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Abstract

Last-layer retraining methods have emerged as an efficient framework for correcting
existing base models. Within this framework, several methods have been proposed
to deal with correcting models for subgroup fairness with and without group
membership information. Importantly, prior work has demonstrated that many
methods are susceptible to noisy labels. To this end, we propose a drop-in correction
for label noise in last-layer retraining, and demonstrate that it achieves state-of-
the-art worst-group accuracy for a broad range of symmetric label noise and
across a wide variety of datasets exhibiting spurious correlations. Our proposed
approach uses label spreading on a latent nearest neighbors graph and has minimal
computational overhead compared to existing methods.

1 Introduction

In order to ensure fairness between subpopulations, an important metric to consider is the lowest
accuracy amongst all subpopulations, often referred to as worst-group accuracy (WGA). State-of-the-
art methods for optimizing WGA utilize group membership information to modify the training loss
[1, 12, 21, 20, 22] or the distribution of the training data [10, 6, 11] in order to account for imbalance
amongst groups and successfully train a classifier which is fair across groups.

While these methods can achieve astounding WGA, many have significant computational and
data costs. Last-layer retraining (LLR) has emerged as a popular method to adapt existing deep
models with minimal overhead while ensuring fairness [10, 11, 22, 20]. Additionally, the necessity
of group membership information has been relaxed as new methods infer group membership by
utilizing auxiliary classifiers to detect minority groups (generally known as two-stage methods)
[11, 6, 12, 16, 22]. Taken together, it is now possible to correct powerful deep models for worst-group
accuracy with low computational and data cost. Two methods using this approach are SELF [11] and
RAD [22].

Unfortunately, class labels are often noisy [25] in practice. Further, Oh et al. [16] demonstrated
just how fragile most two-stage model corrections are in the face of this issue. While Oh et al. [16]
presented a method with improved robustness to label noise, their method requires fully retraining
the base model and cannot match the performance of existing methods at low noise levels. To
address these issues, we connect the existing literature on label propagation and worst-group accuracy
correction, i.e., we utilize label spreading on the latent nearest neighbors graph to correct for noisy
labels and two-stage LLR methods to maximize WGA without domain annotations. We list our main
contributions below.
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• We highlight the failure of state-of-the-art (SOTA) LLR methods, in particular, SELF [11] and
RAD [22], under target label noise.

• We introduce an elegant label correction preprocessing method that significantly improves the
performance of the SOTA LLR methods under label noise. The key insight here is that LLR models
operate on largely separable embeddings, and therefore, label noise can be potentially corrected
using label propagation techniques.

• For various spurious correlation datasets, we highlight the effectiveness of our modular approach
when combined with both SELF and RAD and compare it to domain-aware and full retraining
methods.

1.1 Related Work

Subgroup Robustness Downsampling has become one of the most common methods of increasing
WGA. Kirichenko et al. [10] propose deep feature reweighting (DFR), which downsamples majority
groups to the size of the smallest group to rebalance the retraining set. Chaudhuri et al. [4] explore
the effects of downsampling theoretically and show that downsampling can increase WGA under
certain data distribution assumptions. LaBonte et al. [11] propose using class-balancing when group
membership information is unavailable and demonstrate its efficacy.

Upweighting is a popular alternative to downsampling as it utilizes all available data. Idrissi et al. [7]
show that upweighting relative to the proportion of groups can achieve strong WGA, and Welfert et al.
[26] prove downsampling and this form of upweighting are statistically equivalent. Upweighting has
been extended to domain annotation-free settings by Qiu et al. [20] through loss-weighted learning.

Domain annotation-free methods often use a secondary model to identify minority groups. These are
referred to as two-stage methods. Qiu et al. [20] use the pretrained model itself but do not explicitly
identify minority examples and instead upweight proportionally to the loss. Unfortunately, this ties
their identification method to the choice of the loss. Liu et al. [12] consider fully retraining the
pretrained model as opposed to only the last layer, but their method of minority identification using
an early stopped model is considered in the last layer in LaBonte et al. [11]. LaBonte et al. [11] not
only consider early stopping as implicit regularization for their identification model, but also dropout
(randomly dropping weights during training). Stromberg et al. [22] consider an explicit ℓ1 regularizer,
building on the work of LaBonte et al. [11] and Kirichenko et al. [10].

Wei et al. [25] show that human annotation of image class labels can be noisy with up to a 40% noise
proportion, thus motivating the need for robust methods for WGA. Oh et al. [16] consider robustness
to class label noise. Their method, END, utilizes predictive uncertainty from a robust identification
model to select an unbiased retraining set. Their method struggles against SOTA methods at low
noise levels and is not easily adapted to other error set-selection techniques. Still, it achieves strong
performance in the high noise regime where other two-stage full retraining methods fall apart.

Label Propagation The problem of spreading labels from a small, but well-annotated set of reference
points to a larger unlabeled set has been extensively explored in the literature. For a survey of basic
methods of label propagation on a graph, see Bengio et al. [2] and references therein. The graph
on which labels are propagated is critical to the success of these methods. Common graphs are the
k-nearest neighbors (kNN) graph, the adjacency matrix of an undirected graph, or an underlying
directed acyclic graph (DAG).

