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Abstract

No-reference image- and video-quality metrics
are widely used in video processing benchmarks.
The robustness of learning-based metrics under
video attacks has not been widely studied. In ad-
dition to having success, attacks on metrics that
can be employed in video processing benchmarks
must be fast and imperceptible. This paper intro-
duces an Invisible One-Iteration (IOI) adversarial
attack on no-reference image and video quality
metrics. The proposed method uses two modules
to ensure high visual quality and temporal stabil-
ity of adversarial videos and runs for one iteration,
which makes it fast. We compared our method
alongside eight prior approaches using image and
video datasets via objective and subjective tests.
Our method exhibited superior visual quality
across various attacked metric architectures while
maintaining comparable attack success and speed.
We made the code available on GitHub: https:
//github.com/katiashh/ioi-attack.

1. Introduction
No-reference (NR) image- and video-quality assessment
poses a significant challenge in computer vision. In contrast
to full-reference (FR) quality metrics, NR metrics do not
estimate the similarity of a distorted image or video to the
original one but evaluate its visual appeal. The rapid inte-
gration of deep-learning-based NR image-and video-quality
assessment metrics (Ying et al., 2020; Talebi & Milanfar,
2018; Su et al., 2020; Golestaneh et al., 2022) led to the
importance of investigating their vulnerabilities to transfor-
mations of input. One of the most common types of input
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transformations is adversarial attacks. In the case of image-
and video-quality metrics, adversarial attacks are modifica-
tions of input images or videos that change the predicted
quality score without significant influence on perceptual
quality. Several studies (Zhang et al., 2022a; Korhonen &
You, 2022a; Sang et al., 2022; Shumitskaya et al., 2022;
2023b; Meftah et al., 2023; Yang et al., 2024) unveiled vul-
nerabilities in NR image quality metrics when exposed to
adversarial attacks.

NR metrics are employed in various image- and video-
processing benchmarks, such as super-resolution (PIRM-SR,
2019; Khrulkov & Babenko, 2021; Ma et al., 2017), video
generation (VideoGeneration, 2024), video compression
(Ghadiyaram et al., 2017). For some tasks, NR metrics show
even better performance than FR metrics; for example, video
super-resolution (SR-MSU, 2023) or video compression by
new encoding standards such as H.266/VVC (Antsiferova
et al., 2022). The developers of video-processing algorithms
can integrate adversarial attacks on quality metrics into their
methods to achieve higher positions in public benchmarks.
Today, such cheating can be detected in benchmarks that
publish subjective comparisons along with objective ones.
For example, in MSU Codec Comparison 2021 (CC-MSU,
2021), the leaderboard by a learning-based metric VMAF,
which was shown to be vulnerable to attacks (Siniukov et al.,
2022; Zvezdakova et al., 2019), differs from a subjective
one. Algorithms in these benchmarks compete in both vi-
sual quality and speed, and a high speed is essential for
some real-life applications like universal encoding for video
compression (from one to ten frames per second). Thus, to
cheat in video processing benchmarks, it is profitable for
an attacker to inject an imperceptible perturbation into the
video without significantly decreasing the method speed.

In the literature, most of the existing approaches evaluate
NR metrics robustness in the image domain. However, to
evaluate the robustness of NR metrics for videos, an adver-
sary has to satisfy several essential conditions, making such
a task more challenging:

1. Quantitative success of an attack. For NR metrics, the
success of an attack is measured by the amount of the
metric’s score change. Both decreasing and increasing
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a metric’s score can be considered an attack; however,
making a score higher has more practical applications.

2. High speed of an attack. The attack must operate at
high speed for practical viability. A slow attack holds
limited practical significance, as its integration into
video processing algorithms will greatly slow down
the method and lower its position in benchmarks.

3. Temporal consistency of a transformed video. The per-
frame implementation of adversarial attacks designed
for images in videos leads to noticeable flickering ef-
fects that look suspicious in subjective comparisons.

Our research aims to investigate the potential of injecting
fast, invisible and temporally consistent adversarial attacks
on NR quality metrics. This paper introduces the Invisible
One-Iteration (IOI) adversarial attack for images and videos.
To achieve high attack speed, our method yields perturbation
by calculating the gradient of an attacked model using one
access to the model. We further show that a one-iteration
attack for each frame is more efficient than a many-iteration
attack applied to only some frames. To keep the temporal
stability of a perturbed video, we make our attack invisible
to the human eye by using weighting and frequency modules.
The proposed attack operates in a white-box scenario, which
does not limit its applicability for benchmarks: usually, a
comparison methodology is known, and quality metrics are
published for reproducibility. The primary contributions of
this work can be summarized as follows:

• We propose an Invisible One-Iteration (IOI) adversar-
ial attack that increases NR image- and video-quality
metrics scores. It produces perturbations that are im-
perceptible and temporally stable in videos. The attack
is fast: it does not require convergence and works effi-
ciently with one iteration.

• We propose a methodology for comparing adversarial
attacks at NR metrics. It is based on aligning attack
speed and relative metrics increase after the attack,
yielding to comparing only objective and subjective
quality of adversarial videos.

• We conducted comprehensive experiments using two
datasets and three NR models. Four quality metrics
were used to demonstrate that the proposed attack gen-
erates adversarial images and videos of superior quality
compared to prior methods.

• We conducted a subjective study on the proposed
method’s perceptual quality and temporal stability. A
crowd-sourced subjective comparison with 685 sub-
jects showed that the proposed attack produces ad-
versarial videos of better visual quality than previous
methods.

Our code is publicly available at https://github.
com/katiashh/ioi-attack.

2. Related Work
Adversarial attacks usually have constraints on perturbations
and minimize the L∞ norm between adversarial examples
and their original inputs. Other Lp norms (Su et al., 2019;
Szegedy et al., 2013) are less common due to a higher com-
putational complexity. We further consider methods that
use only L∞ constraint to work faster on high-dimensional
data like videos. Among such kinds of attacks, Goodfellow
et al. proposed the FGSM method (Goodfellow et al., 2015)
that generates adversarial examples by leveraging gradients
from the targeted model. Recently, UAP (Shumitskaya et al.,
2022) and FACPA (Shumitskaya et al., 2023b) attacks on
NR image quality metrics have been proposed. These meth-
ods also used L∞ norm constraints at the training stage.

Numerous studies showed that Lp norms are not suitable
as a distance metric to evaluate perceptual image quality
(Sharif et al., 2018; Fezza et al., 2019; Wang et al., 2004;
Johnson et al., 2016; Isola et al., 2017). Perturbations in
images generated under Lp norm constraints often result
in noisy pixels within smooth areas of the original image,
which is easily perceptible to the human eye. Several adver-
sarial attacks prioritize the visual quality of the generated
adversarial images and use more sophisticated restrictions
on perturbations than the bare implementation of Lp con-
straints.

Zhang et al. (2020) introduces a novel approach AdvJND by
incorporating just noticeable difference (JND) (Yang et al.,
2005) coefficients into the L∞ norm constraint during ad-
versarial example generation. These coefficients account for
the human eye’s ability to perceive the threshold of changes
in an image. The authors employed I-FGSM and FGSM
algorithms as baselines. To enhance the visual fidelity of
adversarial images, they amplified original perturbations
obtained from the FGSM or I-FGSM methods by scaled
JND coefficients.

SSAH (Luo et al., 2022) adversarial attack targets two ob-
jectives: semantic similarity of images and low-frequency
constraint. The first component is crafted with a focus on
image classification tasks. The second component adds per-
turbations within high-frequency regions by minimizing the
difference between low-frequency information of adversar-
ial and original images. Usually, it requires many iterations
to converge and produce good visual quality.

Korhonen et al. (2022b) introduced an iterative attack
method targeting NR quality metrics, employing a Sobel
filter to hide distortions within textured regions. In each
iteration, the model’s gradient under attack concerning the
input is multiplied by a spatial activity map derived from
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the original image via the Sobel filter. This map highlights
areas with substantial texture, enhancing the visual fidelity
of the resulting adversarial images.

Zhang et al. (2022a) introduced an iterative adversarial
image crafting approach leveraging various FR metrics like
Chebyshev distance, SSIM, LPIPS, and DISTS to manage
visual distortions. Their method involved the iterative mini-
mization of a loss function consisting of two components:
the attacked loss and a loss based on some differential FR
image quality metric.

