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ABSTRACT

Recent advancements in areas such as natural language processing and com-
puter vision rely on intricate and massive models that have been trained using
vast amounts of unlabelled or partly labeled data and training or deploying these
state-of-the-art methods to resource constraint environments has been a challenge.
Galaxy morphologies are crucial to understanding the processes by which galax-
ies form and evolve. Efficient methods to classify galaxy morphologies are re-
quired to extract physical information from modern-day astronomy surveys. In
this paper, we introduce Astroformer, a method to learn from less amount of
data. We propose using a hybrid transformer-convolutional architecture draw-
ing much inspiration from the success of CoAtNet and MaxViT. Concretely, we
use the transformer-convolutional hybrid with a new stack design for the network,
a different way of creating a relative self-attention layer, and pair it with a care-
ful selection of data augmentation and regularization techniques. Our approach
sets a new state-of-the-art on predicting galaxy morphologies from images on the
Galaxy10 DECals dataset, a science objective, which consists of 17736 labeled
images achieving 94.86% top-1 accuracy, beating the current state-of-the-art for
this task by 4.62%. Furthermore, this approach also sets a new state-of-the-art on
CIFAR-100 and Tiny ImageNet. We also find that models and training methods
used for larger datasets would often not work very well in the low-data regime.

1 INTRODUCTION

Recently, many hybrid transformer-convolutional models have gained a lot of popularity in vision
tasks, especially with the success of models like MobileViT (Mehta & Rastegari, 2022), ResNet-ViT
(Dosovitskiy et al., 2021), ConViT (d’Ascoli et al., 2021), PatchConvNet (Touvron et al., 2021a),
and CoAtNet (Dai et al., 2021). On one hand, the spatial inductive biases of convolutional neural
networks allow them to learn representations with fewer parameters across different vision tasks as
well as enable sample-efficient learning; however, they often have a potentially lower performance.
On the other hand, transformers learn global representations and have shown a lot of success in
vision tasks, and have outperformed convolutional neural nets for image classification. Though
transformers tend to have larger model capacities, their generalization can be worse than convolu-
tional neural networks. However, transformers are very data hungry (Hassani et al., 2021) and often
require pre-training on large datasets. Typically Vision Transformers (ViTs) show great performance
when trained on ImageNet-1k/22k (Deng et al., 2009) or JFT-300M (Sun et al., 2017) datasets; how-
ever, the absence of such large-scale pre-training is very detrimental to its performance as we show
in this paper.

In practice, collecting high-quality labeled data or human annotators is very expensive. Synthetic
data though shows significant promise but is often a distorted version of the real data and any mod-
eling or inference performed on synthetic data comes with additional risks. Models trained on syn-
thetic data often need to be fine-tuned with real data before being deployed (Tremblay et al., 2018;
Jordon et al., 2022). Furthermore, methods such as transfer learning will not fully solve the prob-
lem often due to bias in pre-training datasets that do not reflect environments (Salman et al., 2023).
We also explored semi-supervised learning approaches for this task using labeled data from the
Galaxy10 DECals dataset (Leung & Bovy, 2019) and unlabelled galaxy images from the Galaxy-
Zoo dataset (Lintott et al., 2011), this approach is promising and we believe is most certainly an
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interesting direction. We however focused our efforts on building models when obtaining unlabeled
data is costly as well Thus, in this paper, we focus on training in a supervised setting from scratch.

A galaxy’s morphology describes its physical appearance and encodes important information about
the physical processes that have shaped its growth (Parry et al., 2009). Galaxy morphologies are
influenced heavily by the physical properties of galaxies, like star formation (Hashimoto et al., 1998;
Sandage, 1986; Lotz et al., 2006) and galaxy mergers (Rodriguez-Gomez et al., 2017) among others
(Buta, 2011). Thus understanding galaxy morphologies leads to a better understanding on these
fronts as well. One such instance is where scientists have used the disc and spheroid structures that
make up a galaxy to figure out crucial components of its formation (Deelman et al., 2004). As such,
a galaxy’s morphology is a culmination of internal physical processes (e.g., star formation, stellar
dynamics such as active galactic nuclei and dark matter, feedback), as well as its environment and
interactions with other galaxies. Thus, to fully comprehend the formation and evolution of galaxies,
it is essential to accurately classify galaxy morphologies.

Our contributions can be summarized as: (1) We propose a hybrid transformer-convolutional archi-
tecture comparable to the approach employed by CoAtNet (Dai et al., 2021) with a different stack
design and pair it with a careful selection of augmentation and regularization techniques which is
able to learn and generalize well 1 in the low-data regime. (2) With our approach we establish a
new state-of-the-art for the task of identifying galaxy morphologies from images on the Galaxy10
DECals dataset, and to the best of our knowledge, we believe this is the first work to use a hybrid
transformer-convolutional model to improve models in this domain. We also set the new state-of-
the-art for Tiny ImageNet and CIFAR-100. (3) We explore approaches and techniques for designing
non-transfer learned models for the low-data regime in general which can be applied to tasks other
than the one we explore.

