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ABSTRACT

As large language models (LLMs) grow in scale and specialization, rout-
ing—selecting the best model for a given input—has become essential for effi-
cient and effective deployment. While recent methods rely on increasingly com-
plex learned routing strategies, their dependence on disparate training data and
evaluation setups makes comparison and generalization difficult. In this work,
we fundamentally rethink LLM routing by questioning whether such complexity
is necessary. We show that a well-tuned k-Nearest Neighbors (kNN) approach
not only matches but often outperforms state-of-the-art learned routers while
being significantly more efficient. To support systematic evaluation, we intro-
duce a suite of standardized routing benchmarks spanning instruction-following,
question-answering, and reasoning tasks, as well as the first multi-modal routing
dataset involving visual inputs. Our theoretical analysis reveals that the strong
locality properties of model performance in embedding space enable simple non-
parametric methods to achieve superior routing decisions with lower sample com-
plexity than parametric approaches. These findings challenge the prevailing trend
toward sophisticated architectures and demonstrate that simple, interpretable ap-
proaches can be surprisingly effective for LLM routing.

1 INTRODUCTION

The proliferation of large language models (LLMs) in recent years has created an increasingly di-
verse ecosystem of models with varying sizes, capabilities, and specializations (Team et al., 2023
Jaech et al., 2024; |Guo et al., [2025} |Yang et al., |2024). As organizations and users gain access to
this expanding array of models—each with different strengths, computational demands, and cost
profiles—a crucial challenge has emerged: how to intelligently select the most appropriate model
for a given input. This challenge, known as LLM routing, carries significant implications for both
cost-effective deployment and optimal user experience (Varangot-Reille et al.| |2025; |Chen et al.,
2025).

Current LLM routing approaches typically employ sophisticated learned policies that leverage var-
ious signals, such as model preferences (Ong et al., | 2024), prompt embeddings (Chen et al., |2024),
or external scoring functions (Lu et al.| 2023} [Stripelis et al.,2024)). These methods vary in their im-
plementation strategies—some frame routing as a selection or classification problem (Stripelis et al.,
2024; |Ding et al.| [2024; |[Feng et al.||2024), while others develop predictive models to estimate utility
scores of each LLM for specific inputs (Nguyen et al., 2024} |Li|, 2025). The field has witnessed an
escalating trend toward increasingly complex architectures, including graph neural networks, atten-
tion mechanisms, and multi-layered predictive models, often without rigorous comparison to simple
baselines. Moreover, these diverse approaches rely on different training datasets, evaluation pro-
tocols, and underlying assumptions, creating challenges for fair comparisons and raising questions
about their generalizability.

While the field continues to develop increasingly complex routing solutions, we fundamentally ques-
tion whether such sophistication is necessary. In this paper, we take a step back and reconsider
LLM routing from first principles, posing a critical question: how far can we get with simple, non-
parametric methods like k-Nearest Neighbors (kNN)? Our investigation yields a surprising finding:
when carefully implemented and tuned, a simple kNN-based router not only matches but often
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outperforms a wide range of complex learned approaches across diverse routing scenarios, while
offering substantial advantages in computational efficiency and robustness.

To enable systematic evaluation and address the inconsistent protocols that have hindered meaning-
ful comparisons, we introduce a comprehensive benchmark suite for LLM routing. This suite spans
instruction-following, question-answering, and reasoning tasks, establishing consistent evaluation
protocols and performance metrics. We further extend our investigation to multi-modal scenarios by
developing the first benchmark for routing between vision-language models, demonstrating that the
effectiveness of simple approaches generalizes beyond text-only applications.

Our comprehensive evaluation reveals several key insights that challenge prevailing assumptions
in the field. First, KNN-based routing achieves competitive or superior performance while being
significantly more computationally efficient than complex alternatives. Second, simple methods
demonstrate greater robustness under distribution shift, maintaining more stable performance when
applied to out-of-distribution queries. Third, through theoretical analysis, we show that the strong
locality properties in embedding spaces—where semantically similar queries benefit from similar
models—enable non-parametric methods to achieve effective routing with lower sample complexity
than parametric approaches.

These findings represent more than just an empirical comparison; they constitute a fundamental
rethinking of complexity assumptions in LLM routing. Our work demonstrates that the field may
be over-engineering solutions to a problem that can be effectively addressed with simpler, more
interpretable approaches. This has important practical implications: simpler routing methods can
significantly reduce the computational and engineering overhead required to deploy sophisticated
multi-model systems, potentially democratizing access to effective LLM routing for organizations
with limited resources.

By challenging the prevailing trend toward architectural sophistication, our work redirects research
attention toward understanding when and why simple methods suffice, providing both practical guid-
ance for practitioners and theoretical insights that can inform future routing system design. We be-
lieve this represents an important contribution to the field’s maturation, emphasizing the value of
thorough baseline evaluation before investing in complex solutions.

2 BACKGROUND AND RELATED WORKS

As the ecosystem of large language models (LLMs) becomes increasingly diverse, optimizing the
trade-off between performance and computational cost has become a central research challenge.
To address this challenge, three primary strategies have emerged: ensemble methods, cascading
approaches, and routing systems.

Ensemble methods improve robustness and answer quality by aggregating outputs from multiple
LLMs. Prior works such as LLM-Blender (Jiang et al.,2023)), Blending (Lu et al.,[2024)), and Fusion
(Wang et al., |2023) demonstrate that ensembling can yield strong performance across a range of
tasks. However, this approach comes at a significant cost—ensemble methods require simultaneous
inference from multiple models, leading to increased latency and computational overhead that scales
linearly with the number of models.

Cascading approaches aim to reduce these costs by invoking models in a sequence of increasing
capability and expense. Systems like FrugalGPT (Chen et al.l 2023)), AutoMix (Aggarwal et al.,
2024])), and Two-tier Selection (Ramirez et al., 2024) start with smaller, faster models and escalate
to more capable ones only when necessary. While this sequential design can lower the average cost
compared to always using the most expensive model, it still incurs multiple model calls for chal-
lenging queries and often relies on auxiliary quality estimation mechanisms, which can introduce
additional latency and system complexity.

Routing systems offer the most direct and efficient alternative by selecting a single LLM to han-
dle each query. These systems eliminate the need for multiple model calls, minimizing both cost
and latency while maintaining the flexibility to choose the most appropriate model for each input.
Most routing approaches rely on performance prediction to guide model selection. Some methods
predict evaluation scores or reward values for each model given an input (Shnitzer et al.,[2023; |Hari
& Thomson, 2023}, Sakota et all 2024), while others take a comparative approach by estimating
win rates or preference relationships between model pairs (Ding et al.l |2024; |Ong et al., [2024).



Under review as a conference paper at ICLR 2026

Table 1: Overview of existing routers.

Routers Routing Formulation Training Signal Training Objective Support Set
TensorOpera (Stripelis et al.,[2024) Classification BERTSsim score Cross Entropy No
HybridLLM (Ding et al.}[2024) Classification BART score Cross Entropy No
ZOOTER (Lu et al.[[2023) Classification Reward model KL divergence No
GraphRouter (Feng et al.|[2024) Classification Evaluation metric Cross Entropy Yes
RouterDC (Chen et al.||2024) Embedding Similarity Answer correctness Contrastive learning No
MetaLLM (Nguyen et al.[|2024) Multi-armed Bandit Online utility score  Linear reward model No
LLMBandit (Li}2025) Multi-armed Bandit Online utility score PPO policy learning No
RouteLLM (Ong et al.}[2024) Ranking Pairwise preference Contrastive loss No
Eagle (Zhao et al.||2024) Ranking Pairwise preference ELO calculation Yes
Routoo (Mohammadshahi et al.}|2024) Utility Prediction Answer correctness Cross Entropy No
FORC (Sakota et al.|[2024) Utility Prediction Evaluation metric Cross Entropy No
Tryage (Hari & Thomson} [2023) Utility Prediction Expert model losses Divergence No

More recently, MetaLLM (Nguyen et al.l 2024) and LLMBandit (L1, 2025) frame the problem as
a contextual bandit, learning routing policies that balance exploration and exploitation for model
selection.

Despite the diversity of routing approaches, the field has increasingly gravitated toward complex
architectures—including graph neural networks, attention mechanisms, and sophisticated predictive
models—often without systematic comparison to simpler alternatives. Table[T|provides an overview
of existing routing approaches, categorized by their formulation, training signals, and whether they
utilize support sets, illustrating this trend toward complexity.

In this work, we focus on the routing setting due to its strong efficiency potential and practical
relevance. Our study systematically evaluates both simple and complex routing methods, revealing
the surprising effectiveness of non-parametric approaches and raising important questions about
when architectural complexity is truly necessary for effective LLM routing.

3 PREDICTIVE LLM ROUTING

The goal of LLM routing is to select the most appropriate model from a set of available LLMs to
process a given input query, subject to constraints such as performance, cost, or latency. Formally,
let 2 denote a query and M = {m1, mo, ..., my } represent the pool of candidate models. For each
(z, m) pair, we define an unknown performance score s(z, m) that captures the quality of model m’s
response to query x (e.g., accuracy or reward), and a cost function ¢(z, m) that reflects the resource
cost of invoking model m on input z (e.g., latency or compute cost, which may depend on input and
response length). The objective is to select a model that maximizes utility while balancing cost:

* = —A- 1
m* = arg max s(z,m) = - clz,m), (1)

where ) is a user-defined trade-off parameter governing the preference for performance versus cost.

We study two complementary classes of routing approaches, drawing inspiration from reinforcement
learning (RL): model selection policies, which learn a routing policy to directly predict the optimal
model, and utility prediction methods, which estimate the score s(x, m) and cost ¢(z, m) for each
model and select the one with the highest predicted utility. Table[T] provides an overview of existing
routers mapped to these categories.

Routing as LLM Selection In this formulation, routing is framed as a direct model selection prob-
lem: given an input z, the router learns a policy 7(z) that maps queries to models, aiming to predict
the optimal choice m*. This perspective is analogous to policy gradient methods in RL, where an
agent learns to output actions directly without explicitly estimating the value of all alternatives.

The policy 7(x) can be parametrized in various ways. Several approaches structure it as a classifier,
with gold routing labels derived from preference data (Ong et al.l [2024), reward scores (Stripelis
et al., [2024), or thresholded evaluation metrics (Ding et al., 2024). Other methods parametrize the
policy as a distance measure between query and model embeddings, formulating the problem as an
embedding learning task trained using contrastive objectives (Chen et al., [2024)). A third line of
work frames routing as a contextual bandit problem, directly learning routing policies from online
feedback (Nguyen et al.| 2024} Li, [2025). These approaches differ in their learning objectives and
adaptation capabilities, but all ultimately aim to map inputs to optimal model selections.
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Routing as Utility Prediction Alternatively, routing can be framed as a utility estimation prob-
lem: for each input z and candidate model m, the system predicts a scalar utility score @(z, m) =
$(x,m) — X - é(x,m), where §(x,m) and é(x, m) are predicted score and cost. Routing is then
performed by selecting the model with the highest predicted utility.