Karli et al. (2021) introduced the Normalized Variance
Weighting (NVW) method aimed at amplifying perturba-
tions within high-variance regions of images. This tech-
nique can be utilized alongside gradient attacks like FGSM
or I-FGSM. Additionally, the authors proposed the LPIPS-
minimization method, aiming to enhance perceptual quality
by minimizing the LPIPS distance between the original and
adversarial images while ensuring the classifier remains
deceived. However, this minimization method is exclu-
sively effective for discrete tasks, such as classification or
detection, while applying it to quality metrics will lead to
eliminating relative gain.

Table 1 summarizes existing attacks on image- and video-
quality metrics. The primary drawback of the prior methods
is their requirement to run the attack via many iterations
with small steps. This leads to low attack speed, partic-
ularly on high-resolution video data. They can be used
efficiently to attack videos only when applied to each k-th
frame, which, as we further show, reduces relative gain and
temporal consistency.

Table 1. Comparison of existing adversarial attacks on image- and
video-quality metrics regarding visual quality regulation features
and the requirement to converge for an attack to succeed.

Visual quality Speed

Method Weights Freq. reg. Needn’t
converg.

FGSM (2015) × ×
√

UAP (2022) × ×
√

FACPA (2023b) × ×
√

AdvJND (2020) JND map ×
√

SSAH (2022) × DWT ×
Korhonen et al.
(2022b) Sobel map ×

√

Zhang et al.
(2022a) × × ×
NVW (2021) Local STD ×

√

IOI (proposed) Local
STD-based FFT

√

3. Proposed method
3.1. Problem formulation

The adversarial attack on the NR quality metric M is usually
modelled as follows:

argmax
Ia

{M(Ia)−M(I)}, ∥Ia − I∥p ≤ ϵ, (1)

where I is a clear video frame, Ia is an attacked frame, ϵ is
a small constant.

To ensure a high visual quality of the perturbed image, in-
stead of using lp norms that are inefficient for this task, we
formulate the problem as follows:

argmax
Ia

{M(Ia)−M(I)},
Lf (I

a)·Lf (I)
||Lf (Ia)||2||Lf (I)||2 ≥ 1− ϵ∗,

(2)

where Lf is a low-frequency filter, ϵ∗ is a small constant.
When low-frequency components of the clear and adver-
sarial images are closely aligned, the perturbations mainly
affect high-frequency areas. As a result, distortions in adver-
sarial images are nearly invisible to the human eye, accord-
ing to the contrast masking theory of human vision (Legge
& Foley, 1980). For measuring the difference between at-
tacked and original images/frames during a perturbation
construction, we use adversarial mean absolute error in the
frequency domain (MAE∗), which is calculated as follows:

MAE∗(Ia, I) =
1

HW

(H−1)∑
i=0

(W−1)∑
j=0

|Ia∗ij − I∗ij |, (3)

where Ia∗ij and I∗ij are Fast Fourier Transform (FFT) coeffi-
cients of attacked and original images correspondingly, H
and W – image dimensions.

As discussed in the introduction, we focus on the scenario
where metric scores increase after an attack. In some other
studies, NR metrics are modified in two directions, and the
attack success is measured by a decrease in the metric’s
correlation with subjective quality (Zhang et al., 2022b;
2023). While this approach holds theoretical significance
in evaluating the stability of metric scores, it carries certain
limitations. Only increasing the target metric score will
keep the same correlation with subjective quality; thus, an
attack remains undetected. Instead of using correlation as a
measure of NR metrics’ adversarial robustness, we evaluate
attack success using relative gain (RG):

RG =
M(Ia)−M(I)

Mrange
(4)

where Mrange is the range of scores produced by M .
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3.2. One-iteration attack

Figure 1 provides an overview of our method. Initially,
the proposed attack perturbs the image using a baseline
gradient attack. Subsequently, it processes the perturbed
image using two modules to enhance the visual quality of
an adversarial image/video: the frequency module and the
weighting module. For the baseline gradient attack, we
employ FGSM (Goodfellow et al., 2015):

Ip = I + ϵ ∗ sign(∇IM(I)) (5)

3.3. Frequency module

The frequency module extracts features from the original I
and perturbed Ip images for further processing. It decom-
poses them into low-frequency (LF) and high-frequency
(HF) components using the Fast Fourier Transform (FFT)
and Inverse Fast Fourier Transform (IFFT). The LF compo-
nent keeps fundamental content information, while the HF
component contains noise and texture details. A threshold
tr∗ for dividing frequencies in f% highest and (1-f)% the
lowest coefficients is used to calculate indexes df (I) of the
highest FFT coefficient of the original image I (Equation
6).

tr∗ = argmin
tr

|f −
∑H−1

u=0

∑W−1
v=0 1[I∗

u,v>tr]

HW |

df (I) = {(u, v) : I∗u,v > tr∗}
(6)

We use df (I) to extract LF and HF components from the
original image, as shown in Equation 7. These components
are further utilized in the weighting module to enhance the
visual quality of adversarial video frames. HF components
of the perturbed image Ip are extracted using indexes df (I)
from the original image. Thus, the perturbations will be
transferred into HF areas of the original image (Equation
8). The parameter f allows fine-tuning the visibility of
perturbations and relative attack gain at different levels.
Lower values of f result in more visible perturbations within
the frequency module and higher relative gain.

L
df (I)
u,v (I) =

{
I∗u,v if (u, v) ∈ df (I)

0 otherwise

H
df (I)
u,v (I) =

{
I∗u,v if (u, v) /∈ df (I)

0 otherwise

(7)

H
df (I)
u,v (Ip) =

{
(Ip)∗u,v if (u, v) /∈ df (I)

0 otherwise (8)

3.4. Weighting module

Various image processing applications (Lin et al., 2005; Liu
et al., 2010) operate under the assumption that distortions

in low-variance regions are more visible to the human eye
than in high-variance areas. The weighting module gen-
erates a weighting map for the input image based on the
variance map. A similar approach was used in previous stud-
ies (Croce & Hein, 2019; Karli et al., 2021) for generating
adversarial examples. We introduce additional features to
enhance the weights obtained from the variance map method.
The proposed weights map generation method is described
in Equation 9. Initially, we compute local variance and local
mean maps for an image x, determining standard deviations
and means for both axes using a window size of 3 for each
colour channel. Next, we derive the relative local variance
of the image by dividing the local variance map by the local
mean map and normalizing the weights to the range [0, 1].
In the next step, we zero out 1% and compute the square
root of the weights.

σi,j =

√∑
x2
i,j

n − (
∑

xi,j

n )2,mi,j =
∑

xi,j

n

γ = σ
m , γmax = max

i,j
(γi,j), γnorm = γ

γmax

wi,j =

{√
(γnorm)i,j , if (γnorm)i,j ≥ 0.01

0 , if (γnorm)i,j < 0.01

(9)

Figure 2 illustrates the weights map derived by the proposed
method and three prior methods (Korhonen et al. (2022a),
AdvJND (Zhang et al., 2020), and NVW (Karli et al., 2021)).
NVW and AdvJND methods assign non-zero weights for
a noisy background, often resulting in visible distortions
within smooth regions. The image area covered by non-
zero weights in Korhonen et al.’s map is small, potentially
limiting the strength of the attack it can generate.

We use the proposed weights map to guide the weighting
of adversarial image HF components. As a result, the ul-
timate perturbation remains absent in smooth areas of an
image. The construction of the final adversarial image in-
volves the composition of three elements: the original LF
component, the perturbed HF component multiplied by the
weights map, and the original HF component multiplied by
inverse weights:

Ia = L
df (I)
c (I)+wH

df (I)
c (Ip)+(1−w)H

df (I)
c (I) (10)

3.5. Mathematical properties

This section provides theoretical restrictions of the gener-
ated adversarial images or video frames by the proposed
method.

Theorem 1. Let I and Ip be original and perturbed image
correspondingly, Ia – adversarial image after IOI attack
that is based on Ip with truncating parameter f . Then in-
equality 11 is correct, where MAE∗(·, ·) is given by Equa-
tion 3.

||Ia − I||∞ ≤ (1− f)MAE∗(Ip, I) (11)
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Figure 1. An overview of the proposed IOI adversarial attack. I is stands for input image, Ip – FGSM attacked image and Ia – the final
IOI attacked image. Weights map is calculated using formula 9.

image with noised 
background

Korhonen weights AdvJND weights

NVW weights Proposed weights

Figure 2. Comparison of weights used in prior and proposed meth-
ods. NVW and AdvJND assign non-zero weights for a background.
Korhonen et al.’s weight total area is relatively small.

