
SoundSpaces 2.0: A Simulation Platform for
Visual-Acoustic Learning

Changan Chen1,4∗ Carl Schissler2∗ Sanchit Garg2∗ Philip Kobernik2 Alexander Clegg4
Paul Calamia2 Dhruv Batra3,4 Philip Robinson2 Kristen Grauman1,4

1UT Austin 2 Reality Labs at Meta 3Georgia Tech 4Meta AI

Abstract

We introduce SoundSpaces 2.0, a platform for on-the-fly geometry-based audio
rendering for 3D environments. Given a 3D mesh of a real-world environment,
SoundSpaces can generate highly realistic acoustics for arbitrary sounds captured
from arbitrary microphone locations. Together with existing 3D visual assets, it
supports an array of audio-visual research tasks, such as audio-visual navigation,
mapping, source localization and separation, and acoustic matching. Compared to
existing resources, SoundSpaces 2.0 has the advantages of allowing continuous spa-
tial sampling, generalization to novel environments, and configurable microphone
and material properties. To our knowledge, this is the first geometry-based acoustic
simulation that offers high fidelity and realism while also being fast enough to use
for embodied learning. We showcase the simulator’s properties and benchmark
its performance against real-world audio measurements. In addition, we demon-
strate two downstream tasks—embodied navigation and far-field automatic speech
recognition—and highlight sim2real performance for the latter. SoundSpaces 2.0 is
publicly available to facilitate wider research for perceptual systems that can both
see and hear.2

1 Introduction

What we see and hear dominates our perceptual experience, and there is often a strong relationship
between the two modalities. At the object level, we can anticipate the sounds an object makes based
on how it looks, and vice versa (a dog barks, a door slams, a baby cries). At the environment level,
materials and geometry of the surrounding 3D space that we see transform the sounds that reach our
ears. For example, a person speaking in a marble-floored, high-ceiling museum sounds distinct from
one speaking in a cozy carpeted bookshop.

Modeling the correspondence between visuals and acoustics in 3D spaces is of vital importance for
many applications in embodied AI and augmented/virtual reality (AR/VR). For instance, a rescue
robot needs to localize the person who is calling for help; a service robot needs to look and listen to
know if the espresso machine is running properly; an AR system needs to generate sounds that are
consistent with the user’s acoustical environment for an immersive experience.

Realistic simulations of the first-person perceptual experience are a valuable resource for AI research.
They allow training and evaluating models at scale and in a replicable manner. On the visual side,
fast visual simulators [60, 70] coupled with 3D assets from scanned real-world environments [11, 78,
68, 56] have facilitated substantial work in visual navigation and related tasks in recent years [77, 12,
6, 30, 57, 34], enabling rigorous benchmarks [1] and even successful “sim2real" transfer to agents
that move in the real world [76, 73, 36]. On the audio side, acoustic simulation has been traditionally
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Figure 1: Illustration of SoundSpaces 2.0 rendering in a multi-room multi-�oor HM3D [56] envi-
ronment. In this scenario, a boy is watching TV in the living room while his mom calls him to have
dinner from the kitchen downstairs. We model various frequency-dependent acoustic phenomena
for sound propagation from all sources (TV and mom) to him, including direct sound, re�ection,
reverb, transmission, diffraction and air absorption. The sound propagation is based on a bidirectional
path-tracing algorithm that takes the geometry of the scene as well as materials of objects in the space
as input. The received sound is spatialized to binaural with the head-related transfer function (HRTF).
As a result, SoundSpaces 2.0 renders the visual and audio observations withspatial and acoustic
correspondence. For example, the TV being situated more towards the right results in right-ear
signals that are stronger than those in the left ear.

pursued for physical models [9], gaming [43] and auralization for architectural design [75], typically
restricted to simple parametric geometries and in isolation from visual context.

