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ABSTRACT

While recent low-cost radar-camera approaches have shown promising results in
multi-modal 3D object detection, both sensors face challenges from environmen-
tal and intrinsic disturbances. Poor lighting or adverse weather conditions de-
grade camera performance, while radar suffers from noise and positional ambigu-
ity. Achieving robust radar-camera 3D object detection requires consistent perfor-
mance across varying conditions, a topic that has not yet been fully explored. In
this work, we first conduct a systematic analysis of robustness in radar-camera de-
tection on five kinds of noises and propose RobuRCDet, a robust object detection
model in bird’s eye view (BEV). Specifically, we design a 3D Gaussian Expan-
sion (3DGE) module to mitigate inaccuracies in radar points, including position,
Radar Cross-Section (RCS), and velocity. The 3DGE uses RCS and velocity priors
to generate a deformable kernel map and variance for kernel size adjustment and
value distribution. Additionally, we introduce a weather-adaptive fusion module,
which adaptively fuses radar and camera features based on camera signal confi-
dence. Extensive experiments on the popular benchmark, nuScenes, show that
our RobuRCDet achieves competitive results in regular and noisy conditions. The
source codes and trained models will be made available to the public.

1 INTRODUCTION

Multi-modal 3D object detection is crucial in computer vision, as it leverages the complementary
signals captured by cameras and 3D sensors. Due to its accurate 3D depth information and robust-
ness, radar has emerged as a promising and cost-effective 3D signal, benefiting applications such as
autonomous driving (Qi et al., 2019; Liu et al., 2024) and robotic navigation (Arnold et al., 2019;
Wan et al., 2024). Despite the significant success of previous radar-camera 3D object detection
methods (Kim et al., 2024; Lin et al., 2024; Zhou et al., 2023; Jiang et al., 2024), they often neglect
the importance of model robustness, which limits the practical applicability of these methods.

Several works (Zhou et al., 2023; Kim et al., 2023b; Lin et al., 2024) have designed practical feature
encoders and multi-modal fusion modules to enhance model robustness in challenging scenarios,
such as fewer input sweeps, single sensor failure, or extended radar perception range. However,
they usually neglect the interference caused by adverse weather and lighting conditions on camera
signals, the impact of internal and external factors on radar signals, and the cooperative effects
between the two sensors, as shown in Figure 1.

This motivates us to systematically analyze various types of noise in radar-camera 3D object de-
tection and then propose a robust method to counteract interference. However, there are very few
datasets that encompass all possible scenarios. Take Radiate dataset (Sheeny et al., 2021) as an ex-
ample; its camera data is limited to two views (left and right) and is mainly provided as radar images
rather than point clouds. Additionally, the partial point clouds in the dataset only contain x, y, and
intensity dimensions, lacking many key characteristics of radar points, such as Radar Cross-Section
(RCS) and Doppler speed.

To address the lack of radar-camera corruption datasets, we first simulate radar corruptions on the
widely used and large-scale multi-modal dataset, nuScenes (Caesar et al., 2020). In particular, we

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

61.04

distance (m)

37.69

19.2 38.4

52.87

43.35

32.0

45.47

44.8

58.65

False Positive Rate

(a) Comparasion of  radar point false positive rate on rainy and sunny days. (b) Comparasion of  image visibility on rainy and sunny days.

45

40

35

30

50

55

60

65

51.225.6

Rainy

38.43

 47.86

53.46

58.59

Figure 1: Illustration of radar and camera noise on sunny and rainy days. Radar noise increases
with distance from the radar sensor and is greater in rainy weather.
focus on the graphic characteristics of corruption instead of the natural causes of corruption, explor-
ing the optimal classification method for different noise patterns rather than being preoccupied with
their causes. Our method can reduce overlaps between categories. For example, ground reflections
or reflections caused by rainy or snowy weather, which are obviously different causes, may all result
in radar echo disappearance. They fall into our first category of factors. As long as we can address
the noise with the same pattern under all scenarios, the exact cause of the noise becomes less critical.

This is because different interference conditions, such as multi-path effects and reflections, may
change the distribution of radar point clouds in the same way, i.e., point loss or the generation of
false detection points. Additionally, building different types of noise distributions is more practical
than using one specific noise source to enhance the model’s robustness. Specifically, we consider
four distinct noise patterns often occurring in radar sensor deployment and autonomous driving sys-
tems: 1) Key-point missing, which manifests as the loss of radar points related to or unrelated to the
target. 2) Spurious points, which refers to the condition with false-positive radar points. 3) Point
shifting, representing radar points with deviations in the x, y, and z-axis due to interference, and 4)
Non-positional disturbance, referring to the situation where the position of radar points remains
unchanged, but other characteristics such as RCS and Doppler speed deviate.