When labels are noisy, the objective of label propagation may be ill-equipped to correct these labels,
but the general principles can be of use. For a restricted classifier setting, Gao et al. [5] prove the
robustness of the kNN learning procedure to label noise and give a sense of how to choose k, the
number of nearest neighbors, via an excess risk bound. This inspires our empirical analysis and our
results verify the trends suggested by their bound. Iscen et al. [9] utilize neighbor consistency to deal
with noisy labels when training deep models and frame their method as an implicit label propagation.
Patrini et al. [19] consider label noise and possible corrections via loss and logit reweighting.

Label propagation and spreading have also been used in the semi-supervised learning setting for both
general models and those focused on subgroup fairness. Iscen et al. [8] include label propagation in
order to learn general deep models in a semi-supervised manner. Nam et al. [15] utilize an auxiliary
model inspired by the label propagation objective to predict group labels on unlabeled samples. This
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allows for semi-supervised fair training. Unfortunately, their method is very costly as it involves
training both a spurious attribute prediction model and running GroupDRO [21].

Our work combines the ideas of two-stage last-layer corrections of LaBonte et al. [11], Stromberg
et al. [22] with simple label propagation techniques in the latent space of the original (unfair) model.
Because we have a low-dimensional embedding in which clean examples are well-separated by a
linear classifier, we can utilize kNN label spreading with many nearest neighbors, which is enough to
correct most label noise in the training data. With this preprocessing method, we can then proceed
with any two-stage last-layer WGA correction to achieve fairness without domain information. Thus,
our method is an elegant plug-and-play addition to last-layer subgroup robustness methods, which
achieves SOTA test WGA when training with noisy class labels.

2 Problem Setup

Let D = {(Xi, Yi)}ni=1 be a dataset of n iid examples with features Xi ∈ X and class label Yi ∈ Y .
Additionally let G = {Gi}ki=1 be a partition of D, that is each Gi ⊆ D, corresponding to the k groups
of interest. In general, this partition is unknown at training time.

We are given a pre-trained deep model

f(x; θ) = argmax
y∈Y

σy(⟨Φ(x), θ⟩), (1)

where Φ : X → Rd is an embedding function and σ : R→ [0, 1]|Y| such that σy is the estimate of
the probability that X is in class y. An example of σ is the oft-used softmax function. We assume
that f is trained on clean data. While this may seem like a strong assumption, it can be relaxed as
recent work suggests that feature embeddings are typically robust to label noise [9, 17].

We seek to retrain solely the last layer of f in order to increase the worst-group accuracy of the model.
That is we learn a θWGA such that

θWGA = max
θ

min
Gi∈G

1

|Gi|
∑

(x,y)∈Gi

1(f(x; θ) = y). (2)

That is, θWGA maximizes the worst-group accuracy (WGA). We will use WGA as our metric for all
of our discussions moving forward.

2.1 Label Noise Model

We assume that we observe not D, but D̃ = {(Xi, Ỹi)}ni=1 where Y has been affected by symmetric
label noise with noise level p ∈ (0, 1/2). In general, this noise could be caused by human error, data
corruption, or malevolence. Patrini et al. [19] consider a wider class of class-dependent noises and
show that in general, predictors can be made robust to such noise with relatively simple adjustments
to the loss function or data distributions. This simple correction is not helpful in two-stage methods
as demonstrated by Oh et al. [16]; we expand on this further in Section 2.3.

2.2 Basic Last-Layer Model Corrections for WGA

When we have information about the group membership G, standard methods are to upweight
examples proportional to their group size or to remove samples from larger groups. Specifically,
group upweighting (GUW) seeks to minimize the following objective:

θ(GUW ) = max
θ

1

k

∑
Gi∈G

n

|Gi|
∑

(x,y)∈Gi

1(f(x; θ) = y), (3)

where the inner sum is upweighted by a factor inversely proportional to its prevalence in the dataset.
Group downsampling (GDS) takes a similar approach, but sub-samples all groups which are larger
than the smallest group. Denoting nmin = minGi∈G |Gi| as the size of the smallest group, we can
write the GDS objective as:

θ(GDS) = max
θ

1

knmin

∑
Gi∈G

∑
(x,y)∈Gi

1(f(x; θ) = y), (4)
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where Gi is a downsampled version of Gi with size nmin.

These two approaches are examined theoretically in Chaudhuri et al. [4], Welfert et al. [26], though
their performance in the presence of label noise is unclear. Patrini et al. [19] suggest that a related
upweighting factor to Equation (3) may be helpful in combating label noise (the so-called backwards
correction) suggesting that GUW may be robust to label noise. Welfert et al. [26] prove that GUW
and GDS are equivalent in the statistical setting (infinitely many samples), which suggests that GDS
should also have some resilience to label noise. We explore this empirically in Section 4.

2.3 Two-Stage Last-Layer Model Correction

When group membership information is unavailable, techniques that build on GUW or GDS have
been explored. Broadly they fall into the category of two-stage corrections [6, 12, 16, 14], and more
specifically in our setting, last-layer model corrections for worst-group accuracy [11, 22]. These
methods make the assumption that the groups of interest are determined by a tuple of class label Y
and domain label D. Additionally there is a spurious correlation between Y and D which causes
the base model f to perform poorly on minority groups. This same correlation is exploited when
correcting the model in that an error set, E , is constructed that is likely to contain minority examples:

E = {(X,Y ) ∈ D : fbias(X) ̸= Y }, (5)

where fbias is the base model f for LaBonte et al. [11] and a highly regularized model intended to
increase performance in Stromberg et al. [22]. This error set is then used as a proxy for a group-
balanced or minority-dominated subset, respectively, for fair retraining. We present a simplified
version of the RAD [22] and SELF [11] algorithms in Algorithm 1 and Algorithm 2 respectively.
Note that in this work we focus on the misclassification version of SELF, but other variations are
discussed by LaBonte et al. [11]. The intuition behind these methods is that the error set will likely
contain mostly minority examples as the majority should be easily captured by the biased classifier.