Proof. Each element of the (Ia − I) is estimated using
Equation 10 and representation of high-frequency FFT com-
ponents as re-transformed 2D discrete Fourier transform
without f% of highest frequencies. The complete proof is
presented in the Appendix A.

The statement above demonstrates that the proposed method
guarantees theoretical restriction of l∞ norm of the adver-
sarial image, which depends on initial attack strength ex-
pressed in MAE∗ and parameter f for truncating frequen-
cies. Higher f leads to saving more frequencies and pro-
viding better visual quality of the generated IOI adversarial
image/video.

4. Experiments
We compared our method to the previous approaches tar-
geting three learning-based NR image- and video-quality
metrics on two datasets of images and videos.

Datasets. NIPS2017 image dataset (2017) was used to
evaluate attacks on three NR metrics. It includes 1,000
images of a 299×299 resolution. For evaluating methods on
videos, we used 12 videos with 1280×720 resolution from
the DERF dataset (2001). Descriptions of these videos are
available in the Appendix J. We extracted 75 frames from
each original video and saved an attacked video with a frame
rate of 25 frames per second, resulting in 3-second videos.
The datasets licenses allow usage for research purposes.

Attacked models. For experiments on images, we selected
PaQ-2-PiQ (Ying et al., 2020), Hyper-IQA (Su et al., 2020),
and TReS (Golestaneh et al., 2022) NR models. For videos,
we attacked the PaQ-2-PiQ (Ying et al., 2020) metric. These
metrics were chosen to cover different architectures. PaQ-
2-PiQ (Ying et al., 2020) employs RoIPool layers, which
allows the flexibility to aggregate at different scales. Hyper-
IQA (Su et al., 2020) utilizes ResNet50 for semantic feature
extraction with further processing in the proposed Content
Understanding Hyper Network. TReS (Golestaneh et al.,
2022) is based on transformer architecture.

Methodology. To evaluate the efficiency of adversarial
attacks, we considered three factors: relative gain (Equation
4), speed and the objective or subjective quality of perturbed
images/videos. To compare these three factors, we fixed
two of them by aligning the speed and relative gain of all
methods and compared the objective and subjective visual
quality of adversarial images/videos. Since most of the
attack time is spent on backpropagation, we executed each
attack for one iteration to standardize the speed of all attacks.
We also conducted additional experiments with multiple
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iterations, results presented in the Appendix C. In a one-
iteration comparison, we combined the results of Zhang et al.
and SSAH attacks with FGSM attacks in all tables because
one iteration of these attacks is equivalent to one iteration
of FGSM. Zhang et al. use an FR quality metric to preserve
image fidelity, and SSAH uses the distance between low-
frequency information of two images. Since the distorted
image used in both methods appears only during the first
iteration, these fidelity-preserving components yield zero
gradients.

We employed an automatic process described in Algorithm
1 to ensure equal relative gain. Each attack has a parame-
ter to regulate its strength. We denote this parameter as lr.
Initially, we ran the proposed method with fixed parame-
ters (lr = 0.1 and f = 0.07 for image data and lr = 0.1
and f = 0.05 for video data). Then, for each other at-
tack and each image/video, we searched the minimal lr
parameter to achieve the same relative gain. The search
process also halted if the reached relative gain did not im-
prove for n = 5 search iterations. For videos, the quality
score was calculated as the mean of quality scores on each
frame (PaQ-2-PiQ (Ying et al., 2020), Hyper-IQA (Su et al.,
2020), and TReS (Golestaneh et al., 2022) are metrics that
run per-frame on videos).

Algorithm 1 Relative gain aligning
Inputs: data element X, target relative gain RGt,
adversarial attack Adv, attacked model M,
search step d, stop parameter n, range of M Mrange

Output: attacked data element Xadv

lr = 0, counter = 0, RGprev = 0, flag = False
while not flag do

Xadv = Adv(X,M, lr)

RG = M(Xadv)−M(X)
Mrange

if RG ≥ RGt do flag = True
if RG ≤ RGprev do counter = counter + 1
if counter == n do flag = True
lr = lr + d, RGprev = RG

end while

Quality metrics and subjective study. We compared the
objective quality of adversarial images and videos using
four FR image- and video-quality metrics: PSNR, SSIM
(Wang et al., 2004), VIF (Sheikh & Bovik, 2006), and LPIPS
(Zhang et al., 2018).

We conducted a crowd-sourced subjective comparison us-
ing Subjectify.us (sub, Accessed: Jan 2024) to get subjec-
tive scores for adversarial videos. Original and adversarial
videos were compressed using the x264 video codec with
a CRF value 16 (preset “Medium”). Each participant was
asked to choose the video of the superior visual quality
from a random pair of videos shown sequentially. An op-
tion “Can’t choose” was also available for them. Videos

were pre-downloaded in the browser to prevent delays in
playback, and participants had the flexibility to replay the
videos multiple times. Each participant compared 12 video
pairs; two of the 12 pairs were special verification pairs
with apparent differences in visual quality. Answers from
200 participants who failed the verification were excluded.
We collected 8220 responses from 685 participants who
passed verification and calculated subjective scores using
the Bradley-Terry model (Bradley & Terry, 1952). More
details about the subjective experiment setup are presented
in the Appendix K.

5. Results
Table 11 compares the proposed IOI adversarial attack and
eight prior attacks at one iteration on the NIPS2017 image
dataset (2017). The comparison involves three attacked
image quality models, and the relative gain is aligned using
the proposed Algorithm 1. On average, the relative gain
achieved by all attacks was 7.7% for all models.

The proposed IOI method showed higher SSIM, VIF, and
LPIPS scores for all attacked NR metrics. The PSNR score
of our attack method is lower than that of other methods,
which means that IOI changes more information in images;
however, the perturbations are hidden in the images’ tex-
ture/contrast regions. AdvJND method showed promising
results for attacking Hyper-IQA and TReS models but failed
on PaQ-2-PiQ. NVW performed well on PaQ-2-PiQ and
TReS.

Table 3 contains the results of objective comparison on 12
videos from the DERF dataset (2001) and attacking the PaQ-
2-PiQ (Ying et al., 2020) metric. We applied attacks with
greater intensity on videos to enhance distinguishability
for further subjective comparison, so the average relative
gain was 15.3%. The objective results are similar to the
comparison on the images: IOI outperformed prior methods
on SSIM, VIF, and LPIPS metrics and showed comparable
PSNR scores. The per-video results are in the Appendix L.

Subjective comparison. The subjective scores obtained
from pairwise comparisons showed that the IOI attack gen-
erates adversarial videos of better visual quality: it holds
a quality of 2.97, while other methods’ scores are below
2.16. Confidence intervals for IOI and other methods do
not intersect. The intervals intersect for some prior meth-
ods, since their adversarial videos are noisy and flickering,
making their subjective quality difficult to rank. The video
with the highest distinguishability was “Blue Sky” with
tree branches swaying against the smooth sky. The video
with the lowest distinguishability was “Rush Hour” with a
highly noisy background. As shown in Figure 3, FGSM,
NVW, and Korhonen et al. methods generate impercepti-
ble distortion on the stone region but fail to suppress the
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Table 2. The objective quality of adversarial images generated by existing and proposed methods on the NIPS2017 image dataset (2017)
for three attacked models: PaQ-2-PiQ (Ying et al., 2020), Hyper-IQA (Su et al., 2020), and TReS (Golestaneh et al., 2022). The table
presents FR metrics scores for adversarial images averaged across the dataset, with aligned relative gain and 95% confidence intervals.
Each attack run for one iteration.