This formulation directly parallels )-learning in reinforcement learning, where the (Q-function
Q(z, a) estimates the expected return of taking action « in state x, and the policy selects the action
with the highest (-value. In the LLM routing context, “actions” correspond to candidate models,
and utility predictors serve as the -function. This approach enables more nuanced reasoning over
model selection and naturally accommodates complex scenarios involving multi-objective tradeoffs.
By explicitly estimating both performance and cost dimensions, utility prediction provides a flexible
framework for balancing quality and efficiency in diverse deployment settings.

Leveraging Support Sets for Enhanced Routing Beyond direct policy learning and utility predic-
tion, routing can be enhanced by considering each query within its neighborhood context. In this
approach, a query x is routed by leveraging a support set Dgypport = { (i, m, s(zi,m), c(x;,m))}
that captures performance scores and computational costs for semantically similar prompts x;, pro-
viding valuable contextual signals about how different models perform on related inputs.

Both the model selection and utility prediction frameworks can incorporate support sets. Non-
parametric methods like k-Nearest Neighbors (kNN) estimate s(x,m) and c¢(z,m) by retrieving
similar inputs x; from Dgyypore and aggregating their recorded outcomes. Meanwhile, parametric
routers can be designed to process both the target query and its neighbors, enabling them to learn
from local performance-cost landscapes rather than treating each query in isolation.

This contextual approach bridges the gap between instance-level prediction and dataset-level routing
patterns, enabling practical test-time adaptive routing that can respond to distribution shifts without
requiring complete retraining. The effectiveness of this approach depends critically on the locality
properties of model performance in the embedding space—if semantically similar queries tend to
benefit from similar models, then neighborhood-based methods can achieve strong routing perfor-
mance. As we demonstrate in our experiments, this locality assumption holds remarkably well in
practice, enabling even simple kNN-based methods to achieve competitive or superior performance
compared to sophisticated parametric approaches.

4 ROUTING BENCHMARKS

To enable systematic evaluation of routing approaches, we develop standardized benchmarks that
address the inconsistent evaluation protocols which have hindered meaningful comparisons between
routing methods.

4.1 TEXT-BASED ROUTING BENCHMARKS

While RouterBench (Hu et al.,|2024) provides a valuable starting point for routing evaluation with 11
LLMs across 6 tasks, its limited model pool constrains applicability to diverse real-world scenarios.
To address this limitation, we construct a more comprehensive benchmark incorporating a broader
range of models and tasks from established evaluation frameworks.

Our benchmark leverages three widely-used LLM evaluation leaderboards: AlpacaEval (Dubois
et al., 2024), Open LLM Leaderboard v2 (Fourrier et al., 2024), and HELM-Lite (Liang et al.,
2022). From each leaderboard, we select three model families (e.g., OpenAl GPT series, Google
Gemini series), with multiple variants per family to represent practical routing scenarios. The per-
formance scores s(x, m) are derived directly from the evaluation metrics reported in each respective
leaderboard, while the costs ¢(x,m) are calculated using the actual pricing of each APIL, based on
input and output token counts. For detailed benchmark construction, model selection criteria, and
scoring methodology, please refer to Appendix [B]

4.2 VISION-LANGUAGE ROUTING BENCHMARKS

To address routing challenges in the increasingly important multi-modal domain, we introduce the
first benchmark for routing between vision-language models. Our benchmark builds upon vHELM
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(Lee et al., 2024)), a comprehensive evaluation framework that systematically assesses capabilities
across visual understanding, reasoning, and instruction following.

We incorporate leading multi-modal models from Claude and OpenAlI’s families, selecting variants
that represent different performance-cost tradeoffs. For evaluation, we curate five diverse datasets
focusing on visual question answering and visual reasoning tasks, carefully chosen to represent
varying levels of complexity and different visual understanding requirements. Detailed information
about model selection, dataset characteristics, and evaluation metrics is provided in Appendix [B

This benchmark enables evaluation of how routing approaches handle multi-modal inputs, where
optimal model selection depends not only on the text query but also on visual content characteristics,
image quality, and the specific interplay between visual and textual components of the task.

4.3 EVALUATION PROTOCOL

To systematically evaluate routing approaches with different objectives, we develop distinct evalua-
tion protocols for utility prediction and model selection approaches:

Utility Prediction Evaluation (Recommended) These methods explicitly predict performance
scores and costs, allowing us to trace the complete Pareto front by varying the trade-off parameter
A across a wide range. We assess router effectiveness by measuring the area under the curve (AUC)
of the non-decreasing convex hull in the cost-performance space. This metric comprehensively cap-
tures a router’s ability to balance performance and cost across the entire spectrum of preference
settings, with higher AUC indicating better overall routing decisions. We normalize score and cost
values so that the maximum AUC score is 100.

Selection-Based Evaluation These methods directly map queries to models without explicit utility
scores, making construction of a full Pareto front challenging. We evaluate these routers at three
distinct cost-performance preferences: low-cost (A = 1.0/c¢max), balanced (A = 0.5/¢pax), and
high-performance (A = 0.1/¢pax), Where ¢iax is the maximum cost in each benchmark.

However, this approach has important limitations. Since selection-based methods only report ac-
curacy under fixed preference settings, they can obscure true cost-performance trade-offs. High
accuracy scores may simply reflect selection of expensive models rather than intelligent routing
decisions, as preference parameters only indirectly control cost through the utility function.

For both evaluation approaches, we report performance relative to oracle and random baselines,
enabling precise quantification of routing effectiveness. Given the limitations of selection-based
routing formulation, our main results focus on utility prediction evaluation, with selection-based
results provided in Appendix [D]for completeness.

5 ROUTING APPROACHES

Building on our benchmarking framework, we evaluate routing approaches ranging from simple
non-parametric methods to sophisticated neural architectures. We organize these approaches by
complexity, with all methods supporting both utility prediction (estimating performance scores and
costs) and model selection (directly classifying queries to models) formulations using consistent
input representations.

Non-Parametric Methods k-Nearest Neighbors (kNN) routes queries by retrieving the k£ most
similar examples from a training set and aggregating their performance outcomes. For utility pre-
diction, it averages observed scores and costs from neighbors; for model selection, it uses majority
voting among top-performing models for similar queries. This approach requires no training and
adapts to new queries by leveraging local neighborhood information.

Linear Methods The Linear Router employs linear regression (utility prediction) or logistic re-
gression (model selection) over query embeddings, capturing linear relationships between query
features and routing outcomes. The Linear Matrix Factorization (MF) Router, inspired by
RouteLLM (Ong et al, 2024), assigns learnable embeddings to each model and predicts utility
scores through linear operations on prompt-model embedding interactions, explicitly modeling the
relationship between query characteristics and model capabilities.
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Table 2: AUC scores on a range of text routing benchmarks. All methods predict utility scores to
inform routing decisions. Higher is better.

AlpacaEval HELM-Lite OpenLLM RouterBench Avg
OpenAl Claude Mistral OpenAl Claude Google LLaMA3 Qwen2.5 Yil.5
Oracle 63.17 52.98 34.69 64.30 63.75 66.74 64.11 83.32 64.12 91.91 64.91
Random 36.47 34.56 27.76 48.94 41.89 45.15 37.86 41.98 33.94 54.93 40.35
kNN (k=10) 57.33 52.82 34.27 53.93 52.66 50.92 4145 39.67 34.98 74.22 49.23
kNN (k=100) 57.38 52.77 34.26 54.73 53.40 52.18 48.98 56.18 39.74 77.22 52.68
Linear 57.60 52.84 34.26 55.61 53.54 52.64 48.94 56.46 41.83 77.68 53.14
Linear (MF) 56.85 52.08 33.76 55.31 53.40 51.93 48.94 5591 41.88 77.27 52.73
MLP 55.50 51.29 32.18 54.43 50.82 51.51 48.52 54.62 41.19 77.08 51.71
MLP (MF) 57.50 52.84 34.20 55.60 53.21 51.46 48.71 56.21 41.63 77.40 52.88
Graph (k=10) 55.66 45.64 31.50 53.34 45.19 50.45 40.06 54.99 33.62 76.24 48.67
Graph (k=100) 57.37 51.84 3225 52.70 51.89 51.41 49.10 55.24 39.52 76.87 51.82
Attn (k=10) 54.43 45.12 26.52 53.07 5235 51.89 41.09 48.00 34.58 73.53 48.06
Attn (k=100) 55.29 5249 27.94 52.23 52.12 50.61 45.12 56.03 32.65 77.37 50.18
D-Attn (k=10) 54.50 44.62 29.34 5331 50.17 51.38 39.54 32.05 34.81 74.40 46.41
D-Attn (k=100) 57.17 52.77 24.45 51.49 49.43 51.82 49.04 23.90 34.92 77.48 47.25

Neural Network Methods To explore non-linear routing strategies, we implement neural archi-
tectures that can capture complex patterns. The MLP Router uses a feed-forward network with
multiple hidden layers (100 dimensions each) to learn non-linear mappings between query embed-
dings and routing outcomes, balancing expressiveness with computational efficiency. The MLP
Matrix Factorization (MF) Router extends the linear MF approach by processing prompt-model
embedding interactions through multi-layer perceptrons, enabling more sophisticated modeling of
query-model relationships while maintaining interpretable factorized structure.

Graph-Based and Attention Methods For the most sophisticated approaches, we evaluate meth-
ods that explicitly model relationships between queries and models. The Graph Router (Feng
et al.l [2024) represents routing as a bipartite graph where queries and models form nodes with
utility-representing edges, using graph neural networks to capture complex patterns between similar
queries and model performance.

We also implement two attention-based architectures leveraging support sets. The Attentive Router
uses permutation-invariant attention modules to process support examples (prompt-utility pairs) with
cross-attention between target prompts and support examples for contextual routing decisions. The
Double Attentive Router extends this with dual attention mechanisms across both queries and can-
didate models, capturing similarities between queries and relationships between different models’
performance characteristics on related inputs.

Implementation All approaches use consistent query representations: BERT embeddings for text-
only routing and VLM2Vec for multi-modal scenarios, isolating algorithmic impact while ensuring
fair comparison. Detailed specifications, hyperparameter settings, and training protocols are in Ap-

pendix [C|
6 QUANTITATIVE RESULTS

In this section, we present a comprehensive evaluation of diverse routing approaches using util-
ity prediction formulation, which provides the most reliable assessment of routing performance
by revealing complete cost-performance trade-offs. For textual queries, we use BERT embed-
dings (Devlin et al., [2019) to represent the input text, while for multi-modal queries, we employ
VLM2Vec (Jiang et al., [2024) to extract unified representations of image-text pairs. For complete-
ness, selection-based routing results across all benchmarks are provided in Appendix [D} though we
emphasize that utility prediction provides more reliable routing assessment.