2 DATA

We use the Galaxy10 DECals dataset introduced by Leung & Bovy (2019) which contains ∼ 17.7k
labeled images (see raw images in Appendix A.6, Figure 7). These images come from the DESI
Legacy Imaging Surveys which include: two DECals campaign (Dey et al., 2019; Walmsley et al.,
2022), the Beijing-Arizona Sky Survey (Zou et al., 2019) as well as the Mayall z-band Legacy Sur-
vey (Dey et al., 2019). The labels for the galaxy morphologies come from the GalaxyZoo Data Re-
lease 2 (Lintott et al., 2008; 2011). This dataset includes 10 strictly exclusive morphology classes:
disturbed galaxies, merging galaxies, round smooth galaxies, in-between round smooth galaxies,
cigar shaped smooth galaxies, barred spiral galaxies, unbarred tight spiral galaxies, unbarred loose
spiral galaxies, edge-on galaxies without bulge, edge-on galaxies with bulge. The dataset is im-
balanced, in that not all classes have a similar number of images. In particular, there are only 334
labeled images present for “cigar shaped smooth galaxies”, so during training, we use stratified sam-
pling. The size of this dataset also allows us to explore training techniques and develop approaches
that work well in the low-data regime and generalize well.

The data collected for the DECals campaign uses Dark Energy Camera Flaugher et al. (2015) on
the Blanco 4m telescope and covers both the North Galactic Cap region at Dec ≤ 32◦ and the
South Galactic Cap region at Dec ≤ 34◦. The DECals survey utilizes a method of tiling the sky
that involves three separate passes. These passes are slightly shifted in relation to one another, with
an approximate offset range of 0.1◦ - 0.6◦. The specific pass and duration of exposure for each
observation are determined in real-time based on multiple factors allowing for a nearly uniform
level of depth across the survey. The Beijing-Arizona Sky Survey covers 5000 square degrees of
the Northern Galactic Cap, using Steward Observatory’s 2.3m Bok Telescope. The Mayall z-band
Legacy Survey imaged the Dec ≥ 32◦ region using the 4-m Mayall telescope (Dey et al., 2019).

we also perform our experiments on the Tiny ImageNet (Le & Yang, 2015), CIFAR-100 (Krizhevsky
et al., 2009),a dn CIFAR-10 (Krizhevsky et al., 2009). These datasets are very popularly used
benchmarks for image classification in the low-data regime. Tiny ImageNet contains 100000 images
of 200 classes (500 for each class) downsized to 64 × 64 colored images which are a subset of the
ImageNet dataset (Deng et al., 2009). Each class has 500 training images, 50 validation images, and

1By generalization, we mean that we measured the gap between the training loss and the evaluation accuracy
that describes how well the model can generalize to unseen data.
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50 test images. The CIFAR-10 dataset consists of 60000 32 × 32 color images in 10 classes, with
6000 images per class. The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes
containing 600 images each.

3 RELATED WORK

Classifying galaxy morphologies on the Galxy10 DECals is a rather well-established task and
there have been multiple works in the past by Venn et al. (2019); Blancato (2020); Chen (2021);
Ghadekar et al. (2022); Hui et al. (2022); Radhamani et al. (2022); HOLANDA & SANTOS (2022);
Ćiprijanović et al. (2022); Maile et al. (2022) have employed multiple techniques for this task.
However, no work has explored using hybrid models for this task which allowed us to set a new
state-of-the-art for Galaxy10 DECals.

Transformer-convolutional hybrids are a recent innovation and in the past multiple models have pro-
posed different approaches to constructing such hybrids namely: MobileViT (Mehta & Rastegari,
2022), ResNet-ViT (Dosovitskiy et al., 2021), ConViT (d’Ascoli et al., 2021), PatchConvNet (Tou-
vron et al., 2021a), and CoAtNet (Dai et al., 2021). However, they do not explore the performance
or modification that could be made to these methods to perform well for lower amounts of data with
training from scratch. The work by Gani et al. (2022) extensively explores training ViTs in the low-
data regime and have shown success on small datasets. Their work based on learning self-supervised
inductive biases from small-scale datasets use these biases as a weight initialization scheme for fine-
tuning. The work by Lee et al. (2021) explores modifying ViTs to learn locality inductive bias. In
this paper, we explore training in low-data regimes with hybrid models and have motivated the use
of hybrid models in the low-data regime, unlike these works.