To address these issues, we introduce a robust 3D object detection framework named RobuRCDet,
containing two critical designs for the robustness of both radar and camera signals. In this work, we
propose a 3D Gaussian Expansion (3DGE) module to filter spatially inaccurate radar points through
point expansion in the voxel field. We analyze the distribution pattern differences between the noisy
and target point clouds. As shown in Figure 2, the noisy point is more randomly and sparsely dis-
tributed in space. We thus leverage the sparsity to sum all radar voxels and conduct normalization to
enhance the dense part and reduce the sparse area according to the amplitude difference. Moreover,
we design a Confidence-guided Multi-modal Cross-Attention (CMCA) module to enhance camera
robustness by dynamically evaluating camera signal confidence. Since the confidence of the cam-
era and radar signal varies significantly in different conditions, for instance, in adverse weather,
the radar is much more robust than the camera. We exploit CMCA to learn reliable and accurate
radar features from raw signals in proper conditions. Additionally, since the map is learned to have
high camera signal confidence on high-quality camera images such as images on sunny days, it can
preserve the original performance on clean data. With this module, we can preserve the original per-
formance on clean data while ensuring robustness against noise. We conduct extensive experiments
on original and augmented data and demonstrate the effectiveness and robustness of our method,
especially under interfering conditions.

The main contributions of our works are as follows:

• To the best of our knowledge, we are the first to conduct systematic analysis on the ro-
bustness of radar-camera 3D object detection. We summarize the radar corruptions and
establish a benchmark by simulating radar noises for robust 3D object detection evaluation.

• We propose a robust 3D object detector, RobuRCDet, to perform robust 3D object detection
in various noise conditions. We design a 3D Gaussian Expansion module to highlight the
key points and reduce the impacts from noisy points and a Confidence-guided Multi-modal
Cross-Attention module to learn the robust multi-modal fusion.

• Extensive experimental results on nuScenes have shown the effectiveness of the proposed
method. Our method achieves a 19.4% improvement in NDS and a 25.7% improvement in
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mAP under conditions of simultaneous radar signal interference and camera signal inter-
ference, compared to the baseline with only radar backbone and camera backbone.

2 RELATED WORK

Camera-based 3D Object Detection. The success of 2D object detection (Zhi et al., 2019; Xingyi
et al., 2019), with the growing demand for 3D perception in fields like autonomous driving and
robotics, prompts the development of 3D object detection technology. Early works (Li et al., 2023;
Huang et al., 2021; Huang & Huang, 2022) are based on multi-view cameras which leverage multi-
view information through cross-view interaction to improve 3D object detection performance. The
multi-view 3D object detection methods can be briefly divided into two categories, i.e., dense BEV-
based and sparse query-based methods.

Numerous dense BEV-based methods adopt Lift-Splat-Shoot (LSS) (Philion & Fidler, 2020) to
transform 2D features into BEV features, such as BEVDet (Huang et al., 2021). On the other hand,
BEVDepth (Li et al., 2023) designs a trustworthy depth estimation module for better view transfor-
mation in the BEV space. For sparse query-based methods, PERT series (Liu et al., 2022; 2023a;
Wang et al., 2023a;b) incorporate the position information of 3D coordinates into image features
and integrate long-term temporal fusion. Most recently, QTNet (Hou et al., 2024) proposes a simple
and effective framework that leverages the prior object queries from previous frames to enhance the
representation of current object queries.

While these methods achieve advanced 3D object detection performance, they overlook robustness,
a key factor in real-world applications. Unlike millimeter-wave radar, camera images are prone
to interference in darkness and bad weather, leading to poor detection performance. To this end,
RobuRCDet incorporates the camera signal confidence map to effectively enhance network robust-
ness along with radar modality under various conditions.

Radar-Camera 3D Object Detection. The camera sensor inherently lacks 3D depth information,
limiting its 3D detection accuracy. To alleviate this issue, researchers propose incorporating the cost-
effective radar sensor into the 3D detection framework. The radar sensor provides the 3D location
of point clouds and additional Doppler velocity, compensating for the camera sensor’s weaknesses.

Specifically, CenterFusion (Nabati & Qi, 2021) uses a key point detection network to obtain center
points and then associates key points with the corresponding radar detection results in a pillar-based
manner. After that, CRAFT (Kim et al., 2023a) further considers the spatial properties of radar and
camera sensors and designs a proposal-level early fusion framework. RCBEV (Zhou et al., 2023)
introduces the feature-level fusion in the BEV space for a unified feature representation. Meanwhile,
RCM-Fusion (Kim et al., 2024) is proposed to combine radar and camera features at both the feature
and instance levels, further improving the detection performance. More recently, CRN (Kim et al.,
2023b) transforms PV image features to BEV with radar occupancy to compensate for the depth in-
formation in images. The radar and image features are then aggregated by the proposed multi-modal
deformable attention to tackle the spatial misalignment between two modalities. RCBEVDet (Lin
et al., 2024) specifically customizes a feature extractor for radar and uses RCS as the object size
prior. It further designs a Cross-Attention Multi-layer Fusion module for robust radar-camera fea-
ture alignment and fusion.

By contrast, focusing on the framework robustness, our RobuRCDet proposes a 3DGE module to
decrease the impact of potential noisy points in the radar voxels, which leverages the distribution
characteristics of radar points to mitigate the impact of radar noise at the source, rather than base on
network architecture design to enhance robustness.