Text-Based Routing Results Tables 2] presents the performance of various routing approaches on
our text-based benchmarks using AUC of the Pareto front, which comprehensively captures each
router’s ability to balance performance and cost across the entire spectrum of preference settings.

The most striking finding is the remarkable effectiveness of simple kNN-based routing. kNN with
k=100 achieves an average AUC score of 52.68 across all benchmarks, which is competitive with or
superior to more complex approaches like MLP (51.71) and Graph Neural Networks (51.82). Linear
models also demonstrate surprisingly strong performance, achieving an average AUC of 53.14.
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The relative performance ranking of routing methods remains consistent across different benchmarks
and model pools. When kNN outperforms more complex methods on one benchmark, it typically
maintains this advantage on others, suggesting that the effectiveness of simple routing approaches is
robust across different evaluation settings.

Support set size has a consistent positive impact. Increasing k from 10 to 100 generally improves
performance for kNN-based routing, demonstrating the value of leveraging larger neighborhoods
for routing decisions.

Computational Efficiency Analysis Beyond routing accuracy, Table 3: The cumulative
computational efficiency is crucial for practical deployment. Table[3] time to route all examples in
reports the cumulative inference time required to route all examples Routerbench.

in Routerbench. We measured routing time only, excluding one- Latency(s)
time costs of building indices and training models. For fair com- KNN (k=10) 7576
parison, CPU-based methods (kNN, Linear, MLP) were run on Intel kNN (k=100) 65.69
Xeon Platinum 8275CL processors, while GPU-accelerated methods Einear ME gg‘-g }
(Graph, attention-based) used NVIDIA A100 GPUs. Tnear (ME) Tead
. . . . MLP (MF) 92.52
The efficiency differences are dramatic. kNN (k=100) requires only Graph (k=10) 866.34
65.69 seconds, making it the fastest method overall. Simple paramet- Graph (k=100) 872.03
ric models require 84-95 seconds, while graph and attention-based i::‘l; 82382)) ggg"f
methods require over 866 seconds—approximately 13-14x slower D-Attn (k=10) 905.51
than kNN. D-Attn (k=100)  906.32

For deployment scenarios requiring thousands of routing decisions

per second, these latency differences become critical. The combination of competitive routing per-
formance and superior computational efficiency makes simple methods particularly attractive for
high-throughput applications.

Robustness Under Distribution Shift To evaluate gen-
eralization under distribution shift, we conducted cross-
dataset evaluation where models trained on one Router-
Bench dataset are tested on others. This creates 36 train-

Table 4: Average AUC for in-
distribution (ID) and  out-of-
distribution (OOD) test sets.

test pairs per routing method, allowing us to measure per- Model ID ©ooD A
formance degradation when moving from in-distribution to KNN (k=10) 7353 7041 3.3

—of-distributi ; kNN (k=100) 76.54 7391  2.63
out-of-distribution queries. Lincar 703 7370 333
Table [] shows that all routing methods experience per- Iﬁﬁfr (MF) ;gfé gg:gg Z:g;
formance drops under distribution shift, but the magni- MLP (MF) 7677 7147 530
tude varies significantly. kNN (k=100) shows the smallest gral"l: 3:}32)) ;2;3 ;gzz zég
degradation (2.63 points), while Linear Matrix Factoriza- Xy c=10) 187 6793 o1
tion suffers the largest drop (6.67 points). Complex meth- Attn (k=100) 7671 7219 452

D-Attn (k=10) 7374 6858  5.16

ods like attention-based routers show intermediate degrada- DAt (o100) 7681 7232 449

tion (4.49-4.94 points).

This pattern suggests that non-parametric methods may be

inherently more robust to domain shifts. Unlike parametric models that learn fixed global patterns,
kNN can adapt locally to new query distributions by leveraging the most relevant examples from the
training set.

Multi-Modal Routing Results Tables [5] shows performance on our vision-language model rout-
ing benchmarks using utility prediction evaluation. Simple methods maintain their effectiveness in
multi-modal settings, with kNN (k=100) achieving an average AUC of 72.12—outperforming most
neural approaches.

Multi-modal routing confirms the patterns observed in text-only scenarios. The effectiveness of
simple methods extends seamlessly to complex multi-modal inputs, where optimal model selection
depends on both textual content and visual characteristics.

Attention-based architectures show particular strength on certain multi-modal tasks like MME,
likely due to their ability to model interactions between visual and textual components more ex-
plicitly than simpler approaches.
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Table 5: AUC scores for vision language benchmark using utility prediction routing. Higher is
better.

Blink Flickr30k MathVista MME MMMU Avg
OpenAl Claude OpenAl Claude OpenAl Claude OpenAl Claude OpenAl Claude

Oracle 98.53 92.97 78.00 73.91 89.30 63.66 97.79 90.17 92.30 80.28 85.69
Random 71.82 57.72 54.12 49.50 5291 36.96 75.21 52.05 64.47 47.76 56.25
kNN (k=10) 83.91 77.47 59.29 61.41 65.88 49.57 90.84 84.52 75.04 58.26 70.62
kNN (k=100) 84.79 78.34 58.89 61.16 72.96 50.29 90.84 84.56 78.11 61.27 72.12
Linear 85.48 77.05 59.42 61.69 70.85 50.28 91.29 85.19 75.05 60.54 71.68
Linear (MF) 84.62 76.76 58.82 61.30 64.46 48.20 92.19 84.51 71.61 60.16 70.26
MLP 78.86 73.45 59.50 58.87 60.20 48.89 91.96 83.27 68.12 57.95 68.11
MLP (MF) 84.96 71.72 60.29 61.61 64.45 49.61 91.29 85.62 74.66 61.67 71.19
Graph (k=10) 83.55 76.45 58.66 58.34 64.48 44.71 90.79 84.02 75.04 62.04 69.81
Graph (k=100) 84.79 78.65 58.56 61.40 70.85 48.22 91.06 84.56 71.73 61.67 71.75
Attn (k=10) 84.08 77.14 58.31 58.29 66.57 46.10 91.06 84.75 73.87 58.26 69.84
Attn (k=100) 84.95 78.16 58.59 54.42 71.54 50.97 90.84 84.59 79.26 61.29 71.46
D-Attn (k=10) 83.56 76.99 59.90 59.37 67.27 48.87 90.82 84.75 73.80 58.28 70.36
D-Attn (k=100) 84.79 78.32 58.72 51.93 70.12 50.97 89.87 84.59 73.41 61.28 70.40

Statistical Validation and Embedding Analysis To ensure our findings are robust, we conducted
statistical validation across five independent runs. The results confirm consistent relative perfor-
mance: KNN (k=100) achieves 77.31 £ 0.27 AUC, Linear achieves 77.52 + 0.21 AUC, and MLP
achieves 76.94 £+ 0.33 AUC. The small standard deviations indicate that our conclusions are not
dependent on particular random seeds or data splits.

Our analysis shows that switching from BERT to SFR embeddings provides modest improvements,
but importantly, the relative ranking of routing methods remains consistent across embedding types
(detailed results in Appendix [H.

7 THEORETICAL ANALYSIS

In this section, we develop a theoretical framework to explain why simple kNN-based routers often
match or outperform more complex learned routers. Our analysis addresses a fundamental question:
under what conditions does the local structure of the query-performance space provide sufficient
signal for effective routing?

We begin by formalizing the locality property that underlies effective kNN routing:

Definition 1 (§-Locality). Given a query embedding space X, utility function u(x, m), and distance
Sunction d(-, -), model performance exhibits d-locality if for any two queries x1 and xo:

d(z1,22) <0 = |u(z1,m) — u(r2,m)| < €(9)
where €(0) is a monotonically increasing function with ¢(0) = 0.

This definition captures the intuition that semantically similar queries should yield similar utility
scores from the same model. If this property holds, then KNN methods can make effective routing
decisions by leveraging the performance patterns of nearby queries.

We now compare the sample complexity of KNN routers to parametric alternatives:

Theorem 1 (Sample Complexity). For a query distribution D with §-locality in utility space:

(a) A kNN router requires a training sample size of © C’;‘d -log (1)) to achieve expected regret
o «

O(e(96)) with probability 1 — o, where d is the intrinsic dimension of the embedding space and Cx 4
is a constant depending on the space.

(b) A parametric router with L Lipschitz-continuous layers requires a training sample size of
Q(L/e(6)?) to achieve the same regret bound.

The key insight is that when the embedding space has low intrinsic dimension d and strong locality
properties (where €(d0) decreases rapidly with §), kNN routers require significantly fewer training
samples than parametric routers to achieve the same performance guarantees. The full proof is
provided in Appendix [l
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formance scores across all models for each query
pair, then bin query pairs by embedding distance. Figure 1: As embedding distance between

query pairs increases, the agreement be-
tween their model performance rankings de-
creases, demonstrating locality in the query-
performance space.

The strong negative correlation (r=-0.815 for Arc-
Challenge, r=-0.875 for GSM) provides clear em-
pirical support for the J-locality property: queries
close in embedding space tend to have similar rela-
tive model performance patterns.

To validate the intrinsic dimensionality assumption in our theorem, we analyzed our embedding
spaces using the TwoNN method (Facco et all [2017). RouterBench embeddings have intrinsic
dimensions of approximately 2-28, while vision-language embeddings have intrinsic dimensions of
13-18—substantially lower than their ambient dimensions (768 for BERT, 3584 for VLM2Vec).

These empirical findings directly support our theoretical predictions. The observed low intrinsic
dimensions (d ~ 2 — 28) combined with strong locality properties create the favorable conditions
where KNN methods achieve sample complexity advantages over parametric approaches, explaining
our empirical results showing competitive performance with significantly fewer parameters.

Our theoretical analysis explains why simple methods are effective: locality properties in embed-
ding spaces make neighborhood-based approaches highly suitable for routing, particularly when
combined with low intrinsic dimensionality and limited training data.

8 DISCUSSION AND CONCLUSION

This paper fundamentally rethinks LLM routing by challenging the assumption that sophisticated
architectures are necessary for effective model selection. Through comprehensive evaluation across
text-only and multi-modal benchmarks, we demonstrate that simple kNN-based routers consistently
match or outperform complex learned approaches while offering substantial practical advantages.

Key Findings Our investigation reveals that KNN routing achieves competitive performance (52.68
AUC on text, 72.12 on multi-modal benchmarks) while being 13-14x faster than complex alterna-
tives. Most importantly, simple methods demonstrate superior robustness under distribution shift,
with KNN showing only 2.63-point degradation compared to 6.67 points for complex methods.

Our analysis explains these findings: the strong locality properties in embedding spaces—where
semantically similar queries benefit from similar models—enable kNN methods to achieve effective
routing with lower sample complexity. The combination of low intrinsic dimensionality (d ~ 2—28)
and strong locality creates favorable conditions for neighborhood-based routing.

Limitations While our results favor simple methods, complex approaches may be justified in spe-
cific scenarios: long-tail queries with sparse semantic neighborhoods, rapidly changing performance
landscapes, or tasks requiring compositional reasoning across multiple domains. Additionally, KNN
faces scalability constraints where memory requirements grow linearly with support set size.