Attacked model Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓

PaQ-2-PiQ
(2020)

FGSM (2015), SSAH (2022),
Zhang et al. (2022b) 0.884±0.007 33.6±0.3 0.635±0.010 0.134±0.009

NVW (2021) 0.897±0.007 34.7±0.5 0.648±0.011 0.120±0.008
Korhonen et al. (2022b) 0.872±0.008 33.1±0.3 0.617±0.011 0.151±0.011
AdvJND (2020) 0.740±0.008 29.5±0.2 0.384±0.008 0.208±0.007
UAP (2022) 0.737±0.004 26.3±0.2 0.371±0.004 0.314±0.005
FACPA (2023b) 0.863±0.003 30.5±0.2 0.539±0.005 0.182±0.004
IOI (ours) 0.950±0.002 33.4±0.2 0.695±0.005 0.059±0.003

Hyper-IQA
(2020)

FGSM (2015), SSAH (2022),
Zhang et al. (2022b) 0.746±0.017 30.6±0.6 0.542±0.019 0.326±0.023

NVW (2021) 0.801±0.015 33.4±0.7 0.610±0.019 0.255±0.021
Korhonen et al. (2022b) 0.765±0.016 31.1±0.6 0.562±0.019 0.303±0.022
AdvJND (2020) 0.909±0.004 37.1±0.3 0.660±0.011 0.073±0.005
UAP (2022) 0.545±0.010 21.4±0.3 0.192±0.007 0.447±0.008
FACPA (2023b) 0.627±0.008 24.8±0.2 0.270±0.007 0.299±0.007
IOI (ours) 0.952±0.002 33.5±0.2 0.722±0.005 0.058±0.003

TReS
(2022)

FGSM (2015), SSAH (2022),
Zhang et al. (2022b) 0.876±0.011 35.9±0.4 0.719±0.015 0.134±0.013

NVW (2021) 0.902±0.010 37.7±0.5 0.754±0.014 0.107±0.011
Korhonen et al. (2022b) 0.888±0.011 36.3±0.4 0.734±0.015 0.123±0.013
AdvJND (2020) 0.915±0.006 39.1±0.4 0.736±0.013 0.064±0.006
UAP (2022) 0.445±0.008 17.5±0.1 0.120±0.003 0.715±0.008
FACPA (2023b) 0.611±0.007 23.4±0.2 0.221±0.007 0.530±0.011
IOI (ours) 0.945±0.002 33.4±0.2 0.756±0.005 0.059±0.003

perturbation on the sky background. AdvJND, UAP and
FACPA cause visible distortions on the whole image. To
produce the same relative gain as IOI using one iteration,
lr for other methods, was high, yielding visible perturba-
tions. As shown in the Appendix C, all methods (except
FGSM, UAP and FACPA) produce almost equivalent results
at 20 iterations. But at one iteration, there is a crucial differ-
ence. The videos used for the comparison are available at
https://github.com/katiashh/ioi-attack.

6. Discussion
Different frame frequency and attack success. We con-
ducted additional experiments to show the importance of a
one-iteration setup when attacking NR quality metrics for
videos. This section demonstrates that employing a single
iteration for each frame produces superior results compared
to the sporadic application of multiple iterations, such as ten
iterations for every tenth frame. We selected the PaQ-2-PiQ
(2020) NR metric, “Controlled Burn” video from the DERF
dataset (2001), and applied the I-FGSM attack (Kurakin
et al., 2018). I-FGSM is an extension of FGSM, involving
multiple iterations.

Let n represent the number of iterations, ϵ a small constant,

I the original video frame, and M the target NR quality
metric. The k-th iteration of I-FGSM is formulated as shown
in Equation 12 (k ∈ [0, n], Ip0 = I).

Ipk+1 = Ipk + ϵ
n ∗ sign(∇Ip

k
M(Ipk)) (12)

We executed I-FGSM for different iteration counts: n = 1,
n = 2, n = 4, n = 6, n = 8, and n = 10. Only some
frames underwent attack in each experiment, specifically 1

n .
The selection of frames for the attack was done uniformly.
The results of these experiments are illustrated in Figure 4.
As the number of iterations in the attack increases, there
is a corresponding rise in the attack’s relative gain on each
particular frame. However, evaluating the overall relative
gain involves averaging relative gains across all frames. The
optimal averaged relative gain occurs when each frame is
attacked with just one iteration, and this gain decreases
monotonically with the increase in the parameter n. We also
measured the computation time for attacks with different
values of n, which remained nearly constant at 3 seconds
for all attacks. This consistency arises from the fact that
each experiment’s total number of adversarial iterations was
the same.

Compared with other values of n, we can see that a one-
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Table 3. Subjective comparison results on 12 videos from the DERF dataset (2001). Adversarial videos generated for PaQ-2-PiQ model
(Ying et al., 2020) at equal speed and relative gain of all attacks. The table presents averaged quality metrics and subjective scores with
95% confidence intervals. Each attack runs for one iteration on each video frame.

Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Subjective
score ↑

FGSM (2015), SSAH (2022),
Zhang et al. (2022b) 0.859±0.005 33.1±0.2 0.555±0.007 0.195±0.006 1.95±0.16

NVW (2021) 0.871±0.005 33.4±0.2 0.570±0.007 0.178±0.006 2.16±0.16
Korhonen et al. (2022b) 0.855±0.005 33.0±0.2 0.550±0.007 0.204±0.007 2.06±0.16
AdvJND (2020) 0.848±0.005 34.5±0.2 0.516±0.008 0.153±0.006 1.76±0.16
UAP (2022) 0.809±0.003 29.8±0.2 0.450±0.003 0.301±0.004 0.19±0.19
FACPA (2023b) 0.887±0.002 32.9±0.2 0.578±0.004 0.207±0.003 0.87±0.17
IOI (ours) 0.941±0.016 34.3±1.7 0.669±0.046 0.098±0.030 2.97±0.16

Figure 3. Comparison of adversarial images generated using FGSM (2015), SSAH (2022), Zhang et al. (2022b), NVW (2021), Korhonen
et al. (2022b), AdvJND (2020), UAP (2022), FACPA (2023b) and IOI (ours) attack methods when attacking PaQ-2-PiQ (2020) NR
quality metric at one iteration with relative gain aligned by Algorithm 1.

iteration attack yields superior averaged relative gain within
the same attack time. This highlights that attack on video
quality metrics differ from the classification task, where an
attacker can affect only several frames to fool the classifier.
From the results of this experiment, we can conclude that
the effectiveness of adversarial attacks for video quality
metrics is defined by their effectiveness at a one-iteration
setup.

Speed of the proposed method. The PyTorch realization
of the IOI attack allows reaching 8 fps on the NVIDIA Tesla
T4 GPU. Details presented in Appendix B.

IOI performance under defences. We did additional ex-
periments (Table 4) to check the robustness of the proposed
method to three adversarial defences: video compression

(Shaham et al., 2018), random crop and resize used in (Shu-
mitskaya et al., 2023a) for NR metrics. Defences were
evaluated for videos from the DERF dataset. Although
the proposed method affects only high-frequency informa-
tion, video compression reduced relative gain only by 2.4%.
Random cropping confuses the attack and reduces relative
gain approximately two times. Frames resizing almost com-
pletely mitigates the relative gain from 14.6% to 1%; how-
ever, an NR metric increase by 1% is still significant for
benchmarks; sometimes, teams compete to achieve a 0.1%
metric increase to win the competition. More details are
presented in the Appendix E.

Limitations. Our method works in a white-box scenario
that implies that an attacker knows and has access to the
target model. The white-box scenario is less universal than
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Figure 4. Results of experiments when attacking PaQ-2-PiQ (2020) NR metric on the “Controlled Burn” video through I-FGSM attack
(2018) with different numbers of iterations and altered frames.

IOI IOI
+ compress.

IOI
+ random crop

IOI
+ resize

RG 14.6% 12.2% 6.30% 0.98%

Table 4. IOI performance under adversarial purification defences
(video compression, random cropping, and resizing). Relative gain
averaged for 12 videos.

a black-box; however, as described in the introduction, NR
quality metrics are usually published as part of the bench-
mark methodology. We made additional experiments of
analysing black-box transferability (Appendix F) and IOI
performance in black-box settings (Appendix G). We found
out low transferability across different models and signifi-
cant difference in operation speed of white-box and black-
box attacks. Black-box attacks are unlikely to be injected
into video processing algorithms that compete in quality
and speed, which is the scenario we target in our work. We
considered only NR metrics, as FR metrics are much more
difficult to attack in real-life scenarios. The robustness of
FR metrics has been studied in (Ghildyal & Liu, 2023).

Additional experiments. We made the following additional
experiments: experiment to compare the proposed method
with prior methods when applying different parameters (Ap-
pendix D), metric score decreasing experiment (Appendix
H), IOI attack on segment-level video quality model (Ap-

pendix I). We also measured time spending for one-iteration
for all methods tested in this paper (Appendix B).