Robust 3D Object Detection. Sensor noise is one of the most significant factors causing the de-
crease in detection performance during inference for 3D object detection. Several methods (Kong
et al., 2023a;b; Xie et al., 2023; Kong et al., 2023c) attempt to benchmark the common corruptions in
3D perception tasks from different angles. For instance, RoboDepth (Kong et al., 2023c; Ren et al.,
2022) sets up a benchmark to assess the robustness of monocular depth estimation in the presence
of corruptions. On the other hand, RoboBEV (Xie et al., 2023) presents an extensive benchmark
aimed at evaluating the robustness across four BEV perception tasks, i.e., 3D object detection (Liu
et al., 2023b; Liang et al., 2022) and semantic segmentation (Zhou & Krähenbühl, 2022). At the
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(a) Key-point Missing (b) Spurious Points (random) (c) Spurious Points (related) (d) Point Shifting

Figure 2: Point cloud visualization of radar signals with noise. The blue points refer to the ground
truth radar points, and the red points represent noisy radar points in various conditions. Additionally,
the light blue points in the key-point missing part denote the eliminated ground truth radar points.

same time, Robo3D (Kong et al., 2023b) evaluates the resilience of 3D detectors and segmenters
when exposed to LiDAR-related corruptions. However, these benchmarks mostly focus on camera
or lidar perceptions, but the radar corruptions are almost ignored.

Furthermore, the efforts (Jiang et al., 2024; Wu et al., 2024) are made to address the above-mentioned
corruptions and achieve robust 3D object detection under noisy conditions. (Wu et al., 2024) de-
velops a semantic-embedded denoising diffusion model to mitigate the ambiguous nature of radar
signals. SparseInteraction (Jiang et al., 2024) designs a Noisy Radar Filter module to address radar
false positive issues. However, these methods only model partial radar noise types. Further, they
only consider radar or LiDAR degradation scenarios and overlook camera failure cases. In contrast,
our RoboRCDet addresses these issues and designs a module for the robust fusion of radar and
camera features in the BEV view.

3 CORRUPTION TAXONOMY

Given the challenges of collecting real-world corruption data, we generate our training and valida-
tion dataset by synthesizing noise for radar and image signals. Since many existing methods focus
on the robustness of image data, we focus more on exploring four noise types in radar signals:
key-point missing, spurious points, point shifting, and non-positional disturbance.

3.1 RADAR SIGNAL

For clear illustration, a radar point p ∈ R5 is with coordinates (xp, yp, zp), Radar Cross-Section
(RCS), and Doppler Speed (v).

Key-point missing. The sparsity of radar point clouds poses a significant challenge to 3D detection.
Interferences, such as reflections from lost radar beams, can worsen this issue, further increasing
the sparsity of the point cloud. In our setting, we simulate key-point missing in two scenarios.
Specifically, based on the existing clean radar points p, we either randomly or selectively remove
points Rγ

k(p) across the entire set or the region of the target object, which are represented by γ = 0
and γ = 1.

pn = p−Rγ
k(p), k ∈ [1,M ], (1)

where R denotes the random process to delete points from p. The k is the number of points we
should delete, ranging from 1 to M .The M is set to be half of the number of p or eight when γ is 0
or 1. Finally, the kept final radar points are defined as pn.

Spurious points. Due to intrinsic issues, noisy environments, or even artificial interference, spurious
points can appear alongside the original radar point clouds. Similar to missing key points, spurious
points are categorized into two types. The first type consists of noisy points superimposed on the
original radar points, correlated with their positions, and randomly distributed around them. The
second type contains completely random points originating from complex external environments
and unrelated to the target point cloud.

pn = p ∪ p′, p′ ∼ N(δ, σ), σ ∼ U(1, 50), (2)
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Clean Rainy Snowy Foggy Low-light

Figure 3: Visualization of image signals under adverse weather conditions.

δ =

{
p(xp, yp, zp, RCS, v), point related,

R(xp, yp, zp, RCS, v), random,
(3)

where p′ is the added noisy points. As shown in equation 2, the selection of p′ follows the normal
distribution, where δ is defined in equation 3. Under the first circumstance, δ is set to p, while the δ
is decided by a random process R in the second situation.

Point Shifting. We refer to point shifting as the misalignment of 3D information where radar points
deviate from their original locations. To simulate this corruption, we apply distortions directly to the
radar points using a normal distribution N(0, σ).

pn = p+∆p, (4)

where ∆p ∼ N(0, σ) and σ ∼ U(1, 50).

Non-positional disturbance. External interference can also affect the values of RCS and v, rather
than introduce noise to the spatial coordinates. Although this scenario is less common than the
previous three cases, we include it in our benchmark for completeness and refer to it as a non-
positional disturbance.

As shown in equation 5, only the RCS and v dimensions are disturbed in the normal distribution
manner, and the values of x, y, and z are consistent.

pn = [xp, yp, zp, RCS +∆RCS, v +∆v], (5)

where ∆RCS ∼ N(0, σ), ∆v ∼ N(0, σ), and σ ∼ U(1, 50). Visualization of the point cloud is
shown in Figure 2.

