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Abstract

Contrastive learning (CL) operates on a simple
yet effective principle: embeddings of positive
pairs are pulled together, while those of negative
pairs are pushed apart. Although various forms
of contrastive loss have been proposed and an-
alyzed from different perspectives, prior works
lack a comprehensive framework that systemati-
cally explains a broad class of these objectives. In
this paper, we present a unified framework for un-
derstanding CL, which is based on analyzing the
cosine similarity between embeddings of positive
and negative pairs. In full-batch settings, we show
that perfect alignment of positive pairs is unattain-
able when similarities of negative pairs fall below
a certain threshold, and that this misalignment can
be alleviated by incorporating within-view nega-
tive pairs. In mini-batch settings, we demonstrate
that smaller batch sizes incur stronger separation
among negative pairs within batches, which leads
to higher variance in similarities of negative pairs.
To address this limitation of mini-batch CL, we
introduce an auxiliary loss term that reduces the
variance of similarities of negative pairs in CL.
Empirical results demonstrate that incorporating
the proposed loss consistently improves the per-
formance of CL methods in small-batch training.

1. Introduction

Contrastive learning (CL) has emerged as a powerful ap-
proach in representation learning (Chen & He, 2021; Chen
et al., 2020; He et al., 2020; Radford et al., 2021; Zhai
et al., 2023; Khosla et al., 2020). In CL, an embedding
model is trained to produce similar representations for two
different views of the same data instance—referred to as
a positive pair—and dissimilar representations for views
from different data instances—referred to as negative pairs.
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Recent empirical studies have shown that representations
learned by these objectives, i.e., aligning positive pairs while
separating negative pairs, achieve remarkable performance
across various downstream tasks (Wang & Isola, 2020).

In parallel, several theoretical studies have analyzed the
embeddings learned by CL in the full-batch training setting.
Lu & Steinerberger (2022) showed that the widely used
InfoNCE loss (Oord et al., 2018) achieves its minimum
value when positive pairs are perfectly aligned, and negative
pairs are uniformly separated with the cosine similarity of

nil , Where n is the size of the training dataset. Lee et al.
(2024) further extended this optimality analysis to other
contrastive loss functions, including the recently proposed
SigLIP loss (Zhai et al., 2023).

However, due to computational constraints, CL methods
are typically implemented using mini-batches rather than
full batches in practical scenarios. This has motivated re-
cent studies on understanding whether the property of the
optimal state observed in full-batch training, i.e., perfect
alignment of positive pairs and uniform separation of neg-
ative pairs with the similarity of fﬁ, also holds under
the mini-batch setting. Cho et al. (2024) partially addressed
this by showing that, for the InfoNCE loss, the optimal em-
beddings of mini-batch training are identical to those of
full-batch training, only when the sum of all possible mini-
batch losses is minimized. Further analysis by Koromilas
et al. (2024) explored embeddings learned through kernel-
based contrastive losses (Li et al., 2021; Waida et al., 2023)
in mini-batch settings. While these studies provide valuable
insights into understanding CL, their analyses are limited
to specific classes of contrastive loss functions and do not
readily generalize to broader forms of CL objectives.

To address this limitation, we propose a unified framework
for analyzing the embeddings learned by both full-batch and
mini-batch CL. Our analysis centers on the cosine similarity
between embeddings of both positive and negative pairs.
By characterizing the statistical properties of similarities of
these embeddings, we reveal how different contrastive loss
functions influence the structure of the learned embedding
space under various training conditions. Our key contribu-
tions are summarized as follows:

* In full-batch CL, we identify a fundamental trade-off be-
tween the alignment of positive pairs and the separation
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of negative pairs. Specifically, the perfect alignment of
positive pairs is not feasible when the average similarity of
negative pairs falls below the threshold — ﬁ We show
that such misalignment arises in a class of existing con-
trastive losses, which can be mitigated by incorporating
within-view negative pairs into the loss.

* In mini-batch CL, we demonstrate that negative pairs sam-
pled within the same batch exhibit stronger separation
compared to those drawn from different batches. As a
result, we show that smaller batch sizes induce a higher
variance in the similarities of negative pairs in the embed-
ding space.

* To address the high variance of the similarities of negative
pairs in mini-batch training, we introduce an auxiliary
loss term that can be integrated into contrastive loss func-
tions to explicitly reduce this variance. Empirical results
show that incorporating the proposed term improves the
performance of CL methods, especially in small-batch
training scenarios.

2. Related Work

Contrastive Loss. The InfoNCE loss (Gutmann &
Hyvirinen, 2010; Oord et al., 2018) is a widely adopted
contrastive loss function that has been applied to various
tasks (Wu et al., 2018; Hjelm et al., 2019; Bachman et al.,
2019; Chi et al., 2021; Gao et al., 2021; Qian et al., 2021).
SimCLR (Chen et al., 2020) modifies the InfoNCE loss to
improve robustness to augmentations by treating different
augmented views of the same instance as positives and all
other augmented instances in the batch as negatives. How-
ever, SimCLR simultaneously optimizes both positive and
negative pairs in the normalization, which can introduce con-
flicts during optimization. To address this issue, Decoupled
Contrastive Loss (DCL) (Yeh et al., 2022) modifies the nor-
malization so that the selection of negative pairs is restricted.
Building on DCL, Decoupled Hyperspherical Energy Loss
(DHEL) (Koromilas et al., 2024) further refines the selection
by focusing on negative pairs between augmented views of
the same instance, which are more challenging than those
between different instances. Figure 5 visualizes which pairs
are included as positives and negatives for each method.

Meanwhile, Zhai et al. (2023) raised concerns about the
softmax function in the InfoNCE loss, noting that it causes
all instances to be dependent on each other through normal-
ization. To address this limitation, they propose replacing
the softmax with a sigmoid function, which allows each in-
stance to be processed independently in an additive manner.

Understanding CL. Through Embedding Structures.
Several studies have examined how optimal embeddings
should be structured to minimize contrastive loss (Lee et al.,

2025). Lu & Steinerberger (2022) showed that the optimal
embeddings that minimize the InfoNCE loss form a simplex
Equiangular Tight Frame (ETF) (Papyan et al., 2020; Sustik
et al., 2007), where each positive pair is perfectly aligned
and negative pairs are equally separated at the same angle,
resulting in maximal separation among representations. Lee
et al. (2024) further showed that the sigmoid-based con-
trastive loss, a variant of the softmax-based InfoNCE loss,
also achieves the same simplex ETF optimum when the
temperature parameter of the loss is sufficiently large. This
optimal simplex ETF structure still holds even in mini-batch
training, provided that optimization is performed over all
possible mini-batch combinations, rather than a single batch
at a time (Cho et al., 2024). Building on these findings, we
introduce a unified theoretical analysis of the similarities
between embedding pairs.

Effect of Batch Size in CL. CL shows outstanding
performance, particularly when trained with large batch
sizes (Chen et al., 2020; Radford et al., 2021; Pham et al.,
2023; Tian et al., 2020b; Jia et al., 2021). However, large
batch sizes require substantial memory resources, which
poses practical challenges and often necessitates the use of
smaller batches. This compromise in batch size typically
leads to performance degradation, motivating several the-
oretical studies to investigate its causes (Cho et al., 2024;
Koromilas et al., 2024). For example, Yuan et al. (2022)
demonstrate that the optimization error in SimCLR (Chen
et al., 2020) is upper bounded by a function inversely propor-
tional to the batch size, indicating that smaller batches yield
larger optimization errors. Additionally, Chen et al. (2022)
show that contrastive loss functions exhibit increasing dis-
crepancies between the true gradients and those estimated
during training as the batch size decreases. While previ-
ous studies have primarily focused on optimization error
and gradient estimation, we prove that training with small
batch sizes leads to increased variance in the similarities of
negative pairs in learned embeddings.

3. Problem Setup

Let (x, y) denote a pair of data points used for model train-
ing, where @ and y correspond to two distinct views of
instances. This formulation provides a unified framework
for CL in both unimodal (Chen et al., 2020) and multi-
modal (Radford et al., 2021) settings. In the unimodal case,
x and y are two randomly augmented views. In the multi-
modal case,  and y are views from different modalities.
For clarity, we present our analysis in the unimodal setting,
but the findings also apply to the multimodal case.

In CL, an encoder f(-) € R? is trained to map inputs into
d-dimensional embedding vectors, thereby representing the
data. The encoder is assumed to produce normalized em-



On the Similarities of Embeddings in Contrastive Learning

beddings such that ||u||, = 1 for all embeddings w. This
normalization is commonly adopted in related works for
mathematical simplicity (Wang et al., 2017; Wu et al., 2018;
Tian et al., 2020a; Wang & Isola, 2020; Zimmermann et al.,
2021; Cho et al., 2024; Lee et al., 2024), and is widely used
in practice, as experimental results consistently demonstrate
its effectiveness in improving performance (Chen et al.,
2020; Chen & He, 2021; Xue et al., 2024).

The encoder produces outputs u = f(x) and v = f(y),
which together form an embedding pair (u,v). When the
embedding pair is generated from augmented views of the
same instance, it is called a positive embedding pair and is
encouraged to be similar. In contrast, a negative embedding
pair, where each embedding comes from different instances,
is encouraged to be dissimilar. For simplicity, we refer to
positive embedding pairs as positive pairs and similarly to
negative pairs when there is no risk of confusion.

Formally, let ppos(, y) denote the distribution of positive
pairs, and let pneq (¢, y) represent the distribution of neg-
ative pairs. Following prior work (Wang & Isola, 2020),
the marginal distributions p, and p, of the individual aug-
mented views x and vy, respectively, are defined based on
the positive and negative pair distributions. Specifically,
these marginal distributions satisfy the following conditions:
pz(T fppOb x,y)dy = fpneg x,y)dy for all x, and
Py(Y) = [ Ppos(@, y)dx = [ pneg(x, y)de for all y. Note
that the randomness in these distributions arises from the

data augmentation process used to generate different views.

Let n denote the size of the training dataset. For any positive
integers a and b with @ < b < n, define the index sets [a

bl :={a,a+1,---,b} and [a] := [1 : a], where index i €
[n] refers to the i-th instance in the dataset. For ¢ € [n], let
ﬁfms (x,y) denote the empirical distribution of positive pairs
derived from the i-th instance. We assume that the supports
of p ppOb and p ppOb are disjoint for ¢ # j, as each instance is
distinct. Moreover, we assume that each instance is used
equally for training. Therefore, the empirical distribution of
all positive pairs denoted as Ppos(x,y), can be written as
Ppos(X,Y) = = Zle[n] Phos (X, y). Similarly, the empirical
distribution of all negative pairs is denoted by Preg (X, y).

