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ABSTRACT

Test-Time Adaptation has recently emerged as a promising strategy that allows
the adaptation of pre-trained models to changing data distributions at deployment
time, without access to any labels. To address the error accumulation problem,
various approaches have used the teacher-student framework. In this work, we
challenge the common strategy of setting the teacher weights to be an exponential
moving average of the student by showing that error accumulation still occurs,
but only on longer sequences compared to those commonly utilized. We analyze
the stability-plasticity trade-off within the teacher-student framework and propose
to use an intransigent teacher instead. We show the surprising result that not
changing any of the weights of the teacher model within existing test-time adapta-
tion methods allows them to significantly improve their performance on multiple
datasets with longer scenarios. Finally, we show that the proposed changes are
applicable to different architectures and experimental setups, and are more robust
to changes in hyper-parameters.

1 INTRODUCTION

Machine learning models typically assume that training and testing data originate from a similar
distribution. However, in real-world applications, distribution shifts between training (source) and
testing (target) data domains are common and can lead to performance issues throughout infer-
ence (Geirhos et al., 2019; Hendrycks & Dietterich, 2019; Koh et al., 2021). Test-Time Adaptation
(TTA) (Wang et al., 2021) is an emerging paradigm that allows for an online adaptation of a pre-
trained model to the changing data distributions during testing, where there is a lack of access to any
labels. While many methods have been developed in recent years (Gong et al., 2022; Goyal et al.,
2022; Marsden et al., 2024; Niu et al., 2022; 2023; Rusak et al., 2022; Sun et al., 2020; Wang et al.,
2022; Yuan et al., 2023b), important challenges remain within TTA, such as adaptation over very
long scenarios (Press et al., 2023), robustness to noisy data (Gong et al., 2023), and sensitivity to
hyper-parameter change (Boudiaf et al., 2022; Zhao et al., 2023; Cygert et al., 2024).

The teacher-student paradigm is a popular TTA framework (Chen et al., 2022; Döbler et al., 2022;
Sójka et al., 2023; Wang et al., 2022; Yuan et al., 2023b; Zhou et al., 2024), where the teacher
weights are set to the exponential moving average (EMA) of the student weights. This strategy,
follows pioneering works in semi-supervised learning (Laine & Aila, 2017; Tarvainen & Valpola,
2017), representation learning (Grill et al., 2020; He et al., 2020; Oquab et al., 2024) and learning
under label noise (Liu et al., 2020; Nguyen et al., 2020). The averaged model provides more accurate
and consistent predictions which the student uses for training. However, this strategy does not
necessarily prevent error accumulation, which may result in model collapse (i.e., falling below the
accuracy of the source model). In this work, we present experimental evidence indicating that state-
of-the-art TTA methods that utilize teacher-student framework (Chen et al., 2022; Wang et al., 2022;
Yuan et al., 2023b) are prone to significant accuracy degradation on extended test sequences.

We observe that using a simple technique of making the teacher more intransigent (not updating
the teacher’s weights) prevents model collapse over very long testing sequences and, interestingly,
can teach students to fulfill the age-old cliche of surpassing their teacher (see Fig. 1). Based on
that finding, we take a closer look at the stability-plasticity trade-off (Mermillod et al., 2013) within
teacher-student frameworks and how it affects the final model performance. We show that while in-
creased teacher plasticity can lead to better performance in the short run, using a more stable teacher
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Figure 1: Per-batch accuracy on repeated ImageNet-C (20 loops) using ResNet50 architecture com-
paring AdaContrast (left) and RoTTA (right) with well-known EMA teacher (ET, orange) and pro-
posed intransigent teacher (IT, blue), both for teacher (solid) and student (dashed). The EMA teacher
visibly suffers from error accumulation as the sequence gets longer. After the 3rd loop, IT manages
to avoid model collapse, and surprisingly, the student performs significantly better.

leads to a better adaptation over longer scenarios. This is due to the inevitable error accumulation
of the plastic model, which adapts well to the current data but fails to maintain generalization over
time, as explored in Sec. 4.2.

We evaluate the use of intransigent teachers over a wide variety of scenarios, incorporating very long
adaptation sequences and different experimental settings. The results show consistent improvements
over the EMA teacher, significantly reducing the possibility of model collapse. Our contributions
are as follows:

• We analyze the EMA teacher framework commonly used in TTA and show its tendency to
not prevent the model from collapsing on longer test sequences.

• We observe that the Intransigent Teacher (IT) technique, which maintains the teacher’s
weights fixed during adaptation, effectively prevents model collapse while allowing the
student to surpass the teacher.

• The described strategy can be combined with state-of-the-art methods, mitigating error
accumulation by easily replacing any EMA teacher and obtaining reliable performance.

2 RELATED WORK

Test-time adaptation. TTA (Wang et al., 2021) aims to adapt a pre-trained model to shifting data
distributions during testing, without any labels. Different unsupervised objectives can be used, ex-
amples of which include entropy minimization (Niu et al., 2022; 2023; Wang et al., 2021), cross-
entropy variants (Döbler et al., 2022; Wang et al., 2019; 2022) or self-supervised objectives (Sun
et al., 2020; Chen et al., 2022). Since the objective is unsupervised, optimizing it over multiple
iterations might result in error accumulation (Chen et al., 2019), which is a great challenge in
test-time adaptation. Therefore, numerous strategies have been developed to circumvent that is-
sue, amongst of which is the teacher-student framework (Chen et al., 2022; Wang et al., 2022; Yuan
et al., 2023b; Sójka et al., 2023). The teacher-student framework was introduced to TTA by the
CoTTA method (Wang et al., 2022), where they proposed to use an exponential moving average
(EMA) of weights. However, since the teacher is an EMA of student weights, nothing prevents error
accumulation in the long run, and therefore we analyze the teacher-student framework in this work.

Other works have explored strategies that keep the fixed source model. ROID (Marsden et al., 2024)
continually ensembles weights of a fixed source model with those of a backpropagated model to
stabilize the backpropagated model update. Both GROTTA (Li et al., 2023) and TRIBE (Su et al.,
2024) incorporate a third, fixed source model for additional regularization with an extra loss term.
While these methods employ complex designs, we explore how a simple intransigent teacher tech-
nique can address the performance degradation problem in TTA, especially for longer sequences.

Parallel work (Zhou et al., 2024), also proposes to evaluate existing TTA methods over very long
adaptation scenarios. Our works are complementary, since they propose an adaptive method to work
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in such conditions (which requires parameter tuning), while we focus on evaluating existing ap-
proaches on a more extensive experimental setup, and observe that a simpler modification improves
the reliability in such conditions.

Plasticity-stability trade-off. EMA ensemble of weights is parametrized by a β parameter , which
determines the balance between retaining old averaged weights of the teacher and incorporating
newly updated student ones, commonly set in TTA to 0.999 (Wang et al., 2022) (following tempo-
ral ensembling works (Laine & Aila, 2017)), where β = 1 means full stability (frozen model), and
β = 0 means maximal plasticity. The trade-off has been widely analyzed in continual learning (Mer-
millod et al., 2013; Chaudhry et al., 2018; Masana et al., 2022), where the learner needs to balance
learning of new tasks with the risk of forgetting the previously acquired knowledge. While a vari-
ety of strategies have been developed in continual learning, the most successful ones are those that
promote stability. Many recent works freeze the feature extractor and learn only the classification
part (Goswami et al., 2024; Ma et al., 2023; Panos et al., 2023). Note that TTA can be considered
more challenging due to unavailability of labels. Our work is inspired by those studies and aims to
analyze the plasticity-stability trade-off within TTA.