3.2 IMAGE SIGNAL

We simulate images under adverse weather conditions, including rainy, snowy, foggy, and low light,
according to the simulation methods in basic low-level tasks. The visual results of the synthetic
degraded images are illustrated in Figure 3. 1) Adverse weather. We leverage the composition
method in (Han et al., 2022) to synthesize the images in various conditions. The rain, snow, and fog
maps are provided, and we synthesize the normalized clean images. 2) Low light. The low-light
images are simulated through a classical gamma correction algorithm, where the gamma factor is
randomly elected.

4 METHODOLOGY

Different from the concurrent works (Nabati & Qi, 2021; Zhou et al., 2023; Kim et al., 2023b), we
propose RobuRCDet that focuses more on robust 3D object detection. As shown in Figure 4, our
framework includes two separate branches for processing the image and radar point clouds and a
fusion module. In the following subsections, we will overview the whole pipeline of RobuRCDet.
Then, the proposed two modules will be elaborately described.

4.1 OVERVIEW OF ROBURCDET

As shown in Figure 4, we first pass the radar point cloud through a voxelization process. Then,
3DGE is applied to spread the RCS and Doppler speed dimensions to surrounding voxels according
to a Gaussian distribution. The expanded radar voxels and the original radar voxels are then fed into
a radar encoder with shared weights, resulting in the radar feature after feature summation. Next,
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Radar Encoder 

Radar Encoder 

Confidence-guided Multi-modal 
Cross Attention

3D Detection Head

Figure 4: Overall pipeline of the proposed RobuRCDet. First, we extract the image features from
multi-views and transform them into BEV space. Concurrently, 3DGE is employed on the radar
voxels, and we put the original voxels and expanded voxels into the Radar Encoder to obtain radar
features after summation. Finally, we fuse the image and radar features in the confidence-guided
multi-modal cross-attention in the BEV space for 3D object detection.

both multi-view images and the radar point cloud are fed into the image backbone to extract image
features guided by radar information. After transforming the radar and image features into the BEV
space, CMCA is applied to fuse the features from both modalities. Finally, the fused features are
used for 3D object detection tasks.

4.2 3D GAUSSIAN EXPANDING

Proj

Figure 5: Illustration of the 3D Gaussian Ex-
panding. It first utilizes a projector to learn the
deformable kernel map and σ from the RCS and
velocity prior. After that, the two parameters are
used to conduct expansion on each radar voxel.

To mitigate the impact of noisy radar points, we
introduce the 3D Gaussian Expanding (3DGE)
module to filter radar points in the voxel space.
As illustrated in Figure 2, radar point distri-
bution typically follows a pattern: points are
dense within the target range, while false pos-
itive points are usually sparse. Here, our pro-
posed 3DGE module leverages this semantic
information in radar density, enhancing key
points and suppressing false positives to handle
extensive noise from radar corruption.

We note that even if interference causes key
points to become sparser, radar points in the tar-
get region remain denser than in false positive
areas, as shown in Figure 2. This is because
false detection points exhibit strong randomness and are generally isolated or small clusters of scat-
tered points. In contrast, target objects have a certain area, and multiple radar beams are typically
reflected from this area. As long as the interference does not cause all beams from the same target
object to vanish completely, the resulting point cloud is of high probability to be denser than that of
the false detection interference. By applying 3DGE, these sparse key points can complement each
other within the voxel, helping to restore the target area as much as possible and thereby maintaining
the robustness of the radar branch.

Figure 5 illustrates the details of the proposed 3DGE module. First, we input the RCS and velocity
information into a parameter encoder (Proj), generating the deformable kernel map and determining
the variance of the Gaussian kernel. Next, we apply 3D Gaussian expansion to each radar point.
Specifically, the RCS and velocity values are spread to the surrounding voxels of each radar point,
with the spreading range determined by the kernel size λp provided by the deformable kernel map.
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For instance, if λp is 3, the RCS and velocity are expanded into a 3 × 3 × 3 region according to
the normal distribution. To balance efficiency and accuracy, we restrict that λp ∈ 1, 3, 5. After
expansion, the RCS and velocity values are summed within each voxel, followed by normalization
to restore the values to their original range, as described by the following equation:

V 3DGE
radar (x, y, z, RCS, v) =

V (RCS, v)

2× π × σ2

 exp
(x−xp)2+(y−yp)2

2σ ,
|x− xp| ∈ λp,

|y − yp| ∈ λp,

0, otherwise,
(6)

where 2 × π × σ2 is the coefficient of the Gaussian function, V represents the radar voxel, xp and
yp are the x-coordinate and y-coordinate of the radar point, and we perform the expansion on the
RCS and velocity dimensions. Next, normalization is applied in each expanded space to maintain
the summation of the expanding kernel to 1 and prepare the voxel for feature extraction. Finally, the
3DGE result V 3DGE

radar (x, y, z, RCS, v) combines the original radar voxel in a res-block manner.

4.3 CONFIDENCE-GUIDED MULTI-MODAL CROSS-ATTENTION

Degradation 
aware head

Aggregation Deform CA

Deform CA

Conv

Figure 6: Architecture of the Confidence-guided Multi-modal
Cross-Attention module. It considers the signal confidence of
the camera and adaptively fuses image features and radar features
to maintain robustness in various conditions.