Following the notations introduced in Koromilas et al.
(2024), we denote the element-wise pushforward measures
induced by the encoder f as fiDy, f4Dy, fiDpos> and fiPneg-
For example, fipneg(u, v) represents the empirical distri-
bution of negative embedding pairs, i.e., the distribution of

(u,v) = (f(x), f(y)) where (x,y) comes from ppeg.

Contrastive Loss. For any a < b with a,b € [n], let the
set of embedding pairs be denoted by (Ujs.p), Vi) =
{(ui,v;) : i € [a : b]}, derived from instances whose
indices range from a to b. The notation (Ula.p), Via:p)) ~

fﬁﬁgl(;g] indicates that each positive pair (u;, v;) is sampled

from f;p!, forall i € [a : b]. Note that u; and v; are ran-
dom variables, as they are the encoder outputs of randomly
augmented views. For simplicity, the subscript is omitted
for the set of all n pairs, i.e., (U, V) := (Up,, Vin))-

Let f* be the optimal encoder that minimizes the expected
contrastive loss, given by

W )~splnl LU VI (D)

fr:=argminE
f
where £ (U, V') denotes the contrastive loss function for a
given sample (U, V'). In this work, we focus on two specific
forms of contrastive loss functions used in practice.

Definition 3.1 (InfoNCE-Based Contrastive Loss). For
a given index set I C [n], the contrastive loss
Linfo-sym (Ur, Vi) is defined in its symmetric form as

1 1
»Cinfo—sym(Ula VI) =z Einfo(UI» VI)+§ »Cinfo(VIa UI) P

2
2
where the asymmetric component Lint, (Ut, V1) is
£111fo(U17 VI |I| Z 1/J (Cl Z ¢ ) vz z)

el JjeI\{i}

+sz¢

_vz i))7
JE{i}

for some constants (¢1,c2) € {(0,1),(1,0),(1,1)} and
some convex and increasing functions ¢, : R — R.
Definition 3.2 (Independently Additive Contrastive Loss).

For a given index set I C [n], the contrastive loss
Lind-add(Ur, V) is defined as

Lind-add(Ur, V1) i= —— Z(b u;rvz 3)
"ier
C1 T,
T m Z;Iw(% vj)
* ﬁ > (W(uluy) +v(v]v)
i#jel

for some constants (¢, c2) € {(0,1),(1,0), (1,1)}, where
¢ : R — R is a differentiable, concave, and increasing
function, and ¢ : R — R is a differentiable, convex, and in-
creasing function. Here, i # j € [n] is a simplified notation
representing ¢ € [n] and j € [n] \ {i}.

The constants (¢, c2) € {(0,1),(1,0), (1,1)} in both loss
formulations determine which types of negative pairs are
included in the contrastive loss. The cross-view negatives re-
fer to pairs of embeddings from different views of different
instances, i.e., (u;, v;) with i # j, whereas within-view neg-
atives are pairs from the same view but different instances,
i.e., (u;,u;) or (v;,v;) with i # j (Shen et al., 2016). Set-
ting ¢; = 1 includes cross-view negatives, while c; = 1
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Figure 1: Illustration of negative pair considered in the loss formulations defined in Def. 3.1 and Def. 3.2, which depends on
the choice of (c1, c2). Each grid shows all possible pairs between embeddings in Uj,,; and V],,), and each cell represents one
pair. Green regions represent positive pairs, and blue-striped regions indicate which negative pairs are included in the loss.

includes within-view negatives. Figure 1 summarizes which
types of negatives are incorporated for each configuration
of (c1, ¢2). Further discussion on the distinction between
cross-view and within-view negatives in the single-modal
case are provided in Appendix B, emphasizing that their key
difference lies in how they are structurally incorporated into
the loss, not in how they are generated.

Remark 3.3. The first form of losses in Def. 3.1 encom-
passes a variety of contrastive losses such as InfoNCE (Oord
et al., 2018; Radford et al., 2021), SimCLR (Chen et al.,
2020), DCL (Yeh et al., 2022), and DHEL (Koromilas et al.,
2024), see Appendix A.1. The second form in Def. 3.2 in-
cludes CL losses such as SigLIP (Zhai et al., 2023) and
Spectral CL (HaoChen et al., 2021), see Appendix A.2.

The difference between the two forms of loss functions
lies in computational efficiency. The first form in Def. 3.1
necessitates simultaneous computation based on pairwise
similarities across the entire set of embeddings due to the
need for normalization, which becomes impractical for ex-
tremely large batch sizes. In contrast, the second form in
Def. 3.2 is independently additive, allowing it to compute
components of each pairwise similarity individually and
aggregate them, making it applicable to larger datasets.

4. Similarities of Embedding Pairs

In CL, the encoder is trained to bring positive embedding
pairs closer together while pushing negative embedding
pairs further apart. Accordingly, the cosine similarities of
embedding pairs provide a straightforward way to evalu-
ate how well representation achieves its objective. These
similarities are formally defined as follows.

Definition 4.1 (Similarities of Positive/Negative Pairs). The
similarity between embeddings of a positive pair (x, y) is

defined as
S(f;lapos) = f(a:)Tf(y) for

dubbed as the positive-pair similarity for the encoder f.
Similarly, the similarity between embeddings of a negative
pair (x, y) is defined as

S(f;ﬁneg) = f(:B)Tf(y) for

dubbed as the negative-pair similarity for the encoder f. We
call both similarities as embedding similarities.

(.’13, y) ~ ﬁposa

(wa y) ~ ﬁnega

Note that the similarities of embeddings in Def. 4.1, de-
noted by s(f; Ppos) and s(f; Pneg), are random variables,
where randomness arises from data sampling and augmenta-
tion. Specifically, a positive pair is generated by selecting
an instance from a dataset of size n and applying two ran-
dom augmentations. Similarly, a negative pair is generated
by randomly selecting an instance pair from the n(n — 1)
possible combinations and independently applying random
augmentations to each instance.

Expectation & Variance of Negative-pair Similarities.
Recall that the negative-pair similarity s(f; pneg) is a ran-
dom variable. Here we investigate how the expectation
and the variance of s(f;pneg) affect the learned embed-
dings. First, as the expectation E [s(f;pnegs)] increases,
the negative pairs are less separated, which typically de-
grades the representation quality. Second, the high vari-
ance Var [s(f;pneg)| implies that some negative pairs
are mapped unusually close, while others are mapped
much farther apart. Figure 2 shows the effect of the
variance Var [s(f; Pneg)] of the negative-pair similarities.
Here, we have three different cases of learned embeddings
{wi, vi}ica) in three dimensional space. While all three
cases have same expectation E [s(f; Pneg)], the geometry
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Mini-batch loss: arg min {[, (U[LQ]7 ‘/[1:2]) + L (U[334], V[3;4])}

Full-batch loss: arg min { £ (Uj1.4), Vi1.47) }
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Figure 2: Visualization of three different cases of eight embeddings on the three-dimensional unit sphere. Positive embedding
pairs are represented in the same color and share the same subscript, while negative pairs refer to any two embeddings with
different subscripts. In (a) and (b), embeddings minimize the fixed mini-batch contrastive loss described in Theorem 5.5, with
the batches partitioned as {u1,v1, w2, v2} and {us, vs, ug, v4}. In (c), the embeddings minimize the full-batch contrastive
loss described in Theorem 5.1. In all cases, the expectation of negative-pair similarities, E;, ;¢4 [ulT v;], remains the same.

However, the variance of negative-pair similarities, Var; ;¢4 [uiT'vj], increases in mini-batch trainings, indicating that
some negative pairs are much more similar to each other while others are more dissimilar.

of embeddings significantly changes depending on the vari-
ance Var [s(f; Pneg)]. One can confirm that the rightmost
case having equi-distant embeddings {w; };c[4) achieves the
zero variance of negative-pair similarities.

Comparison with Existing Metrics. The similarities of
embeddings in Def. 4.1 are related with metrics proposed in
previous work. For example, the alignment metric used in
(Wang & Isola, 2020) can be represented as

E(u0)~ fippos [llu - vllg} = —2E [s(fiPpos)] +2, ()

which is related with the positive-pair similarity s(f; ppos)-
Here, the higher alignment value indicates that representa-
tions are largely invariant to random noise factors introduced
by augmentations.

On the other hand, the uniformity metric used in (Wang
& Isola, 2020) is related with the negative-pair similarity
S(f; Pneg), since it is defined by the logarithm of the Gaus-
sian potential function (Cohn & Kumar, 2007) as

10g B 5, [exp (— lu = v]3)] )

v’\‘fﬁﬁy

~ 2 (E[s(f: Pneg)] + Var [s(f; Pneg)] — 1), (6)

where the approximation in (6) is detailed in Appendix C.1.
The uniformity metric measures how representations are
uniformly distributed on the unit hypersphere, and thus a
lower uniformity value indicates that the representations
preserve more information from the data.

5. Behavior of Learned Embeddings

In this section, we interpret the behavior of embeddings
trained by contrastive learning, through the lens of similar-
ities of positive/negative pairs, denoted by s(f; ppos) and
S(f; Pneg), defined in Sec. 4. We begin by examining the
full-batch CL and subsequently extend our analysis to the
mini-batch CL. Proofs for all statements in Sec. 5.1 and
Sec. 5.2 are provided in Appendix C.3 and C.4, respectively.

5.1. Full-Batch Contrastive Learning

Recall that we consider various contrastive loss functions
which can be categorized into two parts: the InfoNCE-based
contrastive loss in Def. 3.1 and the independently additive
contrastive loss in Def. 3.2. Our first main result below
provides the similarities of positive/negative pairs for the
two types of contrastive losses, when the encoder is full-
batch trained.

Theorem 5.1. Suppose d > n — 1. Let the contrastive loss
Sunction L(U,V') be one of the following forms:

L. L:info—sym(Uav) in Def. 3.1.
ii. Lind-adad(U,V) in Def. 3.2, where (c1, c2) €{(0,1), (1,1)}.

iil. Lind-add(U,V) in Def. 3.2, where (c1,co) = (1,0) and
¢/ (1) > 23;21) ’ "Z)/ <_ n£1>'

Then, in the full-batch training, the embedding similarities
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for the optimal encoder f* in (1) are

1

s(f*;ﬁpos) =1, S(f*§ﬁneg) = _m~

According to Theorem 5.1, all positive pairs achieve the
perfect alignment, while all negative pairs are uniformly
separated with the cosine similarity of fﬁ. This is a
generalized version of previous studies (Lu & Steinerberger,
2022; Cho et al., 2024; Lee et al., 2024; Koromilas et al.,
2024), where we extend in two directions. First, the CL loss
formulations (Def. 3.1 and Def. 3.2) we considered are a
much broader class of losses compared with existing work.
Second, we consider the randomness of n embedding pairs
in the optimization, where this randomness is introduced

through augmentations.