The construction of this error set is precisely why using a noise-robust loss [16] or a corrected
loss [19] is not enough to achieve robustness to label noise for two-stage LLR methods. The
robust models will still (correctly) misclassify noisy examples, including them in the error
set for retraining (see Appendix C for experimental results in this setting). This results in an
error set which is dominated by noisy majority points rather than clean minority points. This
is exacerbated by SELF which keeps only the examples with highest loss (most likely to be
noisy). We present a proof of this failure for RAD in a group-conditional Gaussian setting in
Appendix B Proposition 2. Oh et al. [16] circumvent this problem by changing the construction of
the error set to depend on the entropy of the predictions rather than their correctness. While this
increases robustness to label noise, it comes at the cost of clean performance. We instead focus
on cleaning the labels so that we can realize the performance gains of existing two-stage methods.

Algorithm 1 RAD [22] Algorithm

Input: D = (xi, yi) for i ∈ [n], c: penalty
factor, λ: upweight factor
E ← ∅
Learn θbias minimizing∑

(x,y)∈D

ℓ(x, y; θ) + c∥θ∥1 (6)

ŷyy ← f(xxx; θbias)
if ŷi ̸= yi then
E ← E ∪ (xi, yi)

end if
Learn θRAD minimizing∑
(x,y)∈D\E

ℓ(x, y; θ) + λ
∑

(x,y)∈E

ℓ(x, y; θ) (7)

Return: θRAD

Algorithm 2 SELF [11] Algorithm

Input: D = (xi, yi) for i ∈ [n], nsub: size of
reweighting set
E ← ∅
ŷyy ← f(xxx; θ)
if ŷi ̸= yi then
E ← E ∪ (xi, yi)

end if
Subsample E to select nsub examples with high-
est loss
Subsample E so that each class is equally rep-
resented
Learn θSELF minimizing, starting from θ∑

(x,y)∈E

ℓ(x, y; θ) (8)

Return: θSELF
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3 Label Spreading for Robust Worst-Group Accuracy

To correct for label noise in the training data, we will consider the labels of each point’s nearest
neighbors. We denote the k nearest neighbors matrix as Vk where Vk(i, j) is 1 if Xj is one of the k
nearest neighbors of Xi in ℓ2 distance and 0 otherwise. Thus 1

kVk is a row-stochastic matrix with a
uniform distribution on each point’s k nearest neighbors. Note that Vk is not necessarily symmetric
and so defines a directed graph.

We update the estimated labels iteratively by taking a uniformly-weighted majority vote of each
point’s nearest neighbors. The idea is that noise is added at random to each class, thus it is likely
that for noise level p, 1 − p proportion of a given query point’s neighbors have clean labels. It is
intuitive to select a higher k for increasing p in order to minimize the effect of local noise density.
Thus most noisy points will be corrected after just one round of spreading, and noise will continue
to diminish unless there is a small cluster which is especially noisy. See Gao et al. [5] for a more
complete theoretical treatment of kNN classification with label noise.

To better understand how the choice of k is affected by the noise parameter p consider the following:

Proposition 1 (Theorem 2 from Gao et al. [5]). For k ≥ 8 and symmetric label noise level p

ED[Rk] ≤ R∗ +
2R∗
√
k

+
p

(1− 2p)
√
k
+ 5max{L,

√
L}
√
d

(
k

n

)1/(1+d)

(9)

whereR∗ is the Bayes optimal risk,Rk is the risk of kNN, d is the data feature dimensions, and L is
the Lipschitz constant of the Bayes optimal classifier.

For d≫ 1, minimizing the upper bound in Equation (9) leads to the dependence of k on p as

O

((
R∗ +

p

1− 2p

)2
)
, (10)

corroborating the intuitive choice of larger k for larger amounts of noise.

3.1 A Note on Domain Label Spreading

Because of the effectiveness of simple domain-aware LLR methods like GDS and GUW, it may
be tempting to consider kNN label spreading for domain noise as well as target noise. In this
way, we could correct for the failures of GUW and GDS seen by Stromberg et al. [22] which lead
them to propose RAD. The effectiveness of kNN label spreading for target labels is mainly due to
the fact that the clean embeddings are close to linearly separable (that is the original base model
had high accuracy). In practice, not only are classes linearly separable in the latent space, but are
tightly clustered. This has been observed empirically and partially explained theoretically under
the framework of neural collapse [18]. Such collapse has not been seen for subgroups when this
information is not explicitly utilized in the training of the base model. Thus it is unreasonable to
expect that domains should be as well separated as classes. This limits the effectiveness of kNN label
spreading for domain labels, but as we demonstrate in Section 4, kNN-RAD can achieve SOTA WGA
without using domain labels at all in the training phase. Nam et al. [15] bypass this issue by training a
separate neural network to predict group membership using semi-supervised data, effectively causing
neural collapse for groups rather than classes. However, their method suffers from poor computational
performance and struggles to deal with label noise as demonstrated by Oh et al. [16].