In this section, we intro-
duce a Confidence-Guided
Multi-Modal Cross-Attention
(CMCA) module to address the
challenges of low performance
in degraded camera signals
under adverse weather condi-
tions and low-light scenarios.
Radar demonstrates superior
robustness compared to camera
signals in many challenging sce-
narios, such as rainy and foggy
days with very low visibility.
As discussed in Section 1, in these situations, the confidence in radar signals is higher than that of
camera signals. Therefore, using the fixed fusion method as in clear weather is unreasonable. We
need an adaptive approach to adjust for both scenarios where the sensor confidences are similar
(clear weather, i.e., sunny) and where there is a significant confidence disparity (low visibility
conditions, i.e., foggy, rainy, snowy).

To ensure the inference speed of the model and reduce training time costs, we do not apply specific
evaluation or constraint mechanisms, such as prompts, loss functions, or image quality assessment
methods, to the CMCA module. Instead, we utilize the existing nighttime and rainy scenes in
the nuScenes training dataset to guide the degradation-aware head in dynamically learning optimal
performance strategies. As shown in Figure 6, we leverage the image feature fI as the input of the
degradation aware head to generate the camera signal confidence map Mc as follows:

Mc = Softmax(MLP(fI)), (7)

which is decided by the degradation level of the camera signal. Next, we multiply fI by Mc to get f c
I

and multiply fp by 1−Mc to get f c
p , allowing the information from Mc to guide the adaptive fusion

of radar and image features thoroughly. Next, we concatenate fI and fp, then conduct aggregation
to obtain fA as Q while obtaining fmm as:

fA = W (Concat(LN(fI), LN(fp))),

fmm = Concat(LN(Mc × fI), LN((1−Mc)× fp)),
(8)

where W indicates the linear projection, LN refers to the LayerNorm and Concat refers to the
concatenation process.

This adaptive adjustment mechanism calculates the confidence of the signals for each scene. In
adverse weather conditions, the map will generate low confidence, guiding the fuser to integrate
radar features while deeply minimizing interference from image signals. In addition, since the
detection accuracy of radar camera-based methods primarily comes from the camera, we rely more
on the camera signal when it has high confidence, with the radar signal serving as adaptive support.
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Table 1: 3D Object Detection on nuScenes val set. ‘C’ and ‘R’ represent camera and radar,
respectively. Some results are borrowed from RCBEVDet (Lin et al., 2024).

Methods Input Backbone Image Size NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
CenterFusion C+R DLA34 448×800 45.3 33.2 0.649 0.263 0.535 0.540 0.142

CRAFT C+R DLA34 448×800 51.7 41.1 0.494 0.276 0.454 0.486 0.176

RCBEV4d C+R Swin-T 256×704 49.7 38.1 0.526 0.272 0.445 0.465 0.185

CRN C+R R18 256×704 54.2 44.9 0.518 0.283 0.552 0.279 0.180

RCBEVDet C+R R18 256×704 54.8 42.9 0.502 0.291 0.432 0.210 0.178

RobuRCDet C+R R18 256×704 55.0 45.5 0.516 0.287 0.521 0.281 0.184

BEVDet C R50 256×704 39.2 31.2 0.691 0.272 0.523 0.909 0.247

BEVDepth C R50 256×704 47.5 35.1 0.639 0.267 0.479 0.428 0.198

SOLOFusion C R50 256×704 53.4 42.7 0.567 0.274 0.411 0.252 0.188

StreamPETR C R50 256×704 54.0 43.2 0.581 0.272 0.413 0.295 0.195

CRN C+R R50 256×704 56.0 49.0 0.487 0.277 0.542 0.344 0.197

RCBEVDet C+R R50 256×704 56.8 45.3 0.486 0.285 0.404 0.220 0.192

RobuRCDet C+R R50 256×704 56.7 51.2 0.481 0.273 0.499 0.317 0.193

Finally, we apply the multi-scale deformable cross-attention (Deform CA) to generate the BEV
feature. For the original feature fusion, we concatenate fI and fp to be the key and Value, while for
the confidence-aware feature fusion, we concatenate f c

I and f c
p to be the key and Value. Then, the

summation and convolution are conducted on the outputs of Deform CA modules to form the BEV
feature fBEV . The overall equation can be depicted as:

fBEV = Conv(Deform CA(fA,Concat(fI , fp)) + Deform CA(fA, fmm)), (9)

where fA refers to the features obtained from the sparse aggregation module. Through
CMCA, we invite adaptability into the radar feature and image feature fusion pro-
cess, which maintains the robustness of camera signals in multiple conditions.

Table 2: Corruption results on nuScenes val set. C1
to C3 represent the Spurious Points, Non-positional Distur-
bance, and Key-point Missing, respectively. In addition, for
the first two corruptions, the level refers to σ while the level
of C3 refers to the number of missing beams.