Towards bringing the two modalities together in joint audio-visual simulations, recent work offers
initial steps [14, 21]. SoundSpaces [14] provides highly realistic room impulse responses (RIRs)3

obtained via bidrectional path tracing for 100 real multi-room environment meshes from Replica [68]
and Matterport3D [11], while ThreeDWorld [21] uses physics simulations in the Unity3D video
game platform to model object collisions, impact sounds, and environment reverberation. These
tools support an array of new research in navigation [22, 17, 14, 15, 12, 45], �oorplan reconstruc-
tion [55], feature learning [23], audio-visual (de)reverberation [16, 13], and audio-visual collision
detection [20].

Though inspiring, these early platforms have several limitations. SoundSpaces's [14] foremost
limitation is its pre-computed, discretized nature. The provided RIRs are pre-computed for all source
and receiver pairs on a 0.5m grid, and for a �xed list of 100 total environments. This prevents
sampling data at new locations. This in turn means that 1) an agent in the simulator can only
move or hop between discrete grid points in the space, which abstracts away some dif�cult parts
of the navigation task; 2) the simulations do not generalize to novel environments—just the 100
provided; and 3) the pre-computed data itself is on the order of TBs, impeding the ability to change
con�gurations, e.g., of the microphone types or materials. ThreeDWorld [21] offers continuous-space
rendering, yet it only supports audio rendering for simple 3D environment geometry, namely an
oversimpli�ed “shoebox" (rectangular parallelepiped) model, and thus is not applicable to real-scan
datasets [78, 56]. In sum, today's audio-visual rendering platforms fall short in accuracy, speed, and
�exibility, which in turn constrains the scope of research tasks they can support within audio-visual
embodied learning [12, 17, 79] and visual-acoustic learning [67, 44, 13].

In this work, we introduce SoundSpaces 2.0, which performs on-the-�y geometry-based audio
rendering for arbitrary environments. It allows highly realistic rendering of arbitrary camera views
and arbitrary microphone placements for waveforms of the user's choosing, accounting for all major
real-world acoustic factors: direct sounds, early specular/diffuse re�ections, reverberation, binaural
spatialization, and frequency-dependent effects from materials and air absorption (illustrated in Fig. 1).
Furthermore, SoundSpaces 2.0 generalizes audio simulation toanyinput mesh, making it possible for

3A room impulse response (RIR) is the transfer function that de�nes how sound is transformed by the
environment for a given source and receiver (microphone) location pair.
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Table 1: Comparison with existing non-commercial datasets/simulation platforms.Geometricrefers
to acoustic simulation that is based on geometry of the objects and the space.Con�gurablemeans
ability to alter simulation parameters, material and microphone properties.Arbitrary Envrefers to the
ability to render for an arbitrary new mesh environment, including point clouds generated in the wild.

Platform Audio-Visual Geometric Con�gurable Arbitrary Env

SoundSpaces [14] 3 3 7 7
GWA [71] 7 3 3 7

ThreeDWorld [21] 3 7 3 7
Pyroomacoustics [61] 7 7 3 7

SoundSpaces 2.0 (Ours) 3 3 3 3

the �rst time to import sound into well-used environment assets like Gibson [78], HM3D [56], and
Matterport3D [11], as well as any future or emerging one like Ego4D [25]. In addition, SoundSpaces
2.0 allows users to con�gure various properties of the simulation such as source-receiver locations,
simulation parameters, material properties, and the microphone con�guration. The rendering platform
and associated research codebase are publicly available.

In this paper, we describe the new platform and its functionality, and we illustrate its �exibility
with various concrete examples (please see also the Supplementary video). In addition, we perform
systematic experiments to answer two questions: 1) how accurate are the audio-visual simulations?
and 2) how well can machine learning models trained in SoundSpaces 2.0 generalize to real world
data? For this purpose, we collect real-world audio RIR measurements for a public scene dataset
Replica [68] and benchmark the simulation accuracy. We also benchmark two downstream tasks:
continuous audio-visual navigation and far-�eld speech recognition. For speech recognition, we show
the machine-learning models trained on our synthetic data can generalize when tested on real data.
We propose an acoustic randomization technique that models the real-world distribution of materials'
acoustic properties, and we show that this strategy leads to better sim2real generalization. Finally,
aside from the rendering engine itself, which is readily integrated with Habitat [60], we also release
SoundSpaces-PanoIR: a large-scale dataset of images paired with RIRs computed in SoundSpaces
2.0; this prepared dataset can facilitate future research on visual-acoustic learning in a stand-alone
manner (without interfacing with the simulators themselves).