7. Conclusion
This paper introduces the IOI adversarial attack on NR
image- and video-quality metrics. Its primary objective is to
generate imperceptible perturbations for images or videos
using only one iteration. Through extensive experiments, we
showed that existing methods fail to produce high-fidelity
adversarial videos in near real-time scenarios (1 – 10 fps). In
contrast, our proposed method demonstrates better effective-
ness at high speed. Subjective and objective comparisons
showed that the proposed method produces adversarial im-
ages and videos of superior visual quality, achieving the
same attack success and speed as prior methods. The pro-
posed attack is a potent tool for experimentally assessing
the vulnerability of NR quality metrics. By publishing our
method, we provide a tool for verification of NR metrics
robustness for benchmark organizers and contribute to the
future development of robust image- and video-quality met-
rics. The proposed method can be used as a part of an adver-
sarial training technique to improve the robustness of image-
and video-quality metrics. Our code is openly accessible at
https://github.com/katiashh/ioi-attack.
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A. Proof of Theorem 1
Theorem 1. Let I and Ip be original and perturbed image correspondingly, Ia – IOI adversarial image based on Ip with
truncating parameter f . Then inequality 13 is correct, where MAE∗(·, ·) is given by Equation 3.

||Ia − I||∞ ≤ (1− f)MAE∗(Ip, I) (13)

Proof. We can estimate the difference between Ia and I . Since ||w||∞ ≤ 1, we can write the following:

Ia = L
df (I)
c (I) + wH

df (I)
c (Ip) + (1− w)H

df (I)
c (I)

I = L
df (I)
c (I) +H

df (I)
c (I))

||Ia − I||∞ = ||w(Hdf (I)
c (Ip)−H

df (I)
c (I))||∞ ≤ ||w||∞||(Hdf (I)

c (Ip)−H
df (I)
c (I))||∞ ≤

≤ ||(Hdf (I)
c (Ip)−H

df (I)
c (I))||∞

(14)

Since FFT and IFFT are linear transformations and indexes df (I) for truncating Ip and I are the same:

H
df (I)
c (Ip)−H

df (I)
c (I) = H

df (I)
c (Ip − I) (15)

We can write high-frequency component as re-transformed two-dimensional discrete Fourier transform without f% of
highest frequencies and estimate the module of each element of Hdf (I)

c (Ip − I), where kr, ls – indexes of the sorter FFT
coefficients, such that |(Ip − I)∗kn,ln

| >= |(Ip − I)∗kn+1,ln+1
| ∀n:

|Hdf (I)
c (Ip − I)u,v| = 1

HW |
(H−1)(W−1)∑

s=f(H−1)(W−1)

(Ip − I)∗ks,lse
i2π( kru

H + lsv
W )| ≤

≤ 1
HW

(H−1)(W−1)∑
s=f(H−1)(W−1)

|(Ip − I)∗ks,ls | =
1

HW

(H−1)(W−1)∑
s=f(H−1)(W−1)

|(Ip)∗ks,ls − (I)∗ks,ls | = β − α

(16)

where α and β are given by Equation 17.

β = 1
HW

(H−1)(W−1)∑
s=0

|(Ip)∗ks,ls − (I)∗ks,ls |

α = 1
HW

f(H−1)(W−1)∑
s=0

|(Ip)∗ks,ls − (I)∗ks,ls |

(17)

Considering the facts that β = MAE∗(Ip, I) (by definition) and α >= fMAE∗(Ip, I) (since α is the sum of modules of
f% highest coefficients and MAE∗(Ip, I) is the sum of all coefficients), we get the resulting estimate:

||Ia − I||∞ ≤ MAE∗(Ip, I)− fMAE∗(Ip, I) = (1− f)MAE∗(Ip, I) (18)

The equation above demonstrates that the proposed method guarantees theoretical restriction of l∞ norm of the adversarial
image, which depends on initial attack strength and f parameter for truncating frequencies. It is worth noting that there was
a rough estimate of ||w||∞ ≤ 1 in Equation 14. In practice, multiplication on weights highly improves the l2 norm of an
adversarial image.

B. Speed for one iteration
Table 5 presents the calculation times of attacks at one iteration that were used for comparison in this paper when targeting
the PaQ-2-PiQ (Ying et al., 2020) NR metric on one image from the NIPS2017 dataset (2017) and one video from the DERF
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dataset (2001). We measured the calculation time on a server with an NVIDIA Tesla T4 GPU and averaged the results over
20 runs. The AdvJND is notably slower than others due to the computational complexity of calculating JND coefficients.

Table 5. GPU calculation times of attacks at one iteration when attacking PaQ-2-PiQ (2020) NR metric on images and videos.

METHOD
ONE ITERATION
TIME ON IMAGE

ONE ITERATION
FPS ON VIDEO

FGSM (2015), SSAH (2022),
ZHANG ET AL. (2022B) 0.025 SEC 8.92 FPS

NVW (2021) 0.059 SEC 2.78 FPS
KORHONEN ET AL. (2022B) 0.037 SEC 7.05 FPS
ADVJND (2020) 10.38 SEC 0.01 FPS
IOI (OURS) PyTorch 0.028 SEC 7.81 FPS

C. Experiment with multiple iterations
We conducted an additional experiment to evaluate the performance of visual-oriented methods employed in this paper in
the context of multiple iterations. For n = 10 and n = 20 iterations, we run the proposed method with ϵ = 0.1 and step
size of 2ϵ

n . These experiments used the PaQ-2-PiQ NR model (Ying et al., 2020); the relative gain was 13% for both 10
and 20 iterations. Utilizing Algorithm 1, we searched for the minimal lr parameter in other attacks to achieve the same
relative gain. Subsequently, we evaluated the visual quality of the resulting adversarial images using four FR metrics: SSIM,
PSNR, VIF, and LPIPS. The results for n = 10 and n = 20 iterations are presented in Tables 6 and 7 respectively. At 20
iterations, all methods produce nearly identical results, highlighting the primary strength of the proposed IOI method in its
effectiveness in one-iteration settings.

From the results of this experiment, we can conclude that in the setup of multiple iteration attack, there are no significant
differences in which method from Table 7 to use (except SSAH and AdvJND – they need more than 20 iterations for
convergence). The primary strength of the proposed IOI method is its effectiveness and superiority in one-iteration settings,
but in multi-iteration setup, it also shows competitive results.

Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓
SSAH (2022) 0.890±0.005 33.6±0.4 0.680±0.009 0.106±0.005
Zhang et al. (2022b) 0.938±0.003 35.7±0.2 0.700±0.007 0.073±0.004
NVW (2021) 0.957±0.001 37.1±0.4 0.725±0.006 0.055±0.002
Korhonen et al. (2022b) 0.974±0.001 37.5±0.2 0.757±0.005 0.035±0.002
AdvJND (2020) 0.889±0.003 34.2±0.2 0.546±0.007 0.097±0.004
IOI (ours) 0.965±0.001 34.6±0.2 0.758±0.004 0.043±0.002

Table 6. Comparison results for 10 iterations with relative gain aligning.

Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓
SSAH (2022) 0.949±0.002 36.6±0.2 0.790±0.005 0.048±0.002
Zhang et al. (2022b) 0.971±0.001 38.1±0.2 0.786±0.005 0.034±0.002
NVW (2021) 0.970±0.001 38.7±0.4 0.778±0.005 0.038±0.002
Korhonen et al. (2022b) 0.978±0.001 38.2±0.2 0.781±0.004 0.029±0.001
AdvJND (2020) 0.916±0.003 35.9±0.2 0.613±0.007 0.076±0.004
IOI (ours) 0.972±0.001 35.5±0.2 0.779±0.004 0.035±0.002

Table 7. Comparison results for 20 iterations with relative gain aligning.

D. Different parameter’s comparison
We made an additional experiment to compare the proposed method with prior methods when applying different parameters.
This allows us to compare methods in slightly different attack strengths. Results in the Table 8 showed that the proposed
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method generates images with better visual quality when achieving the same increase in metric score for three different
increase levels.

Table 8. Experiment of methods comparison under different relative gains, corresponding to different ϵ levels in the proposed IOI method.