Teacher-student framework. In knowledge distillation (Hinton et al., 2015), a usually larger model
(teacher) guides the optimization of the target model (student) by providing informative training
signals (teachers’ outputs). Such a strategy is also commonly used in continual learning to prevent
forgetting of previous tasks when learning new ones (Buzzega et al., 2020; Kirkpatrick et al., 2017).
Self-distillation is a special case in which the teacher and student have the same architecture. It
has been shown that in such a scenario, the student can outperform its teacher (Furlanello et al.,
2018). In their work, the teacher is updated at the end of every training epoch, by copying students’
weights. They show improvement gains until such a procedure is repeated three times. Note that
in TTA, there is no access to labeled data, and therefore, updating the teacher might result in even
more significant error accumulation.

3 INTRANSIGENT TEACHER

The teacher-student framework is widely studied in TTA, with great results being obtained by pop-
ular methods such as AdaContrast (Chen et al., 2022) and CoTTA (Wang et al., 2022). Although
these methods also rely on other components (e.g., memory queue or weight restoration), they share
a common trend of incorporating a self-supervision loss. We dissect their self-supervised losses (di-
rectly related to learning), which allows for disentangling the impact on the teacher-student frame-
work by the component that is most related to the stability-plasticity trade-off.

We probe standard EMA teachers (ET) as proposed in their original works (both using β = 0.999)
and compare them with the presented intransigent teacher (IT) technique (β = 1). Intransigent
teachers have all trainable parameters frozen. Their batch normalization statistics are calculated on
a per-batch basis (Schneider et al., 2020), as commonly done in TTA (Niu et al., 2022; 2023; Wang
et al., 2021; 2022), and the final predictions are taken from the student model. As a motivation
example, we evaluate on the popular ImageNet-C corruption benchmark (Hendrycks & Dietterich,
2019) and on the recently introduced CCC benchmark (Press et al., 2023), to observe the adaptation
performance over long sequences. Furthermore, we introduce the setting with ImageNet-C repeated
20 times (ImageNet-C (L)), in order to have another very long sequence similar to the classic TTA
scenarios. Table 1 shows numerical results and Fig. 2 shows accuracy over time, where the evaluated
objectives are described as:

• Consistency: CoTTA (Wang et al., 2022) minimizes the cross-entropy consistency between
predictions from the teacher and the student. The input of the teacher is transformed via
additional augmentation following the original implementation.

• Contrastive: AdaContrast (Chen et al., 2022) uses a MoCo-inspired (He et al., 2020) con-
trastive task in which features from different views of the same image (positive pairs) are
pulled closer, while features from different images (negative pairs) are pushed away by
pseudo-labels. Input from both teacher and student is augmented by randomly drawing
two strong augmentations.
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Table 1: Mean accuracy [%] of student models on test-time adaptation benchmarks. ET stands
for exponential moving average teacher, and IT indicates the intransigent teacher. ImageNet-C (L)
stands for the ImageNet-C adaptation sequence being repeated 20 times.

Loss Teacher ImageNet-C ImageNet-C (L) CCC
Source none 18.0 18.0 16.8

Consistency ET 27.3 7.9 1.6
IT 28.8 31.3 27.2

Contrastive ET 35.5 22.1 5.8
IT 35.4 36.9 31.8
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Figure 2: Per-batch accuracy on repeated ImageNet-C (20 loops) with EMA teacher (ET) and in-
transigent teacher (IT), both for teacher (solid) and student (dashed). Using only the self-supervised
losses, without any additional components (or restart mechanisms), allows for successful adaptation
over long sequences when the teacher is intransigent.

The results from the above experiment lead to the following observations:

Observation 1: Self-supervised objectives combined with intransigent teachers provide great re-
liability on their own. This is a very positive result, as recent work (Press et al., 2023) observed
that on CCC, most of the current adaptation methods result in model collapse. This is especially
interesting in the case of AdaContrast, where the contrastive loss changes only the backbone of the
model without changing the classification layer, mostly relying on feature alignment.

Observation 2: An exponential moving average on its own does not prevent error accumulation.
As clearly shown in Fig. 2, the problems when using EMA take some time to become apparent
and are only visible over long sequences. In both consistency and contrastive cases, performance
degradation starts rather early, after the 2nd and 3rd loops, respectively.

Observation 3: When using the EMA, there is a small gap between the teacher and student accura-
cies. When an intransigent teacher with consistency loss is used, the student performance is reliable
and comparable to the teacher, while in the case of using the contrastive loss, the student is able to
outperform their teacher significantly.

4 METHODOLOGY

As presented in the previous section, using an intransigent teacher with self-supervised objectives
provides great model consistency throughout longer scenarios without encountering catastrophic er-
ror accumulation. In this section, we aim to better understand the plasticity-stability trade-off within
existing TTA teacher-student frameworks, this time when considering all proposed components.
First, we describe how to extend existing TTA methods with an intransigent teacher strategy. After,
we evaluate and discuss the effects of low-to-none plasticity within the proposed adapted methods.
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4.1 APPOINTING AN INTRANSIGENT TEACHER

We extend popular TTA methods, AdaContrast (Chen et al., 2022), CoTTA (Wang et al., 2022),
RoTTA (Yuan et al., 2023a), and PETAL (Brahma & Rai, 2023), with our proposed intransigent
teacher. We only modify the value of the β parameter used in an EMA ensemble of weights by
setting it to 1, and take the final output predictions from the student model, regardless of which
prediction was used in the original method. We do not alter the usage or adaptation of batch normal-
ization statistics. Below, we briefly describe the strategies extended with IT.

AdaContrast conducts weight updates using a three-part loss function: cross-entropy loss , diversity
regularization, and contrastive loss. Pseudo-labels are refined by keeping a buffer of previous image
features and their predictions. Refined predictions are based on the nearest neighbors of the current
feature within the buffer. Statistics in batch normalization layers are updated with EMA.

CoTTA updates the student model by minimizing the cross-entropy consistency between the teacher
and the student predictions. Depending on the prediction confidence, the pseudo-labels are the result
of averaging predictions on multiple, differently augmented images. At each iteration, there is a
small probability for each of the student’s weights to be reset to the source pre-trained value. It
calculates batch normalization statistics on a per-batch basis.

RoTTA keeps the class-balanced memory buffer of images and uses it to perform the optimization
in constant intervals. The loss is weighted based on how long the sample has been stored. Cross-
entropy-based consistency between the student and teacher models is utilized for a loss function.
Batch normalization statistics are updated via EMA.

PETAL is similar to CoTTA but it enhances the learning objective by the regularizer term based
on a posterior distribution over a source model weights and a data-dependent prior. Moreover, it
improves CoTTA’s stochastic model reset scheme with the Fisher Information Matrix.

4.2 EFFECTS OF INTRANSIGENCE

To better understand the plasticity-stability trade-off, we evaluate performance when varying
β∈ [0.9, 1.0], where 1.0 means using an intransigent teacher, and 0.999 is the default value for
the two original methods we compare: AdaContrast and CoTTA.