2 Related Work

We overview related work on simulations, audio(-visual) learning, and sim2real transfer.

Acoustic simulation. Sounds are �rst produced by vibrating objects and then propagate in space
before reaching human ears. Modeling sound propagation has a long history in the literature, the
goal of which is to simulate realistic high-�delity audio that is consistent with the given environment
speci�cation. Interactive acoustic simulation systems have been extensively used in games and
AR/VR applications. Sound propagation algorithms typically fall into two main categories: wave-
based [3, 35, 50] and geometric [19, 42, 64]. Wave-based methods aim to solve the wave equation
numerically, resulting in high computation expense. In the geometric method family, the Image-
Source Methods [4] solve the specular re�ection of sounds deterministically but have low accuracy for
late reverb, while path-tracing based approaches offer both high accuracy and ef�ciency [59]. Aside
from sound propagation, some simulators like TDW [21] model impact sounds between objects.

Our work builds on the SoundSpaces [14] dataset in that we use their bidirectional path-tracing
algorithm and simulation framework as a starting point; however, as discussed above, we overcome its
core limitations by enabling on-the-�y rendering, and we also augment the propagation algorithm by
adding diffraction and improving reverberation level accuracy. Compared to existing public platforms,
SoundSpaces 2.0 adds signi�cant generality and �exibility—accepting arbitrary scene geometry,
generalizing to new 3D meshes on-the-�y, rendering in real-time, and allowing con�guration of
materials and microphones—all of which we demonstrate. See Table 1 for comparisons.

Audio-visual learning. Recent advances in audio-visual learning include self-supervised cross-
modal feature learning from video [5, 40, 49], object localization [28], and audio-visual speech
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enhancement and source separation [18, 53, 80, 2, 48, 81, 27]. Besides learning from video, audio-
visual simulation supports the study of embodied tasks like navigation [14, 22, 17, 45], where an
agent moves intelligently based on the visual and auditory observations. Another line of research
facilitated by simulation is visual-acoustic learning [67, 16, 13, 44, 46], where the goal is to either
match or remove the room acoustics implied by the image. Acoustic rendering also facilitates
audio-only research, such as far-�eld speech recognition [38, 47, 71], sound source separation [31, 7],
localization [26, 31] and sound synthesis [33, 72]. Our work revisits multiple audio(-visual) learning
tasks to showcase the advantages of having a continuous, con�gurable, and generalizable simulation.

Simulation-to-reality transfer. Several large-scale datasets of real-world 3D scans of buildings
have been released in the past few years [78, 11, 56]. In parallel, multiple simulation environments [78,
60, 39] have been created in order to simulate embodied motion in these 3D scans. These advances
allow large-scale training, fast experimentation, consistent benchmarking, and replicable research
compared to physical experimentation. Transferring the model trained in simulation to the real world is
thus of great interest. The mostly widely used approaches are domain randomization [73, 74], system
identi�cation [36, 41], and transfer learning and domain adaptation [82], Most sim2real transfer
research studies transferring a policy from simulation to the real world based on visual input. While
some work leverages synthetic audio data for speech tasks [71, 31] or builds a multisensory object
dataset for sim2real [24], transferring models trained on acoustic simulation has been understudied
due to the lack of real-world benchmarks. To the best of our knowledge, this is the �rst work to
both benchmark simulation performance with real measurements (Sec. 5.2) as well conduct sim2real
transfer for machine learning models (Sec. 5.4).

3 SoundSpaces 2.0 Audio-Visual Rendering Platform

In this section, we detail the audio-visual rendering pipeline for SoundSpaces 2.0.