Corruption CRN RCBEVDet RobuRCDet

Type level NDS↑ mAP↑ NDS↑ mAP↑ NDS↑ mAP↑

C1
3 44.6 39.0 47.4 39.3 47.0 41.2
5 39.2 36.0 44.2 38.9 44.6 40.5

C2
3 37.3 35.4 41.7 39.6 42.2 40.6
5 34.8 32.1 36.5 32.7 37.4 35.1

C3
10 50.1 41.9 52.4 42.7 52.7 43.8
14 48.7 39.6 51.0 40.5 50.4 41.9

Rain - 42.1 31.2 45.6 32.9 45.9 33.6

Fog - 46.8 37.7 51.9 43.1 51.3 43.6

Snow - 41.6 30.1 44.1 31.7 44.7 32.8

Night - 38.2 31.4 42.1 35.0 42.6 39.0

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metrics.

We train and evaluate our method
on the widely used benchmark
nuScenes (Caesar et al., 2020). We
add the simulated radar and camera
corruption to form the noisy dataset
on nuScenes. We use the official
metrics for the 3D object detection
task, including NDS and mAP.

Implementation Details. For the
camera stream, we adopt the image
encoder in CRN (Kim et al., 2023b) with several modifications; That is, we add a confidence map
projector to extract confidence map from image feature in the BEV space. For the radar, we accu-
mulate eight previous radar sweeps and use normalized RCS and Doppler speed as input features
following GRIF (Kim et al., 2020) Net and CRN (Kim et al., 2023b). Our model is trained for
24 epochs with AdamW (Loshchilov, 2017) optimizer. We apply image and BEV data augmenta-
tion (Li et al., 2023) to prevent overfitting. In addition, we randomly drop sweeps and points for
radar input following (Leng et al., 2023).

5.2 MAIN RESULTS

Clean Results. We compare RobuRCDet with previous state-of-the-art 3D detection methods on
the val set, as shown in Table 1. The results show that RobuRCDet achieves competitive perfor-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Comparasion of  CRN and RobuRCDet on five degradation types.

RobuRCDet

CRN

NDS

Rainy

Key-point Missing

Non-positional 
Disturbance

Clean

Spurious Points
54
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50

56
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(b) Comparasion of  CRN and RobuRCDet on Point Shifting with various σ.

Figure 7: Validation on various corruptions. All the metrics are tested on models with ResNet-
50 backbone. In figure (a), ‘Clean’ and ‘Rainy’ are tested on the real-world dataset, while the
radar corruptions are augmented with sigma = 1. In figure (b), the ∆ refers to the RobuRCDet’s
performance growth over CRN.

Table 3: Ablation of the main components of RobuRCDet. We progressively integrate compo-
nents into BEVDepth (Li et al., 2023) and the PointPillar encoder, forming RobuRCDet. Addition-
ally, IB and RB refer to the Image Backbone and Radar Backbone, respectively.

IB RB 3DGE CMCA
Normal Condition Corruption Condition

NDS↑ mAP↑ mATE↓ mAP (Car)↑ NDS↑ mAP↑ mATE↓ mAP (Car)↑
✓ 43.9 33.2 0.716 50.4 - - - -

✓ ✓ 54.3 42.4 0.536 68.4 28.5 23.9 0.709 39.5

✓ ✓ ✓ 54.9↑0.6 46.1↑3.7 0.523↓0.013 71.5↑3.1 33.6 ↑5.1 29.4↑5.5 0.677↓0.032 47.3↑7.8

✓ ✓ ✓ 55.2↑0.9 45.8↑3.4 0.531↓0.005 70.7↑2.3 33.1↑4.6 28.6↑4.7 0.681↓0.028 46.7↑7.2

✓ ✓ ✓ ✓ 55.0↑0.7 45.5↑3.1 0.516↓0.020 70.7↑2.3 34.1↑5.6 30.07↑6.14 0.635↓0.074 48.7↑9.2

mance compared to previous methods. Specifically, with ResNet-18 as the image backbone, RobuR-
CDet increases mAP by 2.6 and 0.6 compared to RCBEVDet and CRN, respectively. Notably, for
the ResNet-50 backbone, our method surpasses CRN and RCBEVDet on mAP by 4.5% and 13.0%,
respectively, showing the effectiveness of RobuRCDet on detection tasks.

Corruption Results. In Table 2, we illustrate the performance of RobuRCDet and another two
state-of-the-art models CRN and RCBEVDet on various augmented corruptions. Specifically, we
achieve 44.7 NDS and 32.8 mAP on snowy test sets, surpassing CRN by 3.1 NDS and 2.7 mAP.

In addition, as shown in Figure 7, we illustrate the comparison of CRN and our proposed method on
real-scenario data and each radar corruption mentioned in Section 3.1. Figure 7 (a) shows that our
method performs more robustly in all scenes than CRN. Furthermore, in Figure 7 (b), CRN has a
5.24 NDS performance drop from σ = 2 to σ = 5, while RobuRCDet merely decreases 4.58 NDS,
which improves robustness by 12.6%.

