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Abstract

Universal self-supervised learning (SSL) algorithms hold enormous promise for
making machine learning accessible to high-impact domains such as protein bi-
ology, manufacturing, and genomics. We present DABS 2.0: a set of improved
datasets and algorithms for advancing research on universal SSL. We extend the
recently-introduced DABS benchmark with the addition of five real-world science
and engineering domains: protein biology, bacterial genomics, multispectral satel-
lite imagery, semiconductor wafers, and particle physics, bringing the total number
of domains in the benchmark to twelve. We also propose a new universal SSL
algorithm, Capri, and a generalized version of masked autoencoding, and apply
both on all twelve domains—the most wide-ranging exploration of SSL yet. We
find that multiple algorithms show gains across different domains, outperforming
previous baselines. In addition, we demonstrate the usefulness of DABS for scien-
tific study of SSL by investigating the optimal corruption rate for each algorithm,
showing that the best setting varies based on the domain. Code will be released at
http://github.com/alextamkin/dabs.

1 Introduction

Recent months have continued to see the rise of large, self-supervised learning (SSL) models across
multiple domains [28, 31, 14, 4, 21, 77]. These works have been characterized by an increasing
convergence upon a similar set of methods [71, 10] generally involving large transformer model
architectures trained on large-scale datasets. Despite this trend, the actual learning tasks used to
train these SSL models still tend to vary significantly: contrastive, autoregressive, and denoising
objectives have each claimed their own niche, and different techniques still predominate in different
communities. While some prior work has moved towards a more domain-agnostic approach to SSL,
these works have largely been limited to analyzing the well-studied domains of images, text, and
speech [3, 6], leaving open the question of generalization to less-studied domains, including scientific,
medical, and engineering settings.

The DABS benchmark [62] was developed to provide a testbed for research on universal SSL
algorithms that could be applied across seven different domains, including less common settings
such as wearable sensors and chest x-rays. DABS can be used to develop new and improved
universal SSL algorithms, or to conduct scientific studies on pretraining and transfer across diverse
domains. Crucially, evaluating on a breadth of different domains enables researchers to have
greater confidence that their methods will generalize to a range of different settings in the real world,
and also to investigate how design choices made for one domain can affect learning on others.
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While one goal of the DABS benchmark is to support research for underserved domains where there
is less research on pretraining, three of seven DABS domains in the original paper were English
text, natural images, and speech recordings, which have already received ample attention as settings
for self-supervised learning. To accelerate research in high-impact domains where data is prevalent
but human labels are scarce, we introduce DABS 2.0, adding five new science and engineering
domains to the existing 7 domains in the DABS benchmark, each containing their own pretraining and
transfer datasets. Importantly, the datasets in these domains were curated and created with the help of
domain experts, and center on real-world tasks such as detecting defective semiconductor wafers or
identifying exotic particles. The addition of these domains enable us to conduct the widest-ranging
study of self-supervised learning yet.

We also introduce two new universal SSL algorithms and evaluate them on all twelve domains. The
first is a generalized version of masked sequence modeling, also referred to as masked autoencoding
(MAE), an approach that has seen success when applied to text [17], images [28], and videos [21, 66].
The second is a contrastive-masked algorithm called Capri that generalizes approaches previously
explored in natural images [67] and audio [78], and relaxes some modality-specific components
required by MAE.

Finally, we demonstrate the usefulness of DABS for studying the science of self-supervised learning
by evaluating three algorithms on all 12 domains across three different corruption fractions,
controlling the difficulty of the self-supervised task (i.e. what fraction of embeddings are masked
or permuted). The resulting methods show considerable gains on certain domains. However, this
improvement is not uniform across domains, revealing an important direction for future work. We
also contribute new functionality to the DABS codebase, enabling easy execution of pretraining and
transfer runs in sequence on a given accelerator to facilitate easy experimentation.

We hope these contributions help advance the study of universal self-supervision, enabling better
scientific understanding and practical advancement of SSL, resulting in positive impact on real-world
problems.

2 Domains and Datasets

Here, we describe the new datasets in DABS 2.0. In the original DABS paper [62], the benchmark
domains represent a range of research communities, including communities with large bodies of
work on self-supervised learning (e.g. text, natural images) to domains with more nascent streams of
research (medical imaging, sensor recordings). In DABS 2.0, we bolster our focus on the latter group
by adding five domains representing science and engineering fields. Importantly, the datasets in all
five domains were created or curated with the help of domain experts. As in the original DABS paper
[62], we choose open-access datasets, in particular preferring datasets that could be automatically
downloaded given the large number of datasets in the benchmark (57). Some examples of the
pretraining datasets from each domain are depicted in Figure 1, left. Similar to the original DABS
domains, dataloading and preprocessing within each dataset has been standardized to ensure fair
comparisons; more information about data processing for each domain is provided in the Appendix.