3.1 Rendering Pipeline and Simulation Enhancements

The core of SoundSpaces 2.0 is the audio propagation engine (RLR-Audio-Propagation) we are
releasing for research purposes.4 We integrate this engine into the existing visual simulator Habitat-
Sim [60], which offers fast visual rendering.5 In addition, we provide high-level APIs for various
downstream tasks (e.g., navigation) and training scripts at the SoundSpaces repo.6

Fig. 1 illustrates the propagation pipeline. SoundSpaces 2.0 takes the scene mesh data processed
by Habitat, together with source and receiver locations speci�ed by the user, and computes a room
impulse response (RIR) using a bidirectional path-tracing algorithm [10]. This module models various
acoustic phenomena, including re�ection, transmission, and diffraction, as well as spatialization. The
simulation operates inM logarithmically-spaced frequency bands (con�gurable), where it computes
an energy-time histogram at the audio sampling rate. This histogram incorporates spatial information
using spherical harmonics for each time sample that represents the directional distribution of arriving
sound energy. This representation is then spatialized to either an ambisonic or binaural pressure
impulse response [66], which can be convolved with the source audio signals to generate the sound at
the receiver position. See Supp. for more details.

Compared to the original SoundSpaces, we have improved the simulation in a few ways. SoundSpaces
did not include any simulation of acoustic diffraction, and thus exhibited abrupt occlusion of sources.
We have removed this limitation using the fast diffraction approach from [65], which is able to
ef�ciently compute smooth diffraction effects for occluded sources. We also improved the accuracy
of the direct-to-reverberant ratio (DRR), the ratio of the sound pressure level of a direct sound from a
directional source to the reverberant sound pressure level, by �xing a bias of

p
4� that was present in

the indirect sound pressure of the original SoundSpaces.

In the following, we overview modeling advances in SoundSpaces 2.0 that promote continuity,
con�gurability, generalizability, and performance.

4https://github.com/facebookresearch/rlr-audio-propagation
5https://github.com/facebookresearch/habitat-sim/blob/main/docs/AUDIO.md
6https://github.com/facebookresearch/sound-spaces
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3.2 Continuity

Spatial continuity. Humans move around in the real world continuously while hearing. Given
an arbitrary source locations, receiver locationr , and receiver's heading direction� in a given
mesh environment, we render the impulse response between the source and receiver asR(s; r; � ).
The sound received by the receiver is computed asA r = As � R(s; r; � ), whereAs is the sound
emitted from the source and� denotes convolution. Whereas SoundSpaces [14] restricts thes andr
locations to a 0.5m discrete grid due to its pre-computed approach and hefty storage requirements,
SoundSpaces 2.0 allows arbitrary placements.

Acoustic continuity. While an agent moves in the environment, it moves smoothly from point A to
point B (even with a small step size). With the spatial continuity property, we can renderR(s; rA ; � A )
andR(s; rB ; � B ) for these two locations respectively. However, the original SoundSpaces takes the
rendered IR for each location and convolves it with the source sound directly as the audio observation.
This calculation implicitly assumes the source does not emit sound continuously, i.e., it starts to emit
when the agent moves to a new location, stops after one second, and resumes at the agent's next
location.

In SoundSpaces 2.0, we introduce acoustic continuity for both the source sound and listener. More
speci�cally, given a sampling rateF and the time between two steps� t, the number of received
audio samples isN = F � t per step. Assuming a listener is at locationx i at timet i , the audio signal
received by the listener at timet i emitted from the source at timetp is t i � R(s; xi ; � x i ) + 1 . We take
the corresponding source sound segmentAs[tp : tp + N ] and convolve it withR(s; xi ; � x i ) without
zero padding to computeAx i

t i
. Following the common practice [51], we apply linear crossfading

betweenAx i � 1
t i

andAx i
t i

to smooth out the transition fromx i � 1 to x i with an overlap time window of
T seconds. See Supp. video for the impact on perceptual quality.

3.3 Con�gurability

Due to its pre-computed nature, it is impossible to change any simulation setup (parameters, micro-
phones, or materials) for the original SoundSpaces. All are con�gurable in SoundSpaces 2.0, as
summarized below and in more detail in Supp.