5.3 ABLATION STUDIES

We perform ablation studies on the nuScenes val set to evaluate the effectiveness of each configu-
ration of RobuRCDet. The baseline model uses RobuRCDet with a ResNet-18 backbone, an image
size of 256×704, and a BEV size of 128×128.

Main Components. As shown in Table 3, we integrated 3DGE and CMCA into the baseline to
enhance the detector’s robustness. All results are obtained from models trained on the clean dataset,
and we evaluate them on both the clean validation set (referred to as the Normal Condition) and the
synthesized noisy validation set (referred to as the Corruption Condition). Under Normal Condi-
tions, it is notable that 3DGE and CMCA improve NDS by 0.6 and 0.9, respectively, with 3DGE
achieving a 3.1 increase in mAP for cars.

Furthermore, under the Corruption Condition, 3DGE improves NDS by 17.67% and mAP by
22.82%, which indicates that 3DGE can achieve favorable performance under strong radar inter-
ference. Additionally, the higher performance increase over that under Normal Conditions demon-
strates the robustness of the proposed components.
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Table 4: Ablation of 3DGE. Uniform refers to the kernel size remaining fixed during expansion,
while Ada indicates an adaptively sized kernel map. Additionally, wxyz signifies that the input to
the parameter encoder includes RCS and v along with x, y, and z.

Method
Clean Key-point Missing

NDS↑ mAP↑ mAOE↓ mAP (Car)↑ NDS↑ mAP↑ mAOE↓ mAP↑
Baseline 53.7 44.2 0.563 70.1 53.6 44.0 0.563 70.1

+uniform 3DGE 52.9 44.0 0.551 70.1 51.4 43.1 0.562 68.6
+Ada 3DGE (wxyz) 50.7 42.7 0.607 69.5 49.5 41.9 0.622 68.5
+Ada 3DGE (ours) 54.8 45.5 0.523 70.7 54.7 45.3 0.522 70.5

Table 5: Validation on real word interference. We selected data from the nuScenes dataset under
challenging lighting and weather conditions to validate the effectiveness of RobuRCDet in real-
world scenarios.

Method input
Night Rainy

NDS↑ mAP↑ mAP (Car)↑ NDS↑ mAP↑ mAP (Car)↑
CRN (Kim et al., 2023b) C+R 33.3 25.2 73.0 56.1 47.3 76.3

CRN+CMCA (Kim et al., 2023b) C+R 33.6↑0.3 25.9↑0.7 73.1↑0.1 57.5↑1.4 48.0↑0.7 76.7↑0.4
RCBEVDet (Lin et al., 2024) C+R 34.4 25.3 73.8 59.4 47.1 76.9

RobuRCDet (ours) C+R 35.5 28.2 73.4 58.4 49.2 77.8

3DGE module. In Table 4, we conduct the ablation experiments of 3DGE design, especially for
the part of the deformable kernel map. Notably, utilizing a uniform kernel map or inviting position
information (x, y, z) to learn the kernel map and σ is not beneficial to the detection performance.
This is because the key to determining whether a radar point is a false positive lies not in its position
but rather in its RCS and Doppler speed. In addition, uniform kernel size may blur the boundaries of
the target objects, which are close in distance, resulting in detection difficulty and performance loss.
Specifically, our adaptive 3DGE increases the NDS and mAP by 1.1, 1.3, and 1.9, 1.5 compared to
the baseline and uniform 3DGE on the clean dataset. In addition, 3DGE decreases the mAOE by
7.3% under the Key-point Missing conditions compared to the baseline model. To this end, adaptive
3DGE is the most effective design compared to the uniform 3DGE and adaptive 3DGE with position
information. Furthermore, adaptive 3DGE achieves higher performance than the baseline in both
interference and non-interference environments.

5.4 ANALYSIS OF ROBUSTNESS

Table 5 illustrates the performance of RobuRCDet and previous state-of-the-art methods under real-
world challenging lighting and weather conditions, i.e., rainy conditions and night conditions. In
rainy conditions, we achieve 1.8 NDS, and 1.4 mAP over CRN while at night time RobuRCDet sur-
passes RCBEVDet by 3.20% in NDS and 11.46% in mAP. In addition, we replace the MDCA
module in CRN with our CMCA module. CRN achieves 56.1 NDS and 47.3 mAP in rainy scenarios
and the incorporation of CMCA yields 1.4 NDS and 0.7 mAP improvement, which demonstrates
the effectiveness and transferable characteristics of CMCA.

Furthermore, to enable RobuRCDet to achieve better performance under challenging conditions and
to demonstrate the robustness and effectiveness of the proposed method, we also conducted training
and testing on the noisy dataset. The results can be found in the supplementary materials.

6 CONCLUSION

We introduce RobuRCDet, a radar-camera fusion method designed to enhance the robustness of 3D
object detection. Our approach addresses the challenges of strong interference and suboptimal per-
formance in diverse perception conditions by designing two key modules: 3DGE and CMCA. Ex-
perimental results demonstrate that RobuRCDet outperforms previous state-of-the-art radar-camera
3D object detection methods in challenging conditions.
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A OVERVIEW

This supplementary material provides additional details of architecture, and qualitative and quanti-
tative experimental results. We describe implementation details for experiments in the main paper
(Section B). We further provide additional experimental results on noisy training sets (Section C)
and qualitative results (Section D).