4 METHODOLOGY

We develop a variant of the CoAtNet (Dai et al., 2021) model using a different stack design and
careful selection of augmentation and regularization techniques. The Transformer block makes use
of relative attention which efficiently combines depthwise convolutions (Sandler et al., 2018) and
self-attention (Vaswani et al., 2017). A depthwise convolution uses a fixed kernel to extract features
from a local region of the input data whereas self-attention allows the receptive field to be the global
spatial space. Relative attention allows us to combine convolutions and self-attention.

yi =
∑
j∈G

exp (x⊤
i xj + wi−j)∑

k∈G exp (x⊤
i xk + wi−k)

xj (1)

where xi, yi ∈ Rd are the input and output at position i, wi−j represents the depthwise convolution
kernel and G represents the global spatial space. Here, the attention weight Ai,j is decided by both
wi−j and x⊤

i xj . The update made to the attention weight is rather intuitive by simply summing a
global static convolution kernel

Ai,j =
∑
k∈G

exp (x⊤
i xk) (standard self-attention)

Ai,j =
∑
k∈G

exp (x⊤
i xk +wi−k) (relative self-attention)

(2)

To construct a network that uses relative attention, we adopt an approach similar to CoAtNets by
first down-sampling the feature map via a multi-stage network with gradual pooling to reduce the
spatial size and then employing the global relative attention. To do so, CoAtNets propose using a
network of 5 stages (S0, S1, S2, S3, S4) where S0 is a simple 2-layer convolutional Stem and
S1 employs Inverted Residual blocks (Sandler et al., 2018) with squeeze-excitation. In the work
by Dai et al. (2021) they eliminate the possibility of using a C-C-C-T stack i.e. S1, S2, and S3
employ Inverted Residual blocks (Sandler et al., 2018) and S4 employs a Transformer block, due to
supposedly low model performance. However, in our experiments, we find that a C-C-C-T design
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Figure 1: Overview of the proposed model, notice the stack-design design we employ.

works much better than C-C-T-T which was adapted as the layout for CoAtNet. This is precisely
due to (1) higher generalization capability of C-C-C-T and (2) highly unstable training of C-C-T-T
and C-T-T-T architectures. These proposed architectural choices are summarized in Figure 1.

To evaluate the benefits of partially-occluded augmentation methods like CutMix (Yun et al., 2019),
DropBlock (Ghiasi et al., 2018), and Cutout (DeVries & Taylor, 2017) hold for this task we run
some experiments. We find that these regional dropout-based augmentation techniques have a strong
detrimental effect on datasets such as the one we use 2 like the Galaxy10 DECals, this is mainly due
to the nature of the task, one example we observe is that even some minor augmentations on an
image with the class “edge-on galaxies with bulge” could cause the ground-truth (as identified by
a human) of the augmented image to shift to the class “edge-on galaxies without bulge” 3 which is
detrimental to the model performance. This example is visually in Appendix A.6, Figure 6.

Finally, for augmentation, we consider a combination of Mixup (Zhang et al., 2017) and RandAug-
ment (Cubuk et al., 2020). As for regularization strategies, we make use of stochastic depth regu-
larization, weight decay, and label smoothing. The hyperparameters values for these regularizations
are listed in Appendix A.4. Surprisingly, we find that strong augmentations techniques give much
higher performance gains than stronger regularization. Overall we believe, that judiciously choosing
augmentation and regularization strategies is crucial to model performance in low-data regimes and
careful selection of the associated hyperparameters for augmentation and regularization is equally
important.

In brief, the reasons these models perform so well on low-data regime tasks, even when trained
from scratch, and we believe it would work for other tasks in the low-data regime are: (1) Careful
selection of augmentation and regularization is very important, especially in smaller datasets. (2)
Our approach to train a hybrid transformer-convolutional model shows great generalizability and
does not face the problem of highly unstable training and (3) The inherent translational equivalence
helps make the training less prone to overfitting in the low-data regime, more experiments on this
front were done by Mohamed et al. (2020). We postpone the proofs for this to Appendix A.2.

5 RESULTS

We report all results and compare them against previous models and a random baseline (equivalent
to making a guess) in Table 1. We also provide a few random ground truth comparisons to our
predictions in Figure 2. The performance of models is calculated using the metrics that are typical
for an image classification problem, top-1 accuracy. Additionally, we find that using any of the
other larger variants of CoAtNet is detrimental for this task and the model starts heavily overfitting
even with our design changes, augmentation, and regularization. We also explore semi-supervised
learning for this task, our experiments with semi-supervised learning techniques included applying
Noisy Student (Xie et al., 2020), SimCLRv2 (Chen et al., 2020), and Meta Pseudo Labels (Pham
et al., 2021) to the Galaxy10 DECals dataset as well as using unlabeled images from the GalaxyZoo
Dataset though. These results are also summarized in Table 1.

2We also explore Attentive CutMix (Walawalkar et al., 2020) and though it identifies the most discriminative
regions based on the intermediate attention maps from a feature extractor, we do not observe a significantly
higher generalization capability.