3.2 kNN-RAD and kNN-SELF

In order to retrain the base model, we first perform T rounds of kNN label spreading (in practice we
take T = 1) and then pass the cleaned labels to any last layer method. We denote the combination of
these procedures kNN-RAD, Algorithm 3, or kNN-SELF, Algorithm 4, depending on the two-stage
method used after label spreading. While we focus on using embeddings from a model trained on
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clean data, prior work suggests that the embeddings should be relatively robust to label noise [9, 17].

Algorithm 3 kNN-RAD Algorithm

Input: D = (xi, ỹi) for i ∈ [n], k: number of
neighbors, c: penalty factor, λ: upweight factor
Calculate kNN graph Vk

ŷyy(0) ← ỹyy
for t = 1, . . . , T do

ŷyy(t) ← 1(Vkŷyy
(t−1) ≥ k

2 )
end for
θRAD ← RAD(xxx, ŷyy(T ), c, λ) (Algorithm 1)
Return: θRAD

Algorithm 4 kNN-SELF Algorithm

Input: D = (xi, ỹi) for i ∈ [n], k: number of
neighbors, nsub size of reweighting set
Calculate kNN graph Vk

ŷyy(0) ← ỹyy
for t = 1, . . . , T do

ŷyy(t) ← 1(Vkŷyy
(t−1) ≥ k

2 )
end for
θSELF ← SELF(xxx, ŷyy(T ), nsub) (Algorithm 2)
Return: θSELF

4 Experiments

We present worst-group accuracies for several representative methods across four large publicly
available datasets. Specifically, we compare kNN-RAD and kNN-SELF to END [16] which aims
to provide robustness to label noise for two-stage full retraining methods. As baselines we include
group upweighting (GUW) and group downsampling (GDS) which are simple and effective, but
require domain annotations which are not available to other methods. Additionally, we demonstrate
that uncorrected RAD [22] and SELF [11] suffer large performance degradation under label noise.

4.1 Experimental Details

We perform our experiments with several common datasets in the literature of worst-group accuracy,
including three vision datasets and one text dataset. Following prior work [10, 11], we use half of the
validation as retraining data (with noisy target labels) and half as a clean holdout. More details can
be found in Appendix A.

CMNIST [1] is a variant of the MNIST handwritten digit dataset in which digits 0-4 are labeled
y = 0 and digits 5-9 are labeled y = 1. Further, 90% of digits labeled y = 0 are colored green
and 10% are colored red. The reverse is true for those labeled y = 1. Thus, we can view color as a
domain, and we can see that the color of the digit and its label are correlated.

CelebA [13] is a dataset of celebrity faces. For this data, we predict hair color as either blonde
(y = 1) or non-blonde (y = 0) and use gender, either male (d = 1) or female (d = 0), as the domain
label. There is a correlation in the dataset between hair color and gender because of the prevalence of
blonde female celebrities.

Waterbirds [21] is a semi-synthetic dataset which places images of land birds (y = 1) or sea birds
(y = 0) on land (d = 1) or sea (d = 0) backgrounds. There is a correlation between background and
the type of bird in the training data but this correlation is removed in the validation data.

CivilComments [3] is a text corpus dataset of public comments on news websites. Comments are
labeled either as toxic (y = 1) or civil (y = 0) and the spurious attribute is the presence (d = 1)
or absence (d = 0) of a minority identifier (e.g. LGBTQ, race, gender). There is a strong class
imbalance (most comments are civil), though the domain imbalance is modest.

4.2 Empirical Evidence for Label Spreading

To empirically evaluate the effectiveness of kNN label spreading, we add symmetric label noise to
embeddings from three image datasets and then perform label spreading over 10 rounds. We see in
Figure 1 that kNN label spreading can correct most of the noise present in the training data with only
one round of spreading. This is likely due to the well-separated nature of the embeddings. CMNIST
suffers from decreasing performance with too many rounds or neighbors as the data is not perfectly
clustered into classes as it is in the other image datasets. Here, it is likely that the nearest neighbors for
the small clusters to the side in Figure 2 are of the opposite class, allowing noisy points to spread more
easily than clean points. For this reason, we employ a smaller value of k for CMNIST than for other
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Figure 1: Accuracy (and 95% confidence intervals over 10 runs) of predicted labels from kNN under
20% symmetric label noise. CelebA and Waterbirds achieve strong performance with a large number
of nearest neighbors, but CMNIST struggles as the number of neighbors or rounds grows too large.
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Figure 2: tSNE projection of the 2048 dimensional latent embeddings into a 2 dimensional space for
visualization. We see that CelebA and Waterbirds show clear class separation while CMNIST has
more hierarchical clustering. This could lead to decreased performance of label spreading.

datasets. Distance-weighted voting could be another way to combat this issue. Additionally, because
the label spreading process is so quick, we spread for only 1 round in practice. A distance-weighted
approach may require more rounds for clean labels to spread throughout the dataset.

4.3 Robustness of kNN to Noisy Embeddings

While we assume that the embedding model Φ is train on clean (but imbalanced) data, it is not always
the case in practice. While Iscen et al. [9] suggest that embeddings are relatively robust to noise, they
find that the classification head is not. Both RAD and SELF rely on the embeddings and SELF on the
classification head as well. Additionally, the kNN label spreading proposed in this work assumes
clean embeddings with only symmetric label noise.