Implications Our findings challenge the field’s trend toward architectural complexity, suggesting
that research should focus on understanding fundamental routing properties rather than developing
sophisticated architectures. The effectiveness of kNN routing reinforces a key principle: complex
solutions should be justified by meaningful improvements over simple alternatives. For practitioners,
the combination of competitive performance, superior efficiency, and enhanced robustness makes
simple methods particularly attractive for deployment, potentially democratizing access to effective
routing for organizations with limited resources. Future work should prioritize improving embed-
ding quality, investigating alternative training signals, and developing methods to identify when
complexity is truly necessary.
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ETHICS STATEMENT

This research exclusively utilizes publicly available datasets and benchmarks in full compliance with
their respective licenses and terms of use. No personally identifiable information, sensitive data, or
proprietary datasets were collected, generated, or analyzed. All experimental procedures adhere to
standard academic research practices and pose no ethical concerns regarding data privacy, misuse,
or harm.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. All experimental de-
tails, including hyperparameter settings, training protocols, and model architectures, are provided in
Appendix [C] Complete benchmark construction methodologies, model selection criteria, and eval-
uation protocols are detailed in Appendix Bl The theoretical analysis includes formal definitions,
theorem statements, and complete proofs in Appendix |} All datasets used are publicly available,
with specific data splits, preprocessing steps, and evaluation metrics documented in the appendices.
Statistical validation procedures, including multiple runs and standard deviation calculations, are
described in Section[6} All source code, model implementations, and evaluation scripts are provided
in the supplementary materials to enable immediate replication of our results. Random seeds are
fixed and documented throughout all experiments to ensure deterministic outcomes.

USE OF LLMS

Large language models were employed as writing assistance tools to enhance the clarity, coherence,
and presentation quality of this manuscript. All core technical contributions, experimental design,
methodology, analysis, and conclusions represent original work conducted entirely by the authors.
LLM assistance was strictly limited to grammar correction, style refinement, and clarity improve-
ments, without modification of technical content, experimental results, or research conclusions. The
intellectual contributions and scientific validity of this work remain solely attributable to the authors.
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A ADDITIONAL RELATED WORKS

Beyond the core routing approaches discussed in Section 2, several other research directions are
relevant to our investigation of LLM routing mechanisms.

LLM Inference Optimization Routing can be viewed as one component of the broader challenge
of optimizing LLM inference. Complementary approaches include speculative decoding (Leviathan
et al.} 2023), quantization (Egashira et al., 2024), and hardware-specific optimizations. Our work
on efficient routing complements these techniques, as the benefits of selecting the most appropriate
model can be combined with optimizations to the inference process itself.

Connections to Recommendation Systems LLM routing shares fundamental similarities with
recommendation systems, where the goal is to match users (queries) with items (models) that maxi-
mize utility. Several techniques from recommender systems research have direct analogs in routing
approaches. Matrix factorization methods like those used in RouteLLM (Ong et al., 2024) mirror
collaborative filtering techniques in recommendation (Su & Khoshgoftaar, 2009). Similarly, our
kNN approach resembles item-based neighborhood methods that recommend items based on sim-
ilarity to previously rated items (Sarwar et al., 2001). Content-based recommendation techniques
that leverage item features parallel our embedding-based routing approaches. Even the dual opti-
mization of performance and cost in routing mirrors multi-objective recommendation systems that
balance relevance with diversity or novelty (De Myttenaere et al 2014). This connection offers
promising opportunities to adapt proven recommendation techniques to the routing domain, partic-
ularly for handling cold-start problems with new queries or models, and for developing effective
hybrid routing strategies.

B ROUTING BENCHMARKS

In this section, we provide detailed information about our benchmark construction methodology,
model selection criteria, and evaluation protocols for both text and vision-language routing bench-
marks.

B.1 TEXT-BASED ROUTING BENCHMARKS

We construct comprehensive benchmarks based on three established LLM evaluation frameworks:
AlpacaEval, Open LLM Leaderboard v2, and HELM-Lite, as well as incorporating RouterBench.
Our goal is to provide a diverse set of routing scenarios that reflect real-world deployment chal-
lenges.

Model Selection For each benchmark, we select three model families with multiple variants per
family to represent realistic routing scenarios:

» AlpacaEval: We include OpenAl models, Claude models, and Mistral models.

* Open LLM Leaderboard: We include LLaMA3 variants, Qwen2.5 variants, and Yi-1.5 variants.
* HELM-Lite: We include OpenAl models, Claude models, and Google Gemini models.

* RouterBench: We use all 11 models provided in the original benchmark.

Please refer to Table [B.1l for the list of models and their costs.

Task Coverage Our benchmarks span a wide range of task categories:

* AlpacaEval: Instruction following tasks evaluated through human preference alignment.

* Open LLM Leaderboard: Mathematical reasoning, knowledge-based reasoning and instruction
following tasks.

 HELM-Lite: Knowledge-intensive tasks, reasoning tasks, and instruction following capabilities.

* RouterBench: Six tasks spanning mathematical reasoning, code generation, knowledge, and
commonsense reasoning.
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Table B.1: Candidate models and their costs for text-based routing benchmark.

Benchmark | Model Family | Candidate Models | Input cost ($ per IM tokens) | Output cost ($ per IM tokens)
OpenAI Family gpt-3.5-turbo-0301 1.5 2.0
gpt-3.5-turbo-0613 1.5 2.0
gpt-3.5-turbo-1106 1.0 2.0
gpt-4-0125-preview 10 30
gpt-40-2024-05-13 5 15
gpt-4 30 60
gpt-4-0314 30 60
_ gpt-4-0613 30 60
Lg gpt-4-1106-preview 10 30
§ Claude Family claude-2 8 24
) claude-2.1 8 24
< claude-3-5-sonnet-20240620 3 15
claude-3-opus-20240229 15 75
claude-3-sonnet-20240229 3 15
claude-instant-1.2 0.8 24
Mistral Family Mistral-7B-Instruct-v0.2 0.25 0.25
Mixtral-8x22B-Instruct-v0.1 2 6
Mixtral-8x7B-Instruct-v0.1 0.7 0.7
mistral-large-2402 8 24
mistral-medium 2.7 8.1
«~ Qwen2.5 Qwen2.5-0.5B-Instruct 0.08 0.08
Z Qwen2.5-1.5B-Instruct 0.2 0.2
Eg Qwen2.5-7B-Instruct 0.3 0.3
2 Qwen2.5-14B-Instruct 0.8 0.8
-dg’ Qwen2.5-32B-Instruct 0.8 0.8
3 Qwen2.5-72B-Instruct 1.2 1.2
E Llama3 Llama-3-8B-Instruct 0.2 0.2
- Llama-3-70B-Instruct 0.9 0.9
Q
& Yil.5 Yi-1.5-6B-Chat 0.3 0.3
Yi-1.5-9B-Chat 0.4 0.4
Yi-1.5-34B-Chat 0.8 0.8
OpenAl Family gpt-40-2024-05-13 5.0 15.0
gpt-40-mini-2024-07-18 0.15 0.6
gpt-3.5-turbo-0613 1.5 2.0
gpt-4-0613 30 60
gpt-4-turbo-2024-04-09 10 30
gpt-4-1106-preview 10 30
Claude Family claude-3-5-sonnet-20240620 3 15
claude-3-opus-20240229 15 75
claude-3-sonnet-20240229 3 15
2 claude-3-haiku-20240307 0.25 1.25
= claude-2 8 24
2 claude-instant-v1 0.8 24
m claude-v1.3 8 24
= claude-2.1 8 24
claude-instant-1.2 0.8 2.4
Google Family gemini-1.0-pro-002 0.5 1.5
gemini-1.0-pro-001 0.5 1.5
gemini-1.5-pro-001 35 10.5
gemini-1.5-flash-001 0.075 0.3
text-bison-001 0.5 1.5
text-unicorn-001 7.0 21.0
gemma-2-9b-it 0.2 0.2
gemma-2-27b-it 0.6 0.6
gemma-7b 0.1 0.1
RouterBench gpt-3.5 1.0 2.0
claude-instant-v1 0.8 24
claude-v1 8.0 24.0
5} claude-v2 8.0 24.0
E gpt-4 10.0 30.0
5 llama-70b 0.9 0.9
E Mixtral-8x7B 0.6 0.6
[~ Yi-34B 0.8 0.8
WizardLM-13B 0.3 0.3
code-1lama-34B 0.776 0.776
Mistral-7B 0.2 0.2

Performance Scoring Methodology For each benchmark, we use evaluation metrics aligned with
their respective leaderboards:
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» AlpacaEval: We use length-controlled win rates against the reference model.
* Open LLM Leaderboard: We use accuracy metrics for each task as reported in the leaderboard.

HELM-Lite: We use the benchmark-specific metrics as reported in the leaderboard.
* RouterBench: We use the performance scores provided in the original benchmark.

Cost Calculation We calculate costs based on actual pricing of each API, using:
¢(x,m) = InputTokens x InputPrice,, + OutputTokens x OutputPrice,,

For open-source models, we estimate costs using the pricing of equivalent commercial offerings
from TogetherAl.

B.2 VISION-LANGUAGE ROUTING BENCHMARKS

To address the growing importance of multi-modal systems, we develop the first benchmark for
routing between vision-language models. This benchmark assesses how routing methods perform
when inputs span different modalities. We utilize the existing evaluation outcomes from vHELM
leaderboard.

Model Selection We focus on two leading vision-language model families - OpenAl models and

Claude models - with multiple variants representing different capability-cost tradeoffs. Table
list the candidate models and their costs.

Table B.2: Candidate models and their costs for VLM routing benchmark.

Benchmark | Model Family | Candidate models | Input cost ($ per IM tokens) | Output cost ($ per 1M tokens)

OpenAlI Family gpt-4-turbo-2024-04-09 10 30
gpt-4.1-2025-04-14 2 8
gpt-4.1-mini-2025-04-14 0.4 1.6
gpt-4.1-nano-2025-04-14 0.1 0.4
gpt-4.5-preview-2025-02-27 75 150

gpt-40-2024-05-13 5 15

gpt-40-2024-08-06 2.5 10

gpt-40-2024-11-20 2.5 10
§ gpt-40-mini-2024-07-18 0.15 0.6
ol 01-2024-12-17 15 60
T 03-2025-04-16 10 40
04-mini-2025-04-16 1.1 4.4

Claude Family claude-3-5-sonnet-20240620 3 15
claude-3-5-sonnet-20241022 3 15

claude-3-7-sonnet-20250219 3 15
claude-3-7-sonnet-20250219-thinking-64k 3 15

claude-3-haiku-20240307 0.8 4

claude-3-opus-20240229 15 75

claude-3-sonnet-20240229 3 15

Dataset Selection We select five diverse vision-language datasets with varying task complexity:

* Blink: Tests basic visual perception and object recognition capabilities.