3More information on how galaxy morphologies are manually classified can be found at https://data.
galaxyzoo.org/gz_trees/gz_trees.html
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Table 1: Model Performance on Galaxy10 DECals dataset. Galaxy10 only denotes training on
the Galaxy10 DECals dataset only; Galaxy10 + Zoo denotes the use of extra unlabeled data
from GalaxyZoo, though the models that use extra unlabeled data are not the focus of this work, we
present those results as well. The rows under the horizontal line in this table represent experiments
performed in this work.

Method Description Galaxy10 DECals top-1 accuracy(↑)
Galaxy10 only Galaxy10 + Zoo

Random Baseline 14.77 -
Fractal Analysis (Radhamani et al., 2022) 73.45 -
Architectural Optimization Over Subgroups (Maile et al., 2022) 77.00 -
DeepAstroUDA (Ćiprijanović et al., 2022) 79.00 -
Deep Galaxies CNN (Ghadekar et al., 2022) 84.04 -
EfficientNet (Tan & Le, 2019) 86.00 -
Luma (HOLANDA & SANTOS, 2022) 86.20 -
DenseNet 121 (Iandola et al., 2014) 88.64 -
EfficientNetv2 (Tan & Le, 2021) 90.24 -

Noisy Student (Xie et al., 2020) - 91.80
SimCLRv2 (Chen et al., 2020) - 90.24
Standard CoAtNet-4 (Dai et al., 2021) 81.55 -
Ours (Astroformer) 94.86 -

GT: Disturbed



P: Disturbed


(a)

GT: Merging



P: Merging


(b)

GT: Edge-on Galaxies

         w/o Bulge

P: Edge-on Galaxies

         w/ Bulge

(c)

GT: Round Smooth



P: Round Smooth


(d)

Figure 2: Random selection of ground truth comparison against our model predictions on the hold-
out test set. We also include one example where the model predicted incorrectly (c). The acronyms
“GT” and “P” in this figure refer to the ground truth and predicted labels.

6 DISCUSSION

In this paper, we developed a supervised model to train from scratch on the Galaxy10 DECals dataset
and explored other methods to train from scratch in the low-data regime. We train a CoAtNet model
and pair it with a careful selection of augmentation and regularization strategies as well as use a
different stack design which was earlier thought to have severely low model performance and a
novel way of creating relative self-attention layers on top of the CoAtNet model (Dai et al., 2021).
We apply this proposed model in the low-data regime and achieve state-of-the-art performance on the
Galaxy10 DECals dataset. Furthermore, with this approach, we also establish new state-of-the-art
without using extra training data on popular low-data regime image classification datasets, CIFAR-
100 (Krizhevsky et al., 2009) and Tiny ImageNet (Le & Yang, 2015), and competitive results on
CIFAR-10 (Krizhevsky et al., 2009) as indicated in Appendix A.3. From the perspective of science
objectives, we believe this model will enable more precise studies of galaxy morphology. In the
future, we hope to see more methods for training models with low data from scratch and we believe
our model is a potential choice for a variety of other low-data regime tasks. We also hope that this
model could potentially be used as a backbone for other vision tasks in the low-data regime.
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A APPENDIX

A.1 EXTENDED RELATED WORK

Self-Attention for Vision. Self Attention has extensively been applied to various computer vi-
sion tasks, such as image classification, object detection, and semantic segmentation. The idea of
self-attention was first introduced by Vaswani et al. (2017), where they proposed the Transformer
model for neural machine translation. The Transformer model consists of an encoder and a decoder,
each composed of multiple layers of self-attention and feed-forward networks. The self-attention
mechanism can be seen as a generalization of the attention mechanism that was previously used in
conjunction with RNNs for sequence modeling. The application of self-attention and transformers
to computer vision tasks faces some challenges due to the high-resolution and spatial structure of vi-
sual data. One challenge is the quadratic computational complexity of self-attention, which limits its
scalability to large inputs. Another challenge is the lack of local information in self-attention, which
may hinder its ability to capture fine-grained details and local patterns in images. To address these
challenges, several variants and extensions of self-attention and transformers have been proposed for
computer vision tasks. For example, Dosovitskiy et al. (2021) proposed Vision Transformer (ViT),
which applies a vanilla Transformer to image classification by dividing an image into patches and
treating them as tokens.

These are some examples of how self-attention and transformers can be adapted and improved for
computer vision tasks. For a more comprehensive review of vision transformers, we refer readers to
the dedicated surveys by Khan et al. (2022) and Han et al. (2023).

Hybrid Models. Hybrid convolution-attention models are a recent trend in computer vision that
aim to combine the advantages of CNNs and self-attention mechanisms. CNNs are known for their
ability to capture local features and spatial invariance, while self-attention can model long-range
dependencies and global context. However, CNNs and self-attention have different strengths and
weaknesses, and finding the optimal balance between them is not trivial.