To explore how robust our method is to violation of these assumptions, we train base models for both
CelebA and Waterbirds on data which contained 20% SLN. We then test the finetuning procedure
with varying levels of label noise. We see in Table 1 that both RAD and SELF suffer when using noisy
embeddings, and this is only exacerbated by noise in the finetuning set. Still, kNN label cleaning is
able to provide a significant boost in performance despite having relatively low-quality embeddings.
We see a similar trend for Waterbirds in Table 2 which shows even stronger performance gains for
kNN over vanilla two-stage methods.

It is also notable that SELF has significantly worse performance than RAD when using noisy
embeddings, likely because SELF additionally reuses the final classification layer of the base model.
Previous work [8] has shown that most of the drop in performance when training deep models with
noisy data comes from a poor classification head.

4.4 Results

We report the worst-group accuracy of each approach and its standard deviation over 10 noise seeds.
Note that for END [16], we report the results of Oh et al. [16]. For SELF [11] and RAD [22], we
implement their algorithms ourselves to ensure a fair comparison. Each table involves the following:
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Table 1: CelebA WGA (std. dev.) using embeddings from a noisy base model. We see that kNN
label correction still offers a significant increase in performance over vanilla two-stage methods.

Method 0% 10% 20% 30%
RAD 80.55 (0.02) 74.78 (2.32) 0 (0) 0 (0)
SELF 31.86 (2.32) 40.55 (0.66) 17.68 (16.71) 50.55 (1.36)
KNN - RAD 80.55 (0.02) 77.38 (1.7) 76.56 (2.24) 69.94 (3.07)
KNN - SELF 31.01 (0.42) 41.9 (3.84) 44.8 (4.64) 46 (7.20)

Table 2: Waterbirds WGA (std. dev.) using embeddings from a noisy base model. We see that kNN
strongly outperforms vanilla two-stage methods at every noise level.

Method 0% 10% 20% 30%
RAD 86.12 (0.05) 52.49 (2) 32.26 (2.99) 16.94 (2.5)
SELF 67.43 (4.48) 21.67 (3.12) 16.71 (1.30) 6.43 (19.30)
KNN - RAD 84.04 (0.04) 74.28 (2.63) 73.78 (3.29) 61.07 (9.68)
KNN - SELF 68.96 (3.79) 68.02 (1.9) 74.90 (2.73) 49.41 (9.89)

• Each table is broken into three parts: the first are simple baselines with access to clean domain
annotations, the second are SOTA two-stage LLR methods for WGA, and the third are robust
two-stage methods including our own (last layer retraining) kNN-RAD and kNN-SELF.

• We write GUW∗ and GDS∗ to denote the worst-group accuracies of upweighting and downsampling,
respectively, that can be achieved with oracle access to clean domain labels at training time. Note
that such access is not available to the two-stage methods.

• We highlight in bold both the best domain annotation-free method for each noise level and the
method within one standard deviation of the best.

• The “Domain Annotation” column denotes whether a method requires access to domain annotation
only at validation (model selection) time or over both training and validation phases. The “Layer”
column denotes whether a given method retrains only the last layer or the full model.

For the CMNIST dataset, in Table 3 we see that kNN label spreading gives small gains over vanilla
RAD, but even vanilla RAD is not significantly diminishing in performance with increasing noise
levels. This is likely due to the ease of the dataset overall. As noted in Section 3, CMNIST is not
as strongly clustered as other image datasets, so it is necessary to use a smaller number of nearest
neighbors. Here, kNN-SELF provides small gains over vanilla SELF as both are fairly robust.

For the CelebA dataset, Table 4 shows that kNN-RAD achieves dramatically improved performance
relative to vanilla RAD and also over END. Although it retrains only the last layer, kNN-RAD
achieves SOTA performance for domain annotation-free methods at every noise level for this dataset.
In fact, kNN-RAD is competitive with domain-aware methods such as GDS and GUW across noise
levels. Here kNN-SELF falls behind kNN-RAD and END, but still achieves significantly more
robustness than vanilla SELF. Note the relatively higher variance of WGA for SELF and kNN-SELF;
this is likely due to the downsampling step that induces different data distributions for different seeds.

For the Waterbirds dataset, we see in Table 5 that kNN-RAD strongly outperforms END and is
competitive with domain-aware methods across noise levels, improving the performance of even the
oracle methods GDS and GUW. Vanilla RAD experiences a catastrophic failure at 20% label noise
and above which kNN-RAD is able to correct. SELF performs well at 0% label noise, but quickly
degrades with label noise. kNN-SELF achieves dramatic gains over vanilla SELF and maintains an
edge over END at every noise level.

For the CivilComments dataset, we see in Table 6 that kNN-RAD is able to match the performance
of the domain-aware methods without having access to domain information. Additionally, kNN label
spreading demonstrates significant gains over vanilla RAD. SELF struggles on CivilComments even
in the experiments of LaBonte et al. [11], so it is no surprise that it performs poorly here. The heavy
class imbalance is likely the culprit combined with the class balancing performed in Algorithm 2.
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Table 3: CMNIST WGA (std. dev.): GUW∗ and GDS∗ denote the worst-group accuracies of
upweighting and downsampling, respectively, achieved with oracle access to clean domain labels
which aren’t available to the two-stage methods. We list both the best domain annotation-free method
for each noise level and the method within one standard deviation of the best in bold. We see that
CMNIST is a relatively easy dataset in general, so label noise does not cause dramatic performance
loss. Yet, kNN provides some additional robustness for both RAD and SELF. CMNIST is not
considered in [16] and thus, results for END are not reported.