We evaluate on CIFAR10-C and ImageNet-C (Hendrycks & Dietterich, 2019), with each common
adaptation sequence repeated 20 times (L). The average final performance is presented in Table 2,
and the accuracy evolution through the sequence in Figure 3. Overall, results indicate a clear ten-
dency for intransigent teachers to guide more consistent students, with more lenient teachers per-
forming worse than just using the source model. When allowing for more plasticity (by decreas-
ing the β parameter), students improve in the short-run, although inevitably collapsing in the long
term. Further, using EMA outperforms the intransigent teacher when some plasticity is allowed
(β=0.9999). However, some degradation seems to appear towards the end of the sequence. There-
fore, a teacher with fixed weights might guarantee a more consistent and reliable performance.
Nonetheless, allowing the teacher model to update weights with carefully adjusted EMA parameters
might still improve the results further. It should be noted that hyperparameter selection for TTA is
problematic (Boudiaf et al., 2022; Zhao et al., 2023). In real-world applications, predicting different

Table 2: Mean accuracy [%] with different exponential moving average β parameter for averaging
teacher weights. AdaContrast and CoTTA default originally to 0.999. (L) stands for the the adapta-
tion sequence being repeated 20 times. Source does not update the model at all.

Dataset Method 0.9 0.99 0.999 0.9995 0.9999 Intransigence

CIFAR10-C (L)
Source - - - - - 56.5

AdaContrast 79.0 79.3 81.9 83.2 85.8 85.4
CoTTA 10.5 14.9 55.9 68.6 78.3 68.4

ImageNet-C (L)
Source - - - - - 18.0

AdaContrast 1.2 5.4 18.8 25.6 38.6 40.4
CoTTA 0.3 23.6 52.8 55.1 50.9 35.4
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Figure 3: Mean accuracy [%] for each loop of common testing sequence on ImageNet-C (L) with
AdaContrast (left) and CIFAR10-C (L) with CoTTA (right). The brown dashed line indicates the
source model accuracy as a reference.

domain shifts encountered during test time is almost impossible. Figure 3 shows that the perfor-
mance of different EMA parameters is also highly dependent on the sequence length. Regardless of
how promising the initial accuracy is, it can degrade over time.

5 EXPERIMENTAL SETUP

Benchmarks. We focus on the continual test-time adaptation setting introduced in (Wang et al.,
2022), where methods are continually evaluated on a stream of unlabelled test data, without utiliz-
ing any knowledge about domain changes. We evaluate the methods on a wide variety of bench-
marks with domain shifts. Our experiments include popular corruption benchmarks (Hendrycks &
Dietterich, 2019) - CIFAR10-C and ImageNet-C. They involve training the source model on clean
CIFAR10 (Krizhevsky, 2009)/ImageNet (Deng et al., 2009) images and testing the adaptation on
corrupted images. There are 15 types of corruptions with 5 levels of severity. We follow the setup
from (Wang et al., 2022; Niu et al., 2022; Döbler et al., 2022) and use the standard corruption se-
quence with the highest severity level. The adaptation on natural domain shifts is tested utilizing
DomainNet-126 (Peng et al., 2019) and ImageNet-R (Hendrycks et al., 2021) datasets. DomainNet-
126 includes data from 4 distinct domains: real, clipart, painting, and sketch. We pre-train the model
on a real domain and experiment on the remaining ones. ImageNet-R is composed of 30,000 images
portraying different renditions of 200 ImageNet classes.

Our goal is to focus on very long adaptation sequences to evaluate the methods in terms of stability
during long-time operation. For that reason, we repeat the standard test sequences of benchmarks
described above and loop them 20 times. We call this setup, a Long (L) scenario. Our longest
sequence of 3,000,000 images is generated using CIFAR10-C benchmark. Simply repeating the
benchmarks 20 times provides limited data variability. Nevertheless, we argue that if existing meth-
ods do not cope well in such settings (as we show), they especially would not work well in more
complex real-world settings.

Additionally, we take advantage of CCC (Press et al., 2023) benchmark. It was created by applying
2 corruptions from the corruption benchmarks to images from the ImageNet (Russakovsky et al.,
2015) dataset. It greatly fits our experiments, since one of the assumptions of this benchmark was
to make it very long. We use a CCC-Medium sequence with a 1k transition speed, which consists
of 7,500,000 images.

Batch size. We utilized two batch sizes: a standard value of 64, as in multiple previous works (Mars-
den et al., 2024; Press et al., 2023; Niu et al., 2022; Wang et al., 2021), and a lower one (equal to
10). Smaller batch sizes are more challenging in TTA because they result in an increased number of
model updates and due to difficulties in batch statistics calculation. In some papers, even the batch
size of 1 is used (Niu et al., 2023); in our experimental setup, we choose the less extreme value of
10, which is also commonly used in online continual learning (Mai et al., 2022). This means that
for the longest sequence (CCC) each model is adapted 750,000 times.

Methods. We apply our modification to 4 teacher-student state-of-the-art frameworks: AdaCon-
trast (Chen et al., 2022), CoTTA (Wang et al., 2022), RoTTA (Yuan et al., 2023a), PETAL (Brahma
& Rai, 2023). Moreover, we report the performance with IT using (I-) prefix. Additionally, we com-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

pare the results with the following state-of-the-art strategies that do not utilize teacher-student frame-
work: TENT (Wang et al., 2021), EATA (Niu et al., 2022), SAR (Niu et al., 2023), RDUMB (Press
et al., 2023) , and MEMO (Zhang et al., 2022). Non-adapted model is indicated as the Source and
TestBN is a fixed model that uses batch normalization statistics from the current batch (Li et al.,
2016; Schneider et al., 2020) as commonly done in TTA (Wang et al., 2021; 2022; Niu et al., 2022)..
In-depth implementation details regarding the baselines are provided in the supplementary.

Architectures. Consistent with previous works (Wang et al., 2022; Marsden et al., 2024), we use
WideResNet-28 (Zagoruyko & Komodakis, 2016) models with pre-trained weights from the Robust-
Bench (Croce et al., 2021) model zoo for the main experiments on CIFAR10-C. Similarly, the tests
on ImageNet-based benchmarks and DomainNet-126 employ the ResNet50 network with weights
sourced from the same model zoo or those provided by (Marsden et al., 2024) for DomainNet-126.

Additional experiments in Section 6.2 are carried out with ResNet-26 GN (Wu & He, 2018),
ResNeXt-50 (32x4d) (Xie et al., 2017), ViT-B16 (Dosovitskiy et al., 2021), and SwinViT-T (Liu
et al., 2021) architectures. Weights for ResNet-26 GN are taken from (Zhang et al., 2022), as
in (Marsden et al., 2024). Torchvision (maintainers & contributors, 2016) library is utilized to obtain
the rest of the mentioned models.

Implementation details. As a testbed for experiments, we adopt the framework from Marsden et al.
(2024). Experiments are conducted using parameters reported in the original papers. When running
experiments on smaller batch sizes, we decrease the learning rate accordingly. We use parameters
from standard experiments while testing on the long (L) scenarios.