Bacterial Genomics Genomic sequences are similar to text domains in that both contain sequences
of discrete tokens. With new species of bacteria being discovered and sequenced every year, the
field of bacterial genomics is not only data rich, but also offers the opportunity to explore how self-
supervised methods generalize under temporal distributional shifts. We pretrain using the training set
of the Genomics OOD Dataset [53], consisting of 1M DNA sequences across 10 bacterial classes
discovered before 2011. We evaluate transfer on the in-distribution validation set of the Genomics
OOD dataset, containing 100,000 labeled examples from those same bacterial classes, and on the
out-of-distribution validation set containing 600,000 examples across 60 bacterial classes discovered
between 2011 and 2016. To prepare the input for models, we tokenize each genomic sequence at the
nucleobase level: adenine (A), cytosine (C), guanine (G), and thymine (T).

Semiconductor Wafer Manufacturing While natural images are a popular domain for applying
SSL techniques, it remains unclear whether natural image-centric strategies will generalize to
industrial settings, such as detecting defects in semiconductor wafers. To assess how SSL techniques
perform on such real-world images we consider the WM-811K[74] dataset, a corpus of semiconductor
wafer measurements labeled with their specific class of defect (e.g. edge-ring, donut, center, local,
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Figure 1: Left: The five new domains in DABS 2.0. From left to right, then top to bottom:
Semiconductor wafers, multispectral satellite imagery, protein biology, bacterial genomics, particle
physics. Examples taken from the pretraining dataset of each domain. 20 wafer examples are shown
for semiconductors, a single input is shown for all other examples. Satellite imagery shows all 13
channels of a single multispectral image. See Section 2 for more information about each of the new
domains. Right: The seven original domains from DABS 1.0 that we also train and evaluate on.
From left to right, then top to bottom: Wearable Sensors, English Text and Multilingual Text, Speech
Recordings, Chest Xrays, Paried Image + Text, Natural Images.

scratch) or lack of defect. We pretrain on the 638,597 unlabeled examples from the WM-811K
dataset. For transfer accuracy, we evaluate on the remaining 172,950 labeled wafers from WM-811K.
The data for each wafer map is a 2D array of scalars where 0 represents the background of the wafer,
1 represents dice (semiconducting materials) that are not defective, and 2 represents dice that are
defective [74]. To prepare the input for the model, we convert the 0,1,2 representation into grayscale
pixels (black, 50% grey, and white) to produce a two-dimensional image.

Particle Physics High energy physics, also known as particle physics, is one of a growing number
of scientific communities using deep learning to gather insights from their data. These datasets are
often tabular in nature, and have the potential to contain millions of examples due to the large-scale
nature of these experiments. We pretrain on a randomly selected 9.9M instances from the HIGGS
dataset [7], a particle physics benchmark containing 21 kinematic properties, and 7 functions of
these kinematic properties, for 11M Monte Carlo simulations of particle collisions. The task is to
distinguish between particle collision simulations generated by a signal process, involving a Higgs
boson, from a background process that produces the same resulting particles but that does not involve
a Higgs boson. We evaluate transfer on the remaining 1.1M instances of the HIGGS dataset.

Protein Biology Protein databases have increased exponentially in size over the past several years
[15], with much of this data lacking additional human annotations. At the same time, recent advances
have shown SSL to be a powerful tool for extracting knowledge from unlabeled protein sequences
[50]. To determine the success of domain-agnostic approaches with respect to learning from protein
sequences, we pretrain on Pfam [20], a database with 31M protein sequences used commonly in
bioinformatics research. We evaluate transfer on several tasks from the TAPE benchmark [50],
namely: the Fluorescence [56] dataset, Remote Homology Detection dataset (using the training and
validation sets from [36], derived from the SCOP 1.75 database [23] [42]), Secondary Structure
Prediction dataset (training and validation sets from [36], with data derived from the Protein DataBank
[9]), and the Stability [54] dataset. We tokenize the protein sequences at the amino-acid level to
create inputs for the model. These tasks and associated datasets are described in further detail in the
TAPE benchmark [50].
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Multispectral Satellite Imagery While similar in some respects to natural images, satellite imagery
differs in that remote sensing instruments may often capture a range of spectral bands beyond
the typical RGB colorspaces, including near infrared and shortwave infrared. These additional
spectral bands may be useful for a range of environmental or social planning purposes by providing
information about land temperatures, soil water content, or correcting for atmospheric effects like
clouds or precipitation [29]. However, these bands often have different characteristics from typical
RGB images, making certain techniques (e.g. colorspace-based augmentations) inapplicable. To
test how domain agnostic SSL algorithms perform on satellite imagery, we pretrain on a randomly
selected 24,300 examples from EuroSAT [29], a dataset constructed from Sentinel-2 satellite images
covering 13 spectral bands. We evaluate transfer on the remaining 2,700 examples from EuroSAT.

