8: We present the Binding Oracle (trained on B1816 with TP) performance on different biology
function types in our test set.
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