6 EXPERIMENTAL RESULTS

Following the insights from the motivation experiment in Sec. 3, we evaluate the intransigent teacher
modification over longer scenarios and compare the results with various state-of-the-art methods.
Since this strategy extends existing methods, we refer to our proposed intransigent teacher with the
prefix (I-) in front of the method being extended. All the proposed longer sequences than the usually
reported ones in TTA are denoted with an (L) and consist of 20 loops over the commonly estab-
lished adaptation scenarios. Further, the efficacy of the proposed approach is verified on numerous
model architectures, including transformer-based ones. Finally, we present the evaluation of the
hyperparameter selection robustness of our strategy.

6.1 ON ADAPTATION OVER LONG SCENARIOS

The vulnerability of EMA teachers is revealed on extended test sequences. In long scenarios (see
Table 3), methods based on teacher-student framework often achieve lower performance compared
to baselines or even cause the model to collapse, which is especially apparent on both ImageNet-C
and CCC benchmarks. Those shortcomings are amplified in the lower batch size setting, potentially
caused by a more significant error accumulation due to difficulties in estimating batch statistics and
a larger number of adaptation steps. While the goal of using EMA is to provide a more stable
adjustment and more accurate pseudo-labels for adaptation, we find this to not hold true for the
longer settings. This is in contrast to the evaluation on common sequence length (see Supplemental
Material), where the EMA teacher performs well and the original methods don’t cause model col-
lapses in most cases, except for the more challenging lower batch size setting. Results show that the
performance of state-of-the-art TTA methods is clearly test sequence-length dependent.

Intransigent teachers are very effective at collapse prevention. The evaluated teacher-student
adaptation methods exhibit some form of model collapse in 18 out of 30 cases for long sequences.
When using an intransigent teacher, the collapse happens only twice for the small batch size. In
these cases, performance is similar to the source model, yielding substantial improvements over the
baseline - for instance, I-CoTTA achieves a 44.3% increase in accuracy on DomainNet (L).

Intransigent teachers provide great reliability, out-of-the-box. Keeping the teacher model intran-
sigent on a batch size 64 allows for accuracy improvements of 12.2 (AdaContrast), 2.4 (CoTTA), and
8.0 (RoTTA) percentage points on average. It is even more effective on a smaller batch size, where
the respective improvements are 22.8, 28.9, and 7.4. E.g., IT improved CoTTA on CIFAR10-C (L)
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Table 3: Classification accuracy [%] for long scenarios. The value in superscript indicates the
improvements over the baseline. Bold text indicates best performing method. Gray color indicates
model collapse - performance worse than the non-adapting model (Source). Results averaged from
3 random seeds. * indicates the approximated result, details in the supplementary.

Method CIFAR10-C (L) ImageNet-C (L) ImageNet-R (L) DomainNet-126 (L) CCC Avg.
Source 56.5 18.0 36.2 54.7 16.8 36.4
MEMO (Zhang et al., 2022) 65.6 25.0 40.9 53.2 19.3* 40.8

BS = 10

TestBN 75.1 26.9 36.2 49.6 22.5 42.1
TENT (Wang et al., 2021) 39.0 4.7 17.4 10.9 0.7 14.5
EATA (Niu et al., 2022) 73.6 36.4 44.0 54.0 29.7 47.6
SAR (Niu et al., 2023) 75.2 30.6 43.6 50.8 20.3 44.1
RDUMB (Press et al., 2023) 76.8 34.3 40.1 51.5 28.1 46.2
AdaContrast (Chen et al., 2022) 72.1 2.3 8.0 47.0 0.4 26.0
I-AdaContrast 84.1+12.0 39.5+37.2 35.3+27.3 63.2+16.2 21.8+21.4 48.8+22.8

CoTTA (Wang et al., 2022) 23.8 3.8 33.7 6.0 17.3 16.9
I-CoTTA 69.7+45.9 27.6+23.8 37.4+3.7 50.3+44.3 25.7+8.4 45.8+28.9

RoTTA (Yuan et al., 2023a) 82.5 24.4 43.0 45.6 1.1 39.3
I-RoTTA 79.0-3.5 33.6+9.2 39.9-3.1 57.8+12.2 23.4+22.3 46.7+7.4

PETAL (Brahma & Rai, 2023) 67.9 2.4 36.6 49.6 0.8 31.5
I-PETAL 74.1+6.2 26.6+24.2 36.6+0.0 49.5-0.1 13.5+12.7 40.6+9.1

BS = 64

TestBN 79.1 31.4 39.6 54.4 27.3 46.4
TENT (Wang et al., 2021) 20.1 11.1 36.4 18.4 1.2 17.4
EATA (Niu et al., 2022) 61.6 43.3 49.2 61.9 36.3 50.5
SAR (Niu et al., 2023) 79.2 39.9 47.3 59.2 22.3 49.6
RDUMB (Press et al., 2023) 81.1 41.7 47.5 59.0 37.0 53.3
AdaContrast (Chen et al., 2022) 81.8 18.8 26.5 61.7 2.4 38.2
I-AdaContrast 85.3+3.5 40.4+21.6 38.1+11.6 64.4+2.7 23.6+21.2 50.4+12.2

CoTTA (Wang et al., 2022) 56.0 52.8 50.5 45.6 8.3 42.7
I-CoTTA 68.3+12.3 35.4-17.4 39.5-11.0 56.0+10.4 26.3+18.0 45.1+2.4

RoTTA (Yuan et al., 2023a) 82.3 13.2 43.4 50.3 1.1 38.1
I-RoTTA 79.7-2.6 32.9+19.7 39.7-3.7 56.6+6.3 21.7+20.6 46.1+8.0

PETAL (Brahma & Rai, 2023) 58.3 31.5 39.7 54.5 16.0 40.0
I-PETAL (Brahma & Rai, 2023) 78.8+20.5 31.2-0.3 39.6-0.1 54.5+0.0 16.3+0.3 44.1+4.1
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Figure 4: Per-batch accuracy on ImageNet-C (L) comparing CoTTA using ResNet50 (left) and
ViT-B16 (right) models with EMA teacher (ET, orange) and intransigent teacher (IT, blue), both for
teacher (solid) and student (dashed).

by 45.9% (from 23.8% to 69.7%). Note that applying this strategy did not require any hyper-
parameter tuning nor any additional parameters. In fact, it removes the need to set the β parameter.

Intransigence can lead to slow adaptability. There are certain situations in which using intransi-
gent teacher might still lead to unreliable adaptation. Since it is a stability-based strategy, it lacks
the capability to adapt to changes in the distribution rapidly or to explore the parameter space
far away from the teacher model. This is especially visible for CoTTA on ImageNet-C (L) and
ImageNet-R (L) when using a batch size of 64. In situations where it is possible to more accurately
tune model hyper-parameters, using the EMA teacher can be favorable. It’s important to note that
CoTTA’s exceptional performance on ImageNet-C relies on architectures with batch normalization.
When applied to other architectures, it performs worse than its intransigent version (see Table 4).

The student outperforming the teacher. We show in Figures 1 and 4 the performance of both
teachers and students for AdaContrast, CoTTA, and RoTTA, when we use either EMA or the in-
transigent teacher. In most cases, we can see that the student outperforms the teacher when the
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intransigent teacher is used. The magnitude of this improvement is dependent on the used method,
architecture, and dataset. When EMA is used, the teacher-student performance is (by design) tightly
coupled. The CoTTA method performs significantly worse with ViT-B16 architecture. In this case,
the student falls below the teacher but the IT keeps the student from degrading its performance
further. More detailed results are presented in the Supplemental Material.