Existing DABS 1.0 Domains These domains join the seven existing domains from the original
DABS paper: Natural Images, Speech Recordings, English Text, Multilingual Text, Wearable Sensors,
Chest X-Rays, Paired Images and Text (Figure 1, right), bringing the total number of domains in the
benchmark to twelve. See the original DABS paper [62] for more information about each of these
domains. In the following sections we train models for all twelve domains.

3 Algorithms

The original DABS paper [62] presented the first universal SSL algorithms evaluated across seven
different pretraining datasets. Here, we present two additional domain-agnostic algorithms and
evaluate their performance on the new full suite of 12 DABS domains. For all algorithms, we leverage
the same Domain Agnostic Transformer approach used in the original DABS paper [62], which uses
a set of embedding modules to map inputs to sequences of embeddings (e.g. via token, patch, or
segment embeddings) then concatenates them as input to an encoder-only transformer model.

3.1 Generalized Masked Autoencoding

One popular strategy for self-supervised learning is masked sequence modeling, also known as
masked autoencoding (MAE). A breakthrough instantiation of this method was BERT [17] in the
context of natural language text (although the roots of the idea extend much earlier [70, 45]), and it
has recently seen a new wave of adaptation for continuous domains such as audio, images, and video
[28, 25, 66, 21].

We generalize the MAE framework to train on all 12 DABS domains as follows: For tokenized
domains (English and multilingual text, bacterial genomics, and proteins) we predict the missing
token with a softmax layer and use the negative log-likelihood loss. For continuous domains (natural
images, chest x-rays, speech, sensors, semiconductor wafers, particle physics, multispectral satellite
imagery) we directly predict the output token and apply a mean-squared error loss. For multimodal
datasets (image and text) we apply the respective loss to each tokenized or continuous modality
within the input.

While this generalization is a straightforward way to evaluate MAE across the DABS domains, we
note that it is not without complications. First, the MAE paradigm is somewhat less general than
other universal SSL methods because the loss is dependent on the domain of the input (or part of the
input). Furthermore, prior work has identified several design choices whose optimal settings appear
to differ across tokenized and continuous domains, namely: 1) leveraging additional decoder layers
has been shown to be helpful for continuous data, as has 2) entirely dropping the masked tokens from
the attention computation [28, 21]. Finally, in this work we consider only linear evaluation, while
masked sequence models have typically shown greater performance than competing methods when
finetuned.

These complexities aside, the strength and generality of MAE merits its study as a domain-agnostic
method, and future work can explore the relative tradeoffs of each of these design choices in a
domain-agnostic context.

3.2 Capri: A Hybrid Masked-Contrastive Algorithm

Given the slight additional complexities of the MAE paradigm, we explore an algorithm that attempts
to blend the strengths of contrastive learning [27, 19] and MAE, and which does not require a different
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Cap Gen Med Nat Par Pro Sat Sem Sen Spe Tex Mul

None 50.1 22.4 68.1 10.1 54.8 29.9 62.3 77.7 69.8 24.9 42.3 58.1

ShED 15% 52.3 25.6 69.8 16.1 68.0 36.8 57.8 92.4 85.2 42.1 46.6 57.5
50% 50.7 17.1 70.6 19.4 67.2 35.9 55.2 92.3 65.2 29.1 45.3 64.0
85% 51.5 19.8 73.2 24.6 60.3 29.9 61.5 91.4 85.0 37.6 44.3 48.2

Capri 15% 51.6 19.2 70.0 21.0 DV 23.5 11.1 91.2 DV 28.9 42.1 57.6
50% 50.7 22.6 70.4 19.6 DV 19.5 67.4 91.8 DV 22.3 42.8 57.6
85% 51.4 16.7 52.4 21.3 DV 18.0 63.3 92.5 DV 21.7 40.2 57.5