One approach to hybridize convolution and attention is to augment the CNN backbone with explicit
self-attention or non-local modules (Wang et al., 2018), or to replace certain convolution layers with
standard self-attention (Bello et al., 2019) or a more flexible mix of linear attention and convolution.
These methods often improve the accuracy of CNNs, but they also increase the computational cost
and complexity. Moreover, they do not exploit the natural connection between depthwise convolu-
tion and relative attention, which can be fused together to form a more efficient and effective hybrid
layer (Dai et al., 2021). Another approach to hybridize convolution and attention is to start with a
Transformer backbone and try to incorporate explicit convolution or some desirable properties of
convolution into the Transformer layers (Liu et al., 2021b). These methods aim to overcome the
limitations of vanilla Transformers, such as the lack of inductive biases, the quadratic complexity,
and the dependence on large-scale pre-training. However, they also face challenges such as how
to design convolutional embeddings, how to integrate convolutional operations into the attention
mechanism, and how to balance the trade-off between model capacity and generalization.

A recent work that proposes a novel hybrid convolution-attention model is CoAtNet (Dai et al.,
2021), which is based on two key insights: (1) by using simple relative attention, depthwise convo-
lution, and self-attention can be naturally fused together to form a hybrid layer called CoAt layer;
(2) by stacking CoAt layers and standard convolution layers in a principled manner, generalization,
capacity, and efficiency can be dramatically improved.

A.2 MODEL DETAILS

Inherent Translation Equivariance.
Theorem 1. A variant of relative attention:

yi =
∑
j∈G

exp (x⊤
i xj + wi−j)∑

k∈G exp (x⊤
i xk + wi−k)

xj (3)

where xi, yi ∈ Rd are the input and output at position i, wi−j represents the depthwise convolution
kernel and G represents the global spatial space preserves translational equivariance.
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Proof. Informally we can understand this proof as identifying that the depthwise convolution kernel
for any position pair (i, j) is only dependent on i− j, the relative positions rather than the values of
i and j individually.

We will also use the well-known result that convolutions enjoy translational equivariance, this also
aligns well with the general nature of tasks in vision and also partly helps generalize the model to
different positions or to images of different sizes.

Formally we can define Tk, to be the translation operator that shifts the input sequence x by k
positions, that is, Tk(x)i = xi−k. Similarly, let Tk(y)i denote the output of the relative attention
mechanism when the input is shifted by k positions. We then want to show that Tk(y)i = yi−k

for all i. That is a shift in the input sequence results in an equivalent shift in the output sequence.
Equivalently for this proof, we use the simpler notation where we let x′

i = xi+∆ and x′
j = xj +∆

be the translated input vectors. We want to show that y′i = yi +∆.

Substituting the translated input vectors into Equation 3, we have:

y′i =
∑
j∈G

exp ((xi +∆)⊤(xj +∆) + wi−j)∑
k∈G exp ((xi +∆)⊤xk + wi−k)

xj (4)

Expanding the dot product, we get:

(xi +∆)⊤(xj +∆) = x⊤
i xj + x⊤

i ∆+∆⊤xj +∆⊤∆

= x⊤
i xj + 2∆⊤xj +∆⊤∆

= (x⊤
i xj + wi−j) + 2∆⊤xj +∆⊤∆

(5)

Substituting this back into Equation 4, we get:

y′i =
∑
j∈G

exp ((x⊤
i xj + wi−j) + 2∆⊤xj +∆⊤∆)∑

k∈G exp ((xi +∆)⊤xk + wi−k)
xj

=
∑
j∈G

exp (x⊤
i xj + wi−j) exp (2∆

⊤xj +∆⊤∆)∑
k∈G exp (x⊤

i xk + wi−k) exp (∆⊤xk)
xj

=
∑
j∈G

exp (x⊤
i xj + wi−j)∑

k∈G exp (x⊤
i xk + wi−k)

exp (∆⊤xj)

(
exp (∆⊤∆)∑

k∈G exp (∆⊤xk)
xj

)

= yi +∆
∑
j∈G

exp (x⊤
i xj + wi−j)∑

k∈G exp (x⊤
i xk + wi−k)

exp (∆⊤xj)

(6)

Thus, we can write this as:

y′i = yi +∆
∑
j∈G

exp (x⊤
i xj + wi−j)∑

k∈G exp (x⊤
i xk + wi−k)

exp (∆⊤xj) (7)

Notice that the term inside the sum on the right-hand side of Equation 7 is equivalent to the attention
weight between x′

i and x′
j . Therefore, we can rewrite the sum as:

∑
j∈G

exp (x⊤
i xj + wi−j)∑

k∈G exp (x⊤
i xk + wi−k)

exp (∆⊤xj) =
∑
j∈G

exp (x′⊤
i x′

j + wi′−j′)∑
k∈G exp (x′⊤

i x′
k + wi′−k′)

(8)

where i′ − j′ and i′ − k′ are the relative positions between x′
i and x′

j and x′
k, respectively.