Simulation parameters. We expose many useful parameters for users to con�gure, including the
sampling rate, the number of frequency bands, number of rays for direct/indirect sounds, whether
re�ection, transmission or diffraction is enabled, etc.

Microphone types. We provide several types of built-in microphone con�gurations, including
monaural single-channel audio, binaural (modeling a human listener), and ambisonics (full sphere
surround sound). In addition, users are also able to con�gure their own microphone array by
specifying an array of monaural microphone locations.

Custom HRTFs. We allow users to load their own head-related transfer functions (HRTFs), which
incorporate customized human perception in the acoustic rendering simulation.

Material modeling. Materials of objects/surfaces have a big impact on how humans perceive the
sound in an environment. Consider the difference between sound in a recording studio versus a living
room of the same size. Due to the absorptive materials in the recording studio, the sound will consist
primarily of direct sound without reverberation, whereas in the living room, the sound will consist of
a mixture of direct sound and reverberation.

Existing real-scan datasets have semantic annotations at the level of object categories, e.g., chair,
table, couch and �oor, while lacking material annotations of what these objects are made of, e.g.,
wood or steel for tables. SoundSpaces coped with this issue by de�ning a �xed mapping from object
categories to acoustic materials, e.g., �oors are always mapped to the carpet material, which is very
absorptive. However, this �xed mapping fails to re�ect the fact in the real world, different instances
of the same object category could have very different acoustic properties, e.g., a �oor could be carpet
or wood or concrete materials depending on the home type.

To account for this variation, we expose an API to let users de�ne their own acoustic material con�g-
urations. We provide 29 built-in acoustic materials, e.g., wood, concrete, curtain, soil, water. Every
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Figure 2: An example of the SoundSpaces-PanoIR dataset rendered on Gibson [78]. We render
panoramic RGB and depth images to capture the scene geometry. We provide the images, impulse
responses, and the coordinates of the point source location with respect to the current camera pose.

acoustic material has a list of candidate object categories to be mapped from. It also has a set of coef-
�cients for absorption, scattering, and transmission in the following format:[f 1; c1; f 2; c2; :::; f n ; cn ],
wheref i is a frequency andci is the coef�cient for a certain acoustic phenomenon at frequencyf i .
This allows modeling the frequency-dependent acoustic properties of different acoustic materials.
For example, high-frequency waves are absorbed more compared to low frequencies when re�ecting
from carpets. See Supp. for details.

We also model distance-dependent damping of the sound propagation media. This includes air
absorption as well as transmission losses through materials. Air absorption is calculated using an
analytical model [8]. Users can specify the frequency-dependent damping coef�cients for each
material, expressed as dB per meter, in a similar format to the other material properties.

3.4 Generalizability

Generalization to scene datasets. Our new simulator accommodates arbitrary 3D meshes as input.
This makes it compatible with all available scene datasets (e.g., Gibson [78], HM3D [56], Ego4D [25],
Matterport3D [11], Replica [68]), as well as any future assets that become available, such as if a user
scans their own lab or home environment. This is an important advance over SoundSpaces, which
was restricted to Replica and Matterport3D alone. See Supp. for videos of generated examples.

Generalization to shoebox rooms. We expose APIs for creating shoebox rooms with different
materials for walls, which simulates simpler setups as in Pyroomacoustics [61] and TDW [21].

Generalization to the real world. The �delity and �exibility of our simulation platform also
supports generalization to the real world. In Sec. 5, we score the simulator output against real-world
RIRs and show how machine learning models trained on SoundSpaces 2.0 can generalize to real data.

3.5 Rendering Modes and Rendering Performance

Our simulation generates high-quality audio rendering based on mesh and materials, and this �delity
can be instrumental for certain research areas. On the other hand, in tasks like embodied navigation
with reinforcement learning, which typically require millions (or even billions [77]) of training
iterations, rendering speed is of vital importance. Thus, we offer two built-in rendering modes:
high-speedandhigh-quality.