Flickr30k: Evaluates natural image description and scene understanding.

* MathVista: Challenges models with mathematical reasoning over visual inputs.

* MME: A comprehensive evaluation benchmark covering multiple vision-language capabilities.
* MMMU: Tests multi-modal understanding across challenging academic domains.

Each dataset presents unique routing challenges, as models show different strengths across visual
understanding tasks. For example, some models excel at detailed image description but struggle
with visual reasoning tasks.

B.3 EVALUATION PROTOCOL
B.3.1 AUC SCORE CALCULATION METHODOLOGY
To evaluate utility prediction approaches, we calculate the area under the curve (AUC) of the non-

decreasing convex hull in the cost-performance space using the following procedure:
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1. For a given query x, we obtain predicted utility scores %(xz, m) = §(xz,m) — A x ¢(x, m) for each
model m € M across various values of \.

2. For each A\ value, we select the model with the highest predicted utility: m), =
arg maxmeam 4(x, m).

3. We plot the actual performance-cost pairs (c(x, my), s(x,my)) in the cost-performance space.
4. We compute the non-decreasing convex hull of these points to obtain the Pareto-optimal frontier.

5. The AUC is calculated as the area under this frontier, normalized so that the maximum score is
100 and the maximum cost is 1.

This approach ensures that routers are evaluated on their ability to make optimal trade-offs across
the entire spectrum of cost-performance preferences.

B.4 DATA SPLITS AND REPRODUCIBILITY
To ensure reproducible evaluation, we use the following data splits:

* For all benchmarks, we create random splits over prompts with 70% training, 10% validation, and
20% test data.

* For support set experiments, we ensure no leakage between support sets and test queries.

* All random seeds are fixed and documented in our code to ensure reproducibility.

Our benchmark construction methodology ensures comprehensive evaluation across diverse tasks,
models, and modalities, providing a robust foundation for comparing different routing approaches.

C ROUTING APPROACHES

This section provides detailed implementation information for all routing approaches evaluated in
our study, including architecture specifications, hyperparameter settings, training procedures, and
computational requirements.

C.1 INPUT REPRESENTATIONS

For all routing approaches, we use consistent input representations to ensure fair comparison:

Text Embeddings For text-only queries, we primarily use BERT (Devlin et al., 2019) base model
(768-dimensional embeddings) to encode input queries. We take the [CLS] token embedding as
the query representation. In our ablation studies (Table [H.T), we also experiment with SFR (Meng
et al.| 2024) embeddings (4096-dimensional) to assess the impact of embedding quality on routing
performance. All embeddings are L.2-normalized to unit length.

Vision-Language Embeddings For multi-modal queries, we employ VLM2Vec (Jiang et al.,
2024) to extract unified representations of image-text pairs. Specifically, we utilize the Qwen7B-
based variant, which generates 3584-dimensional embeddings that effectively capture both textual
content and visual features in a shared embedding space.

C.2 ROUTING MODEL ARCHITECTURES

kNN Router Our kNN implementation uses cosine similarity to identify the nearest neighbors
in the embedding space. For utility prediction, we compute the weighted average of performance
scores and costs from the k£ nearest neighbors:

=
| =

$(x,m) =

k
Z c(x;,m)

For model selection, we use the majority voting mechanism, where each neighbor votes for the
model that maximizes its utility score.

k
Z s(zi,m), élax,m) =

17



Under review as a conference paper at ICLR 2026

Linear Router For utility prediction, we implement a linear regression model that maps query
embeddings directly to performance scores and costs:

Sy m) = W - emb(a) + b, (e, m) = W™ - emb() + b )
where W, W € R7® and ™, b™ € R are learnable parameters for each model m. For model

selection, we use a multi-class logistic regression:
p(m|z) = softmax (W - emb(z) + b)

where W € RM*768 and b € RM are learnable parameters.

Linear Matrix Factorization (MF) Router This approach assigns a learnable embedding to each
model and predicts performance through the interaction between query and model embeddings:
3(x,m) =emb(x)" - W, -emb(m) + b,, é(x,m) =emb(z)" - W, -emb(m) + b,

where W, W, € R768%dm_emb(m) € R9m is the learnable embedding for model m (we use
d, = 128), and b, b. € R are learnable biases.

MLP Router Our MLP consists of 3 fully-connected layers with ReL.U activations:
§(x,m) = MLPY*(emb(x)), ¢é(x, m) = MLPL*(emb(x))

The architecture uses 100 dimensions for each hidden layer.

MLP Matrix Factorization (MF) Router Similar to Linear MF, but replaces the linear projection
with an MLP:

$(x, m) = MLPg([emb(z);emb(m)]), é(z,m) = MLP.([emb(z);emb(m)])

where [; | denotes concatenation. The MLP has architecture use 100 hidden units with ReLU activa-
tions.

Graph Router We implement a bipartite graph neural network where queries and models form
nodes. Each query-model pair is connected by directed edges containing features that represent
scores, token counts, and neighborhood information. Our implementation uses the GeneralConv
class from PyTorch Geometric with the following architecture:

h0) = Wroj - emb(x), h9) = emb(m)
(9 = Weage - [Swms tom, Masky,)

l l Dy - . l
W = o (BNO (GNNO (0, 1 |j € N (i), e))) )

where emb(m) is a learned embedding for each model, s, and t,.,, are the score and token count
features between query = and model m, mask,,,, indicates whether the edge features are observed or
missing, BN is batch normalization, and o is ReLU. The graph is enriched with k-nearest neighbor
information from a pre-computed benchmark dataset. After message passing through multiple GNN
layers (we use 2 layers with hidden dimension 128), the final prediction is computed using an MLP
over the concatenated node representations of each query-model pair.

Attentive Router This approach employs a Conditional Neural Process architecture with both
self-attention and cross-attention mechanisms to process nearest neighbor examples:

support = (x;, s(x;, m), c(x;, m))|z; € KNN(z, k)

Z = SelfAttention(support)
latent(z, m) = CrossAttention(Q) = emb(x), K = emb(support), V = Z)

3(z, m) = MLP,(latent(z,m)), é(x,m) = MLP,(latent(z, m)),
where the self-attention module applies permutation-invariant processing to the support set, and the
cross-attention module allows the query to attend to the processed support set. For each model, we
retrieve k-nearest neighbors with their corresponding scores and token counts, and project them to

a shared embedding space. The architecture uses multi-head attention (4 heads with dimension 32
per head), followed by MLP prediction heads for both score and token count estimation.

18
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Double Attentive Router Extends the Attentive Router by processing the support set with a dual
attention mechanism that captures both query-level and model-level interactions:

support = (x;, s(x;, m), c(z;,m))|x; € kKNN(z, k), m € M
Z = DoubleAttention(support)
latent(z, m) = CrossAttention(Q) = emb(x), K = emb(support), V = Z)
§(x, m) = MLPg(latent(x,m)), é(x,m) = MLP.(latent(z, m))
where the double attention mechanism applies attention operations across both examples and mod-
els, allowing for richer representations that capture cross-model dependencies. The support set is
organized as a 3D tensor (batch x models x examples) and processed with sequential attention oper-

ations. This architecture enables the router to model complex interactions between different models
on similar queries, thereby improving routing accuracy across the model pool.

C.3 TRAINING PROTOCOLS

Loss Functions For utility prediction models, we use mean squared error (MSE) loss for both
score and cost prediction:

L = MSE(s8(x,m), s(x,m)) + a - MSE(é(z, m), ¢(x,m))
where « is a weighting coefficient that balances performance and cost prediction.

For model selection approaches, we use cross-entropy loss:

£=—3" yulog(p(mla))

meM

where y,,, = 1 if m is the optimal model for query x under the specified trade-off parameter \, and
0 otherwise.

D SELECTION-BASED ROUTING EVALUATION

Selection based routing methods directly map queries to models without explicit utility scores, mak-
ing construction of a full Pareto front challenging. We therefore evaluate these routers at three
distinct cost-performance preferences and report the average utility scores across them. To enable
consistent comparison across benchmarks with different cost scales, we normalize the trade-off pa-
rameter using cnmax, the maximum cost in each routing benchmark:

* Low-cost preference (A = 1.0/cyax): Heavily prioritizes efficiency while maintaining minimum
performance requirements

* Balanced preference (A = 0.5/cyax): Balances performance and normalized cost

* High-performance preference (A = 0.1/c,.x): Prioritizes response quality with reduced em-
phasis on efficiency

However, this evaluation approach has important limitations that can provide misleading assess-
ments of routing quality. Since selection-based methods only report accuracy under fixed preference
settings, they can obscure the true cost-performance trade-offs. High accuracy scores may simply
reflect the selection of expensive models rather than intelligent routing decisions, as preference pa-
rameters only indirectly control cost through the utility function. This allows routers to achieve
misleadingly high performance by consistently choosing costly but high-performing models.

To address these limitations, we recommend focusing primarily on utility prediction evaluation,
which reveals the complete cost-performance relationship rather than single-point accuracy. For
transparency and comparison with existing literature, we supplement selection-based results with
actual cost-performance visualizations that reveal the true trade-offs achieved by different routing
methods.

Table and present the utility scores averaged over 3 preference settings for text-based and
multi-modal routing benchmarks, respectively.

For model selection approaches, there is no straightforward way to obtain the entire cost-quality
Pareto front. Instead, we evaluate these routers using three distinct preference settings and report
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Table D.1: Utility scores on a range of text routing benchmarks. All methods directly select the
optimal routing model without explicitly estimating the utility scores. Scores are averaged over 3
preference settings. Higher is better.

AlpacaEval HELM-Lite OpenLLM RouterBench Avg
OpenAl Claude Mistral OpenAl Claude Google LLaMA3 Qwen2.5 Yil.5

KNN (k=10) 3832 42.04 23.72 4975 44.85 49.48 37.85 25.61 32.82 53.07 39.75
KNN (k=100) 37.89 43.99 23.88 48.93 41.86 43.63 37.56 2261 32.09 5236 38.98
Linear 54.61 5114 3096 48.53 42.13 48.69 3843 24.38 32.11 5236 4233
Linear (MF) 5454 5114 30.96 48.59 4257 4873 38.57 24.82 32.15 5236 42.44
MLP 50.81 51.14 3052 49.30 4537 48.95 39.11 26.20 3330 53.80 42.85
MLP (MF) 5471 51.14 30.96 48.60 4355 48.72 38.58 24.62 3224 5236 4255
Graph (k=10) 54.52 51.14 30.95 48.84 43.11 48.55 38.49 24.72 32.12 52.73 4252
Graph (k=100) 54.61 51.14 30.96 50.47 44.62 50.72 37.41 21.69 32.09 5228 42.60
Attn (k=10) 54.08 51.14 3091 48.45 42.08 48.04 38.86 24.85 33.76 53.74 4259
Attn (k=100) 54.04 51.14 30.96 49.13 4431 49.17 3851 2342 33.93 54.43 42,90
D-Attn (k=10) 53.84 51.14 3091 49.29 42.06 4833 39.31 2541 37.24 55.58 4331
D-Attn (k=100) 53.55 51.14 30.96 48.95 40.76 48.60 37.95 23.94 34.44 52.90 42.32

Table D.2: Utility scores for vision language benchmark using selection based routing. Higher is
better.