Therefore, we can rewrite Equation 7 as:
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y′i =
∑
j∈G

exp (x′⊤
i x′

j + wi′−j′)∑
k∈G exp (x′⊤

i x′
k + wi′−k′)

x′
j = yi +∆ (9)

which shows that the output yi is translated by the same vector ∆ as the input xi and xj , and
therefore the relative attention in Equation 3 enjoys the property of translational equivariance.

Theorem 2. The variant of relative attention described in Equation 3 has the ability to do input-
adaptive weighting.

Proof. To show this, in this proof, we will show that the form in Equation 3 that the attention weight
Ai,j is influenced by the input xi in a way that adapts to the input.

We can rewrite the numerator of the attention weight as:

exp (x⊤
i xj + wi−j) = exp (x⊤

i xj) exp (wi−j) (10)

Since the depthwise convolution kernel wi−j is fixed for all inputs, it does not adapt to the input.
Therefore, the input-adaptive property of the attention weight must come from the term exp (x⊤

i xj).

Now, we can write the denominator of the attention weight as:

∑
k∈G

exp (x⊤
i xk + wi−k) =

∑
k∈G

exp (x⊤
i xk) + exp (wi−k) (11)

Again, the term exp (wi−k) is fixed and does not adapt to the input. Therefore, we only need to
focus on the term exp (x⊤

i xk) to see if it adapts to the input.

Ai,j =
expwi−j∑

k∈G exp (x⊤
i xk − x⊤

i xj + wi−k)
(12)

Now, we can see that the term exp (x⊤
i xk − x⊤

i xj) represents the similarity between the input vec-
tors xi and xk relative to the similarity between xi and xj . This relative similarity term ensures that
the attention weight adapts to the input, as it depends on the relationship between the input vectors
rather than their absolute values.

Pre-Activation. We follow the same pre-activation structure as demonstrated by Dai et al. (2021)
for both the Inverted Residual blocks and Transformer blocks:

x← x+ Module(Norm(x)) (13)

where Module denotes the Inverted Residual, Self-Attention, or FFN module, while Norm corre-
sponds to BatchNorm for Inverted Residual block and LayerNorm for Self-Attention and FFN.

Down-Sampling. We follow the same down-sampling structure as demonstrated by Dai et al.
(2021). For the first block inside each stage from S1 to S4, down-sampling is performed inde-
pendently for the residual branch and the identity branch. The down-sampling self-attention module
can is expressed as:

x← Proj(Pool(x))+ Attention(Pool(Norm(x))) (14)

As for the Inverted Residual block, the down-sampling in the residual branch is instead achieved by
using a stride-2 convolution to the normalized inputs

x← Proj(Pool(x))+ Conv(DepthConv(Conv(Norm(x), stride = 2)))) (15)
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A.3 MODEL PERFORMANCE ON OTHER LOW-DATA REGIME DATASETS

In this section, we explore applying the proposed model to other low-data regime image classifi-
cation tasks namely CIFAR-100 (Krizhevsky et al., 2009), Tiny ImageNet (Le & Yang, 2015), and
CIFAR-10 (Krizhevsky et al., 2009) without extra training data. Similar to the experiments for
Galaxy10 DECals, the hyperparameters for these tasks were also found through a naive hyperpa-
rameter search, however, any of the models trained on these datasets do not use stratified sampling.
In Table 2 we report our results for CIFAR-100, in Table 3 for Tiny ImageNet, and in Table 4 for
CIFAR-10 datasets.

Table 2: Model Performance on the CIFAR-100 dataset. We only present models that do not use
extra unlabeled data which can be compared with these experiments. We notice that even without us-
ing extra training data our approach beats multiple well-established models which use extra-training
data.

Method Description CIFAR-100 top-1 accuracy(↑) Extra Training Data
EfficientNetV2 (Tan & Le, 2021) 92.30 ✓
TResNet (Ridnik et al., 2021) 93.00 ✓
CaiT (Touvron et al., 2021b) 93.10 ✓
µ2Net (Gesmundo & Dean, 2022) 94.95 ✓
ML-Decoder (Ridnik et al., 2023) 95.10 ✓
EffNet-L2 (SAM) (Chen et al., 2021) 96.08 ✓

CoAtNet-5 (Dai et al., 2021) 81.21 ✗
CoAtNet-4 (Dai et al., 2021) 84.60 ✗
WRN (Zhao et al., 2022a) 86.90 ✗
DenseNet (Iandola et al., 2014) 87.44 ✗
ColorNet (Gowda & Yuan, 2019) 88.40 ✗
ShakeDrop (Cubuk et al., 2018) 89.30 ✗
PyramidNet (Zhao et al., 2022b) 89.90 ✗
Ours (Astroformer) 93.36 ✗

Table 3: Model Performance on the Tiny ImageNet dataset. We only present models that do not use
extra unlabeled data which can be compared with these experiments. We notice that even without us-
ing extra training data our approach beats multiple well-established models which use extra-training
data.