Now we analyze the behavior of embeddings for arbitrary
encoder f, that is not necessarily in the optimal status f*.
The below result provides the relationship between the
positive-pair similarity and the negative-pair similarity.
Theorem 5.2. For any normalized encoder f,

n—1

E (s (f: fpos)] < 1+ (E (5 (f; foeg)] + 1) @

where the equality
tr (Var(um)anﬁpos [u —

in (7) holds if and only if
v]) = 0and By~ 5, [u +v] = 0.

v~ fyby

Theorem 5.2 highlights the relationship between the expecta-
tion of positive-pair similarities, E [s (f; Ppos)], and that of
negative-pair similarities, E [s (f; Pneg)]. When the average
of negative-pair similarities drops below — ﬁ, the positive
pairs cannot be fully aligned, which is not desired. We call
such phenomenon as the excessive separation of negative
pairs in full-batch CL, since the average of negative-pair
similarities drops below — ﬁ when negative pairs are more
separated compared with the optimal status specified in The-
orem 5.1. This issue may arise when certain loss functions
are used, as shown in the following theorem.

Theorem 5.3 (Excessive Separation in Full-Batch CL). Sup-
pose that d > n. Consider the contrastive loss function
L (U, V) inthe form of Ling-ada (U, V') in Def. 3.2, where
(c1,c2) = (1,0) and

n—2 , 1
< — . 8
2(n—1) v < n— 1) ®
Then, under the full-batch training setup, the embedding
similarities for the optimal encoder f* in (1) satisfy

1

s(f*;ﬁneg) < o1

¢’ (1)

S(f*;ppos) <1,

The inequality condition on ¢ and ¢ in (8) explains why
the 10ss Ling.aaa (U, V') in Def. 3.2 causes the excessive

separation of negative pairs. Specifically, Lind-aad (U, V)
is formulated as the sum of v (-) over negative pairs and
—(-) over positive pairs. Therefore, 1’ (——L;) indicates
how much the loss decreases if the negative-pair similarity
falls below ——=, while ¢/(1) measures how much the loss
increases if the positive-pair similarity drops below 1. When
the condition in (8) is satisfied, ignoring the scaling factor,
the loss reduction from separating negative pairs beyond the
similarity threshold of —ﬁ can be greater than the loss
increase from reducing positive-pair similarity below 1. As
a result, the optimization process favors pushing negative
pairs even further apart, leading to the excessive separation.
We provide a specific loss function where this issue arises:

Example 5.4. Consider the sigmoid contrastive loss
Lsig(U, V) (Zhai et al., 2023), defined as

1
Lsig(U,V):= - Z log (1 + exp (—tujvi) -exp(b))

1€[n]

+ 1 Z log (1+exp (tu;rvj) -exp(—b)),
i#j€[n]

C))

where t > 0 and b € R are hyperparameters. This loss
Sollows the form of Ling.aaa (U, V) in Def. 3.2, where
(c1,c2) = (1,0), p(x) = —log(1l + exp(—tx + b)), and
P(x) = (n—1)-log(1+ exp(tx —b)). If hyperparameters
t and b are chosen such that

1+exp(ﬁ—|—b) n—2
1+ exp(t —b) STy

(10)

then embedding similarities for the full-batch optimal en-
coder f* in (1) satisfy
1

s(f*;ﬁneg) < 7;

S(f*§ﬁpos) <1,
Note that (10) is just a rephrase of (8) by plugging in ¢ and
1) for the sigmoid contrastive loss. When the hyperparame-
ter b of the sigmoid contrastive loss is sufficiently small, the
condition in (10) is satisfied, thus the learned embedding
suffers from the excessive separation issue. This can be also
explained by the sigmoid contrastive loss formula. In (9),
the relative weight of second term (compared to the first
term) increases as b decreases. In such case, minimizing
the negative-pair similarity becomes more important. Con-
sequently, decreasing b induces the excessive separation of
negative pairs.

Addressing Excessive Separation in Full-Batch CL. A
natural question that arises is whether the excessive separa-
tion of negative pairs in full-batch CL can be mitigated.
According to Theorem 5.1 and Theorem 5.3, this issue
depends on the specific form of the contrastive loss. In
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particular, under the independently additive loss function
Lind-add (U, V'), the optimal embeddings do not suffer from
excessive separation when co = 1 (i.e., case (ii) of Theo-
rem 5.1), whereas the issue arises when ¢y = 0 and condi-
tion (8) holds.

This observation suggests two potential solutions to the ex-
cessive separation problem. The first is to set co = 1 in the
loss function, effectively incorporating within-view negative
pairs. The second is to tune hyperparameters such that condi-
tion (8) does not hold, i.e., case (iii) in Theorem 5.1. While
both approaches are theoretically valid, the former offers a
more principled and practical remedy. In contrast, the latter
lacks clear guidance for selecting suitable hyperparameters
and may incur significant computational overhead. There-
fore, we advocate including within-view negative pairs as
a straightforward and effective strategy to avoid excessive
separation in full-batch CL.

5.2. Mini-Batch Contrastive Learning

In Sec. 5.1, we show that when a proper contrastive loss
function is chosen for full-batch training, the learned em-
bedding satisfies the following behavior: all negative pairs
have the cosine similarity of —ﬁ and all positive pairs
are perfectly aligned. What about the practical scenarios
when we use mini-batches for training? Suppose n train-
ing samples are partitioned into b mini-batches where each
batch contains m := n/b samples. Consider training the
embeddings by under the fixed mini-batch configuration,
where k-th mini-batch contains the samples with indices
inI, = {m(k-1)+1,m(k—-1)+2,--- ,mk}. Under
this scenario, the below theorem analyzes the behavior of
embeddings learned by mini-batch training.

Theorem 5.5 (Excessive Separation in Mini-Batch CL).
Suppose d > m — 1. Let the contrastive loss function
L (U, V) is one of the forms in Theorem 5.1. Define [, ..,
as the optimal encoder that minimizes the fixed mini-batch
loss, given by

foaten = arg;ninE(U’V)mews > LU, i),
ke[b]

where I, ;== [m(k — 1) + 1 : mk| for k € [b]. Then, em-
bedding similarities for the optimal encoder f,,, ., satisfy

S(fl;atch; ﬁpos) =1,

1
E [s(fgatch;ﬁneg)] = -

n—1’°

Var [s( fiatens Pnee)] € | Grmietyes ez |-

Y

A necessary condition for attaining the minimum variance
of negative-pair similarities in (11) is d > b(m — 1).

According to Theorem 5.5, the embeddings learned by
mini-batch training have the following behaviors. First, the
positive-pair similarity is equal to 1, i.e., all positive pairs
are fully aligned. Second, the expectation of negative-pair
similarities is equal to ——5, which happens for the full-
batch training as well. Third, unlike full-batch training, the
negative-pair similarity is not uniform across the pairs, i.e.,
the variance is positive when the mini-batch size m is strictly
less than the sample size n. Thus, the effect of using mini-
batch (compared with using full-batch) is in the increased
variance of negative-pair similarities. Throughout the paper,
we call such phenomenon as the excessive separation of
negative pairs in mini-batch CL.

Figure 2 visualizes the effect of using mini-batches, com-
pared with the full-batch scenario, when n = 4 and m = 2.
For the full-batch training, shown in (c) of Figure 2, the
variance of negative-pair similarities is zero, indicating that
all negative pairs are equi-distant. In contrast, (a) and (b)
of Figure 2 illustrate the embeddings learned by the mini-
batch training, where the fixed mini-batches are specified as
(Up.2), Vig) and (Ujs.a), Viz.a))- For both (a) and (b), the
variance of negative-pair similarities is positive, where (a)
represents the case that achieves the upper bound of the vari-
ance in (11), and (b) corresponds to the case that achieves
the lowest variance.

Effect of Batch Size. Note that the variance of negative-
pair similarities in (11) depends on the batch size m. For
example, in the full-batch case where m = n, the upper
bound in (11) is zero, which is consistent with Theorem 5.1.
One can confirm that the upper and lower bounds on the
variance is a monotonically decreasing function of m, which
implies that smaller batch sizes inherently exacerbates the
excessive separation of negative pairs in mini-batch CL.

The below theorem analyzes the effect of batch size on the
training dynamics, when a popular CL loss function is used:

Theorem 5.6. Consider the InfoNCE loss
Lintonce (U, V) (Oord et al., 2018), which corre-
sponds to the loss Lingo-sym (U, V) in Def. 3.1 where
o(x) = exp(x/t) for some t > 0, Y(z) = log(1 + z),
and (c1,c¢2) = (1,0). For any two integers my, ms € [n]
satisfying my < meg, the gradient of the InfoNCE loss with
respect to the negative-pair similarity satisfies

0< WEIHfONCE (U[m2]7 ‘/[mg])

K3

0
< WﬁlnfoNCE (Utma)s Vi) (12)

for any distinct indices i # j € [m]. Moreover, the equality
in (12) holds if and only if mq = mao.

According to Theorem 5.6, the gradient of the loss with
respect to the negative-pair similarity is always non-negative,
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implying that gradient descent decreases the similarities of
negative pairs, thereby pushing them further apart. Notably,
the magnitude of this gradient increases as the batch size
gets smaller. As a result, negative pairs within each batch
exhibit greater separation the batch size gets smaller.

Addressing Excessive Separation in Mini-Batch CL.
Recall that the effect of using mini-batch in CL is in the
increased variance of negative-pair similarities as shown
in Theorem 5.5, and such phenomenon is called the exces-
sive separation of negative pairs. To mitigate such issue, we
introduce an auxiliary loss term Lygrngs that reduces the
variance of negative-pair similarities:

Definition 5.7 (Reducing Variance of Negative-Pair Simi-
larities). Let m be the mini-batch size. Define

1 2
T .
]<ui Vj—l—n_l)

as the auxiliary loss term for reducing the variance of
negative-pair similarities.

1
LVRNS (U], Vim)) := m Z
i#jelm

One can combine arbitrary conventional mini-batch loss
function £ (U[m}, V[m}) with the proposed auxiliary loss to
get the modified loss, given by

L (U Vim)) + A+ Lvrns (Upn)s Vi) -

where A > 0 is a hyperparameter. By including the proposed
term into the mini-batch loss function, we encourage all
negative-pair similarities to be close to —ﬁ, the ideal
value achieved in the full-batch setting in Theorem 5.1. As
a result, the proposed loss controls the variance of negative-
pair similarities in mini-batch CL.