Blink Flickr30k MathVista MME MMMU Avg
OpenAl Claude OpenAl Claude OpenAl Claude OpenAl Claude OpenAl Claude

kNN (k=10) 60.42 71.13 56.88 47.50 34.48 24.69 77.41 67.74 52.08 49.53 54.19
kNN (k=100) 54.57 71.13 56.37 47.52 23.39 24.23 73.79 67.74 46.35 49.28 51.44
Linear 57.01 71.13 56.37 51.06 23.39 24.92 72.17 70.92 46.35 49.28 52.26
Linear (MF) 63.96 71.13 56.37 46.42 32.60 30.24 77.95 74.59 46.73 50.40 55.04
MLP 65.96 73.52 56.62 51.51 42.46 32.82 74.01 78.24 54.35 52.24 58.17
MLP (MF) 65.35 71.13 56.37 46.32 23.39 33.07 75.86 76.96 46.35 49.28 54.41
Graph (k=10) 54.80 71.07 56.37 48.69 32.11 24.70 73.09 72.60 46.22 49.12 52.88
Graph (k=100) 58.06 71.70 54.68 53.99 33.63 33.06 69.17 76.47 45.74 51.84 54.83
Attn (k=10) 62.01 71.30 56.88 56.42 39.10 28.21 71.56 8239 54.22 51.53 57.96
Attn (k=100) 59.34 71.46 56.65 53.39 41.61 33.87 73.54 78.89 46.12 49.52 56.44
D-Attn (k=10) 60.16 70.32 55.29 56.19 3042 29.75 78.53 83.75 47.71 51.27 56.34
D-Attn (k=100) 59.55 71.42 53.88 52.36 29.72 48.46 73.83 78.46 49.10 50.04 56.68

the final utility scores, following standard evaluation protocols in the literature. However, we must
emphasize that reported utility scores alone can sometimes present an incomplete picture. The utility
function combines both performance and cost in a weighted sum (s(z,m) — A - ¢(z, m)), but this
single metric obscures the actual trade-off between these two dimensions. For instance, two routing
approaches might achieve similar utility scores through different means—one by selecting higher-
performing but costlier models, and another by choosing more cost-efficient models with slightly
lower performance. Without visualizing the actual cost-performance points, it becomes difficult to
understand these different strategies and their practical implications for deployment scenarios where
budget constraints or performance requirements might vary.

To provide a more complete picture of this trade-off, we plot the actual cost-performance relation-
ships in Fig[D.T] and Fig[D.2] for text-based and vision-language model routing benchmarks, re-
spectively. These visualizations reveal the direct relationship between model cost and performance
without the abstraction of a combined utility metric. The results demonstrate that simple KNN-based
approaches remain highly competitive when compared to more complex routing methods operating
under the same cost budget. In many cases, kNN routers achieve comparable or better performance
than sophisticated neural architectures while maintaining similar cost efficiency, further support-
ing our core finding that simple, non-parametric routing methods offer a compelling alternative to
complex learned approaches.

Notably, these plots often do not demonstrate a monotonic trend across the three preference settings,
highlighting a significant limitation of the model selection formulation: the difficulty in precisely
controlling the cost budget through preference parameter adjustment alone. This non-monotonic
behavior underscores the challenge of balancing performance and cost when routing decisions are
made directly, rather than through explicit utility estimation, and further motivates our parallel inves-
tigation of utility prediction approaches that allow for more flexible exploration of the entire Pareto
front.
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Figure D.1: Cost-Quality tradeoff for text-based routing benchmarks using model selection ap-
proaches.
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Figure D.2: Cost-Quality tradeoff for VLM routing benchmarks using model selection approaches.

E DETAILED RESULTS

In the main text, we report RouterBench results as averages across all six datasets. For a more gran-
ular analysis, Tables [E.J] and [E.2] provide the detailed performance breakdown for each individual
dataset under the utility prediction and model selection formulations, respectively. Additionally, Ta-
bles and [E-4] present detailed results across three different preference settings for the text-based
and multi-modal (VLM) routing benchmarks.

Table E.1: AUC score on RouterBench using utility prediction routing. Higher is better.
| Arcc GSM  MBPP MMLU Hellaswag  Winogrande | Avg

Oracle 97.99 7459  85.02 96.44 97.92 99.48 91.91
Random 64.67 5247  50.74 57.41 54.74 49.55 54.93
kNN (k=10) 88.15 63.82 60.16 73.91 87.93 71.35 74.22
kNN (k=100) | 91.80 64.72 58.67 80.81 89.39 77.91 77.22
Linear 9227 6550 60.76 81.05 87.87 78.63 77.68
Linear (MF) 91.80 64.55 60.08 80.91 88.07 78.18 71.27
MLP 91.78 65.03 59.35 80.22 87.85 78.22 77.08
MLP (MF) 91.70  65.38  60.05 80.94 87.85 78.50 77.40
Graph (k=10) | 91.70 6223  56.36 80.76 87.89 78.52 76.24
Graph (k=100) | 91.39 62.76  59.38 80.88 87.89 78.93 76.87
Attn (k=10) 89.49 62.08 56.36 72.12 87.88 73.26 73.53
Attn (k=100) 91.63 64.07 60.85 81.01 87.86 78.82 71.37
D-Attn (k=10) | 89.43 6251 58.67 74.15 87.91 73.72 74.40
D-Attn (k=100) | 91.67 6448 60.14 80.71 89.40 78.46 77.48
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Table E.2: Utility score on RouterBench using selection based routing. Higher is better.
| Arrc GSM MBPP MMLU Hellaswag Winogrande | Avg

kNN (k=10) 64.75 5030 36.41 55.31 59.74 51.95 53.08

kNN (k=100) | 64.53 50.89 33.32 53.39 59.74 52.49 52.39

N Linear 64.53 50.86 33.32 53.39 59.74 52.49 52.39
§ Linear (MF) 64.53 50.88  33.32 53.39 59.74 52.49 52.39
=) MLP 64.53 5140 42.60 53.39 59.74 52.47 54.02
8 MLP (MF) 64.53 50.86  33.32 53.39 59.74 52.49 52.39
E Graph (k=10) | 64.53 5090 32.54 53.39 59.74 53.27 52.40
<  Graph (k=100) | 6595 5090 31.73 54.76 59.74 57.21 53.38
éﬂ Attn (k=10) 67.32 50.64 37.85 56.49 59.74 54.03 54.35
Attn (k=100) 64.35 51.18 41.57 55.80 59.74 36.20 51.47
D-Attn (k=10) | 66.35 4422 35.53 46.06 59.74 50.64 50.42
D-Attn (k=100) | 65.13 51.05  32.51 54.77 25.57 54.02 47.18

kNN (k=10) 64.53 50.23  36.31 55.06 59.74 52.49 53.06

kNN (k=100) | 64.53 50.78  33.25 53.39 59.74 52.49 52.36
Linear 64.53 50.73 3325 53.39 59.74 52.49 52.36

Linear (MF) 64.53 50.74 3325 53.39 59.74 52.49 52.36

3 MLP 64.53 51.01 4246 53.39 59.74 52.38 53.92
2 MLP (MF) 64.53 50.76  33.25 53.39 59.74 52.49 52.36
= Graph (k=10) | 64.53 50.78  34.02 53.39 59.74 58.34 53.47
A Graph (k=100) | 65.38 41.45 29.23 53.39 59.74 53.58 50.46
Attn (k=10) 67.40 50.12  33.94 56.00 59.74 51.91 53.19

Attn (k=100) 60.53 50.73  41.61 55.58 84.10 51.49 57.34
D-Attn (k=10) | 84.52 4994  58.29 52.09 84.10 52.06 63.50
D-Attn (k=100) | 73.40 50.54 33.11 54.44 54.37 54.42 53.38

kNN (k=10) 64.52 5045 36.19 54.98 59.74 52.48 53.06

kNN (k=100) | 64.52 50.63 33.17 53.39 59.74 52.48 52.32
Linear 64.52 50.59  33.17 53.39 59.74 52.48 52.32

Linear (MF) 64.52 50.59  33.17 53.39 59.74 52.48 52.32

Z MLP 64.52  50.85 39.96 53.39 59.74 52.27 53.46
o MLP (MF) 64.52 50.60 33.17 53.39 59.74 52.48 52.32
g Graph (k=10) | 64.52 50.63  33.17 53.39 59.74 52.47 52.32
—  Graph (k=100) | 64.80 50.63  32.94 53.39 59.74 56.43 52.99
Attn (k=10) 64.52 49.12  36.63 56.35 59.74 55.65 53.67

Attn (k=100) 67.30 50.56  37.67 53.33 59.74 58.24 54.47
D-Attn (k=10) | 64.76 49.57 37.19 53.50 59.74 52.21 52.83
D-Attn (k=100) | 63.64 59.87 56.93 53.91 59.74 54.80 58.15

F LATENCY ANALYSIS

In this section, we analyze the latency of each routing approach on Routerbench. Table [FI] reports
the inference time required to route all examples in each test set. This analysis provides insights into
the computational efficiency of different routing approaches, which is an important consideration
for practical deployment.

We measured the total processing time for each routing method across all datasets, excluding the
one-time costs of building nearest neighbor indices and training predictive models. For a fair com-
parison, CPU-based methods (kNN, Linear, and MLP predictors) were run on an Intel(R) Xeon(R)
Platinum 8275CL processor, while GPU-accelerated methods (Graph and attention-based predic-
tors) were executed on an NVIDIA A100 GPU. The kNN predictor leverages ScaNN for efficient
nearest neighbor search, enabling fast retrieval even with larger support sets. Linear and MLP pre-
dictors are implemented using the sklearn package.

The results demonstrate that simpler methods offer substantial computational advantages. kNN-
based approaches are remarkably efficient, with kNN (k=100) requiring only 10.95 seconds on av-
erage per dataset, making it the fastest method overall. Simple parametric models (Linear and MLP
variants) show moderate processing times (14-19 seconds). In contrast, graph and attention-based
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Table E.3: Utility scores on a range of text routing benchmarks. All methods directly select the
optimal routing model without explicitly estimating the utility scores. Higher is better.