On single image adaptation methods Single image adaptation approaches, like MEMO (Zhang
et al., 2022), are not susceptible to the studied issue of error accumulation. However, those methods
have their problems, e.g., they are significantly more inefficient (Alfarra et al., 2024). Table A.1 from
the supplementary material shows that MEMO is significantly slower than other techniques, with a
wall-clock time around 20 times higher than the AdaContrast method. Moreover, it is outperformed
by IT-modified methods and the baselines on most datasets, except ImageNet-R.

6.2 DETAILED ANALYSIS

Intransigent teachers work across different architectures. To verify if our findings hold for
various model architectures, we present results on CIFAR10-C (L) and ImageNet-C (L) in Table 4.
The learning rate is not tuned specifically for any of the models, and thus default values are used.
The results with adjusted learning rates can be found in the supplementary (Table A.2). The IT is
able to improve the TTA accuracy on long sequences for all of the compared models, including the
ones without batch normalization layers. Therefore, rendering itself a highly universal approach.

On robustness to learning rate selection. In Table 5, we verify learning rate sensitivity by multi-
plying its value by 10 and 50. Default AdaContrast shows robustness when 10x learning rate is used,
but collapses with a 50x learning rate on ImageNet-C. ITs allow increased robustness in all settings
and achieve a non-collapsed solution, even for the highest learning rate. CoTTA lacks learning rate
robustness, which is mitigated by the IT extension. Our strategy improves RoTTA’s performance
on CIFAR10-C. However, its low performance on ImageNet-C rendered our approach almost inef-
fective for this setup. Overall, ITs do not fully prevent the collapse when significantly altering the
learning rates, although they seem to promote a better-performing parameter space.

Effects varying temporal correlation. Figure 5 illustrates the impact of varying degrees of class
temporal correlation (Gong et al., 2022) on methods enhanced with IT. The analysis reveals that as
temporal correlation increases, IT-enhanced methods consistently outperform their original versions,
demonstrating superior robustness in these scenarios. This is the case even when the original method
achieved better results on uniform class distribution (RoTTA). However, it should be noted that
while IT-enhanced methods show improved performance, they are also negatively impacted by the
effects of correlation. The degree of improvement varies significantly and is largely dependent on
the underlying base technique employed.

Are students better than intransigent teachers? Figure 6 illustrates the accuracy difference be-
tween student and teacher models across various methods and datasets, allowing us to assess the
student’s learning capacity in relation to the intransigent teacher. In most cases, the student outper-
forms the teacher, with only two exceptions: I-AdaContrast on ImageNet-R (L) and I-CoTTA on
CIFAR10-C (L). In these instances, the stability introduced by IT was insufficient to prevent degra-
dation, only limiting further performance decline. Notably, after adjusting the learning rate (Figure 6
(right)), we observe no such cases of student underperformance.

Table 4: Classification accuracy [%] for long scenarios on CIFAR10-C and ImageNet-C with differ-
ent model architectures. The value in superscript indicates the improvements over the baseline.

CIFAR10-C (L) ImageNet-C (L)
ResNet26GN ResNeXt-50 ViT-B16 SwinViT-T ConvNeXt tiny

Source 67.3 21.1 39.8 28.3 29.1
AdaContrast (Chen et al., 2022) 74.7 20.0 32.1 15.1 18.2
I-AdaContrast 79.4+4.7 42.7+22.7 43.5+11.4 30.8+15.7 32.5+14.3

CoTTA (Wang et al., 2022) 16.7 57.0 26.2 0.1 0.1
I-CoTTA 61.6+44.9 38.3-18.7 30.9+4.7 27.5+27.4 16.3+16.2

RoTTA (Yuan et al., 2023a) 66.0 16.2 36.2 7.3 18.7
I-RoTTA 72.5+6.5 35.2+19.0 42.9+6.7 27.7+20.4 29.7+11.0
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Table 5: Classification accuracy [%] for long scenarios on CIFAR10-C and ImageNet-C with 1x,
10x, 50x learning rate (LR) scaling. The superscript indicates the improvements over the baseline.

CIFAR10-C (L) ImageNet-C (L)
1 x LR 10 x LR 50 x LR 1 x LR 10 x LR 50 x LR

Source 56.5 18.0
AdaContrast (Chen et al., 2022) 81.9 83.6 80.4 18.8 19.6 12.4
I-AdaContrast 85.4+3.5 86.1+2.5 85.2+4.8 40.4+21.6 36.3+16.7 32.7+20.3

CoTTA (Wang et al., 2022) 55.9 10.3 10.1 53.3 4.1 0.1
I-CoTTA 68.4+12.5 51.9+41.6 41.4+31.3 35.4-17.9 25.7+21.6 17.3+17.2

RoTTA (Yuan et al., 2023a) 82.3 80.6 28.9 13.8 0.2 0.1
I-RoTTA 79.6-2.7 77.9-2.7 70.6+41.7 32.7+18.9 4.1+3.9 2.1+2.0
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Figure 5: Classification accuracy on CIFAR10-C (L). Samples are sorted by class for different levels
of correlation, by varying the Dirichlet concentration parameter δ.
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Figure 6: Accuracy difference between average student and intransigent teacher in percentage
points, with default learning rate values (left) and after parameter search (right).

7 CONCLUSIONS

In this work, we explore the well-known strategy of using an exponential moving average teacher for
test-time adaptation. We identify that this strategy, while being very effective at a common length
of test sequences, has some shortcomings in longer ones, leading to model collapse on many bench-
marks. After analyzing the plasticity-stability trade-off within existing teacher-student frameworks,
we present a simple, effective strategy with an intransigent teacher that can be adapted to existing
state-of-the-art methods. We show the efficacy of the presented modification by achieving significant
improvements across many sequences, often preventing model collapse and increasing robustness
to hyper-parameter changes. Most importantly, the benefits of this strategy are visible without any
parameter tuning, it even removes the need to tune the β parameter used in EMA teachers.

Limitations. It is unclear if the capabilities of the intransigent teacher become limited when there is
some knowledge or prediction over the expected domain shift. However, the motivation behind the
presented strategy is to provide consistent and reliable improvements when no assumptions about
the distribution shift are available. Furthermore, we note that by adding the intransigent teacher
to existing methods, we inherit their limitations. That is even though we improve the performance
on many scenarios, if the baseline performs poorly, then using an intransigent teacher might not
improve over the source (non-adapted model).
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A SUPPLEMENTARY

A.1 DETAILS ON INTRANSIGENT TEACHER EXPERIMENT FROM SECTION 3

Our preliminary intransigent teacher experiment is conducted on ImageNet-C, a long ImageNet-C
scenario (20x loop of standard ImageNet-C testing sequence), and CCC benchmarks. We utilize
the same model as for our main experiments on ImageNet-based benchmarks - ResNet50 with pre-
trained weights from the RobustBench (Croce et al., 2021) model zoo. We use a single loss within
the teacher-student framework for the model adaptation during test time - either consistency loss
from CoTTA (Consistency) or contrastive loss from AdaContrast (Contrastive). Any other compo-
nents of the mentioned state-of-the-art methods are not included. Batch normalization statistics are
recalculated for each batch. For both of the tested approaches, we use the SGD optimizer with a
learning rate of 0.00025.