6. Empirical Validation

In this section, we empirically validate the impact of our
theoretical results discussed in Sec. 5, especially for the
practical scenarios of mini-batch training. First, we empiri-
cally observe that the excessive separation of negative pairs
(proven in Theorem 5.5) actually happens in experiments
on benchmark datasets. Second, we empirically confirm
that such excessive separation issue can be mitigated by
using the proposed loss term in Def. 5.7 which reduces the
variance of the negative-pair similarities. Third, we observe
such variance reduction improves the quality of learned
representations in various real-world experiments.

6.1. Excessive Separation of Negative Pairs

To investigate the excessive separation of negative pairs in
CL, we evaluate the variance of the negative-pair similarities
of embeddings learned by real-world experiments. Follow-
ing prior works on contrastive learning (Chen et al., 2020;

Table 1: Variance of the similarities of embeddings of nega-
tive pairs, obtained from models trained with different batch
sizes. Each model is trained using either the SIimCLR loss
alone or jointly with our auxiliary loss in Def. 5.7, which
is proposed to reduce this variance. One can confirm that
the variance is effectively reduced by using the proposed
auxiliary loss.

Variance of negative-pair similarities

Batch size
SimCLR SimCLR + Ours
32 0.1649 0.1008
64 0.1505 0.0952
128 0.1444 0.0929
256 0.1404 0.0921
512 0.1396 0.0917

Koromilas et al., 2024), we use a ResNet-18 encoder (He
et al., 2016) followed by a two-layer projection head. The
models are pretrained on CIFAR-100 (Krizhevsky et al.,
2009) by minimizing the SImCLR loss with the temperature
parameter of ¢ = (0.2. Five models are trained with mini-
batches sampled uniformly at random, with batch sizes of
32, 64, 128, 256, and 512, respectively. Additional details
of the experimental setup are provided in Appendix D.

Based on these pretrained models, we generate 5,000 posi-
tive embedding pairs by applying random augmentations to
the training data and extracting the corresponding outputs
from the projection head. We then compute the cosine sim-
ilarities of negative pairs, and report the variance of these
similarities in Table 1. As shown in the table, training with
smaller batch sizes leads to higher variance in negative-pair
similarities, which aligns with the result in Theorem 5.5.

To evaluate the effectiveness of our proposed auxiliary
loss, we train five models for each batch size by min-
imizing the SimCLR loss combined with the auxiliary
loss Lyvrns(U, V) in Def. 5.7 with the hyperparameter
of A = 30. The variances of negative-pair similarities from
these additional models are shown in the last column of
Table 1, and are consistently reduced across all batch sizes.
This indicates that our proposed loss effectively mitigates
excessive separation of negative pairs in mini-batch training.

6.2. Effect of Variance Reduction on Performance

We further investigate whether reducing the variance of
negative-pair similarities actually improves the quality of
learned representations in terms of the downstream perfor-
mances.

Experimental Setup. We pretrain models on CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), and ImageNet (Deng
et al., 2009) using various contrastive loss functions
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Figure 3: Classification accuracy on CIFAR datasets. Mod-
els are trained by minimizing the SimCLR loss with and
without the auxiliary loss term proposed in Def. 5.7, using
various temperature parameters in the SImCLR loss.

that follow the formulation in Def. 3.1, including Sim-
CLR, DCL, and DHEL. For all methods, we compare
models trained with and without incorporating the aux-
iliary loss Lyvgrns(U,V) introduced in Def. 5.7. The
hyperparameter A\ for the proposed loss is tuned over
{0.1,0.3,1, 3,10, 30, 100}. Unless otherwise specified, the
other settings follow those in Sec. 6.1.

Performance Gains from Variance Reduction. The qual-
ity of the representations learned through CL is known to
be sensitive to the choice of the temperature parameter in
contrastive losses, as it influences the distribution of similar-
ities among embeddings (Wang & Liu, 2021). To investigate
this sensitivity, we train models using the SimCLR loss with
temperature values ranging from 0.07 to 2.00. We compare
the standard SimCLR loss against our proposed variant,
which incorporates the auxiliary loss term introduced in
Def. 5.7 to reduce the variance of negative-pair similarities.
As shown in Figure 3, incorporating the proposed term leads
to a consistently higher and more stable classification accu-
racy across all temperature settings, alleviating the need for
careful temperature tuning.

We further evaluate the effect of the auxiliary term in
Def. 5.7, when applied to existing CL methods including
DCL and DHEL. Experiments are conducted on the CIFAR
datasets with various batch sizes. As shown in Figure 4,
incorporating the proposed loss term leads to improved clas-
sification accuracy, with the effect being more pronounced
at smaller batch sizes. Additional results on the ImageNet
dataset are presented in Appendix E.

Caveats of Variance Reduction. While the auxiliary loss
proposed in Def. 5.7 effectively reduces the variance of
negative-pair similarities, this reduction can influence both
desirable and undesirable sources of variance. On the posi-
tive side, it helps reduce variance introduced by mini-batch

SimCLR DCL DHEL + Ours
89
CIFAR-10 L# e ILL

88

87 t ‘
< 86
X
c 85
5 128 256 512
§ 62 CIFAR-100 1 ™
7 a| IR = ]
o
+ 60

59

58

57

56 I

55

32 128 256 512
batch size

Figure 4: Effect of the auxiliary loss term proposed in
Def. 5.7 on top-1 classification accuracy when combined
with various baseline methods (SimCLR, DCL, and DHEL)
on CIFAR datasets. The gray bars highlight the performance
gains achieved by incorporating the proposed term across
various batch sizes. The proposed auxiliary loss term con-
sistently improves the model performance.

sampling, which can degrade the representation quality.
However, it may also suppress the variance that captures
meaningful structure in the data. Further discussion of the
limitations of the proposed loss is provided in Appendix F.

7. Conclusion

To understand contrastive learning (CL), we mathematically
analyzed the distributions of similarities of embeddings,
measured for positive pairs and negative pairs. Our theoreti-
cal results in full-batch CL demonstrate that misalignment of
positive pairs becomes inevitable when the average similar-
ity of negative pairs falls below its optimal value, a situation
that can arise with existing contrastive loss functions. In
mini-batch CL, we prove that the variance of negative-pair
similarities increases as the batch size decreases. To address
the detrimental variance introduced by mini-batching, we
propose an auxiliary loss that reduces this variance, which
also enhances the performance of existing CL methods.

We aim to extend this work in two directions. First, we
seek to disentangle the variance of negative-pair similari-
ties that reflects intrinsic data structure from that caused by
mini-batching, enabling us to target only the variance that
degrades representation quality. Second, we plan to analyze
the behavior of embedding similarities not only during pre-
training but also during fine-tuning, to gain deeper insights
into its dynamics throughout different stages of training.
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A. Loss Functions

We outline how various loss functions commonly used in CL can be instantiated by the general formulation provided in
Def. 3.1 and Def. 3.2. For each case, we specify the corresponding choices of functions and parameters.

A.1. Contrastive Losses Following Def. 3.1

uj ug u, Vi Vo Vn uj ug u, Vi Vy Vn
u; u;
L8 ) ug —l
u, uy
V1 |pos; V1 |pos
Vo V2
Vn | Vn |
InfoNCE SimCLR
uj ug u, Vi Vy Vi up uz u, Vi Vo Vi

u uj

U9 —l L 5] —l

Uy, uy

V1 |pos V1 |pos |

Vo V2

Vn | Vn

DCL DHEL

Figure 5: [llustration comparing four different contrastive loss functions, all following the form of Def. 3.1. The green area
represents the positive pair, while the blue-striped regions indicate the negative pairs that are normalized together with the
positive pair for each loss.

Table 2: Function and parameter selections in Def. 3.1 that correspond to contrastive losses.

¢(x) Plx) a o

InfoNCE (Oord et al., 2018)  exp(z/t) log(l1+z) 1 0
SimCLR (Chen et al.,, 2020)  exp(z/t) log(l+=z) 1 1
DCL (Yeh et al., 2022) exp(x/t) log(z) 1 1
DHEL (Koromilas et al., 2024)  exp(z/t) log(x) 0 1
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. InfoNCE (Oord et al., 2018), CLIP (Radford et al., 2021):

oo (T exp (u] v,
en(U. ) 777210 (Z pe(;;(iz/i) 0 >Zl <Z p (u; %f). ) (13)

jeln] P jein) P (] vi/1)

- % Yolog {1+ > exp((v;—vi) wift)

i€[n] jem\{i}
—1—— Zlog 1+ Z exp ((u; —u;) "o /t) |,
jem\{d}

where ¢ > 0 is the temperature parameter.

. SimCLR (Chen et al., 2020):

T/t
£SlmCLR(U V = —— Z log ( exp (Uz vz/ ) >

D i €XP (W] v/t) + 3 e iy &0 (u] w;/t)

1 Z log exp (u 'vz/t)
" 2 jein) P (W] 0i/1) + e iy P (0] vi/t)

i€[n]

—Zlog 1+ Z exp ((vj — v;) ui/t)—l— Z exp ((u; — v;) ui/t)

Jeln\{i} jen\{s}

+—Zlog 1+ Z exp ((u; — u;) Ui/t)-i- Z exp ((v; — u;) 'Ui/t) )

i€[n] jem\{s} jem\{s}
where ¢ > 0 is the temperature parameter.
. DCL (Yeh et al., 2022):

ex UT’U'
£DCL(U, V) = —i Z log ( p( 1 z/t) >

i) Zje[n]\{i} €xp (“j”j/t) + Zje[n]\{i} exp (uiTuj/t)

1 Z 1 exp (u; v;/t)
= og
n Zje[n]\{i} €xp ('“’;'r”i/t) + Zje[n]\{i} exp (ujT“i/t)

i€[n]

= % Z log Z (exp ((v; — v;) Tu/t) +exp ((u; —v;) Tu;/t))
i€[n] JEn\{i}

1
+ o Z log | Z | (exp ((u; —w;) "vi/t) +exp ((v; —u;) Tv;/t)) |,
i€[n] Jeln\{i}
where ¢ > 0 is the temperature parameter.
. DHEL (Koromilas et al., 2024):

exp (u, v; exp (u, v;
CDHEL(U V N Z log <Z p( i z/t_z ) B ;niez[::]log (Z p( i z/ﬁ—l)— . )

e jelnn gy P (] u; /1) jelnngiy P (u] wi/t)

:% > log | Y exp ((u;—vi) wi/t) +%Zk’g > exp (v —wi) Twift) |

i€[n] jeln\{i} i€[n] jeln]\{i}

where ¢ > 0 is the temperature parameter.
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A.2. Contrastive Losses Following Def. 3.2

Table 3: Function and parameter selections in Def. 3.2 that correspond to contrastive losses.