Label Noise (%)

Method Domain
Annotation Layer 0 10 20 30

GUW* Training Last 95.27 (0.07) 95.17 (0.53) 93.11 (0.94) 92.05 (1.23)
GDS* Training Last 95.37 (0.22) 94.19(1.02) 94.35 (1.29) 93.31 (0.98)
RAD [22] Val Last 93.41 (0.79) 89.62 (0.72) 89.52 (0.65) 88.78 (0.89)
SELF [11] Val Last 92.04 (0.20) 89.98 (1.16) 88.05 (2.35) 90.58 (1.12)
END [16] Val Full - - - -
kNN-RAD Val Last 93.42 (0.63) 92.46 (0.92) 91.95 (0.86) 90.50 (3.59)
kNN-SELF Val Last 91.77 (0.21) 92.81 (0.88) 91.06 (1.06) 90.16 (3.67)

Table 4: CelebA WGA (std. dev.): We see that RAD and SELF achieve strong performance
at 0% noise, but are not robust at larger noise levels. Here kNN-RAD and kNN-SELF maintain
strong performance relative to their vanilla counterparts up to 30% noise and kNN-RAD strongly
outperforms END at all noise levels.

Label Noise (%)

Method Domain
Annotation Layer 0 10 20 30

GUW* Training Last 86.67 (0) 84.58 (1.21) 82.74 (1.42) 82.08 (2.50)
GDS* Training Last 85.72 (1.65) 84.63 (1.58) 84.06 (2.40) 83.12 (1.91)
RAD [22] Val Last 83.89 (0) 81.80 (0.37) 0 (0) 0 (0)
SELF [11] Val Last 83.48 (0) 60.48 (6.09) 59.99 (4.52) 60.71 (3.70)
END [16] Val Full 82.6 (2) 79.7 (1) 81.1 (2) 77.8 (3)
kNN-RAD Val Last 83.89 (0) 83.20 (1.53) 82.29 (1.25) 79.5 (1.91)
kNN-SELF Val Last 83.48 (0) 72.96 (22.96) 75.77 (8.02) 73.98 (4.40)

5 Discussion and Limitations

We observe that kNN label spreading dramatically increases the robustness of both RAD and SELF
and additionally find several interesting trends that warrant discussion. First, it is clear that for larger
noise levels, a larger number of nearest neighbors is needed to correct for the noise. This is suggested
by Gao et al. [5] for large k, but is empirically verified with our experiments. The empirically optimal
k value increases with each increase in label noise, which allows the label spreading to average over
a larger number of nearest neighbors. For CMNIST, we must use a smaller, but still increasing, k to
account for the smaller clusters within classes. A limitation of our method is that k is chosen as a
hyperparameter, but these insights help to suggest likely ranges for the optimal. Indeed, if an estimate
of the noise prevalence is available, the choice of k nearest neighbors could reasonably be estimated
without hyperparameter tuning at all.

We also note that the quality of the embeddings is crucial in the selection of the number of neighbors
and the number of spreading rounds. CMNIST is the prime example of a dataset that is generally
well-separated but has not yet experienced "neural collapse," so each class has several clusters of
points. The danger of this is that some clusters may be nearer to the opposite class than their own,
requiring fewer nearest neighbors to prevent noisy labels from spreading. The base model accuracy
can help indicate how extensively it is trained, though embeddings can also be analyzed qualitatively.
As pointed out in Section 3, a limitation of our method is that we assume that embeddings are from a
model trained on clean data, but this need not be the case. Indeed Iscen et al. [9] use the robustness of
embeddings to label noise in order to train robust deep learning models and we verify the robustness
of kNN-RAD in particular in Section 4.3.
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Table 5: Waterbirds WGA (std. dev.): We see that both kNN-RAD and kNN-SELF strongly
outperform END even though they update only the last layer. Non-robust methods fail quickly.

Label Noise (%)

Method Domain
Annotation Layer 0 10 20 30

GUW* Training Last 91.60 (0.05) 90.90 (0.78) 88.25 (1.91) 84.78 (3.53)
GDS* Training Last 92.32 (0.58) 89.53(1.66) 86.93 (2.40) 78.09 (3.36)
RAD [22] Val Last 91.23 (0.06) 79.33 (1.38) 50.74 (2.23) 19.52 (1.91)
SELF [11] Val Last 92.83 (0.49) 7.58 (2.77) 1.38 (0.20) 0.66 (0.14)
END [16] Val Full 82.8 (1) 84.2 (1) 83.2 (1) 81.8 (1)
kNN-RAD Val Last 90.92 (0.08) 90.72 (0.63) 89.93 (1.10) 86.90 (3.07)
kNN-SELF Val Last 92.65 (0.47) 89.55 (0.65) 88.24 (2.93) 82.44 (10.43)

Table 6: Civil Comments WGA (std. dev.): SELF struggles on this highly class-imbalanced dataset,
but kNN-RAD is competitive with domain-aware methods even for large noise. Oh et al. [16] do not
consider this dataset and thus, results for END are not reported.