In high-speed mode, we reduce the number of rays and improve the accuracy by leveraging previously
computed impulse responses [63], under the assumption that movements are spatially continuous.
Our algorithms use information computed on previous simulation frames, such as sound propagation
paths and RIRs, to reduce the number of rays and ray bounces that are needed on each frame for
suf�cient sound quality (see Sec.5.1). In high-quality mode, we set all rendering parameters to max
and turn off the temporal coherence feature to ensure that every impulse response is accurate without
temporal blurring. Our engine is multi-threaded and users can set the number of threads when using
either mode. See Sec. 5.1 for analysis of the simulation performance in terms of speed and accuracy.
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Table 2: Simulation speed vs. quality tradeoff. We report mean and standard deviation over 5 runs.

Relative RT60 Error (%) 1 Thread (FPS) 5 Threads (FPS)

High-quality 0.0 � 0.0 0.9 � 0.0 4.0 � 0.1

High-speed 9.5 � 0.2 7.7 � 0.2 33.5 � 0.4

4 Large-scale SoundSpaces-PanoIR Dataset

We are releasing SoundSpaces 2.0 as a general-purpose platform with which a user can generate
observations on-the-�y (particularly relevant for embodied AI models), or populate a new of�ine
dataset of their own design. As an example of the latter, and to ease adoption for researchers who wish
to work with visual-acoustic scene data without a layer of agent interaction, we next use SoundSpaces
2.0 to compose a large-scale dataset calledSoundSpaces-PanoIRthat couples IRs with images.

For visual-acoustic learning tasks, such as audio-visual dereverberation [16] and synthesizing acous-
tics based on visuals [13, 67, 44], there are no existing large-scale accurate image-IR datasets due
to the high expense and complexity of data collection. Our SoundSpaces-PanoIR dataset has 10M
panoramic image and IR pairs rendered from 750 environments across the Matterport3D, Gibson,
and HM3D datasets. We provide the data in the following format: panorama (RGB/Depth), IR, polar
coordinates of the source with respect of the center of the panorama. Fig. 2 shows one example in
Gibson. See Supp. for more examples and statistics.

5 Evaluation and Benchmarks

Next we evaluate both the simulation quality and its value for downstream tasks with two machine
learning benchmarks. Fig. 3a illustrates these two tasks.

5.1 Simulation Speed vs. Quality Tradeoff

To understand the tradeoff between the quality versus speed of rendering, we report the accuracy
and speed of different modes by rendering RIRs along random trajectories with an average length
of 15m across 20 Matterport3D environments. We pro�le the speed on a Xeon(R) Gold 6230 CPU
with 2.10GHz. See Table 2. For accuracy, we measure the relative RT60 error of RIRs generated in
high-speed mode compared to RIRs generated in high-quality mode. RT60 is a standard acoustic
measurement that is de�ned as the time it takes for the sound pressure level to reduce by 60 dB [29].
We see high-speed greatly improves ef�ciency over the high-quality mode, by8� with single thread
and33� with 5 threads, while only losing9:5%accuracy despite RT60 calculation being noisy. When
coupled with distributed training, it meets the requirement of today's RL agent training. In addition,
we test the navigation model trained in high-speed mode on high-quality mode; the performance
difference is smaller than1%compared to the test performance in high-speed mode in Table 3. In
comparison, TDW [21] runs at 60 FPS and SoundSpaces runs at 500+ FPS (bottleneck on I/O) at
the cost of simpli�ed room models or not being con�gurable, respectively, c.f. Table 1. We treat
high-quality mode as the gold-standard and benchmark its quality against real-world IRs next.

5.2 Validating Simulation Accuracy with Real IRs

How realistic are our audio simulations? To quantify this, we collect real acoustic measurements of
the FRL apartment from the Replica dataset [68] and compare them to SoundSpaces 2.0 outputs. IR
measurements were captured at seven different source/receiver positions throughout the real-world
apartment using an omnidirectional B&K Type 4295 speaker (100Hz to 8kHz frequency response)
and Earthworks M30 microphone with the exponential sine sweep method. These measurements are
publicly available to assist future research.