() ¥(x) o
SigLIP (Zhai et al., 2023) —log(14+exp (—tz+b)) (n—1)-log(1+exp (tz—>b)) 1 0
Spectral Contrastive Loss (HaoChen et al., 2021) T 22 1 0
1. SigLIP (Zhai et al., 2023) :
1
Lsigrip(U, V) Z log 1 + exp( tujvi + b)) + — Z Z log (1 + exp (tu;rvj — b))
ze[n] i€[n] je[n]\{i}

:——Z —log (1+exp (—tu; v;+b))) + Z Z (n— 1)-log (1+exp (tu; v;—b)),

Ze[”]JE[”]\{ }

where t > 0 is the temperature parameter and b € R is the bias term.

2. Spectral Contrastive Loss (HaoChen et al., 2021) :

ﬁSpectral(U V = Z Uu; UJ Z
i€[n

16 [n]

] j€ln] {2}

B. Distinction Between Cross-View and Within-View Negative Pairs

@ @\ /® ——  Cross-view

negative pair

&
OR6

— within-view
@ negative pair

e @
S @
OROR6
©)
X
©)

&®
® @
®Q 6
<
®
®

(a) (01,62) = (1,0) (b) (Cl,Cg) = (0, 1)

Figure 6: Graphs illustrating different loss configurations for n = 3.

The key distinction between cross-view and within-view negative pairs in our analysis lies in their structural incorporation
within the contrastive loss, rather than in the manner of their generation. To demonstrate that cross-view and within-view
negatives are not equivalent, we present a graph-based representation in Figure 6, which reframes Figure 1. In these graphs,
each node corresponds to an embedding, and each edge indicates a negative pair considered in the loss.

In the unimodal CL, the distinction between the two views, u; and v; for i € [3], is not semantically meaningful. Thus, u; and
v; may be interchanged without affecting the results. This implies that the four graphs depicted in Figure 6a are equivalent
under permutation of views, and the same reasoning applies to Figure 6b. Nevertheless, the overall graph structures in
Figure 6a and Figure 6b remain fundamentally different. One can confirm that cross-view graphs are fully connected bipartite,
whereas within-view graphs consist of disconnected subgraphs. This topological difference highlights their non-equivalence.
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C. Proofs

C.1. Approximation of Uniformity Metric
Under the normality assumption on u " v, Proposition C.1 gives
logE [exp (2uT'v)] =2 (E [UT’U] + Var [uTv]) .

Accordingly, the uniformity metric can be approximated as

2 2
108 Bur fyp, o sin, |50 (= [ = v13) | % 108 B upmptpneg [exp (— llu—vl3) |
~2 (E [S(f;ﬁneg)] + Var [S(f;pneg)] - 1) ’
by Proposition C.2, as n goes to infinity.

Proposition C.1. Assume that the random variable uw' v follows the normal distribution. Then,

logE [exp (2uTv)} =2 (E [uT'v] + Var [uT'v])
Proof. Let X = u'v. Since X follows the normal distribution, we define y := E[X] and 02 := Var[X].
Note that the moment generating function of normal distribution is given by

E [exp(tX)] = exp <ut + “2;2> .

Substituting ¢ = 2, we have
E [exp(2X)] = exp (2,u + 202) = exp (2E[X] + 2Var[X]),

which is equal to
log E [exp(2X)] = 2 (E[X] + Var[X]).

T

Since X = u ' v, we conclude

logE [exp (2u'v)] =2 (E [u'v] + Var [u"v]).

C.2. Proofs for Relation Between Positive and Negative Pairs

Proposition C.2. The distribution of negative pairs satisfies pneg(T,y) = p(x)py(y) for all x and y. However, for a
training dataset of size n, the empirical distribution of negative pairs is given by

e pal@)hyly) — —

ﬁneg (w, y) = ' ﬁpos(m7 y)a

n—1

for all x and y.

Proof. The empirical distribution of positive pairs, pyos, is defined under the assumption that all instances are equally
weighted with the probability Pr{I = i} = % for all i € [n], where I is a random variable representing the index. Under
this assumption, the probability that a randomly selected pair is positive is

Pr{pos} = Pr{i =4’} = Y Pr{i=i}Pr{i =i} =n- % _ L

n
1€[n]
Then, the empirical distribution of negative pairs, Ppeg, is subsequently derived as

Dz (2)Py(Y) = Dpos(x, y) Pr{pos} + pneg(z, y)(1 — Pr{pos})
n—1

. 1
= ppos(ma y) . E +pneg(xay) : n (14)
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which leads to
n 1

ﬁneg(m; y) = f]. px(m)py(y) - m 'ﬁpos(xvy)'
Moreover, as n — 0o, the above result implies that ppeg (€, y) = pa(x)py (). O

Lemma C.3. Assume that the encoder f(-) satisfies || f(x) H; = 1 for all . For any distribution p, the following holds.

1 1
s L Bt [wT0] = 5 tr (Vara.o) syt = ¥1) + 5 B sipp. [+ 0]
v~ Py

Proof. Note that
2 2 T
B w0)~ feper (18 = 0[5 = (B~ foppen [0 4 915 = =B w ) feppe (8] Easo) 1210 [0]
= —4Bu~f,p, [U]T B fyp, [0] (15)
where the equality in (15) follows from the assumption of matching marginals.

From the definition of variance, we have

tr (Va'r(uvv)"’fuppos [U—U]) ]E(u v) fﬁppos |:t ( ]E(u 'U)Nfﬁppos [u U}) ((u_v) - E(uvv)"’fuppos [U - v])T>]
- E(u 'U)Nfﬁppos |:H ’LL 'U)Nfﬂppos [u - v] ||§:|
= E (w,v)~ fgPpos [l - v” } - HE(u V)~ fiPpos LU [ 'U}H;

2 T
- E(u v)~ ftPpos [2 —2-u ’U] - ||E(u v)~ f§Ppos [’LL tv ||2 + 4Eu"“fﬂpz [’U,] E”“‘fﬁpy [U]
= 2 - 2E(u7v)~fﬁppos [u 'U] - ||E(u)'u)~fﬁppos [u + 'U] ||2 + 4Eu"’fﬁpm [U]TE'U’\‘fﬁpy [v]
(16)
By rearranging (16) and dividing by 2, we have

1

5 tr (Var(uvv)’\‘fﬁppos [u - /U}) + ||E(u7v)’\‘fﬁppos [u + v] ||; = 1 - E(u7v)"/fﬁppos I:UTU] + Eu’\‘fﬂpz [U]TE'UNfﬁpy ['U]

va] + Eunfip, [’U,T'U]
v~ fipy

= 1 - E(u7’v)~fﬁppos [u

O

Lemma C.4. Assume that the encoder f(-) satisfies || f (x) ||§ = 1 for all . For any empirical distribution p with a sample
size of n, the following holds.

n— 1

1 1 2
17 E(u ‘U) fﬁppos [UT’U] +T]E(u v)Nfﬁpneg I:uT/U} = 5 tr (Var(u7v)Nfﬁﬁpos [u - v})+§ ||E(u7v)’\'fﬁﬁpos [u + /v} H2 .

Proof. Using Proposition C.2, the expectation over the empirical distribution can be decomposed into the expectations of
positive and negative pairs as follows.

1 n—1
E’U/\/;uéw [UTU] = EE(UG'U)Nfﬁﬁpos [UT’U] + n E(u’v)’\/fﬁﬁncg [uT’U] °
v~ Py

Applying Lemma C.3 to the empirical distribution p, we have

1
5 tr (Val'(u,v)mafuﬁpos [U_v]) + HE(u,v)Nfuﬁpos [u—l—v]”; =1- E(u’v)wfuﬁpos [UTU] + EUNJJEWE [UTU}
v~ Py
n—1 n—1
= 1= B fepe [0 0] + ——Fu )~ fipes [0 0]

O
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Theorem C.5. Assume that the encoder f(-) satisfies || f (x) H; = 1 for all x. For any empirical distribution p with a sample
size of n, the following inequality holds.

1

T T

E(uvv)"’fuﬁpos [u /v:I S 1 + (E(uﬂ’)’\‘fﬂaneg [U 'U] + n — 1) ’

where equality holds if and only if tr (Var (u.v)~ f,p,.. @ — v]) = 0 and By g,5, [u] + Eyy,p, [v] = 0.
Proof. From Lemma C.4, and variance and norm are non-negative, we have

n
E (w0~ feppor [ 0] = =7 + Elu ) fypnes [0 V]

- L) tr (Var(uv'v)'\’fﬁ[}pos [u - 'U]) - “ ||]E(u1’U)Nfﬁﬁpos [u + U] ||z

2(n—1 2(n—1)

< +E(u’v)'\’fﬁﬁneg [uTv] ’ (17)

n—1

where equality in (17) holds if and only if tr (Var(u,v)wfnﬁpos [u — 'v]) =0 and HE(uﬂ,) [u + v] Hi = (. Moreover,

Nfﬁﬁpos
the condition of HE(u,v)anﬁpos [u + v] Hz = 0is equal to Eqy v, [t] + Eonf,p, [v] = 0. As aresult, the following holds:

1
E ()~ fyppon [0 0] <1+ <E<u,v>~fﬁﬁmg [u"v] + — 1) :

C.3. Proofs for Full-Batch CL

Lemma C.6 (Restatement of Lemma 1 in Lee et al. (2024)). Let uq,v1, U2, Vo, - - Uy, U, be 2n vectors, satisfying

u] u; = v, v; = 1 foralli € [n]. Then, the following inequality holds.

-2
Z Z uvj_?nnn—l Zu n—l) (18)

le[n] jer\{i} le[n]

where the equality conditions are

u; — v; = cforalli € [n], for some constant vector c,
Dicn) Wi+ 2iep Vi = 0.

Proof. By using Jensen’s inequality, we have

1 9 1

- w2 > |12

n Z [u; —vilz = n Z(uz ;)

i€[n] i€[n] 2
2 T
1 1 1
= ﬁ (’U,Z+’UZ) 4(7’), Z u; ﬁzvl
i€[n] 9 i€[n] i€[n]

1V
\
e~
/

S|

£

_‘

S|

8

where the equality conditions are

{ui —v; = cforall i € [n], for some constant vector c, (19)

Dic(n) Wi T 2iepn vi = 0.
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From the above, it follows that
T

E Z u; % Z v | > —ﬁ Z |u; — vil)3 (20)

n i€[n] i€[n] i€[n]

1
LSl @1
n
i€[n]

where the last equality uses ||u; — v;||3 = 2 — 2u, v; forall i € [n].