ϵ Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓

0.08

FGSM (2015), SSAH (2022),
Zhang et al. (2022b) 0.934±0.006 36.4±0.2 0.733±0.009 0.082±0.008

NVW (2021) 0.940±0.006 37.4±0.4 0.745±0.009 0.072±0.007
Korhonen et al. (2022b) 0.932±0.005 36.2±0.2 0.727±0.009 0.083±0.007
AdvJND (2020) 0.812±0.005 31.9±0.1 0.466±0.007 0.151±0.006
UAP (2022) 0.792±0.004 27.9±0.2 0.432±0.005 0.251±0.004
FACPA (2023b) 0.888±0.003 31.7±0.2 0.586±0.005 0.151±0.003
IOI (ours) 0.966±0.002 35.5±0.1 0.786±0.004 0.037±0.002

0.1

FGSM (2015), SSAH (2022),
Zhang et al. (2022b) 0.884±0.007 33.6±0.3 0.635±0.010 0.134±0.009

NVW (2021) 0.897±0.007 34.7±0.5 0.648±0.011 0.120±0.008
Korhonen et al. (2022b) 0.872±0.008 33.1±0.3 0.617±0.011 0.151±0.011
AdvJND (2020) 0.740±0.008 29.5±0.2 0.384±0.008 0.208±0.007
UAP (2022) 0.737±0.004 26.3±0.2 0.371±0.004 0.314±0.005
FACPA (2023b) 0.863±0.003 30.5±0.2 0.539±0.005 0.182±0.004
IOI (ours) 0.950±0.002 33.4±0.2 0.695±0.005 0.059±0.003

0.12

FGSM (2015), SSAH (2022),
Zhang et al. (2022b) 0.789±0.016 30.7±0.5 0.548±0.015 0.274±0.022

NVW (2021) 0.795±0.016 31.5±0.6 0.555±0.016 0.264±0.022
Korhonen et al. (2022b) 0.774±0.016 30.0±0.5 0.524±0.016 0.295±0.022
AdvJND (2020) 0.696±0.007 28.4±0.1 0.340±0.006 0.239±0.008
UAP (2022) 0.705±0.004 25.4±0.1 0.342±0.004 0.348±0.007
FACPA (2023b) 0.758±0.003 26.9±0.2 0.392±0.004 0.291±0.005
IOI (ours) 0.936±0.003 32.2±0.2 0.681±0.005 0.077±0.004

E. IOI performance under defences
We conducted additional experiments to evaluate the robustness of the proposed IOI attack to three defences: compression
(Shaham et al., 2018), random crop and resize (Shumitskaya et al., 2023a). Random crop and resize defences were previously
studied in (Shumitskaya et al., 2023a) for evaluation of UAP (Shumitskaya et al., 2022) against NR quality metrics. Authors
showed that random crop and resize to 80% of the original image/video size help to improve NR quality metric robustness
to adversarial attacks without significant loss in correlations with subjective scores. Because of that, we chose parameter
80% for our experiments. Defended transformation in the case of random crop defence was selecting a random crop of
the frame with 80% of the original frame size. An image was resized to 80% of the original frame size for resize-based
defence. Shaham et al. showed that compression can be used as defence (Shaham et al., 2018). In our experiment, defended
transformation for compression defence was compression with a CRF value 16 using x264 video codec (preset “Medium”).

For the experiment, we used 12 adversarial videos generated against PaQ-2-PiQ (source videos from the DERF dataset
(der, 2001)) and original ones. We measured relative gain for the IOI attack with and without defences. For relative
gain measurement under defence, we calculated PaQ-2-PiQ scores for original and adversarial videos after defended
transformation and then, based on these scores, calculated relative gain. Results are presented in the Table 9. Compression
defence reduced relative gain only by 2.4%. Random crop confuse attack and reduce relative gain approximately two times.
Resize defence almost completely mitigate the relative gain, however gain in 1% still can be significant in benchmarks.
From the results of these experiments, we can conclude that the proposed IOI attack is robust to compression and random
crop defences but vulnerable to the resize defence.

F. Black-box transferability
We conducted an additional experiment to analyse the applicability of IOI in transferable black-box setting. The experiment
was organised as follows: for all generated adversarial images from NIPS2017 dataset, we measured PaQ-2-PiQ, Hyper-IQA
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Video Relative gain
IOI IOI + compression IOI + random crop IOI + resize

Blue Sky 13.1% 11.2% 6.17% 0.88%
Rush Hour 23.9% 18.0% 11.3% 0.77%
Old Town Cross 15.6% 13.9% 5.33% 1.29%
Crowd Run 15.2% 12.4% 4.10% 0.64%
Aspen 9.50% 6.70% 4.11% 0.51%
Sunflower 18.9% 15.8% 13.3% 1.33%
Life 10.0% 7.64% 1.76% -0.09%
Controlled Burn 16.2% 15.4% 7.12% 1.85%
Red Kayak 16.3% 14.3% 7.08% 2.40%
Ducks Take Off 7.94% 6.24% 2.80% 0.30%
Tractor 11.6% 9.57% 6.00% 0.74%
Park Joy 16.8% 14.8% 6.47% 1.10%

Mean 14.6% 12.2% 6.30% 0.98%

Table 9. Results of performance proposed IOI attack under compression, random crop and resize defences.

and TReS, i.e. for adversarial images created to attack PaQ-2-PiQ we also measured quality scores by Hyper-IQA and TReS.
Based on these metrics scores, we calculated relative gains. Results are presented in the Table 10. All eight methods tested
in the paper showed low transferability to unseen models. Low transferability can be explained by these metrics having
completely different architectures: PaQ-2-PiQ employs RoIPool layers, HyperIQA utilizes ResNet50 and TReS is based
on transformer architecture. Also, it’s important to note that improving transferability for image quality models is more
challenging than for classifiers or detectors. Transferability can occur in classification and detection tasks because different
classifiers ”look” at the same regions of images where classified objects are located (Meng et al., 2019). In contrast, different
image quality metrics can look at different regions to estimate the score, which inherently complicates the achievement of
transferability. Thus, we can infer that developing imperceptible and, at the same time, transferable one-iteration attacks on
video-quality models is a challenging problem that we will consider for further research.

Table 10. Results of experiment on transferability of methods used in the paper in one-iteration setting.

Attack PaQ-2-PiQ Hyper-IQA TReS
Test PaQ-2-PiQ Hyper-IQA TReS PaQ-2-PiQ Hyper-IQA TReS PaQ-2-PiQ Hyper-IQA TReS

FGSM,
SSAH,
Zhang

7.40% -8.76% -14.93% 0.16% 1.03% -18.99% 0.01% -0.39% 4.07%

NVW 7.17% -8.27% -14.19% 0.13% 0.70% -15.32% 0.08% 0.09% 4.50%
Korhonen 7.36% -8.85% -14.81% 0.23% 0.42% -15.97% 0.07% 0.29% 5.04%
AdvJND 6.61% -0.57% -19.84% -0.18% 4.09% -3.96% 0.04% -0.43% 7.02%
UAP 11.62% -6.03% -15.55% 3.13% 4.83% 6.65% 2.44% -0.52% 0.85%
FACPA 9.68% -5.01% -9.14% -0.30% 1.48% 9.52% -6.02% -0.51% 1.14%
IOI (ours) 7.33% -3.56% -6.25% 0.26% 7.86% -1.73% 0.39% 2.34% 7.40%

G. IOI performance in black-box setting
We conducted an additional experiment aimed to show that the proposed method can be adapted for use in a black-box
setting. To do this, we replaced an FGSM-generated perturbation with a black-box-generated perturbation, e.g. Square
Attack (Andriushchenko et al., 2020). We will call this modification BB-IOI. It’s important to note that such modification
transforms the method into a multi-iteration. To verify the efficiency of BB-IOI, we conducted an additional experiment
involving the implementation of the BB-IOI attack that consists of two stages: 1) generating the adversarial perturbation
in a black-box manner using the Square Attack (Andriushchenko et al., 2020) method and 2) processing this perturbation
using frequency and weighting modules. As a result, BB-IOI provides high-quality adversarial images by objective metrics.
Although the property of imperceptibility remains, it’s important to note that the computation complexity of the method has
increased, which is common for black-box methods. For attacking PaQ-2-PiQ on the NIPS2017 dataset, BB-IOI achieved
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an average 1.21% gain operating at 40 seconds per image. Results are presented in the Table 11. This performance is 6.12%
lower and 1400 times slower than IOI. Furthermore, the proposed IOI method can be adapted for use in transfer-based
settings by combining it with transfer-based perturbation generation techniques (Long et al., 2022), (Li et al., 2023).