Figure 3b compares the measurements to the corresponding simulations at the same source/receiver
positions, for both the original SoundSpaces and the proposed SoundSpaces 2.0 (high-quality mode).7

7The measurements were scaled to match the direct sound level of the simulations. The acoustic material
properties of the mesh were optimized to match the measurements following [62].
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(a) Task illustration (b) DRR comparison (c) Energy decay comparison

Figure 3:(a) In this example, a person's phone rings in the dining room while she is in the living
room and she asks the robot to bring her the phone. Upon receiving the audio signal with the binaural
microphone, the robot needs to �gure out two things: 1) what she is saying (far-�eld automatic speech
recognition) and 2) how to navigate to her and the phone (audio-visual navigation). Note that far-�eld
ASR is not limited to robotics; it has various applications such as video captioning.(b) Comparing
real measurements and simulations in the Replica apartment [68] for 7 measurement positions and the
250Hz to 4000Hz frequency band. SoundSpaces 2.0 has much lower error for the direct-to-reverberant
ratio (DRR) compared to SoundSpaces.(c) Energy decay curve comparisons. The energy decay
curve of SoundSpaces 2.0 is much closer to the real measurements than SoundSpaces.

Table 3: Continuous audio-visual navigation benchmark. DTG stands for distance to goal. We report
the mean and standard deviation by training on 1 random seed, and evaluating on 3 random seeds.

Train Test Success (%) SPL (%) DTG (m)

SoundSpaces [14] Continuous space 64.2 � 0.8 27.5 � 0.4 5.6 � 0.2

SoundSpaces [14] Continuous space & continuous sound 0.9 � 0.2 0.3 � 0.1 12.9 � 0.1

SoundSpaces 2.0 Continuous space & continuous sound 64.7 � 3.9 49.3 � 3.0 5.9 � 0.5

We report the direct-to-reverberant ratio (DRR) acoustic parameters derived from the impulse re-
sponses [29] in Figure 3b. SoundSpaces 2.0 has a better match of direct-to-reverberant ratio, where
the error compared to measurements is reduced from 11.0 dB to 0.98 dB on average, while preserving
the same relative RT60 error of 12.4% (see Supp.). Figure 3c reinforces that advantage, plotting the
energy-time curves of the simulations versus the real measurements from 250Hz to 4000Hz. Overall,
the proposed new features and improvements lead to higher realism for the acoustic simulation.

5.3 Benchmark 1: Continuous Audio-Visual Navigation

Navigating to localize the sound source in an unmapped environment has many real world applications,
such as rescue robot or service robot (e.g., �nd the person calling for help or the ringing phone). The
audio-visual navigation task (AV-Nav), originally introduced in [14], is gaining attention from the
broader community via public competitions at CVPR 2021 and CVPR 2022.8 However, due to its
reliance on SoundSpaces, AV-Nav thus far must assume the agent travels along the discrete grid. The
navigation task is thus easier due to the lack of collisions and implied perfect localization.

Here we introduce thecontinuousAV-Nav task, enabled by SoundSpaces 2.0 simulation. In this task,
the agent can either move forward 0.15 m per step at a speed of 1m/s or turn left/right 10 degrees.
If the agent issues a stop action within 1m radius of the goal, the episode is regarded as successful.
Importantly, the agent not only moves in continuous space but also receives acoustically continuous
audio signals (cf. Sec. 3.2). We use the high-speed rendering mode.

We generalize the existing audio-visual navigation (AV-Nav) agent [14] to a distributed audio-visual
navigation (DAV-Nav) agent equipped with DD-PPO [77] to speed up the training process. We train
and test on the AudioGoal navigation dataset [14]. To ablate the simulation improvement as detailed
in Sec. 3.1, for the SoundSpaces baseline, we train DAV-Nav on SoundSpaces' discrete setup (agent
only moving between grid points) with data rendered from the enhanced simulation; the action space
is either moving forward 1 m, turning left/right 90 degrees or issuing a stop action.

8https://soundspaces.org/challenge
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