Note that the inner product of centroids is
T

1 1
ng ng = QZMWZ > v
iln

i€[n] i€[n] 17€n\{i}
Combining this with (21), we have
T

1 1 1 1
ﬁz Z ’U,;F’Uj ﬁZul ﬁZ’Uz 7@2“2—7}2‘

i€[n] jen]\{i} i€[n] i€ [n] i€[n]

1 1
2—5—&—% uivi 22“ v;

i€[n] i€[n]

The inequality follows from (20), with equality achieved under the conditions specified in (19). O

Lemma C.7. Lef u1,v1,us, Vo, - - - Uy, U, be 2n vectors, satisfying ulTuZ = v;vi = 1foralli € [n]. Then, the following
inequality holds.

2
Z Z u 'U,J +'U U] +2'U/ ’I)Z)Z*mz u;vi*m, (22)
ZE[”] Jen\{i} i€[n]

where equality holds if and only leze[n (u; + v;) =0.

Proof. Note that
2

Z (ui +v;)

ZUL Zuz + Zvi sz + 2 Zui .Zvi

i€[n] 9 i€[n] i€[n] i 1€[n]
:n—i—z Z uu]—i—n—&—z Z vz@—&—?Zu vz—i—QZ Z uv]
i€[n] jE[n]\{i} i€[n] je[n]\{i} i€[n] i€[n] j€[n]\{i}
f2n+z Z uu]+'v 'vj+2u v; +22u ;.
i€[n] j€[n]\{i} i€[n]

Rearranging terms, we have
2

1 2 9
Z Z uu]—i—v UJ+2U Uz)—m Z(Ui+vi) _mzujvi_f—l

1€[n]J€[n]\{ } i€[n] 2 i€[n]
2 . 2
= nn-1) ‘Zuivz— -1
i€[n]
where the equality condition is } -, (u; + v;) = 0. O
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Lemma C.8. Lef u1, v, us, Vo, - - - Uy, U, be 2n vectors, satisfying 'uZTu7 = 'UZT'U,; = 1foralli € [n]. Then, the following
inequality holds.

2
Z Z 'LL U; +'U ’UJ) > —m, (23)
le[n]JG[n]\{}

where equality holds if and only llee[n ;= ZZE[ jv; = 0.

Proof. Since u, u; = v, v; = 1forall i € [n], we have

Z Z ou—i—v vj) ZZu u; — Zu ul—i—ZZv v — Zv?’ui

) i ety ze[n]JG[n] i€[n) jeln] i€l
1 2
“ e || 2 Z”j “ao
ieml |y |liem |l
2
T
where the equality condition is } -, wi = 3 ¢, vi = 0. m

Theorem C.9. Suppose that d > n — 1. Let the contrastive loss function L (U, V') be one of the following forms.
i. Linto-sym (U, V) in Def. 3.1.
ii. Lind-add (U, V) in Def. 3.2, where (c1,c2) € {(0,1),(1,1)}.
iii. Lina-adad (U, V) in Def. 3.2, where (c1,c2) = (1,0) and ¢’ (1) > 2(’;7:21) <’ (—ﬁ)

Then, the embedding similarities for the full-batch optimal encoder f* in (1) satisfy
1
*'Aos =1, *§Ane = - .
8(f*; Ppos) $(f"iPneg) = ———
Theorem C.10. Suppose that d > n. Let the contrastive loss function L (U, V') be the form of Lind.aqaa (U, V') in Def. 3.2,
where (c1,c2) = (1,0) and ¢' (1) < Iy 1 v (
f*in (1) satisfy

). Then, embedding similarities for the full-batch optimal encoder

A . 1
s(f*;ppos) <1, s(f*§pneg) < _j

Proof of Theorem. C.9 and Theorem. C.10. We prove for each category of loss function, Linfo-sym (U, V') in Def. 3.1 and
Lind-aad (U, V) in Def. 3.2, separately.

First, consider the case of Linfo-sym (U, V) in Def. 3.1. By using Jensen’s inequality, we have

Lingo (U, V) = Z¢ a Y d(w—wv) w) e Y o ((wy—vi) w)

[n] je[n]\{i} jen]\{3}

>—Zi// (c1+e)(n—1)-¢ ] Z (cl(vj—vi)Tui—FcQ(uj—vq;)Tui)

1
(1 +e)(n—1) oy
(24)

- Z Pl (c1+e)(n—1)-¢ ] Z (clvaui + czujTui — (e1 + e2)v; u;)

—1
(@t =1 K
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where equality in (24) holds if the argument of ¢ is constant for all j € [n] \ {i}.

Let define h(., c,)(7) := ¢((c1 + c2)(n — 1)é(x)), which is a convex and increasing function. Then, we have

1 1
Einfo—sym (U7 V) = 7£info (U; V) + §£info (V, U)

2
> % g{;} Y| (a+e)(n—1) ¢ (Clml)(n_l)jeg\:{i} (c19] wi + couf w; — (1 + c2)v; wy)
lez[;] Y| (cr4ec)(n—1)-¢ m jeg\:{i} (cru] vi + c2v] v — (1 + c2)u v;)
> ((01 +c2)(n—1)- ¢<21n iez[n] m je%{i} (c1v] wi + couf w; — (c1 + c2)v; wy)
+ % iez[;] '(61-|—021)(n—1)j€[§]\:{i} (c1u] vi + cav] v — (c1 + c2)u] v;) ))

(25)

= h(e e 2u v, + uTuz—i—'u v;) — 2(cy + 'u,ZT'vl
e PO MR )2+ el w)

where the inequality in (25) holds for Jensen’s inequality. Equality in (25) holds if the arguments of k., ., are constant for
all ¢ € [n]. Moreover, from Jensen’s inequality, we have

E(U,V)Nfuﬁmls [Linfo-sym (U, V)]

T T
2 E(UaV)Nfuﬁl[fé)]s Per ca) < 2(c1 + c2)n(n Z Z Cl2u v; + 02(u u; + v, v7) —2(c1 + c2)uy vl)
) iemsetns
1
2h<01»02><2<q+cQ>E<u,v>~fmm w2 X (@2ufvitalufuitvfv) - 2a + cjulv) )
) e seinin

Therefore, we only have to minimize
E(U,V)Nfuﬁ,[fg]s Z Z 012u v; + 02(u u; + v, Tv) —2(cy + cQ)ujvl)
ZG[”]]G[”]\{ }

Now, consider each case of (c1,¢2) € {(0,1),(1,0),(1,1)}.

For the case of (¢, c2) = (1, 1), by using Lemma C.7, we have

T T T T
E(U,V)~fm€;L Z Z 2“j v +uj w5 v — du, v;)
ze[n]ae[n]\{ }

2 T 2 4 .
= B vy poli Tnn—1) > wilvi- n_1 n > ulvi

i€[n) i€[n]

For the case of (¢, c2) = (0, 1), by using Lemma C.8, we have

2 2 .
Evvymriil | Z[:] %\:{} uj i 0] v = 2ui ) | 2By o |- - [ ]“i i
i€[n
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For the case of (¢, c2) = (1,0), by using Lemma C.6, we have

Evvyens |7 Z S (2u] v - 2u] )

ZE[n]JE[n]\{ }

—2
zEwwwqmﬂ;ggz_l E:“ Vi 1) E: E: u, i

mm] thdﬂwﬁ
_ 2 —n3+n+n—2 E T
~ n(n-1) " on(n—1)  WV)~fisg Z[:] v

€N

Therefore, for every cases of (c1, c2), u; v; = 1 holds for all positive pairs (w;, v;) ~ fiPhos and i € [n]. To achieve the

all equality conditions, u' v = — nll must hold for all negative pairs (u, v) ~ fﬁ* Dneg- Therefore, embedding similarities
for the full-batch optimal encoder f* in (1) satisfy
*. A *x. A 1
$(f"bpos) =1, 8(fihneg) =~

Second, consider the case of Lind-aad (U, V) in Def. 3.2. From Jensen’s inequality, we have

c
ACmd add(U V - Z ¢ u UZ Z '(/) u 'U7 (n27 1) Z (w('u’;ruj) +1/)(vz—rv.7))
ZE[n] #Je[n] i#j€[n]

1 Co

2=0| LD ulv| + ooy D vwlv)+ gt D (ulw) + vl v)

i€[n] 175_76 n] i#j€[n]

1 T 1 T T T

> — u; v; | + 2ciu; v + cou; uj 4 cov; v
n ZGX[T:L] 7 Yt 77[} (201 ¥ CQ)’)’L(TL _ 1) l;éjze:[n]( 1 J 2W; Wy 2U; .7)

Equality conditions for both inequality is ¢ and 1) are applied to a constant argument.
Now, consider each case of (c1,c2) € {(0,1),(1,0),(1,1)}.

For the case of (¢, c2) = (1, 1), by using Lemma C.7, we have

1
Lind-add(U, V) > —¢ Z u v; | + m Z (QUiT’le + uiTuj + ’UiT’Uj)
ZG[”] i#j€ln]
1 T 2
ﬁZuivi +¢ BECE) Zu v; — 3n—1)
ZE[n] ’LG n]

Note that ¢ and 1 are increasing functions. Therefore, by using the similar manner in the proof of Liygo-sym (U, V') case
above, embedding similarities in Def. 4.1 of the full-batch optimal encoder f* in (1) satisfy

1
P os) = 17 *; Ane = - -
8(f*; Ppos) (f"iPneg) = ———

For the case of (¢, c2) = (0, 1), by using Lemma C.8, we have

1

Elnd '].dd(U V > ¢ Z 'U/ V; +1/) m Z (ulTu] +'UiT'Uj)
ze[n

i#j€ln]

Zu v; +1/)<

ze[n
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Note that ¢ and v are increasing functions. Therefore, by using the similar manner in the case of Linfo-sym (U, V') in
Def. 3.1, embedding similarities in Def. 4.1 of the full-batch optimal encoder f* in (1) satisfy

1
P os) = ]‘7 *; Pneg) = ——-
8(f*; Ppos) 8(f*;ues) =~
For the case of (¢1,c2) = (1,0), by using Lemma C.6, we have
1
‘Cind—add(U, V) > —¢ o Z uiT'vi + Z u v;
i€ln] %75]6 [n]
1 T
> — — .
> —¢ nez[]uzvl +9 <2nn_1Zu v; — n—l))
1 T
i > ulvi
1€[n]

where the function h(-) is defined as

h(z) = = (z) +¢ (281_21) T 2(nnf 1)) '