AlpacaEval HELM-Lite OpenLLM
OpenAl  Claude  Mistral | OpenAl  Claude  Google | LLaMA3 Qwen2.5 Yil.5
kNN (k=10) 57.72 53.38 27.61 49.83 4523 49.56 39.81 32.12 34.61
kNN (k=100) 58.03 53.38 26.81 49.00 42.09 48.69 39.30 25.36 33.19
° Linear 58.01 53.38 33.24 48.57 42.23 48.76 39.03 24.73 33.20
% Linear (MF) 57.85 53.38 33.29 48.66 42.81 48.87 39.17 25.19 33.25
£ MLP 5533 53.38 33.22 49.38 45.76 48.93 39.78 26.65 34.44
S MLP (MF) 58.29 53.38 33.26 48.69 43.86 48.83 39.19 24.99 33.34
n“? Graph (k=10) 57.82 53.38 33.21 48.86 41.42 48.59 39.34 24.35 33.19
fln Graph (k=100) 58.03 53.38 33.23 48.65 45.39 51.10 37.41 21.57 33.36
= Attn (k=10) 57.16 53.38 33.27 49.06 43.61 48.85 40.20 24.95 35.46
Attn (k=100) 58.03 53.38 33.23 49.47 45.09 49.94 38.97 21.57 33.40
D-Attn (k=10) 57.16 53.38 33.27 47.84 42.61 48.45 39.95 26.89 38.72
D-Attn (k=100) 55.57 53.38 33.23 47.90 42.42 49.34 39.33 22.43 3345
kNN (k=10) 3241 44.93 23.23 49.76 45.03 49.45 37.31 23.15 32.66
kNN (k=100) 34.23 5111 25.34 48.92 41.88 48.64 37.09 21.63 32.16
Linear 54.88 51.31 30.98 48.53 42.08 48.68 38.48 24.40 32.19
Linear (MF) 54.85 51.31 30.97 48.58 42.42 48.72 38.61 24.85 32.24
3 MLP 51.19 51.31 30.29 49.24 45.45 49.04 39.16 26.23 33.39
2 MLP (MF) 54.91 51.31 30.98 48.58 43.46 48.70 38.63 24.65 3233
= Graph (k=10) 54.88 51.31 30.98 48.87 43.95 48.55 38.50 25.69 32.22
m Graph (k=100) 54.88 51.31 30.98 50.14 44.20 51.21 38.80 21.82 32.26
Attn (k=10) 54.24 51.31 30.98 48.05 41.96 47.75 38.47 25.11 33.64
Attn (k=100) 53.39 51.31 30.98 48.88 44.68 48.77 38.66 24.62 32.25
D-Attn (k=10) 53.51 51.31 30.98 48.04 42.23 48.42 39.64 25.09 37.36
D-Attn (k=100) 54.31 51.31 30.98 49.71 38.01 47.86 38.46 24.97 32.32
kNN (k=10) 24.83 27.82 20.31 49.66 4430 49.42 36.44 21.56 31.20
kNN (k=100) 21.41 27.47 19.49 48.88 41.60 48.57 36.29 20.84 3091
Linear 50.93 48.72 28.66 48.49 42.08 48.62 37.78 24.00 30.93
Linear (MF) 50.93 48.72 28.62 48.53 42.47 48.61 37.92 24.43 30.97
2 MLP 4591 48.72 28.06 49.28 44.90 48.87 38.40 25.71 32.08
Q MLP (MF) 50.93 48.72 28.63 48.52 43.32 48.63 37.93 24.23 31.06
2 Graph (k=10) 50.85 48.72 28.66 48.79 43.95 48.50 37.62 24.11 30.94
~ Graph (k=100) 50.93 48.72 28.66 52.62 44.28 49.85 36.02 21.69 30.64
Attn (k=10) 50.85 48.72 28.49 48.24 40.68 47.51 37.90 24.50 32.18
Attn (k=100) 50.69 48.72 28.66 49.03 43.16 48.79 37.89 24.08 36.13
D-Attn (k=10) 50.85 48.72 28.49 52.00 4135 48.13 38.35 24.25 35.63
D-Attn (k=100) 50.77 48.72 28.66 49.24 41.86 48.60 36.07 24.41 37.56

methods are approximately 13-14x slower than kNN, with average processing times exceeding 144
seconds per dataset.

These findings further strengthen our argument for simpler routing approaches, highlighting that
kNN not only matches or exceeds the routing performance of more complex methods but also of-
fers significant advantages in computational efficiency. For large-scale deployment scenarios where
thousands of routing decisions may be needed per second, these latency differences become partic-
ularly important.

G OUT-OF-DISTRIBUTION QUERIES

To evaluate the generalization ability of routing models under distribution shift, we conduct a com-
prehensive cross-dataset evaluation. For each of the six datasets in RouterBench, we train models
on one dataset and evaluate on all others, measuring AUC scores as our primary metric. This results
in 36 (train, test) pairs per model.

We visualize the results in a test-centric manner: for each test dataset, we compare in-distribution
(ID) performance—when the train and test datasets are identical—with out-of-distribution (OOD)
performance, where models are trained on different datasets. Figure presents the AUC scores
for each test dataset across different training datasets, while Table Erepoﬂs the ID and OOD
performance averaged across all six test datasets.

As expected, models consistently achieve higher AUC scores when evaluated in-distribution. How-
ever, the degree of generalization to OOD test sets varies considerably by model architecture and
training dataset. For instance, models trained on hellaswag generalize well to mmlu, but per-
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Table E.4: Utility scores for vision language benchmark using selection based routing. Higher is
better.

Blink Flickr30k MathVista MME MMMU
OpenAl Claude OpenAl Claude OpenAl Claude OpenAl Claude OpenAl Claude
KNN (k=10) 60.51 7226 57.11 49.31 37.58 26.09 78.23 69.50 52.10 50.46
kNN (k=100) 54.60 7226 56.45 49.57 23.40 2471 7476 69.50 | 4636 49.71
N Linear 57.04 72.26 56.45 53.03 23.40 25.42 7221 72.92 46.36 49.71
g Linear (MF) 63.99 72.26 56.45 46.64 32.62 31.02 78.00 76.99 46.74 50.85
g MLP 66.06 75.68 51.73 54.64 42.54 3381 74.06 81.25 54.40 53.07
£ MLP (MF) 65.38 72.26 56.45 47.54 23.40 33.86 75.91 79.69 46.36 4971
5 Graph (k=10) 54.60 72.26 56.45 46.50 34.03 26.12 73.83 7337 46.36 4971
£ Graph(k=100) | 5430 73.58 48.02 61.94 25.47 27.17 69.67 79.13 45.15 51.96
= Attn (k=10) 60.98 72.60 5651 6230 3537 31.89 71.25 88.02 53.96 52.28
Attn (k=100) 61.38 71.38 56.06 54.94 43.92 50.58 67.66 83.94 47.12 50.09
D-Attn (k=10) 55.30 7175 51.62 61.90 4101 36.24 5573 88.02 48.48 5151
D-Attn (k=100) |  63.96 7256 48.02 52.66 29.77 50.58 7236 85.73 45.58 49.27
kNN (k=10) 60.48 71.22 56.97 47.15 35.42 24.26 77.03 67.87 52.08 4931
kNN (k=100) 54.58 7122 56.37 47.29 23.39 2426 7333 67.87 46.35 4931
Linear 57.01 7122 56.37 51.53 23.39 24.96 72.17 71.07 46.35 49.31
Linear (MF) 63.96 71.22 56.37 45.48 32.60 30.30 77.95 7478 46.73 50.44
3 MLP 65.97 73.68 56.77 51.59 4247 32.90 74.02 78.47 54.35 52.31
g MLP (MF) 65.35 7122 56.37 46.06 23.39 33.13 75.87 77.17 46.35 4931
< Graph (k=10) 55.10 71.03 56.37 53.52 29.05 2426 7171 75.01 45.96 48.84
= Graph (k=100) | 5452 7161 58.28 49.86 33.77 3933 70.76 7830 | 4521 53.20
Attn (k=10) 6251 70.98 57.25 56.62 44.50 24.77 78.27 79.73 48.40 52.11
Attn (k=100) 59.45 7236 57.09 56.76 40.86 24.86 75.87 7880 |  46.00 49.30
D-Attn (k=10) 62.50 71.85 56.71 56.55 26.45 28.19 90.22 83.60 | 4879 52.20
D-Atn (k=100) | 55.53 71.28 56.90 56.63 36.05 48.62 69.26 78.19 52.68 49.57
kNN (k=10) 60.27 69.92 56.55 46.03 30.43 2371 76.97 65.84 52.05 48381
kNN (k=100) 54.54 69.92 56.28 45.69 23.38 2371 73.27 65.84 46.34 48381
Linear 56.98 69.92 56.28 48.62 23.38 2439 72.12 68.76 46.33 48381
Linear (MF) 63.93 69.92 56.28 47.14 3257 29.39 77.90 72.01 46.71 49.92
3 MLP 65.86 7119 5535 4831 4238 3176 73.96 74.99 54.30 5135
3 MLP (MF) 65.31 69.92 56.28 45.35 23.38 3223 75.81 74.02 46.34 48381
£ Graph (k=10) 54.71 69.92 56.28 46.05 3325 2371 73.73 69.41 46.34 48381
= Graph(k=100) | 6537 69.92 5173 50.17 41.66 3267 67.08 71.99 46.86 50.36
Attn (k=10) 62.53 70.31 56.88 50.33 37.42 27.98 77.17 79.41 6031 50.20
Attn (k=100) 57.20 70.65 56.81 4847 40.05 26.17 77.10 73.93 4524 49.16
D-Attn (k=10) 62.69 6735 57.54 50.12 23.80 24.83 89.63 79.62 45.85 50.09
D-Atn (k=100) | 59.16 70.43 56.71 47.78 23.35 46.17 79.86 7147 49.04 51.28
Table F.1: The cumulative time to process the each test set.
‘ arcc gsm hellaswag mbpp mmlu  winogrande ‘ AVG SUM
kNN (k=10) 2.48 12.81 18.64 0.74 37.51 3.58 12.62 75.76
kNN (k=100) 2.69 13.75 19.37 0.80 26.73 2.35 10.95 65.69
Linear 3.56 18.30 24.27 1.07 34.15 3.16 14.09 84.51
Linear (MF) 4.63 22.99 20.07 1.60 43.69 2.73 15.95 95.71
MLP 4.25 35.76 28.34 1.23 43.29 3.57 19.41 116.44
MLP (MF) 4.86 15.63 20.99 1.20 45.51 4.33 15.42 92.52

Graph (k=10) | 32.37 186.73 250.98 8.78  359.70 27.78 14439  866.34
Graph (k=100) | 33.51 186.48 253.32 8.82  361.71 28.19 145.34  872.03
Attn (k=10) 32.80 186.96 256.73 9.08  363.43 28.64 146.27  877.64
Attn (k=100) 33.68 189.76 256.94 8.94 36537 28.62 147.22  883.31
D-Attn (k=10) | 33.92 193.12 264.91 9.30  375.58 28.68 150.92  905.51
D-Attn (k=100) | 33.91 194.28 264.21 9.04  375.98 28.90 151.05 906.32

form poorly on mbpp. Conversely, models trained on gsm demonstrate strong performance on
mbpp, while struggling with mm1u. We attribute these patterns to varying degrees of domain shift
between the datasets.