A.2 BASELINES IMPLEMENTATION DETAILS

The experiments were conducted using the code repository of the previous test-time adaptation
works (Marsden et al., 2024; Döbler et al., 2022). It provides the implementation of every tested
state-of-the-art method. In terms of hyperparameters, we followed the implementations for tests on
the typical batch size of 64.

TENT (Wang et al., 2021), EATA (Niu et al., 2022), SAR (Niu et al., 2023), and RDUMB (Press
et al., 2023) use Adam optimizer with a learning rate of 0.001 for CIFAR10-C and SGD optimizer
with a learning rate of 0.00025 for other benchmarks. AdaContrast (Chen et al., 2022) utilizes an
SGD optimizer with a learning rate set to 0.0002 for all of the benchmarks. CoTTA (Wang et al.,
2022) uses Adam optimizer with a learning rate of 0.001 for CIFAR10-C and SGD with a learning
rate of 0.01 for the rest of the benchmarks. Adam optimizer with a learning rate set to 0.001 is
used by RoTTA (Yuan et al., 2023a) for all of the tested datasets. MEMO (Zhang et al., 2022)
uses an SGD optimizer with a learning rate of 0.005 for CIFAR10-C and 0.00025 for other datasets.
PETAL (Brahma & Rai, 2023) in the original paper uses Adam optimizer with a learning rate of
0.001 for CIFAR10-C and SGD with a learning rate of 0.01 for other datasets. However, since we
often experienced poor performance using these values on long scenarios, we utilized 10 times lower
learning rates.

The learning rate used in experiments with batch size set to 10 was adjusted accordingly by scaling
it linearly.

CoTTA (Wang et al., 2022) and PETAL (Brahma & Rai, 2023) methods update the student net-
work using a consistency loss between the student and teacher. If the prediction confidence of the
source model is below a certain threshold, the teacher’s predictions are averaged over 32 different
augmentations of the image which adds 31 additional forward operations of the neural network for
each batch. It creates a significant computation overhead and causes the methods to be significantly
slower, compared to other state-of-the-art methods. It is especially problematic for long adaptation
sequence scenarios, which were the main part of our experiments. Our tests indicate that using a
single augmentation does not alter the results notably. Therefore, for the ease of experimentation,
we reduce the number of augmentations to 1.

The learning rate selection process for Figure 6 (right) was conducted using the Oracle method.

A.3 DETAILS ON MEMO RESULTS ON CCC BENCHMARK FROM TABLE 3

The result is based on the first 623,000 images of the benchmark, providing an initial estimate of
the method’s accuracy. However, due to the benchmark’s extensive size (7,500,000 images) and the
method’s requirement for a batch size of 1, we were unable to complete the full experiment in time.
We estimate that processing the entire dataset will require approximately 972 hours on a single
NVIDIA GeForce RTX 4080 GPU. This substantial time requirement underscores the method’s
significant computational inefficiency.
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A.4 COMPUTE DETAILS

All experiments were conducted on a single GPU. We utilized either NVIDIA A100 with 40GB
of memory or NVIDIA GeForce RTX 4080 with 16GB of memory. Execution time of experiment
greatly varied and was dependent on the dataset, scenario (standard or long), tested method and
batch size. The fastest experiments took about 30 minutes, whereas the longest lasted up to 36
hours.

A.5 DISCUSSION ON COTTA AND I-COTTA PERFORMANCE ON IMAGENET-C (L) AND
IMAGENET-R (L)

I-CoTTA underperforms compared to the original CoTTA on ImageNet-C (L) and ImageNet-R (L)
with a batch size of 64 and architectures with batch normalization layers, as shown in Table 3 and
Table 4. The accuracy drops by 17.4 and 10.8 percentage points, respectively. We attribute this to
CoTTA’s exceptional performance in these specific scenarios, where it outperforms all other tested
methods and achieves a stable performance improvement as presented in Figure 4 (left). The addi-
tional regularization from IT doesn’t enhance stability in this case. Instead, it over-regularizes the
student model, hindering its adaptation capability. This case, while unusual for CoTTA (consid-
ering other CoTTA results), demonstrates that IT isn’t universally effective. However, it’s crucial
to note that even in this case, IT still outperforms the source model. Our focus is on improv-
ing the overall reliability of TTA across all settings, not just in specific scenarios where certain
methods may excel. Also, note that COTTA does not perform that well on architectures without
batch normalization layers.

A.6 WALL-TIME RESULTS

Table A.1: The wall-clock time (seconds) for processing 10,000 images of CIFAR10C on a single
RTX 4080 GPU.

Method Time [s]
Source 3.4
MEMO 508.4

AdaContrast 25.3
I-AdaContrast 25.0
CoTTA 40.7
I-CoTTA 40.2
RoTTA 27.7
I-RoTTA 27.5

A.7 RESULTS WITH DIFFERENT ARCHITECTURES AND LEARNING RATES

Table A.2 presents additional results using different neural network architectures. The learning rate
was tuned by the Oracle method to provide favorable conditions for the original TTA approaches
and ensure they work correctly. All results from the learning rate selection process are in Table A.3.
The intransigent teacher is able to improve the test-time adaptation accuracy on long sequences for
all of the compared models even when the original methods have tuned learning rates specifically
for tested sequence length.
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Table A.2: Classification accuracy [%] for long scenarios on CIFAR10-C and ImageNet-C with
different neural network architectures. The value in superscript indicates the improvements over the
baseline. The learning rate parameter is adjusted using the Oracle method. The batch size is equal
to 64.

CIFAR10-C (L) ImageNet-C (L)
ResNet26GN ResNeXt-50 ViT-B16 SwinViT-T ConvNeXt tiny

Source 67.3 21.1 39.8 28.3 29.1
AdaContrast (Chen et al., 2022) 75.7 38.8 41.5 30.6 33.4
I-AdaContrast 79.6+3.9 42.7+3.9 43.5+2.0 30.9+0.3 32.5-0.9

CoTTA (Wang et al., 2022) 57.0 42.1 41.7 28.4 29.1
I-CoTTA 67.3+10.3 38.3-3.8 40.7-1.0 28.9+0.5 30.5+1.4

RoTTA (Yuan et al., 2023a) 70.2 35.6 40.6 28.8 29.0
I-RoTTA 72.5+2.3 36.2+0.6 42.9+2.3 28.9+0.1 29.7+0.7

Table A.3: Classification accuracy [%] for long scenarios on CIFAR10-C and ImageNet-C with dif-
ferent neural network architectures and learning rates with the batch size equal to 64. Intransingent
versions are much more robust to changes in hyperparameters.