Label Noise (%)

Method Domain
Annotation Layer 0 10 20 30

GUW* Training Last 80.25 (0.03) 80.04 (0.43) 81.58 (0.18) 79.39 (0.70)
GDS* Training Last 79.67 (0.48) 80.16(0.63) 81.18 (0.53) 81.21 (0.32)
RAD [22] Val Last 80.99 (0.03) 79.25 (0.44) 77.45 (0.71) 54.36 (1.30)
SELF [11] Val Last 60.61 (0.04) 59.92 (0.03) 59.92 (0.04) 59.95 (0.03)
END [16] Val Full - - - -
kNN-RAD Val Last 81.0 (0.03) 81.15 (0.60) 80.70 (0.62) 78.56 (1.52)
kNN-SELF Val Last 60.65 (0.05) 72.30 (1.58) 64.64 (2.72) 61.30 (0.72)

Finally, we note that while kNN label spreading works well with both SELF and RAD, the down-
sampling to balance the class aspect of the SELF algorithm combined with label spreading leads to
a much larger variance than with kNN-RAD. That said, preprocessing with a kNN label spreading
module still achieves significant gains in worst-group accuracy relative to vanilla SELF. A coupled
label cleaning and error set selection process may be an interesting direction for future work. By
leaving our preprocessing generic, we can ensure our method is applicable when future two-stage
methods are developed.

Our work allows for the robustness of two-stage fairness corrections, which could improve fairness
for minority groups in a wide variety of models. Unfortunately, no two-stage last layer correction can
provide guarantees on the fairness of the resulting model in the general setting. This could lead to
practitioners assuming fairness without auditing it.
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A Experimental Details

The upstream base models for all the datasets which are considered are taken from [22]. This includes
all the hyperparameters, data augmentations and training procedures that we use for the upstream
models. We use these base models to generate the embeddings for the predefined validation and test
splits of the datasets. In our experimental setup, we assume access to a small set of clean data which
we use for validation and hyperparameter selection. We split the validation data into two halves.
One half is used as the aforementioned clean set for validation and the other half is used for training
during hyperparameter selection. During the final testing, we use the entire (noisy) validation split
for retraining and the test split for testing. Once we do the hyperparameter selection, we run the
algorithms over 10 different noise seeds and report the accuracy and variance over these 10 runs. This
procedure is repeated for each dataset and each noise level.

A.1 Last Layer Retraining Methods

For the methods that involve only last-layer retraining (either with downsampling or upweighting),
we only tune c, which is the inverse of the λ, the ℓ1 regularization strength. For all datasets, we tune
over 10 values equally spaced on the log scale ranging from 1e-4 to 1.

A.2 RAD

For each dataset, we fix the c values for both the identification and retraining models. We
get these values from [22]. We tune the upweight factor for each dataset and each noise level.
The hyperparameter values and ranges used are given in Table 7. The identification model
is implemented using the PyTorch library and the retraining model is implemented using the
sklearn.linear_model.LogisticRegression package. The learning rate (id) is the
learning rate of the identification model and the epochs (id) is the number of epochs used to
train the identification model.

A.3 kNN-RAD

We follow the same procedure for kNN-RAD as we did for RAD but with the added kNN based label
spreading preprocessing step. In addition to the upweight factor, we also tune n_neighbors, which
is the number of nearest neighbours used in the kNN algorithm. When there is no noise, we fix the
n_neighbors value at 1. We use the sklearn.neighbors.KNeighborsClassifier package to
perform the label spreading step. The ranges and hyperparameter values used are given in Table 8.

A.4 SELF

We implemented misclassification-SELF using code adapted from LaBonte et al. [11] so that it would
be compatible with our setup where we use pre-generated embeddings from the base models. We fix
the finetuning steps which the number of steps of fine-tuning we perform once we construct the
class balanced error set. We tune the learning rate and the number of points that are selected for class
balancing. The hyperparameter values and ranges used are given in Table 9

A.5 kNN-SELF

The procedure for kNN-SELF is the same as SELF but with the added kNN based la-
bel spreading preprocessing step. We fix the hyperparameters using the values selected in
the hyperparameter selection in SELF. We additionally tune n_neighbors. We use the
sklearn.neighbors.KNeighborsClassifier package to perform the label spreading step. The
ranges and hyperparameter values used are given in Table 10
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Table 7: RAD Hyperparameters
Dataset c (id) c (retraining) LR (id) epochs (id) upweight factor range

CelebA 6.16e-4 0.007848 1e-5 6 [5, 10, 25, 50]
Waterbirds 3.0e-6 0.143845 1e-5 60 [5, 10, 25, 50]
CMNIST 33.6 0.007848 1e-5 6 [1, 3, 20, 30]
Civilcomments 6.95e-07 0.001833 1e-5 6 [1, 3, 6, 10]

Table 8: KNN - RAD Hyperparameters

Dataset c (id) c (retraining) LR (id) epochs (id) num neighbors
range

upweight factor
range

CelebA 6.16e-4 0.007848 1e-5 6 [5, 11, 21] [10, 25, 50, 75]
Waterbirds 3.0e-6 0.143845 1e-5 60 [5, 11, 21, 31] [10, 25, 50, 75]
CMNIST 33.6 0.007848 1e-5 6 [3, 5, 7] [1, 3, 20, 30]
Civilcomments 6.95e-07 0.001833 1e-5 6 [5, 11, 21] [6, 10, 25, 50]

Table 9: SELF Hyperparameters
Dataset fine-tuning steps learning rate range num points range

CelebA 500 [1e-6, 1e-5, 1e-4] [2, 20, 100]
Waterbirds 500 [1e-4, 1e-3, 1e-2] [20, 100, 500]
CMNIST 500 [1e-5, 1e-4, 1e-3] [100, 500, 700]
Civilcomments 200 [1e-6, 1e-5, 1e-4] [20, 100, 500]

Table 10: KNN - SELF Hyperparameters
Dataset fine-tuning steps learning rate num points num neighbors

CelebA 500 1e-5 2 [11, 25, 37]
Waterbirds 500 1e-4 500 [5, 11, 21]
CMNIST 250 1e-5 500 [7, 21, 41]
Civilcomments 200 1e-6 500 [11, 31, 41]

A.6 Compute Resources

Experiments in Section 4 and Appendix C were conducted on a supercomputing cluster using NVIDIA
GPUs for hardware acceleration. Most compute time is spent training base models which needs to be
done just once per dataset. Beyond that, experiments finish within hours.