MAE 15% 51.4 26.6 71.3 19.8 68.7 32.2 84.1 93.0 85.3 25.6 44.3 OM
50% 50.2 39.0 70.8 19.4 70.0 30.9 86.3 92.9 82.5 27.2 43.9 OM
85% 50.0 25.7 70.6 22.4 63.5 24.2 84.8 93.9 77.6 29.4 OM OM

Table 1: Average of transfer metrics for different corruption fractions. Runs marked with “DV”
indicate cases where training diverged. “OM” indicates cases where the large vocabulary size of
the model produced an an out-of-memory error for the given batch size. Legend: Cap: Captioned
Images, Gen: Genomics, Med: Medical Images, Nat: Natural Images, Par: Particle Physics, Pro:
Protein Biology, Sat: Satellite Images, Sem: Semiconductor Wafers, Sen: Wearable Sensors, Spe:
Speech Recordings, Tex: English Text, Mul: Multilingual Text

output format per modality. Intuitively, the algorithm predicts the embeddings of a masked sequence
with a contrastive loss, using the other embeddings in the sequence as negative examples. We call
this algorithm contrastive prediction of redacted embeddings, or Capri for short.

Concretely, given a set of input tokens x = {x0, . . . , xk} as input to the transformer, we create
a masked x̃ = {x̃0, . . . , x̃k} where x̃i = xi with probability 1 � p and equals the zero vector ~0
otherwise. The transformer then generates predicted embeddings x̂ = {x̂0, . . . , x̂k} and the loss for
each masked token xi is computed as:

L(xi) =
exp (cosine-similarity(x̂i, xi)/⌧)P
j exp (cosine-similarity(x̂i, xj)/⌧)

(1)

where cosine-similarity(x, y) = x
||x||2 · y

||y||2 , the dot product of two normalized vectors, and ⌧ (set
to 0.07 in our experiments) controls the temperature of the softmax.

Capri can be seen as a bidirectional masked variant of contrastive predictive coding [68], and
instantiations of this approach have been applied to specific modalities such as vision [67] and
audio [78]. We apply this SSL framework across the 12 DABS domains, including the multimodal
text-image domain, exploring its approach as a domain-agnostic SSL method.

3.3 Shuffled Embedding Detection (ShED)

Finally, we also evaluate ShED [62], a shuffled embedding detection algorithm which permutes a
subset of the embeddings for an input (prior to adding position embeddings) and trains a classifier to
predict which embeddings were perturbed. See [62] for more details about ShED. For simplicity we
do not consider the eMix algorithm from the original DABS paper [62].

4 Investigating the Optimal Corruption Rate Across Algorithms and Domains

One similarity of each algorithm discussed in Section 3 is that each applies a corruption transformation
to a fraction of the input embeddings: ShED permutes a fraction of the embeddings, while MAE and
Capri mask out a given fraction. The choice of this fraction (which we will term the corruption rate)
determines the difficulty of the self-supervised task. If the corruption rate is too small, the task will
be too easy and the model will learn slowly. Too large, and the model may not be able to learn from
the resulting example.

Several works have studied the impact of the corruption rate on MAE-type models, including in text
[71], images [28], and videos [21]. The outcomes of these studies seem to suggest that the optimal
masking rate is highly dependent on the domain: text for example appears to require a lower masking
fraction than images and especially video.
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One hypothesis for this diversity might be termed the redundancy hypothesis [28]: that domains vary
in the amount of redundant information they contain across parts of the input. For example, images
may have more redundant structure across spatial patches than text does across tokens—patches of
sky tend to be near other patches of sky—while words are typically rarely repeated several times in
a row in written text. Thus, inputs with more redundant structure require larger corruption rates to
make the task challenging enough. However, it is difficult to answer these kinds of data-dependent
questions when studying self-supervised learning across only N = 3 domains, each in a separate
study with different experimental settings.