LR CIFAR10-C (L) ImageNet-C (L)
ResNet26GN ResNeXt-50 ViT-B16 SwinViT-T ConvNeXt tiny

Source - 67.3 21.1 39.8 28.3 29.1

AdaContrast

0.001 75.7 20.0 29.6 13.0 17.5
0.0002 74.7 20.0 32.1 15.1 18.2
0.00025 75.1 20.3 31.8 14.4 18.2
3.125e-5 74.3 25.6 39.0 21.9 22.4
1e-6 72.0 38.8 41.5 29.6 32.0
1e-7 68.4 33.5 40.7 30.6 33.4
1e-8 68.1 32.1 40.0 28.7 31.2

I-AdaContrast

0.001 79.6 39.5 42.1 30.4 32.4
0.0002 79.4 42.7 43.5 30.8 32.5
0.00025 79.5 42.4 43.4 30.8 32.5
3.125e-5 77.7 42.3 43.1 30.9 32.3
1e-6 73.0 37.6 42.0 30.9 31.7
1e-7 69.2 33.4 41.0 30.3 30.5

CoTTA

0.01 12.3 57.1 26.2 0.1 0.1
0.001 16.6 42.1 34.5 26.3 0.2
0.00025 14.8 39.2 38.7 25.5 19.3
3.125e-5 26.6 39.3 41.7 28.4 22.2
1e-6 56.2 33.7 40.0 27.0 29.1
1e-7 57.0 33.0 39.4 28.0 29.0
1e-8 57.0 32.9 39.3 28.2 29.1

I-CoTTA

0.01 26.9 38.3 30.9 27.5 16.3
0.001 61.7 35.9 39.9 28.9 27.6
0.00025 62.1 36.0 40.1 28.7 29.3
3.125e-5 62.1 35.7 40.7 28.6 29.8
1e-6 67.3 33.6 40.4 28.3 30.5
1e-7 67.3 33.0 39.9 28.3 28.3

RoTTA

0.001 66.0 16.2 36.2 7.3 18.7
0.00025 68.5 19.7 34.8 7.9 16.8
3.125e-5 70.2 35.6 36.5 13.9 16.3
1e-6 68.5 33.6 40.6 28.8 26.8
1e-7 67.9 31.2 40.0 28.4 29.0
1e-8 67.3 30.8 39.8 28.3 29.0

I-RoTTA

0.001 72.5 35.2 42.9 27.7 29.7
0.00025 72.4 36.2 42.6 27.3 29.7
3.125e-5 71.2 34.3 42.1 27.7 29.0
1e-6 68.9 28.3 40.7 28.9 28.5
1e-7 67.9 26.1 40.0 28.4 29.0
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A.8 EFFECTS OF INTRANSIGENCE AMOUNT EXTENDED EXPERIMENT

To signify the point of Section 4.2, Figure A.1 shows results where the test sequence was extended
to 100 loops of common CIFAR10-C. It verified that CoTTA with ET and β = 0.9999 degrades
below the performance of IT, given enough samples in the test sequence. This observation high-
lights a significant issue of TTA methods, as they can face test sequences of arbitrary lengths after
deployment.

1 10 20 30 40 50 60 70 80 90 100
Loop No.

60

65

70

75

80

Ac
cu

ra
cy

 [%
]

0.9999
1.0 (Intransigent)

Figure A.1: Mean accuracy [%] of CoTTA with varying β for each loop of common CIFAR10-C
testing sequence repeated 100 times. The brown dashed line indicates the accuracy of the source
model as a reference.

A.9 TUNING LEARNING RATE VALUE FOR LONG SCENARIOS.

We investigated whether tuning the learning rate, arguably the most crucial hyperparameter, could
enhance the performance of baseline methods in long adaptation scenarios. Following a realistic
approach, we employed an Oracle technique on ImageNet-C (L) as a reference benchmark (inspired
by Rusak et al. (2022), we call it Transfer IN-C) and applied the selected learning rate across all
datasets. The results, presented in Table A.4, reveal the complexity of hyperparameter optimization
in test-time adaptation.

Our findings shows the challenges of hyperparameter tuning. For instance, CoTTA achieved supe-
rior accuracy with its default learning rate compared to the tuned version. While AdaContrast and
RoTTA showed improvements with optimized learning rates, our IT approach consistently outper-
formed these methods, even when they were specifically tuned for long-sequence adaptation. These
results underscore both the difficulty of hyperparameter selection and the robust performance of our
IT method across varying conditions.

Table A.4: Classification accuracy [%] for long scenarios with the learning rate (LR) parameter
tuned. LR value Default means that the default LR value for the method was used. Transfer IN-C
indicates that the LR is tuned utilizing the ImageNet-C benchmark with ground truth labels. The
batch size is equal to 64.

Method LR value CIFAR10-C (L) ImageNet-C (L) ImageNet-R (L) DomainNet-126 (L) Avg.

AdaContrast Default 81.8 18.8 26.5 61.7 47.2
Transfer IN-C 81.2 36.1 40.8 59.7 54.5

I-AdaContrast Default 85.4 40.4 38.2 64.4 57.1+9.9

Transfer IN-C 85.4 40.4 38.2 64.4 57.1+2.6

CoTTA Default 56.0 52.8 50.5 45.6 51.2
Transfer IN-C 11.2 52.8 50.5 45.6 40.0

I-CoTTA Default 68.4 35.4 39.6 56.8 50.1-1.1

Transfer IN-C 52.0 35.4 39.6 56.8 46.0+6.0

RoTTA Default 82.3 13.2 43.4 50.3 47.3
Transfer IN-C 73.2 30.8 41.0 55.3 50.1

I-RoTTA Default 79.6 32.7 39.7 57.2 52.3+5.0

Transfer IN-C 79.3 33.3 39.9 57.2 52.4+2.3
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A.10 POTENTIAL OF ADAPTIVE β VALUE.

In Table A.5, we explore a dynamic approach to adjusting the teacher model’s momentum parameter
(β). Our experiment begins with the default value of β = 0.999, allowing initial teacher model
plasticity, then transitions to complete weight preservation of IT (β = 1.0) after one full cycle
through the data. This hybrid approach outperforms our IT technique in several cases, demonstrating
the potential of adaptive momentum strategies.

However, the results are not uniformly positive with our standard IT outperforming the hybrid
method in some cases (AdaContrast on ImageNet-C (L) and CoTTA on DomainNet-126 (L)). This
suggests that the fixed period length is not a universal value and there is a need to adjust it correctly.

Table A.5: Classification accuracy [%] for long scenarios with the weights of the teacher fixed only
after the 1st loop on the test sequence. The value in superscript indicates the improvements over the
IT technique’s performance. The batch size is equal to 64.

Method CIFAR10-C (L) ImageNet-C (L) ImageNet-R (L) DomainNet-126 (L) Avg.

AdaContrast 85.2-0.1 38.4-2.0 38.2+0.1 65.3+0.9 56.8-0.3

CoTTA 72.0+3.7 45.0+9.6 42.8+3.3 49.1-6.9 52.2+2.4

RoTTA 80.4+0.7 36.1+3.2 41.0+1.3 57.9+1.3 53.9+1.7

A.11 DISCUSSION ON MODEL RESET MECHANISM.

CoTTA’s proposed resetting mechanism aims to preserve source knowledge by stochastically restor-
ing portions of the student model’s weights to their original source state during each update iteration.
In principle, an effective source knowledge preservation technique should eliminate the need for our
IT technique.

However, CoTTA’s reset mechanism introduces a restoration probability parameter. To ensure our
findings were not biased by suboptimal parameter selection, we conducted parameter tuning experi-
ments, documented in Table A.6. These results reveal that the optimal restoration probability varies
across datasets, with model performance dependent on this parameter. When following a realistic
scenario of tuning on a single dataset, the performance improvements were marginal (Avg. Trans-
fer IN-C). Only by using an Oracle approach on all benchmarks, we observe performance gains,
highlighting the practical limitations of this approach.