B IMPLEMENTATION DETAILS

This section provides some experimental settings and network details in the main paper.

First, for the network detail and hyper-parameters, we employ SECONDFPN (Yan et al., 2018) to
concatenate output feature maps at stride 16 and let the output depth bins of the depth distribution
network to be 112 with a depth range of [2.0, 58.0]m and bin size to be 0.5m. For the CMCA
module, we use the multi-scale deformable attention implementation from MMCV (Contributors,
2018) and set the number of attention heads to 8 and sampling points to 2. We set the radar point
range as [-51.2, 51.2]m and make the BEV feature map 128× 128.

Second, for the noisy training set, we set the ratio of clean images to noisy images in the training
set to 8:2. For the noisy images, we randomly synthesize one of the four types of proposed radar
corruptions, with the intensity of the noise also being random. Additionally, we synthesize harsh
weather or low-light conditions on the images corresponding to the timestamps with noise.

In addition, the corruption levels of Spurious Points, Point Shifting, and Non-positional Disturbance
are determined by σ, while the number of missing beams determines the noise level of Key-point
Missing. Furthermore, weather degradation is also classified into levels; for example, rain and fog
can be divided into light or heavy, whereas snow does not have a classification. Additionally, the
low-light level at night is determined by the gamma coefficient, with a mild low-light coefficient set
to 1.0-2.0 and a heavy set to 2.0-3.0.

C ANALYSIS ON THE NOISY TRAINING SET.

Table 6 illustrates the results of CRN and RobuRCDet which are trained on the noisy dataset and
tested on each corruption. ResNet-18 is used as the backbone. In this table, C0 denotes the clean
testing set and it is notable that RobuRCDet achieves the same performance (54.4 NDS and 44.9
mAP) as the model trained on the clean dataset and surpasses CRN by 1.6 NDS and 1.4 mAP.
Furthermore, C1 to C4 represent Spurious Point, Non-positional Disturbance, Key-point Missing,
and Point Shifting.

According to Table 6 and the comparison in Table 2, performance is improved when processing noisy
radar point clouds after training with the corruption training set. Additionally, to ensure fairness in
the experiments, we train and test both the RobuRCDet and CRN methods on the disturbed dataset
and compared their performance. It is clear that our method still demonstrates better robustness than
CRN with 2.4 NDS and 1.9 mAP improvement in C1 with σ = 10.

D ADDITIONAL VISUAL RESULTS.

In this section, we present more synthesized noisy images. Notably, to better simulate real scenarios,
we ensure that the degradation types and levels for multiple cameras at the same timestamp are the
same. Figure 8 and Figure 9 showcase the synthesized images of rainy days, snowy days, and
nighttime mentioned in the main paper.

E SIMULATION OF THE EFFECT OF 3DGE ON THREE TYPES OF NOISE.

In this section, we included simulations of the effects of 3DGE on various types of data, which are
shown in Figure 10. These simulation results visually demonstrate the functioning and effectiveness
of 3DGE. For instance, although the patterns of the three types of noise differ, the surrounding
noise points consistently appear as deep blue, indicating that, after processing, their impact on the
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Light Rain

Heavy Rain

Snow

Figure 8: Visualization of synthesized challenging weather images. Two levels of rainy images
and a set of snowy images are displayed.
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Table 6: Validation of models trained with noisy training sets. We augment the image data and
radar data to form the training set. denotes that the model is retrained.

Corruption CRN∗ RobuRCDet

Type level NDS↑ mAP↑ mATE↓ mAP (Car) ↑ NDS↑ mAP↑ mATE ↓ mAP (Car)↑
C0 - 52.8 43.5 0.550 69.6 54.4 44.9 0.517 70.9

C1
1 52.1 42.9 0.553 69.1 54.0 44.7 0.524 70.6

10 51.2 42.4 0.560 68.4 53.6 44.3 0.532 70.1

C2
1 51.6 42.6 0.557 69.2 53.4 44.1 0.539 70.1

10 50.5 41.1 0.568 68.1 52.6 42.9 0.547 69.7

C3
8 52.3 43.0 0.551 69.2 54.1 44.6 0.537 70.2

10 52.0 42.3 0.569 68.8 53.8 44.0 0.642 69.9

C4
1 41.6 35.2 0.668 55.4 45.1 36.9 0.637 56.8

10 33.4 28.0 0.750 41.5 36.7 31.2 0.699 47.0

Night (2.0-3.0)

Night (1.0-2.0)

Figure 9: Visualization of synthesized challenging light conditions. Two levels of low-light im-
ages are displayed.
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Clean Data Spurious Points Key-point Missing Point Shifting

Figure 10: Simulation of the effect of 3DGE on three types of noise.

recognition target is minimal. Furthermore, even though the shapes of the heatmaps around the
target vary after processing, the deep red regions, representing the peak positions of the targets,
remain entirely consistent. Notably, the spurious points appearing around the target region can even
contribute to strengthening the target area and diminishing the influence of surrounding points.
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