Table 11. Comparison of the proposed method used in white-box setting (IOI) and black-box setting (BB-IOI).
Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Relative gain ↑ Time on one image ↓
IOI 0.945±0.002 33.4±0.2 0.756±0.005 0.059±0.003 7.33% 0.028 sec
BB-IOI 0.988±0.001 36.9±0.1 0.815±0.003 0.024±0.001 1.21% 40 sec

H. Metric score decreasing experiment
In this section, we show the possibility of metrics score decreasing. Given that the proposed method consists of two parts
(generating a perturbed image using FGSM and subsequent processing in frequency and weighting modules), changing the
optimization direction in FGSM leads to guiding an attack in the opposite direction. We conducted additional experiments
to show that the proposed method can decrease PaQ-2-PiQ metric scores. We applied the proposed method to attack it on
the same NIPS2017 dataset we used to increase this metric. The results revealed that increasing metric scores yielded a
7.32% score increase, while decreasing metric scores resulted in a 7.61% score decrease (almost the same). However, it’s
worth noting that we focused on increasing metrics’ scores because decreasing quality metrics’ scores holds less practical
significance. An attacker can decrease the metrics for quality camouflage (2020), and it is the only real-life scenario known
to the authors.

I. IOI attack on complex VQA metric
The proposed method applies to segment-level video quality models. We conducted an additional experiment targeting the
segment-level VQA metric MDTVSFA (Li et al., 2021) to show this. To apply the proposed attack, we first slightly modified
MDTVSFA to get access to its gradient (we removed torch.no grad() context-manager from the feature extraction module
and modified the forward process in the inference model to process batches rather than dictionaries). Then, we applied IOI
to attack three videos on a per-frame basis, processing one frame at a time. Subsequently, we constructed adversarial videos
from these frames and calculated quality scores using the original segment-level MDTVSFA on these videos. Results are
presented in the Table 12. Remarkably, this approach yielded a significant relative gain, with a 15% increase in scores. This
experiment showed that attacking only spatial features of a VQA metric without accounting for temporal and other features
is enough to achieve high attack success.

Table 12. Experiments of IOI attack targeting segment-level video-quality metric MDTVSFA. The attack was performed per-frame.
Resulting gain was calculated using original segment-level MDTVSFA.

Video MDTVSFA clean MDTVSFA IOI attacked

Blue Sky 0.544 0.659 (↑11.5%)
Crowd Run 0.555 0.759 (↑20.4%)
Pedestrian Area 0.584 0.737 (↑15.3%)

J. Video sequences
We used the following 12 videos with a resolution of 1280×720 from the DERF dataset (2001):

1. “Blue Sky”: https://media.xiph.org/video/derf/y4m/blue sky 1080p25.y4m

2. “Aspen”: https://media.xiph.org/video/derf/y4m/aspen 1080p.y4m

3. “Sunflower”: https://media.xiph.org/video/derf/y4m/sunflower 1080p25.y4m

4. “Crowd Run”: https://media.xiph.org/video/derf/y4m/crowd run 1080p50.y4m
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5. “Old Town Cross”: https://media.xiph.org/video/derf/y4m/old town cross 1080p50.y4m

6. “Life”: https://media.xiph.org/video/derf/y4m/life 1080p30.y4m

7. “Controlled Burn”: https://media.xiph.org/video/derf/y4m/controlled burn 1080p.y4m

8. “Rush Hour”: https://media.xiph.org/video/derf/y4m/rush hour 1080p25.y4m

9. “Red Kayak”: https://media.xiph.org/video/derf/y4m/red kayak 1080p.y4m

10. “Ducks Take Off”: https://media.xiph.org/video/derf/y4m/ducks take off 1080p50.y4m

11. “Tractor”: https://media.xiph.org/video/derf/y4m/tractor 1080p25.y4m

12. “Park Joy”: https://media.xiph.org/video/derf/y4m/park joy 1080p50.y4m

We extracted 75 frames from each original video and saved an attacked video with a frame rate of 25 frames per second,
resulting in videos with a duration of 3 seconds. Figure 5 contains spatial and temporal information for these videos. Figure
6 contains the first frames of videos.

Figure 5. Spatial and temporal information for videos.

Figure 6. First frames of videos.
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K. Subjective experiment setup
To derive subjective scores for adversarial videos, we conducted a crowd-sourced subjective comparison on the Subjectify.us
service (sub, Accessed: Jan 2024).

For comparison, we compressed all videos, including the original ones, using the x264 video codec with a CRF value of 16
(preset “Medium”). Each pair shown to participants consisted of two samples of the same source video attacked by various
attack methods. Each participant was presented with a random pair of videos sequentially and was asked to choose the
video with the superior visual quality. An option “Can’t choose” was also provided. Videos were pre-loaded in the browser
to prevent delays in playback, and participants had the flexibility to replay the videos multiple times. Each participant
compared 12 video pairs, of which two were for verification. Answers from 200 participants who failed the verification
were excluded.

We collected 8220 responses from 685 successful participants and calculated subjective scores using the Bradley-Terry
model (Bradley & Terry, 1952). The average payment to crowdworkers per a pair of sequences was $0.05. We estimate the
overall cost of the subjective tests was $410. Figure 7 presents the subjective experiment’s general process.

Details about the crowdsourced study:

1. Screen resolutions were from 360×800 to 3440×1440. Table 13 shows the most popular.

2. Participants were from 31 countries.

3. Participant ages ranged from 18 to 93, with an average of 39. Figure 8 shows the distribution.

Command line for encoding. Given the directory of video frames in PNG format (set of images 000.png, 001.png, ...,
074.png) we run the following FFmpeg command line:

ffmpeg -pattern_type glob -i *.png -c:v libx264 -crf 16 -pix_fmt yuv420p res.mp4

Figure 7. Subjective-assessment scheme.

L. Per-video results
Tables 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 contain results of subjective comparison of proposed IOI adversarial
attack with eight prior attacks for each video.
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M. Attack examples on images and videos
IOI adversarial images and videos are available in the zip archive: https://drive.google.com/file/d/
1nrvV70Q4W0vh-2FdWrXHUhMDzYcI6zY1/view?usp=sharing.

Resolution Number of users

1920×1080 194
1366×768 167
1536×864 100
1280×1024 39
1600×900 35
1280×720 22
1440×900 19
1024×768 11
2560×1440 10
1680×1050 10
1360×768 10

Table 13. Most popular screen resolutions among crowdworkers.

Figure 8. Age distribution of crowdworkers.

Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Subjective
score ↑

FGSM (2015), SSAH (2022), Zhang et al. (2022b) 0.739 30.8 0.390 0.352 1.44±0.66
NVW (2021) 0.719 30.1 0.370 0.364 1.91±0.64
Korhonen et al. (2022b) 0.699 29.8 0.361 0.380 1.56±0.65
AdvJND (2020) 0.795 33.9 0.422 0.247 2.20±0.63
UAP (2022) 0.809 31.6 0.453 0.338 0.70±0.70
FACPA (2023b) 0.890 34.4 0.557 0.253 1.11±0.67
IOI (ours) 0.956 33.9 0.649 0.048 4.05±0.62

Table 14. Comparison results on the “Blue Sky” video and PaQ-2-PiQ attacked model (Ying et al., 2020) with relative gain aligning. FR
quality metric score for video is calculated as a mean of quality scores on each frame.
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Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Subjective
score ↑

FGSM (2015), SSAH (2022), Zhang et al. (2022b) 0.956 40.0 0.720 0.064 2.88±0.47
NVW (2021) 0.959 40.3 0.733 0.057 3.13±0.48
Korhonen et al. (2022b) 0.957 40.2 0.725 0.062 2.91±0.48
AdvJND (2020) 0.950 41.1 0.687 0.052 2.57±0.48
UAP (2022) 0.842 32.8 0.465 0.264 0.65±0.65
FACPA (2023b) 0.915 36.0 0.605 0.174 1.18±0.58
IOI (ours) 0.981 38.3 0.823 0.044 3.33±0.48

Table 15. Comparison results on the “Aspen” video and PaQ-2-PiQ attacked model (Ying et al., 2020) with relative gain aligning. FR
quality metric score for video is calculated as a mean of quality scores on each frame.

Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Subjective
score ↑

FGSM (2015), SSAH (2022), Zhang et al. (2022b) 0.919 37.2 0.604 0.206 2.71±0.52
NVW (2021) 0.924 37.4 0.619 0.195 2.96±0.52
Korhonen et al. (2022b) 0.844 34.0 0.465 0.326 2.28±0.53
AdvJND (2020) 0.741 32.7 0.328 0.365 1.57±0.56
UAP (2022) 0.846 32.8 0.463 0.345 0.65±0.65
FACPA (2023b) 0.922 35.9 0.618 0.209 1.20±0.60
IOI (ours) 0.946 36.9 0.690 0.181 3.39±0.52

Table 16. Comparison results on the “Sunflower” video and PaQ-2-PiQ attacked model (Ying et al., 2020) with relative gain aligning. FR
quality metric score for video is calculated as a mean of quality scores on each frame.

Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Subjective
score ↑

FGSM (2015), SSAH (2022), Zhang et al. (2022b) 0.921 33.3 0.689 0.071 3.61±0.51
NVW (2021) 0.924 33.4 0.694 0.068 3.16±0.51
Korhonen et al. (2022b) 0.922 33.4 0.693 0.070 3.51±0.51
AdvJND (2020) 0.844 31.7 0.525 0.089 2.12±0.56
UAP (2022) 0.798 27.2 0.465 0.204 0.73±0.73
FACPA (2023b) 0.885 30.5 0.604 0.140 1.44±0.64
IOI (ours) 0.951 32.4 0.695 0.039 4.00±0.51

Table 17. Comparison results on the “Crowd Run” video and PaQ-2-PiQ attacked model (Ying et al., 2020) with relative gain aligning.
FR quality metric score for video is calculated as a mean of quality scores on each frame.

Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Subjective
score ↑

FGSM (2015), SSAH (2022), Zhang et al. (2022b) 0.854 31.8 0.512 0.151 2.77±1.16
NVW (2021) 0.856 31.9 0.517 0.147 2.92±1.16
Korhonen et al. (2022b) 0.854 31.9 0.513 0.150 3.05±1.16
AdvJND (2020) 0.844 33.5 0.471 0.120 1.90±1.18
UAP (2022) 0.827 30.4 0.473 0.237 1.21±1.21
FACPA (2023b) 0.913 34.1 0.623 0.168 2.59±1.16
IOI (ours) 0.908 31.1 0.539 0.118 3.61±1.15

Table 18. Comparison results on the “Old Town Cross” video and PaQ-2-PiQ attacked model (Ying et al., 2020) with relative gain aligning.
FR quality metric score for video is calculated as a mean of quality scores on each frame.
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Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Subjective
score ↑

FGSM (2015), SSAH (2022), Zhang et al. (2022b) 0.737 29.7 0.419 0.216 2.44±0.66
NVW (2021) 0.818 31.4 0.497 0.153 2.83±0.64
Korhonen et al. (2022b) 0.873 33.8 0.588 0.109 4.14±0.59
AdvJND (2020) 0.832 34.1 0.512 0.092 3.57±0.61
UAP (2022) 0.717 28.1 0.396 0.264 0.79±0.79
FACPA (2023b) 0.814 30.7 0.502 0.188 1.50±0.72
IOI (ours) 0.936 34.8 0.668 0.063 4.89±0.59

Table 19. Comparison results on the “Life” video and PaQ-2-PiQ attacked model (Ying et al., 2020) with relative gain aligning. FR quality
metric score for video is calculated as a mean of quality scores on each frame.

Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Subjective
score ↑

FGSM (2015), SSAH (2022), Zhang et al. (2022b) 0.833 30.7 0.532 0.256 1.64±0.52
NVW (2021) 0.853 31.1 0.553 0.225 1.93±0.52
Korhonen et al. (2022b) 0.777 28.8 0.458 0.328 1.18±0.54
AdvJND (2020) 0.833 32.7 0.508 0.176 1.54±0.52
UAP (2022) 0.798 28.8 0.476 0.314 0.57±0.57
FACPA (2023b) 0.903 32.9 0.648 0.195 1.01±0.55
IOI (ours) 0.932 32.5 0.652 0.117 2.90±0.53

Table 20. Comparison results on the “Controlled Burn” video and PaQ-2-PiQ attacked model (Ying et al., 2020) with relative gain aligning.
FR quality metric score for video is calculated as a mean of quality scores on each frame.

Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Subjective
score ↑

FGSM (2015), SSAH (2022), Zhang et al. (2022b) 0.956 40.0 0.685 0.093 3.04±0.49
NVW (2021) 0.960 40.4 0.704 0.082 3.08±0.49
Korhonen et al. (2022b) 0.959 40.4 0.701 0.084 3.39±0.49
AdvJND (2020) 0.974 44.1 0.767 0.035 3.51±0.49
UAP (2022) 0.838 32.8 0.421 0.357 0.71±0.71
FACPA (2023b) 0.913 36.0 0.557 0.247 1.58±0.59
IOI (ours) 0.952 38.5 0.695 0.118 3.14±0.49

Table 21. Comparison results on the “Rush Hour” video and PaQ-2-PiQ attacked model (Ying et al., 2020) with relative gain aligning. FR
quality metric score for video is calculated as a mean of quality scores on each frame.

Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Subjective
score ↑

FGSM (2015), SSAH (2022), Zhang et al. (2022b) 0.790 30.7 0.466 0.333 1.36±0.56
NVW (2021) 0.843 32.3 0.535 0.249 2.20±0.54
Korhonen et al. (2022b) 0.792 30.7 0.469 0.329 1.84±0.54
AdvJND (2020) 0.759 31.7 0.393 0.272 1.42±0.56
UAP (2022) 0.840 31.5 0.517 0.280 0.61±0.61
FACPA (2023b) 0.900 34.0 0.638 0.219 1.20±0.57
IOI (ours) 0.942 34.3 0.675 0.116 3.38±0.55

Table 22. Comparison results on the “Red Kayak” video and PaQ-2-PiQ attacked model (Ying et al., 2020) with relative gain aligning. FR
quality metric score for video is calculated as a mean of quality scores on each frame.
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Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Subjective
score ↑

FGSM (2015), SSAH (2022), Zhang et al. (2022b) 0.904 30.6 0.549 0.172 3.42±0.56
NVW (2021) 0.906 30.7 0.551 0.170 3.62±0.56
Korhonen et al. (2022b) 0.905 30.7 0.553 0.168 3.42±0.56
AdvJND (2020) 0.895 32.0 0.515 0.103 3.04±0.57
UAP (2022) 0.826 26.0 0.400 0.346 0.77±0.77
FACPA (2023b) 0.880 28.6 0.491 0.194 1.48±0.68
IOI (ours) 0.963 34.1 0.693 0.055 4.09±0.55

Table 23. Comparison results on the “Ducks Take Off” video and PaQ-2-PiQ attacked model (Ying et al., 2020) with relative gain aligning.
FR quality metric score for video is calculated as a mean of quality scores on each frame.

Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Subjective
score ↑

FGSM (2015), SSAH (2022), Zhang et al. (2022b) 0.893 33.3 0.598 0.182 3.48±0.56
NVW (2021) 0.902 33.5 0.612 0.168 4.29±0.54
Korhonen et al. (2022b) 0.899 33.7 0.615 0.168 3.56±0.56
AdvJND (2020) 0.892 35.0 0.584 0.111 3.66±0.55
UAP (2022) 0.800 28.8 0.444 0.333 0.86±0.86
FACPA (2023b) 0.877 31.5 0.561 0.221 1.75±0.73
IOI (ours) 0.944 34.7 0.696 0.119 4.72±0.54

Table 24. Comparison results on the “Tractor” video and PaQ-2-PiQ attacked model (Ying et al., 2020) with relative gain aligning. FR
quality metric score for video is calculated as a mean of quality scores on each frame.

Method SSIM ↑ PSNR ↑ VIF ↑ LPIPS ↓ Subjective
score ↑

FGSM (2015), SSAH (2022), Zhang et al. (2022b) 0.807 29.7 0.491 0.240 2.55±0.65
NVW (2021) 0.784 28.8 0.458 0.263 2.07±0.66
Korhonen et al. (2022b) 0.780 28.8 0.456 0.269 2.23±0.65
AdvJND (2020) 0.812 31.8 0.485 0.175 1.94±0.66
UAP (2022) 0.764 27.3 0.424 0.325 0.74±0.74
FACPA (2023b) 0.834 29.7 0.525 0.273 1.41±0.69
IOI (ours) 0.881 30.2 0.549 0.161 3.29±0.63

Table 25. Comparison results on the “Park Joy” video and PaQ-2-PiQ attacked model (Ying et al., 2020) with relative gain aligning. FR
quality metric score for video is calculated as a mean of quality scores on each frame.
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