B RAD Fails Under Label Noise

Consider the data distribution introduced in Yao et al. [27] (also used in[26]) with group-conditional
Gaussians aligned such that the difference between means within a class is given by [C1, 0, . . . , 0] ∈
Rd and the difference between means across classes is given by [0, C2, 0, . . . , 0] ∈ Rd. That is, we
have axis-aligned core and spurious features. Refer to Figure 3 for a visual.

Proposition 2 (Axis-Aligned Gaussian Mixture). Let RAD use the fixed upweighting scheme |EC|
|E| .

For the dataset described above, with C2 > C1 > C0 for sufficiently large C0, RAD fails entirely
when learning with symmetric label noise p > 0. Otherwise, RAD fails if 1

2 > p > 2π0, achieving
lower worst-group accuracy than ERM.

Proof. We assume that λ, the ℓ1 regularization strength of the biased classifier, is large enough that
only the first (spurious) or second (core) feature is learned. Consider the two cases separately:
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(b) Upweighted points

Figure 3: Label noise causes the RAD algorithm to select, and then upweight, the incorrect error set.
We show that RAD fails under suffient SLN for imbalanced settings.

Spurious Feature is Learned Consider the error set E . It is made of up clean minority samples and
noisy majority samples. When upweighting, the effective noise level in the retraining set will increase
for the majority and decrease for the minority. For 2π0 < p < 1

2 , as π0 goes to 0, the effective noise
in the upweighted majority is 50% and 0% in the upweighted minority. In this case, the optimal
separator will split the majorities and correctly classify the minorities. By assumption, C2 > C1 so
the ℓ1 penalty in the retraining step will force the spurious feature to be learned again. Note that ERM
would learn a classifier biased to the majorities, but not be restricted to only the spurious feature.
Thus RAD performs worse than ERM.

Core Feature is Learned The error set E now consists of entirely noisy samples which are
upweighted by a factor of 1−p

p . This results in an effective noise level at retraining of 50%, making
the retraining task impossible. Thus RAD fails.

C α-RAD, Why Robust Losses are Not Enough

It may be tempting to believe that simply using a robust loss should be enough to make two-step
methods robust to label noise. The issue is that while robust losses can learn a classifier which
performs well on clean data, it will (correctly) misclassify noisy examples. This leads to noisy points
(which will much more likely to be from a majority group) being selected for the error set which is
used to retrain the final classifier. Thus the final classifier will not be trained on data from minority
groups as intended, but on mostly majority points, exacerbating unfairness. To demonstrate this, we
train RAD [22] using α-loss in the identification step. α-loss [23] has been demonstrated to be robust
to symmetric label noise both theoretically [24] and empirically [24, 23].

We first examine the types of points which are selected by RAD in the error set. In Figure 4 we see
that for all noise levels, true minority examples are misclassified (and therefore selected) but as the
noise increases, the amount of noisy (former) majority points increases as well. These points drown
out the effect of the true minority points, causing failure of RAD at large noise levels. We see in the
Table 11 that even when training with this robust loss, worst-group accuracy experiences a dramatic
dropoff at larger noise levels. This is the same failure mode that is demonstrated with vanilla cross
entropy loss in the main text Section 4.

Table 11: α-RAD
Label Noise (%)

Dataset 0 5 10 15 20
CelebA 79.33 (0.48) 83.78 (1.28) 80.67 (1.78) 58.07 (0.1) 46.45 (0.15)
CMNIST 91.68 (0.37) 88.03 (1.47) 90.56 (1.08) 80.68 (1.08) 47.17 (2.56)
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Figure 4: RAD trained with α-loss is able to capture minority points at all noise levels, but an
increasing number of noisy majority points are selected as noise increases. This leads to poor
downstream fairness

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a drop-in correction which is able to achieve SOTA worst-group
accuracy across several datasets as claimed in the abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We point out that we use clean embeddings and have a clean holdout dataset,
which is common in the literature. We additionally provide references that suggest clean
embeddings may not be necessary.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
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model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: No theoretical results are presented

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Full experimental details are provided in the appendix including datasets,
model details, and hyperparameters. Algorithms are included in the main body. Code will
be released publically on GitHub and is included as supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is included in supplemental materials along with documentation. Code
will additionally be released on GitHub after acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]

Justification: Data splits discussed in main body and training details are available in the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard deviation of presented results are given over 10 independent runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These details are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Every step is taken to ensure that the code of ethics is adhered to, including
providing resources for reproducibility and discussions on limitations and societal impact.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Impacts and limitations are discussed in the "Discussion and Limitations"
section. Included are both positive and negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No models are released and all data used is from publicly available datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets are given appropriate citations in the experimental section of the
main body.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Anonymized code is provided along with documentation on its execution.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects were used.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were used.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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