On average, all routing approaches show performance degradation when evaluating on OOD queries,
though kNN-based approaches exhibit more moderate decreases compared to their more complex
counterparts. The simple kNN (k=100) model shows the smallest performance drop (2.63 points),
while Linear (MF) experiences the largest degradation (6.67 points). These findings highlight that
simpler models may be more robust to distribution shifts in routing tasks.

Overall, no single model universally dominates across all cross-dataset evaluations, emphasizing the
importance of data diversity and robustness-aware model design for effective routing decisions.
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AUC Scores on Test Set: arcc (ID vs OOD per Train Set) AUC Scores on Test Set: gsm (1D vs 00D per Train Set)
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1330 Table G.1: Average AUC scores across all test sets.

1331 Model Avg ID Avg.OOD Delta

1332 kNN (k=10) 73.53 70.41  3.13
1333 kNN (k=100) 76.54 7391  2.63
1334 Linear 77.03 73.70 3.33
1335 Linear (MF) 76.63 69.96 6.67
1336 MLP 76.45 7223 422
1337 MLP (MF) 76.77 7147  5.30
1338 Graph (k=10) 75.58 7039  5.19
. Graph (k=100) 76.20 7238  3.82
. Attn (k=10) 72.87 67.93  4.94
. Attn (k=100) 76.71 7219 452

D-Attn (k=10) 73.74 68.58 5.16

:222 D-Attn (k=100) 76.81 72.32 449

1344
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122s H EMBEDDING ANALYSIS

1347

1348 Table[H.J]examines the impact of different embedding models on routing performance. Switching

1349  from BERT to SFR embeddings provides modest improvements across most methods, with linear
and MLP models showing the largest gains. Importantly, the relative ranking of routing methods

8
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AUC Scores on Test Set: mmlu (1D vs 00D per Train Set) AUC Scores on Test Set: winogrande (ID vs OOD per Train Set)
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remains similar across embedding types—simple methods maintain their competitive advantage re-
gardless of the underlying representation quality.

The consistent importance of neighborhood size (k) across different embeddings reinforces that
the locality properties we observe are fundamental to the routing problem rather than artifacts of
particular representation spaces.

Table H.1: Ablation study on prompt embedding models.
‘ Arcc GSM MBPP MMLU  Hellaswag  Winogrande \ Avg

kNN (k=10) 88.15  63.82 60.16 7391 87.93 71.35 74.22
kNN (k=100) 91.80  64.72 58.67 80.81 89.39 7791 7722
o Linear 9227  65.50 60.76 81.05 87.87 78.63 77.68
;S Linear (MF) 91.80  64.55 60.08 80.91 88.07 78.18 77.27
3 MLP 91.78  65.03 59.35 80.22 87.85 78.22 77.08
'g MLP (MF) 91.70  65.38 60.05 80.94 87.85 78.50 77.40
o Graph (k=10) 91.70  62.23 56.36 80.76 87.89 78.52 76.24
E Graph (k=100) 91.39  62.76 59.38 80.88 87.89 78.93 76.87
"_:g Attn (k=10) 89.49  62.08 56.36 72.12 87.88 73.26 73.53
Attn (k=100) 91.63  64.07 60.85 81.01 87.86 78.82 71.37
D-Attn (k=10) 89.43 6251 58.67 74.15 87.91 73.72 74.40
D-Attn (k=100) | 91.67  64.48 60.14 80.71 89.40 78.46 77.48
kNN (k=10) 88.08  63.88 61.18 74.61 84.78 73.08 74.27
kNN (k=100) 91.33  64.95 62.22 80.94 89.08 77.76 77.71
Linear 92.02  65.60 64.68 80.30 89.41 78.42 78.41
%ﬂ Linear (MF) 90.80  64.71 61.72 80.01 89.43 78.62 77.55
3 MLP 90.05  62.92 63.91 80.43 87.75 77.04 77.02
2 MLP (MF) 91.86  65.16 64.64 80.67 89.42 78.43 78.36
Lg Graph (k=10) 91.04  59.62 56.37 80.92 87.97 78.77 75.78
Erf Graph (k=100) 9145 6152 60.95 81.01 88.95 78.56 71.07
2 Attn (k=10) 88.13  62.13 57.10 76.56 86.56 74.18 74.11
Attn (k=100) 91.32 6424 60.11 80.97 89.04 78.47 77.36
D-Attn (k=10) 88.16  62.41 56.24 76.48 86.68 73.38 73.89
D-Attn (k=100) | 91.11 64.34 59.33 81.02 89.18 78.57 77.26

I PROOF

Theorem 1. For a query distribution D with §-locality in utility space:

(a) A kNN router requires a training sample size of © (Cg‘d’d log (é)) to achieve expected regret

O(e(6)) with probability 1 — o, where d is the intrinsic dimension of the embedding space and C'x 4
is a constant depending on the space.

(b) A parametric router with L Lipschitz-continuous layers requires a training sample size of
Q(L/e(6)?) to achieve the same regret bound.

Proof. We first derive the sample complexity for KNN and parametric approaches and then compare
them.

Part 1: kNN Router Sample Complexity

Let X be the query embedding space with intrinsic dimension d and v : X x M — R be the true
utility function mapping query-model pairs to utility scores. By the d-locality property, for any two
queries 1, x2 with d(z1, z2) < J, we have |u(x1, m) — u(xze, m)| < €(0) for all models m € M.

Step 1: First, we establish what makes a kNN estimate accurate.

For a query «, let i(x, m) be the KNN estimate of model m’s utility:
1
a(x,m) = z Z u(x;, m),
z; €Nk ()

where N () is the set of k nearest neighbors of z in the training set. By the d-locality property, if
all k neighbors are within distance § of x, then the approximation error is bounded by €(0):

|t(z,m) — u(x,m)| < €(d).
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Step 2: We analyze the sample complexity needed to ensure sufficient neighborhood coverage.

Let N(X,d/2) be the §/2-covering number of X', which is the minimum number of balls of ra-
dius ¢/2 needed to cover X. For a space with intrinsic dimension d, this covering number scales
as N(X,5/2) = O(Cx 4/6), where Cx 4 is a constant depending on the properties of X' (Kol-
mogorov & Tikhomirov, [1959; Luxburg & Bousquet, 2004).

Let’s divide the space into N (X, §/2) regions corresponding to this cover. If we ensure that each re-
gion contains at least k training points, then any query will have at least £ neighbors within distance

J.
Step 3: We compute the sample size needed to populate each region with enough points.

Assume we draw 7 training samples i.i.d. from distribution D. For a region R; with probability
mass D(R;), the probability that fewer than k samples fall into R; is:

k—1
P(fewer than k samples in R;) = Z <T%)D(Ri)j(1 —D(R;))" .
§=0

We need to ensure that with high probability, X; > k for all regions.

For a single region R;, using the Chernoff bound for the lower tail of a binomial distribution with
mean u = nD(R;):

P(X; < (1 —t)u) <exp(—t*u/2) forany0 <t <1

Setting (1 —t)nD(R;) = k, which implies t = 1 — %, and imposing the constraint nD(R;) >
2k (ensuring t > 1), we get:

P(X; < k) < exp(—t*nD(R;)/2) < exp <—(1/4)TL2D(RZ)) = exp (—W)

For the union bound to work across all N (X, d/2) regions, we need:

P(X; <k)< W for each region R;
Therefore:
o nD(R;) < !
«p [ —
P 8 ) = N(X,0/2)
Taking logarithms:

<lIn(a) —In(N(X,6/2))
nD(R;) > 8In (;) +8In(N(X,6/2))

To maintain consistency with our constraint nD(R;) > 2k, we require:

2k > 81n (;) +8In(N(X,6/2))

k>4l (;) +41In(N(X,6/2))

To satisfy nD(R;) > 2k for all regions, we need:

S 2k
n - -
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Under a reasonable assumption that the distribution D doesn’t assign extremely small probability to

any significant region (specifically, min; D(R;) > W for some constant ¢ > 0), we get:
L 2N(X,5/2) _ g (k- Cra
o [ c-od

Substituting k = © (In (£) +In (V(X,6/2)) = © (In (&) +In (S£) ):

nz@( ( ) <c;l,d>)
n=o (Gt (G )+ G (hl(cx,d) ran(5)))
w0 (Gt (5) - 5 ()

For fixed ¢ and decreasing «, the dominant term is © (CX <. 1n (l)>

[e%

By the union bound, the probability that any region has fewer than k& samples is at most .. This
ensures that with probability at least 1 — «, every query point has at least k neighbors within distance
J.

Step 4: We connect this to the regret bound.

With probability at least 1 — «, every query has at least k£ neighbors within distance d. For such
queries, by the J-locality property, the kNN router achieves regret O(e(d)) since: |a(x,m) —
u(z, m)| < €(d) for all models m.

When selecting the model with the highest predicted score:

mEyN = arg max i(x, m),
m

we have: u(x, mpnn) > Wz, menn) — €(0) < a(x, mx) — €(0) > u(x, m*) — 2¢(9).
Therefore, the regret is bounded by:
u(z,mx) — u(z,mpnn) < 2€(9)
Part 2: Parametric Router Sample Complexity For a parametric router with L Lipschitz-

continuous layers, we analyze the sample complexity required to learn an accurate model of the
performance function.

Step 1: We establish the approximation capacity.

Following the results of (Barron, |1993) and (Yarotsky, 2017), a neural network with L layers
and width W can approximate functions in certain smoothness classes to accuracy € if W =
Q((1/€)¥/*), where d is the input dimension.

For the utility function u(x, m), which maps from R% x M to R, a network with L Lipschitz-
continuous layers requires Q(L - (1/¢)% ) parameters to achieve uniform approximation error at
most €.

Step 2: We relate approximation capacity to sample complexity.

By standard generalization bounds for neural networks (Bartlett et al., 2017; Golowich et al.,|2018)),
the sample complexity to learn the parameters of such a network with generalization error at most e
is:

Substituting W = Q(L - (1/€)¥F), we get:
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Tparam = Q

<L2 -(1/e)¥" log(L - (1/6)d/L)>

2
For small values of € and moderate values of L, the dominant term is £2(L/e?), which represents a
lower bound on the sample complexity.
Step 3: We connect to the regret bound.

To achieve a regret bound of O(e(0)), the parametric model must approximate the true performance
function with error at most €(d) /2 uniformly over the query space. This requires a sample complex-
ity of Q(L/e(6)?).

Part 3: Comparison Now we compare the sample complexity of the two approaches:

kNN router: © (Cgfi"" -log (i))

Parametric router: (L /e(5)?)

For small values of €(§) (high accuracy requirements), the parametric router’s sample complexity
grows quadratically with 1/¢(5), while the kNN router’s complexity depends on 1/6¢ and only
logarithmically on 1/c.

When the embedding space has a low intrinsic dimension d (which is often the case for well-
designed embedding spaces), and ¢(9) decreases rapidly with § (strong locality property), the kNN
router requires significantly fewer training samples than a parametric router to achieve the same
regret bound.

O
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