Method Description TI top-1 accuracy(↑) Extra Training Data
EfficientNet (DCL) (Luo et al., 2019) 84.39 ✓
ViT (PUGD) (Tseng et al., 2022) 90.74 ✓
DeiT (PUGD) (Tseng et al., 2022) 91.02 ✓
Swin-L (Huynh, 2022) 91.35 ✓

PreActResNet (Ramé et al., 2021) 70.24 ✗
ResNeXt-50 (SAMix+DM) (Liu et al., 2022) 72.39 ✗
Context-Aware Pipeline (Yao et al., 2021) 73.60 ✗
WaveMixLite (Jeevan et al., 2023) 77.47 ✗
DeiT (Lutati & Wolf, 2022) 92.00 ✗
Ours (Astroformer) 92.98 ✗

A.4 IMPLEMENTATION DETAILS

In this section, we explain the implementation details of the experiments and our proposed model.

Sampling. There is a class imbalance in the dataset, meaning that not all classes have a similar
number of images. For this reason, we follow a stratified sampling strategy during data loading to
ensure each batch contains 10± 4% instances of each label class.
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Table 4: Model Performance on the CIFAR-10 dataset. We only present models that do not use extra
unlabeled data which can be compared with these experiments. We notice that even without using
extra training data our approach beats multiple well-established models which use extra-training
data.

Method Description CIFAR-10 top-1 accuracy(↑) Extra Training Data
CeiT (Yuan et al., 2021) 99.10 ✓
ViT (PUGD) (Tseng et al., 2022) 99.13 ✓
BIT-L (Kolesnikov et al., 2020) 99.37 ✓
CaiT (Touvron et al., 2021b) 98.40 ✓
CvT (Wu et al., 2021) 98.39 ✓

ViT-SAM (Chen et al., 2021) 98.60 ✗
PyramidNet (Zhao et al., 2022b) 98.71 ✗
LaNet (Wang et al., 2021) 99.03 ✗
Ours (Astroformer) 99.12 ✗
µ2Net (Gesmundo & Dean, 2022) 99.49 ✗
ViT (Dosovitskiy et al., 2021) 99.50 ✗

Model backbone. Throughout this work we use CoAtNet as the model backbone due to their suc-
cess in efficiently unifying depthwise convolutions and self-attention through relative attention and
their approach of vertically stacking convolution layers and attention layers. Since the Galaxy10
DECals dataset does not contain a large amount of data, other transformer-based models did not
show great results for this task whereas a hybrid model with regularization and augmentation tech-
niques, was able to generalize well and achieved better results.

Baseline model. We established a naive baseline with random guesses. The baseline model we
chose was training CoAtNet-4 without any design modifications. This gets to a top-1 accuracy of
81.55% on the Galaxy10 DECals dataset. To train this model, we employ standard augmentations
(MixUp and CutMix) and train the network for 300 epochs using the default settings in timm with
a batch size of 256.

Loss function. We adopt the standard cross entropy loss with smoothing. We also performed some
preliminary experiments using Dense Relative Localization Loss (Liu et al., 2021a) and we believe
this might be a potentially promising direction as well.

Code. Our code is in PyTorch 1.10 (Paszke et al., 2019). We use a number of open-source
packages to develop our training workflows. Most of our experiments and models were trained
with timm (Wightman, 2019) and we also use mmclassify (Contributors, 2020) for some of the
experiments. Our hardware setup for the experiments included either four NVIDIA Tesla V100
GPUs or a TPUv3-8 cluster. We utilized mixed-precision training with PyTorch’s native AMP
(through torch.cuda.amp) for mixed-precision training and a distributed training setup (through
torch.distributed.launch) which allowed us to obtain significant boosts in the overall
model training time. We report the number of parameters and FLOPS of the final model in Table 6.

Hyperparameters. The choice of hyperparameters for training the Astroformer model is shown
in Table 5. The rest of the hyperparameters were kept to their defaults as provided in timm (Wight-
man, 2019). The hyperparameters related to Lookahead (Zhang et al., 2019) are used at their default
values as suggested.

A.5 FULL TABULAR RESULTS

We provide Tables 6-9 that provides all the numerical results.
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Table 5: Hyper-parameters used to train Astroformer for Galaxy10 DECals.