To demonstrate the utility of DABS for exploring these questions, we conduct a large-scale study of
optimal corruption rates across all twelve domains and three algorithms. Despite requiring over 500
runs across 57 datasets, this study is simple to carry out with the DABS codebase, requiring only
several commands of the following form which perform the requisite pretraining and transfer runs on
the provided device:

python3 -m scripts.train_single_domain \
--domain=genomics \
--algorithm=mae \
--corruption_frac=0.5

We reuse the experimental settings and hyperparameters from the original DABS paper: We use
a Transformer [69] with 12 layers, hidden size 256, 8 attention heads, and dropout with 0.1 prob-
ability. Inputs are mapped to a sequence of embeddings using a small set of embedding modules
(patch/segment embeddings for continuous data, and token embeddings for tokenized data). We
train 100k steps for pretraining and 100 epochs of linear evaluation transfer, where we train a linear
classifier on top of the frozen pretrained model. We use the AdamW optimizer [40] with learning
weight and weight decay both set to 1e-4. The one change we make from the original DABS paper is
that we truncate long transfer runs at 100k steps, as several of the DABS 2.0 transfer datasets are quite
large. See the original DABS paper [62] or the DABS codebase2 for more thorough experimental
settings and details.

5 Results

The results of these experiments are summarized in Table 1, which shows the average validation
metric across transfer datasets for the given pretraining algorithm, domain, and corruption rate.

Takeaways Overall across all 12 domains, we see at least one algorithm, and often two or all
three, showing clear gains from pretraining. In particular, both MAE and ShED show gains from
pretraining in almost all cases, demonstrating their promise as general SSL approaches. There are
some clear trends within a domain: for example, MAE significantly outperforms the other methods
on multispectral satellite imagery, while ShED proves superior on protein data. MAE also exhibits
a limitation for tokenized datasets: large vocabulary sizes and larger masking fractions can cause
out-of-memory error due to the cost of the softmax operation (“OM” in Table 1). Capri appears to
generally perform worse than ShED and MAE, and its training diverges on certain datasets (“DV”
in Table 1). Despite the strong performance of MAE and ShED, there does not appear to be a clear
pattern that would enable choosing the optimal algorithm and corruption rate a priori. An automated
way of determining this rate may be a promising direction for future work.

Contextualizing the performance of MAE While MAE performs strongly in some domains (e.g.
especially in satellite imagery), it is important to reemphasize differences in our experimental setup to
previous work on MAE in text [17], image [28], and video [21] datasets. First, the benefits of MAE
have been shown to be strongest in the finetuning setting, rather than the linear evaluation setting.
Second, in continuous domains such as images and videos, MAE-trained models are improved upon
with the use of additional decoder layers on top of the encoder backbone. Finally, in continuous
settings, MAE-trained models have been shown to perform better (and are far more efficient) when
the masked tokens are dropped from the transformer computation entirely, rather than merely masked
out.

2http://github.com/alextamkin/dabs
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6 Related work

Here we discuss several streams of work related to the contributions in DABS 2.0. See the original
DABS paper [62] for a more comprehensive discussion of work on self-supervised learning (SSL) and
domain-agnostic methods, Section 3 for discussions of prior work related to the algorithms explored
in this work, and [8, 22, 10, 61] for broader perspectives on these trends.

Self-supervised learning for science and engineering Several bodies of work attempt to apply
self-supervised learning to science and engineering tasks. For example, works have applied SSL
to proteins [51], RNA [12], organic molecules [55], wearable sensors [65], multispectral satellite
imagery [41], semiconductor manufacturing [33], medical data [80, 60, 26] and high energy physics
[18], among many others. These domains make for promising sites to apply SSL methods because
many scientific instruments regularly produce large amounts of data, but it is often expensive to hire
domain experts to annotate this data for supervised machine learning. The inclusion of the DABS 2.0
domains in the benchmark is intended to drive progress in generalizable SSL algorithms which could
benefit all of these fields, including ones where good techniques for SSL are not yet known.

Scientific investigations of pretraining and transfer Several works systematically study the
various factors influencing pretraining or transfer, either as a way to improve the performance of
models or solely to attain a better scientific understanding of the self-supervised learning process. For
example, several works vary the pretraining data distribution [11], difficulty of the pretraining task
[71], pretraining hyperparameters [39], or choice of pretraining algorithm [34]. Other works focus
more on the interface between pretraining and transfer, exploring what kinds of dataset shifts influence
the success of transfer [35, 16, 75], which parts of the network matter most for transfer [76, 48, 64],
or how the choice of transfer method influences the accuracy [79, 72], efficiency [52, 58, 37] or
robustness [73, 30, 63] of the resulting model.