Note that both —¢(-) and ¢ (-) are differentiable and convex functions, therefore h(-) is also a differentiable and convex
function. Therefore, to attain the minimum at x = 1, h’(1) < 0 holds. Then,

n—2 n

N n-2 B _ =2 (-1
0>hr'(1)= ¢(1)+2(n—1) ¥ (2(n—1) 2(n—1)) ¢(1)+2(n—1) w( n—l)’

which is equal to

-2 1
/ ]_ > ni b — .
¢ (1) 2(n—1) v n—1
Therefore, by using the similar manner in the case of Linfo-sym (U, V') in Def. 3.1, embedding similarities in Def. 4.1 of the
full-batch optimal encoder f* in (1) satisfy

1

D os) = 17 *; Ane = - -
8(f*; Ppos) 8(f; Pneg) n—1

if ¢’ (1) > e 1) ) ( ) On the other hand, if ¢’ (1) < 2(n 1) vy ( ) embedding similarities in Def. 4.1 of
the full—batch optimal encoder f*in (1) satisfy

1

$(f%iPpos) <1, 8(f"iPneg) < ——7-

Moreover, the existence of the embedding for d > n can be shown in Proposition 1 in Lee et al. (2024) O
Example C.11. Consider the sigmoid contrastive loss Lgig(U, V') (Zhai et al., 2023), defined as
1
L (U,V): Z log (1 + exp (—tu; v;) - exp(b)) + - Z log (1+exp (tu; v;)-exp(—b)),
" iem) i#j€[n]
where t > 0 and b € R are hyperparameters. This loss follows the form of Ling-ada (U, V') in Def. 3.2, where (c1,c2) =
(1,0), ¢(x) = —log(1l + exp(—tx + b)), and Y(x) = (n — 1) - log(1 + exp(tz — b)).
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If hyperparameters t and b are chosen such that

Lrem (5 40) g
1+ exp(t —b) STy

embedding similarities of the (full-batch) optimal encoder f* in (1) satisfy

A . 1
s(f*§ppos) <1, S(f*§pneg) < _j

Proof. The sigmoid contrastive loss Lz (U, V') follows the loss form in Def. 3.2, see Appendix A.2. Consequently, by
Theorem C.10, it suffices to verify the condition of

oW < g5 (-7, 26)
where ¢(x) = —log(1+exp(—tx+0b)) and ¢(z) = (n — 1) log(1 +exp(tx — b)). Taking the derivative of ¢(x), we obtain
o () = texp(—tz +b) _ t ’

1+exp(—tx+0b) 1+exp(te —0)
and differentiating ¢ (z) yields
W) = (n—1)- texp(tz — b)

1+ exp(tz —b)
By plugging the derivative values into (26), we get

" g n—9 (n—T1texp (———b)
1+exp(t—b) 2(n—1) 1+ exp <777b> ’
which simplifies to
1 . n-2 (”*1)6XP(***b)_n—2 1
Ltexp(t=0) " 2(n—1) 1 4exp (_7 _ b) 2 xp (7 i b)

Therefore, if hyperparameters ¢ and b satisfy

1+exp(—+b) n—9

27
1+ exp(t —b) ST @7)
following from Theorem C.10, the similarities of the (full-batch) optimal encoder f* in (1) satisfy
s(f*§13pos) <1, S(f*§ﬁneg) < ——.
n—1
O

C.4. Proofs for Mini-Batch CL
Definition C.12 (Simplex ETF). A set of n vectors U on the d-dimensional unit sphere is called (n — 1)-simplex ETF, if

1

o Yu#veU.
n—1

|ul|2=1andu'v=—
Note that (n — 1)-simplex ETF exists whend > n — 1.
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Lemma C.13. Let a set of n vectors U be a (n — 1)-simplex ETF on the d-dimensional unit sphere with d > n — 1. Then,
the following holds:
S uo

uelU

Proof. By the definition of a (n — 1)-simplex ETF, each vector w € U satisfies ||u||> = 1 and the pairwise inner product

for any u,v € U withu £ visu'v = —ﬁ. Then,
2 T )
— P T T — . — . f— frnd
S| = (Zu> (Zu> S wTut Y wlo=n-1+n(m-1) ( n_l) 0
uelU 2 uelU uclU uelU uFvelU
Since the squared norm is zero, we conclude |, ., u = 0. O

Lemma C.14. Let a set of n vectors U be a (n — 1)-simplex ETF, and a set of m vectors V' be a (m — 1)-simplex ETF,
where all vectors are on the d-dimensional unit sphere with d > max(n, m) — 1. Then, the following holds:

1 T 1
u v _——.
|UUV\(|UUV\—1)u¢v;]Uv n+m—1

Strictly speaking, the notation U UV should be interpreted as a concatenation of arrays rather than a set union, as the
ordering of vectors is relevant in the computation.

Proof. From Def C.12, we have

Moreover, Lemma C.13 implies that
T
> Y uto (u) ($o) 000
uelU veV uwcU veV

The total sum of pairwise inner products for the combined set U U V' can be written as

Z ’U,T’U = Z Z 'U/T'U

uFveUuVvV uweUUV veUUV \{u}

= Z Z u'v + Z Z u'v
weU veUUV \{u} ueV veUuV\{u}

:Z Z uTU+ZZuTU+ZZuTv+Z Z u'v
welU veU\{u} uelU veV ueV velU ueV veV\{u}

= Z uTv—l— Z uT'v+ Z uTv—i— Z u'v
uFvelU welU,veV veV,uclU uFveV

= Z u'v+ Z u'v (28)
uFvelU u#vevV

=n(n—-1)- <_ni 1) +m(m—1)- (—ml_1>

=-—-n-—-m,

where the equality in (28) holds because the total pairwise inner product sums within U and within V' are zero.

Therefore, we obtain

1 . 1 1
UUV|(UUV]-1) u#;wv“ Sl prprpen e L i e €
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Lemma C.15. Suppose d > n — 1. Let V and W be d x n matrices whose columns form (n — 1)-simplex ETF on the
d-dimensional unit sphere. Then, there exist an orthogonal matrix P € R such that V.= PW.

Proof. From the definition of simplex ETF in Def. C.12, the Gram matrices satisfy

Viv=w'w,
where each diagonal entry is 1 and each off-diagonal entry is —ﬁ. Then, from Theorem 7.3.11 in Horn & Johnson (2012)
there exist an orthogonal matrix P € R%*? such that V. = PW. O

Theorem C.16. Suppose d > m — 1. Let the contrastive loss function L (U, V) is one of the forms in Theorem 5.1. Define
Fiaten aS the optimal encoder that minimizes the fixed mini-batch loss, given by

fl;(atch = arg minE(U,V)Nfu;ﬁl[ﬁ,]s Z L (UIkaka) )
f kelb)
where Iy, := [m(k — 1) + 1 : mk] fork € [b).

Then, embedding similarities for the mini-batch optimal encoder f},, . satisfy

s(fgatch;ﬁpos) = ]'7
1
E [S(fgatc}ﬁlaneg)] = 7ma
n—m n(n—m)
(m—1n-12"(m-1)(n-1)2]"

Var [s(fgathﬁneg)] € l: (29)

A necessary condition for attaining the minimum variance of negative-pair similarities in (11) is d > b(m — 1).
Proof. Note that

E vyl | 20 LU Vi) | = 3 By yypon (€U, Vi),
ke(b] keb]

by applying Theorem 5.1 to each batch, m random vectors in each batch are degenerated to construct the (m — 1)-simplex
ETF in Def. C.12. Therefore, for k € [b], we have:

u v=1 V(u,v) ~ fuﬁﬁfss,

1
T, _ AT
U= V(u,v) ~ fiPneg- (30)

In what follows, for all positive pairs, we have
u v=1 V(u,v) ~ ffPpos,
which is equal to

s(fttatch;ﬁpos) =1

For k € [b], let U®) and V*) denote d x m random matrices, where the columns represent the vectors in the k-th batch.
Additionally, define U and V" as d x mb random matrices formed by concatenation of all corresponding batch matrices, i.e.,
U= [U(l), Uu®,... ,U(b)} and V = [V(l)’ Ve ... ,V(b)].

Let W be a d x m matrix whose columns form (m — 1)-simplex ETF in Def. C.12. From Lemma C.15, for k € [b], there
exist orthogonal matrices P®) € R%*¢ such that V(¥) = P(*)W . Moreover, based on the singular value decomposition,
let W =W, §]W2T , where W is a d x d orthogonal matrix, W is an m x m orthogonal matrix, and X isa d x m
rectangular diagonal matrix with non-negative values of 01,02, - - - , o, On the diagonal.
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For all k € [b], we have

T , 2 , T 2 9 1 2 m2
H(U(k)) v | = H(V<k>) VO = [ WTW|S =m 1+ mm—1)- (-) -
P F m—1 m—1
For all k1 # ko € [b], we have
T 2 T 2 T 2
H(Um)) v — H(Vucl)) vi| — HWT (Pe) " poaw| >0,
F F F

where the minimum value of zero is achieved if (P(kl))T P*2) is the d x d consisting entirely of zero elements.

On the other hand,

2 2

H(Uuﬁ))TV(kz) _ (Vocl))TV(kz)

F F

2
_lwT (P(kj))TP(k,z)W

F
2

.
— |[wasw (P<k1>) PEIW, W,

F
2

.
= |=wi (P®) PrIwE

F
= =P P2

where Py := P(OW, and Py := P*2)W, arem x m orthogonal matrices, and each P;; and Ps; is a column vector of
P, and Ps, respectively. Since P; and P, are orthogonal matrices, their columns are orthonormal vectors, respectively.
Then,

T 2 2 2 2 m2
(o) ves | = pmerpmps = 5 oteinz X o= s = pwwl =
i€[m] i€[m]
where the maximum value of m is attained if Py; = Py; for all i € [m], i.e., P} = Ps.
From Lemma C.14, the expectation of the negative-pair similarity is
* R T 1
E [S(fbatch;pneg)} = E(uav)’\’fgatchuﬁneg |:u 'U] = _n _ 1 :
Note that
. 2
E [S(fgatch;pnegy] = E(%v)Nfﬁamhuf’neg [(uTv) ]
1 T2
= — (V[ -n)
1 T 1
— U(k1)> v (k2)
n? —n Z o n—1
k1,k2€[b]
! w0\ v ®\ yw| 1
- Ut ) v (e (U ' ) 1748
n?—n Z r + n Z g n—1
ko k2 €[] keb]
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2

1 T 1 m? 1
— U(kn) v (k) b -
n?—n Z ( F+n2—n m—1 n-—1
k1#ka€[b]
1 T 2 1
_ (k1)) y(k2) - -
= > |[™) t D
n n knthacl] F (m—1)(n—1)
1 1 m? 1
=) -b(b—1)-
{ +(m—1)(n—1)’n2—n ( ) m—1+(m—1)(n—1) ’
where the range is equal to |:(m—1)1(n—1) , (;}(_blf)(ly);ll)} .