Hyper-parameter Values
Stochastic depth rate 0.2
Center crop False
Mixup Alpha 0.8
Train epochs 300
Label smoothing 0.1 (timm default)
Train batch size 256
Optimizer type Lookahead (Zhang et al., 2019)

+ RAdam (Liu et al., 2020)
LR decay schedule Cosine
Base learning rate 2e-5
Warmup learning rate 1e-5 (timm default)
Warmup 5 epochs
Weight decay rate 1e-2
Gradient clip None
EMA decay rate None
RandAugment layers 2

Table 6: Sorted table based on the number of parameters in
each family for top-1 accuracy and scaling curves of multiple
models on the Galaxy10 DECals dataset shown in Figure 3.

Model family Params (M) FLOPs (G) Top-1 Accuracy (↑)

Astroformer
655.04 115.97 75.27
271.54 60.54 94.86
161.75 31.36 92.39

SwinV2
274.06 81.55 81.55
195.16 35.09 91.23

86.86 15.86 84.58

ViT

1011.22 267.18 78.27
630.78 167.40 78.46
303.31 61.60 80.25

87.46 4.41 84.36
85.81 17.58 84.35

5.53 1.26 74.21

EfficientNet v2
117.25 12.40 90.12

52.87 5.46 85.67
20.19 2.91 84.37

CoAtNet
163.08 36.69 82.39

72.62 16.58 87.45
40.87 8.76 85.24

Swin
195.01 34.53 93.21

86.75 15.47 82.38
23.68 4.63 81.57

Table 7: Contribution to the er-
ror rate for Astroformer-4 on
the Galaxy10 Dataset according
to the classes in the test set.

Class Contribution to
error rate (%)

0 0.31
1 0.23
2 1.28
3 0.3
4 1.02
5 0.14
6 0.31
7 0.12
8 1.16
9 0.27

5.14

A.6 SUPPLEMENTAL FIGURES

We provide Figures 3-2 that provides supplementary images.
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Table 8: Sorted table based on the number of parameters in each family for top-1 accuracy and
scaling curves of multiple models on the CIAFR-100 shown in Figure 4.

Model family Params (M) FLOPs (G) Top-1 Accuracy (↑)

EfficientNetV2
117.36 12.4 92.3
52.98 5.45 92.2

20.3 2.91 91.5

ViT

305.61 15.38 74.26
303.4 61.6 75.28
87.53 4.41 86.3
85.87 17.58 87.1

EfficientNet

84.87 7.21 92.32
64.04 5.36 91.7
40.96 3.5 89.96
28.54 2.47 88.76
17.72 1.58 88.72

CoAtNet
271.68 62.65 92.13
163.22 36.68 89.45
72.71 16.58 87.9

Astroformer
655.34 115.97 89.38
271.68 60.54 93.36
161.95 31.36 87.65

Table 9: Sorted table based on the number of parameters in each family for top-1 accuracy and
scaling curves of multiple models on the CIAFR-10 shown in Figure 5.

Model family Params (M) FLOPs (G) Top-1 Accuracy (↑)

EfficientNetV2
117.25 12.40 99.1
52.87 5.46 99.0
20.19 2.91 98.7

ViT

305.52 15.39 77.8
303.31 61.60 76.5
85.81 17.58 74.9
87.46 4.41 73.4

EfficientNet

63.81 5.37 99.0
40.76 3.51 97.23
28.36 2.47 95.43
17.57 1.59 93.89
10.71 1.03 93.45

CoAtNet
72.62 16.58 92.17

163.08 36.69 91.43
271.54 62.65 91.34

Astroformer
161.75 31.36 99.12
271.54 60.54 98.93
655.04 115.97 93.23
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Figure 3: (a) The top-1 accuracy to parameter scaling curves for multiple models on the Galaxy10
DECals dataset. (b) The top-1 accuracy to FLOPs scaling curves for multiple models on the
Galaxy10 DECals dataset. All these scaling curves are for the evaluation size of 2242. The data
for this graph can be found in Table 6
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Figure 4: (a) The top-1 accuracy to parameter scaling curves for multiple models on the CIFAR-100
dataset. (b) The top-1 accuracy to FLOPs scaling curves for multiple models on the CIFAR-100
dataset. All these scaling curves are for the evaluation size of 2242. The data for this graph can be
found in Table 8
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Figure 5: (a) The top-1 accuracy to parameter scaling curves for multiple models on the CIFAR-
10 dataset. (b) The top-1 accuracy to FLOPs scaling curves for multiple models on the CIFAR-10
dataset. All these scaling curves are for the evaluation size of 2242. The data for this graph can be
found in Table 9
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Figure 6: Random selection of augmented images after applying regional dropout-based augmen-
tation techniques. We note the visible differences in the galaxy morphologies as well as observe
visually why partial-occluded augmentation techniques do not work well for this dataset.
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Figure 7: Raw data (galaxy images and labels) from the Galaxy10 DECals dataset. All images are a
random sample from the training set.
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