7 Discussion

7.1 Experimental Scope and Limitations

The past year has seen vigorous discussion about the relationship between benchmarks in machine
learning and their connection to real world goals and problems [57, 46, 49]. Here, we discuss several
of these concerns in connection to the DABS 2.0 benchmark, especially given its focus on real-world
science and engineering datasets curated by domain experts. We discuss several concerns through the
lenses of internal and external validity [38]:

Internal validity concerns the experimental procedures conducted within a specific benchmark.
DABS attempts to reduce as much possible experimental variation by providing an easy-to-use
codebase with easy-to-modify baseline algorithms and standardized preprocessing of datasets. How-
ever, one unresolved challenge here is choosing good hyperparameters for our corruption fraction
experiments. This issue has been shown to be subtle and challenging for a single algorithm applied to
a single dataset within a domain [13], and only compounds when expanding to multiple domains and
algorithms. In addition, groups with a larger budget for hyperparameter search may see larger gains
for a given algorithm than a less well-resourced organization would, making it challenging to fairly
compare algorithms.

External validity refers to the degree to which experimental insights have relevance to the rest
of the real world. We discuss two major sub-challenges here: First, construct validity [44] asks
whether a particular metric used in a research study corresponds to the actual task or behavior of
interest. In particular, [49] question whether datasets that seek to measure “general” capabilities in a
particular domain (e.g. language understanding or visual understanding) faithfully realize that goal.
We agree that strong claims such as generality require strong evidence, and for this reason the DABS
benchmark does not take the position that the datasets in each domain represent “general” capabilities.
However, they do represent a range of possible downstream tasks in each domain, and can measure
how methods might perform on similar tasks. While this task distribution may not cover the full
space of possible tasks one might like to address, the DABS 2.0 domains were chosen because they
were constructed by domain experts to target problems with real-world importance. Self-supervised
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learning methods that help domain experts achieve better performance on tasks that are important to
them may provide real-world value independent of any abstract claims of generality.

A second external validity concern is that of ecological validity, also referred to as mundane realism
[24]. This notion refers to whether the results of a scientific study generalize to the real world. While
we have discussed the individual DABS domains, the goal of the DABS benchmark is to understand
the behavior of SSL across domains and produce algorithms that generalize to new domains. The
DABS 2.0 domains were chosen because they reflect the settings that are especially promising
for SSL—data-rich but label-scarce settings with significant potential for scientific impact. One
potential challenge is that a user of the benchmark could attempt to hardcode an “if statement” of
domain-specific algorithms in an attempt to game the system, but the solution would be unlikely to
be adopted by the community as it would not generalize, and would fail when new domains (e.g. the
DABS 2.0 tasks) are introduced to the benchmark. Another limitation is that 12 domains is still a
small number compared to the vast array of domains in the world, and the DABS benchmark does
not yet have coverage for several important modalities, such as point clouds and graphs. However, it
is surely an improvement over studying two or three domains, as is common practice, and provides a
template for continued expansion into new domains.

7.2 Societal Impact

It is challenging to forecast the impacts of domain-agnostic SSL due to the wide-ranging fields it could
be applied to. In DABS 2.0, we aim to introduce science and engineering domains where advances in
these fields could lead to the development of improved medicines, more affordable electronics, or
sustainable development. By the same token, however, advances in each field—whether due to DABS
or other sources of scientific progress—could enable malicious users to cause harm. Technology does
not exist in a vacuum, and effective governance frameworks and professional norms are important to
ensure positive outcomes from technological progress. In this work, we also aimed to model how
DABS could be used for systematic evaluation and understanding of SSL algorithms across a range
of possible pretraining and transfer datasets. A broad coverage of different domains could help users
of the benchmark identify failure modes of existing systems. For more discussion of societal impacts
of domain-agnostic SSL, see the original DABS paper [62].

7.3 Future Work

We see ample opportunity for future work with DABS. Most directly, DABS enables the testing and
development of improved SSL algorithms that perform better across the 12 domains in the benchmark.
Another important line of work is in scaling existing algorithms to larger models and compute budgets,
to see how close existing algorithms fare to state-of-the-art models typically trained on far more data.
Finally, we have demonstrated in this paper the utility of DABS for easily conducting experiments
for various experimental parameters (e.g. the corruption fraction), drawing scientific insights about
the benefits and tradeoffs of different SSL algorithms. Our exploration has only barely scratched the
surface of this kind of analysis, which remains ripe for future study.

8 Conclusion

We introduce DABS 2.0, augmenting the DABS benchmark for universal self-supervision with 5
additional science and engineering domains, two new algorithms, and the widest exploration of SSL
yet across 12 domains and different corruption fractions. We hope this demonstrates the utility of
DABS for easily creating and evaluating new SSL algorithms for the real-world settings where they
may have the most positive impact.
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• Did you include the license to the code and datasets? [Yes] See Appendix A.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]
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1. For all authors...
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