Therefore, the variance of the negative-pair similarity is
A A A 2
Var [S(fgatch;pneg)] =K [S(fgatch;pneg)Q] —E [s(fgatcmpneg)]
1
— o H 2
=K [s(fgatchvpneg) ] - (TL — 1)2

n—m n(n—m)
eLm—DM—D”On—Dm—UQ'

O

Lemma C.17. Let my and mg be natural numbers with my < mq. For any positive values {c; > O}ie[mz], the following
inequality holds:

M1 e m,y) Ci

ma Z'L’E [ma] Ci

— )
where the equality condition is m; = mo.

Proof. Since mg > 0 and my — m1 > 0, we have
m2ZCi_ml ZCizmz Z Ci+(m2—m1)20i207
i€[ma)] i€[mq] 1€[ma]\[m1] i€[m1]
where the equality condition is m; = my. Note that m, Zie[ml] ¢; > 0. Rearranging the above yields
M1 Y icm,) Ci -
ma Zié[mg] Ci
O

Theorem C.18. Consider the InfoNCE loss Lintonce (U, V) (Oord et al., 2018), which corresponds to the loss
Linto-sym (U, V') in Def. 3.1 where ¢(z) = exp(z/t) for somet > 0, Y(x) = log(l + ), and (c1,c2) = (1,0).

For any two integers m1, ms € [n] such that my < meo, the gradient of the InfoNCE loss with respect to a negative-pair
similarity satisfies the following inequalities for any distinct indices i # j € [m).

0
Ew,vy~gptim )ﬁlnfoNCE(U7 V)} S Ew vy~ g prime [— Lintonce(U, V)| <0.

0 (ufv;

0
i 0 (u v;)
Moreover, the equality condition of the first inequality is m1 = ma.
Proof. Without loss of generality, suppose there are m positive pairs in (U, V). Then, the InfoNCE loss is given as follows.
1 1

L =— J (v —v; — =) v

(U, V) - Z log | 1+ Z exp(u; (vj —v;)/t) | + = Z log | 1+ Z exp((u; —u;) v;/t)

i1€[m] jem]\{i} i€[m] jem]\{i}
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Following the gradients analysis in Wang & Liu (2021), the partial derivatives of the loss with respect to negative pair are
derived as follows. In particular, for all ¢ # j € [m], we have

5, 1 0
——— LU, V)= = ————log |1+ exp(u; (vj —v;)/t)
9 (u] v;) m 9 (u] v)) j’E[mZ]\{i} j
+ ! 9 log [ 1+ Z exp((uy —uj) v, /t)
— o= = uj) v
m 0 (ulv) welm\ (i}
_ 1 exp(u; (v; —vi)/t)/t 1 exp((u; — u;) "v;/t)/t
m 143 e\ fi} exp(u (vy —vi)/t) M 1+ 30y exp((we — uy) Tv;/t)
_ 1 exp(u, v;/t) 1 exp(u; v;/t)
mt 3 e exp(u] vy /t) - omt o 3T exp(ufvi/t)
_ 1 exp(u; v;/t) n exp(u; v;/t)
Mt \ 3 jepm) ©XP(U] 0 /1) 3y ey exp(ug vi/t)
> 0.

Then, for any m; < ms < nandi # j € [m4], the following inequality holds:

0 1 exp(u; v;/t) exp(u; v;/t)
E w2 | = LU, V)| =E pmy | —— i i U
(U V)~ fipp [a(uzrvj) (U V)~ fipp lmQt (Zje[mz] exp(w] v /t)  Yiicim, exp(u)vi/t)
l o exp(u; v, /t) M1 Y 5 cpm €XP(u] v;/t)
= — o Fa ™2 .
gt U V)~fihye: Zje[ml] exp(’u,;r’vj/t) ma Zje[mz] exp(u;rvj/t)
+ 1R . exp(ulv;/t) M1 Eiepm,) OP(w)vi/t)
mlt (U,V)Nfﬁppos Zi/e[mﬂ eXp(u;'Ul/t) mo Zi'e[mz] eXp(u;'Uz/t)
1 exp(u, v;/t)
< 7E m ? ]
= myt (U,V)anppo% [Z]e[ml] eXp(UZ-T'Uj/t)
1 exp(u; v;/t)
+—E o fypT L 1 31
mat UV~ fibect lZi’e[mQ] exp(u; v;/t) G
g exp(u] v;/1) evwlvl) | o
R CA LT > icima] exp(u; v;j/t) 2 ireim] exp(u; v;/t)
0
= E(UV)~fuﬁf$£ [a (’LLT’UJ) ‘C'(Uv V)‘| )

where the inequality in (31) follows from Lemma C.17, since the exponential function is strictly positive. The equality
condition in (31) is m; = ms.

Moreover, equality in (32), where fyp2 is replaced with f;ppes, holds because the expectation involves only embeddings
(U, V) with indices in [m1]. This concludes the proof. O
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D. Experiment Details

In this section, we provide the details of the experiment setup mentioned in Sec. 6. Our implementation is based on
the open-source library solo-learn (da Costa et al., 2022) for self-supervised learning. The source code is available at
https://github.com/leechungpa/embedding-similarity—-cl/.

D.1. Architecture and Training Details

For all experiments, we use modified ResNet-18 (He et al., 2016; Chen et al., 2020) as the backbone for CIFAR datasets
and ResNet-50 for ImageNet-100. For CIFAR datasets, we modify ResNet-18 by replacing the first convolutional layer
with a 3x3 kernel at a stride of 1 and removing the initial max pooling step. In contrast, we use the standard ResNet-50
architecture for ImageNet-100 without any modifications. Regardless of the backbone used, we attach a 2-layer MLP as the
projection head, which projects representations to a 128-dimensional latent space. Batch normalization is applied to the fully
connected layers, with the hidden layer dimension set to 2048 for ImageNet-100 and 512 for the CIFAR datasets.

We follow the data augmentation strategy used in SimCLR (Chen et al., 2020). Specifically, we apply random resized
cropping, horizontal flipping, color jittering, and Gaussian blurring. For the CIFAR datasets, the crop size is set to 32, while
for ImageNet-100, we use a crop size of 224. These augmentations are applied consistently across all experiments.

For the optimizer, we use stochastic gradient descent (SGD) for 200 epochs. The learning rate is scaled linearly with the
batch size as Ir x BatchSize/256, where the base learning rate is set to 0.3 for the CIFAR datasets and 0.1 for ImageNet-100.
A cosine decay schedule is applied, with a weight decay of 0.0001 and SGD momentum set to 0.9. Additionally, we use
linear warmup for the first 10 epochs.

We tune the temperature parameter for baseline methods, SimCLR, DCL, and DHEL, by performing a grid search over
the range of 0.1 to 0.5 in increments of 0.1 and selecting the temperature value that yielded the best performance for
each method. For tuning the proposed loss Lyrns(U, V) in Def. 5.7, we conducted a grid search for A from the set
{0.1,0.3,1, 3,10, 30, 100}.

All experiments were conducted using a single NVIDIA RTX 4090 GPU.

D.2. Evaluation Details

For the linear evaluation protocol, we remove the projector head and using the pretrained encoder for downstream classifica-
tion tasks. Specifically, we extract the encoder outputs from the trained model without applying any augmentations. These
feature vectors are then normalized and used to train a linear classifier. Following prior works (Kornblith et al., 2019; Lee
et al., 2021; Koromilas et al., 2024), we report top 1 accuracy on the downstream dataset. We use SGD, setting the learning
rate to 0.1 without weight decay. The classifier is trained for 200 epochs with a batch size of 256.

E. Additional Experiments on the ImageNet Dataset

We further validate the effectiveness of the proposed loss term through experiments on the ImageNet dataset. Table 4
reports the top-1 and top-5 classification accuracies on ImageNet-100 for various temperature values. For each temperature,
we compare SimCLR with and without the proposed loss. The results demonstrate that incorporating our loss generally
improves performance across a range of temperatures, with the largest gain observed at ¢ = 0.3.

Table 4: Effect of our proposed loss term (when combined with SimCLR) on the top-1 and top-5 classification accuracies
(%). Bold entries indicate the highest accuracy.

Dataset Temperature SimCLR SimCLR + Ours
Topl Top5 Topl Top5
t=0.1 70.14 91.14 69.50  90.80
t=0.2 73.80 93.14 7394  93.08
ImageNet-100 ¢t = 0.3 7230 9294 74.04 93.24
t=0.4 69.92 92.10 73.12 92.98
t=0.5 68.60 90.90 72.88  92.84
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We also report results from 100-epoch training on the full ImageNet dataset. Using the same experimental setup as for
ImageNet-100, we compare SimCLR with our method (SimCLR + the proposed loss) using ¢ = 0.2 and A = 40. As shown
in Table 5, our method outperforms the baseline.

Table 5: Top-1 accuracy (%) on the full ImageNet dataset.

Method Top-1 accuracy (%)
SimCLR 51.79
SimCLR + Ours 52.48

F. Discussion on the Proposed Loss for Variance Reduction

The auxiliary loss term Lygrns(U, V) proposed in Def. 5.7 shows effectiveness in the following scenarios:

* Small Batch Training: As established in Theorem 5.5, the variance of negative-pair similarities increases as batch size
decreases. The proposed loss in Def. 5.7 directly penalizes this variance, making it particularly advantageous when
training with small batch sizes. This effect is empirically validated in Figure 4.

» Temperature Robustness: The performance of CL methods is often sensitive to the choice of the temperature parameter,
which affects the distribution of similarities among embedding pairs (Wang & Liu, 2021). By explicitly encouraging
negative-pair similarities towards the optimal value of —1/(n — 1), the proposed loss reduces this sensitivity and
stabilizes performance across a wide range of temperature settings, as shown in Figure 3.

Despite its advantages, the proposed loss also presents several limitations:

* Suppression of Semantically Meaningful Variance: In some cases, variance in negative-pair similarities may
capture meaningful semantic differences between instances. Enforcing uniform similarity can potentially suppress this
informative structure, adversely affecting representation quality.

* Reduced Impact with Large Batch Sizes: The variance-reducing effect of proposed loss diminishes as batch size
increases, since the variance of negative-pair similarities naturally decreases in larger batches.

e Hyperparameter Sensitivity: The proposed loss introduces an additional hyperparameter, A\, which necessitates
careful tuning to achieve optimal performance.
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