Table A.6: Classification accuracy [%] for long scenarios with restoration probability parameter p of
CoTTA method tuned. The batch size is equal to 64. Avg. Def. is the average accuracy with default
p value. Avg. Transfer IN-C is the average accuracy with a single p value chosen on the ImageNet-
C dataset using the Oracle method. Average accuracy when the p value is chosen separately for each
of the datasets with Oracle is presented in Avg. Oracle column.

p value CIFAR10-C (L) ImageNet-C (L) ImageNet-R (L) DomainNet-126 (L) Avg.
Def. Transfer IN-C Oracle

0.1 73.1 29.0 41.8 26.9

51.2 51.6 58.1

0.01 53.7 24.8 35.6 13.7
0.001 (Def.) 56.0 52.8 50.5 45.6
0.0001 54.7 53.7 45.0 52.9
0.00001 54.3 53.6 49.0 55.0
0.0 52.7 53.5 48.9 54.5

A.12 DISCUSSION ON RDUMB.

RDumb has already been established as a state-of-the-art baseline method for extended adaptation
scenarios, demonstrating great performance in both prior work (Press et al., 2023) and our current
experiments. Despite its effectiveness, limitations should be considered.

The method’s mechanism of periodically resetting the model to its initial state leads to significant
accuracy drops immediately following each reset, as illustrated in Figure A.2. Such instability is
particularly concerning since reliable test-time adaptation should maintain consistent performance
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Figure A.2: Batchwise accuracy plots of RDumb and I-AdaContrast methods on ImageNet-C (L)
benchmark. The accuracy values were smoothed to make the plot clearer. RDumb resets the model
every 1000 iterations, which causes significant drops in accuracy after the reset.

throughout the adaptation process. Furthermore, the same constant reset interval is likely not opti-
mal for every case, which adds a hyperparameter to select. In contrast, our IT approach achieves
comparable performance without requiring parameter tuning.

A.13 ADAPTATION TO REPEATED SOURCE DOMAIN DATA.

We investigated whether the observed accuracy degradation during adaptation stems solely from
distribution shift by conducting experiments on the source domain’s validation splits. We evaluated
performance under two conditions: a single pass through the data (1x) and 20 repeated passes (20x),
with results shown in Table A.7. Our findings reveal that accuracy degradation occurs even on source
domain data, with dataset-specific variations. This phenomenon is visible on all tested datasets
except CIFAR10-C. We attribute this exception to CIFAR10-C’s lower complexity, particularly its
smaller number of classes compared to other datasets in our study.

The IT in most cases improves the performance on repeated streams (20x), however, the increased
stability negatively impacts the accuracy on the 1x streams (especially with CoTTA and RoTTA).

Table A.7: Classification accuracy [%] for the adaptation on the source domain’s validation splits.
1x indicates the performance on a single pass through the data, while 20x means the accuracy on the
20 repeated passes. The batch size is equal to 64. The degradation of performance also occurs when
adapting to the source domain, however, this effect depends on the dataset and the method used.

Method CIFAR10-C ImageNet-C ImageNet-R DomainNet-126 Avg.
1x 20x 1x 20x 1x 20x 1x 20x 1x 20x

AdaContrast 93.6 93.7 72.3 38.4 91.4 87.1 93.2 85.7 87.6 76.2
I-AdaContrast 93.6 93.7 72.8 66.5 91.4 88.8 94.1 92.8 88.0 85.5

CoTTA 93.5 92.9 74.2 63.2 91.7 90.2 86.1 61.2 86.4 76.9
I-CoTTA 77.4 81.6 51.0 60.5 77.5 88.1 74.1 84.7 70.0 78.7

RoTTA 94.2 94.4 75.7 63.2 91.9 81.5 89.1 58.8 87.7 74.5
I-RoTTA 94.1 93.5 73.1 72.9 90.7 85.4 68.8 88.0 81.7 85.0

A.14 ADDITIONAL RESULTS
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Figure A.3: Mean accuracy [%] for each loop of common testing sequence on ImageNet-C (L) using
CoTTA (left) and on CIFAR10-C (L) using AdaContrast (right). The Brown dashed line indicates
the Source model accuracy.
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Figure A.4: Per batch accuracy [%] on ImageNet-C (L) comparing AdaContrast (left) and RoTTA
(right) using ViT-B16 network with EMA teacher (ET, orange) and intransigent teacher (IT, blue),
both for teacher (solid) and student (dashed).
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Table A.8: Classification accuracy [%] for common length sequences.

Method CIFAR10-C ImageNet-C ImageNet-R DomainNet-126
Source 56.5 18.0 36.2 54.7
MEMO (Zhang et al., 2022) 65.6 25.0 40.9 53.2

BS = 10

TestBN 75.0 27.0 36.6 46.5
TENT (Wang et al., 2021) 75.7 31.2 38.9 52.4
EATA (Niu et al., 2022) 77.4 36.0 43.1 54.4
SAR (Niu et al., 2023) 75.8 31.3 41.9 52.8
RDUMB (Press et al., 2023) 77.2 34.8 41.3 52.0
AdaContrast (Chen et al., 2022) 81.3 33.3 39.5 56.5
I-AdaContrast 82.0 33.8 39.8 59.6
CoTTA (Wang et al., 2022) 75.1 26.4 41.1 52.0
I-CoTTA 69.8 28.3 35.6 49.5
RoTTA (Yuan et al., 2023a) 79.0 29.2 38.6 55.9
I-RoTTA 73.2 29.4 39.3 56.6
PETAL (Brahma & Rai, 2023) 68.3 23.2 36.6 49.5
I-PETAL 74.2 27.3 36.6 49.5

BS = 64

TestBN 79.2 31.4 39.7 54.5
TENT (Wang et al., 2021) 77.8 37.3 42.6 58.0
EATA (Niu et al., 2022) 79.8 42.0 45.8 59.7
SAR (Niu et al., 2023) 79.3 37.8 42.8 57.2
RDUMB (Press et al., 2023) 81.4 40.0 46.2 58.9
AdaContrast (Chen et al., 2022) 82.6 34.8 40.9 62.0
I-AdaContrast 82.4 35.1 41.0 61.7
CoTTA (Wang et al., 2022) 82.2 36.8 42.8 58.9
I-CoTTA 68.6 31.7 35.9 54.4
RoTTA (Yuan et al., 2023a) 80.9 32.4 39.2 56.8
I-RoTTA 76.7 30.6 39.3 56.3
PETAL (Brahma & Rai, 2023) 76.6 31.5 39.7 54.5
I-PETAL 78.4 31.4 39.7 54.5
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Figure A.5: Per batch accuracy [%] on CIFAR10-C (L) using AdaContrast and WideResNet-28
network with EMA teacher (ET, orange) and intransigent teacher (IT, blue), both for teacher (solid)
and student (dashed).
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Figure A.6: Per batch accuracy [%] on CIFAR10-C (L) using CoTTA and WideResNet-28 network
with EMA teacher (ET, orange) and intransigent teacher (IT, blue), both for teacher (solid) and
student (dashed).
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Figure A.7: Per batch accuracy [%] on CIFAR10-C (L) using RoTTA and WideResNet-28 network
with EMA teacher (ET, orange) and intransigent teacher (IT, blue), both for teacher (solid) and
student (dashed).
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