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On homological dimensions

A.A. Gerko

Abstract. For finite modules over a local ring the general problem is considered of
finding an extension of the class of modules of finite projective dimension preserving
various properties. In the first section the concept of a suitable complex is intro-
duced, which is a generalization of both a dualizing complex and a suitable module.
Several properties of the dimension of modules with respect to such complexes are
established. In particular, a generalization of Golod’s theorem on the behaviour of
GK -dimension with respect to a suitable module K under factorization by ideals of
a special kind is obtained and a new form of the Avramov–Foxby conjecture on the
transitivity of G-dimension is suggested. In the second section a class of modules
containing modules of finite CI-dimension is considered, which has some additional
properties. A dimension constructed in the third section characterizes the Cohen–
Macaulay rings in precisely the same way as the class of modules of finite projective
dimension characterizes regular rings and the class of modules of finite CI-dimension
characterizes complete intersections.
Bibliography: 19 titles.

Introduction

In this paper we consider local rings and, unless otherwise stated, finitely gen-
erated modules over them. It is well known that the class of modules of finite
projective dimension over a ring R characterizes regular rings in the following pre-
cise sense:

R is regular ⇔ pdM <∞ for each M ⇔ pd k <∞, (1)

where k # R/m is the residue field of the ring R.
Moreover, there are reasons to believe that modules of finite projective dimen-

sion behave in a certain sense similarly to modules over regular rings (see, for
instance, the introduction in [1]). A reasonable question arising in this connection
is whether it is possible to extend in a natural way the class of modules of finite
projective dimension so that this extension would characterize, in the sense of (1),
other classes of rings important for algebraic geometry, namely, local complete inter-
sections, Gorenstein and Cohen–Macaulay rings. Here by a natural extension we
mean an extension preserving various properties of the modules of finite projective
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dimension. Such classes previously appeared in various problems of commutative
algebra.
For Gorenstein rings the corresponding class has been considered by Auslander

and Bridger in [2]. One says that G-dimM = 0 if the natural homomorphism
M → Hom(Hom(M,R), R) is an isomorphism and ExtiR(M,R) = 0 = ExtiR(M∗, R)
for i > 0. Consider next left resolutions of a module M by modules P such that
G-dimP = 0. The G-dimension of M is by definition the infimum of the lengths
of such resolutions. This approach was further developed in [3] and [4], where the
authors considered the so-called GK dimension with respect to a suitable module
K (see Definition 1.1) characterizing pairs of the form (a Cohen–Macaulay ring,
the canonical module over it).
For complete intersections the corresponding class of modules, which were

called modules of finite virtual projective dimension (vpd) was introduced by
Avramov (see [5]) in the context of the study of the properties of Betti numbers
for modules of infinite projective dimension; vpdRM is set to be finite if there
exists a surjective homomorphism of rings S → R̂, where R̂ is the m-adic
completion of R, such that its kernel is generated by a regular sequence and
pdS(M ⊗R R̂) < ∞. For the (possibly) broader class of modules of finite
CI-dimension (see Definition 2.2) introduced later in [6] and also characterizing
complete intersections several results have been established, for which it is not
yet known if they hold for modules of finite virtual projective dimension; for
example, this class behaves nicely under localization. Besides, modules of finite
CI-dimension actually demonstrate in some problems a behaviour similar to that
of modules over complete intersections. As examples we can cite the papers
[7], [8], and [9], where the so-called ‘depth formula’ is generalized from
modules over complete intersections to modules of finite CI-dimension, and [8],
where Auslander’s ‘freeness criterion’ is generalized in the same direction.
We also mention the important implication

pdRM <∞⇒ CI-dimRM <∞⇒ G-dimRM <∞,

which in the case M = k reduces to the following well-known result:

R is regular ⇒ R is a complete intersection ⇒ R is Gorenstein.

We say that a generalized homological dimension is defined if for each ring R we
have a class of modules HR and a map H-dimR from HR into Z. Of course, such a
concept is too general to be interesting, therefore we write down a list of natural
conditions:

(I) If M ∈ HR, then H-dimRM + depthM = depthR.
(II) k = R/m ∈ HR if and only if M ∈ HR for all R modules.
(III) Let x be an R- andM -regular element. If M ∈ HR, then M/xM ∈ HR/xR

and H-dimRM = H-dimR/xRM/xM .
(IV) If M ∈ HR, then Mp ∈ HRp and H-dimRM ! H-dimRpMp.
(V) If a sequence of modules 0 → M → N → K → 0 is exact and any two of

these modules belong to HR, then the third module also has this property.
If this sequence is split exact and N ∈ HR, then M ∈ HR and K ∈ HR.

In general we do not require H-dimRM to be non-negative.
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Note that all these conditions are satisfied by projective dimension and G-dimen-
sion. Properties (I) and (II) are known to hold for virtual projective dimension and
properties (I)–(IV) hold for CI-dimension.

The definition of GK-dimension does not completely fit into this scheme because
of the additional parameter, but we still have perfect analogues of properties I–V.

In the first part of this paper we introduce homological dimension with respect
to a suitable complex, which is a generalization of the concepts of suitable module
and dualizing complex. Among other things this approach allows us to obtain a
simple proof of Proposition 5 in [4] along with a generalization of it. Recently
this author became aware that these complexes had been previously studied by
Christensen [10] and most results of the first part were already known.

In the second part we consider an alternative approach to the definition of the
class of modules characterizing complete intersections, which uses resolutions by
modules of dimension zero. The resulting class is an extension of the class of mod-
ules of finite CI-dimension; it satisfies condition (V). We also give a simpler proof
than in [11] of the following result: the class of rings of local complete intersection
localizes.

In the third part we introduce a dimension characterizing Cohen–Macaulay rings.
Using the scheme proposed in Definition 2.2 one can consider several definitions of
such a dimension. The one proposed and studied here has properties (I)–(IV), and
notably, the class of modules of finite CM-dimension contains all modules of finite
G-dimension.

The author would like to thank his scientific advisor E. S. Golod for valuable
discussions concerning the material presented in this paper.

1. GIGIGI-dimension

We use the notation C(R) for the category of R-complexes. The differential of a
complex X acting from Xn into Xn+1 is denoted by δn. The following quantities
are associated with each complex I:

sup(I) = sup{n : Hn(I) (= 0}, inf(I) = inf{n : Hn(I) (= 0},
amp(I) = sup(I)− inf(I).

The notation C+(R) (C−(R), Cb(R)) will be used for the full subcategories of
complexes in C(R) with inf(I) > −∞ (sup(I) <∞, amp(I) <∞, respectively). We
shall denote by Cf(R) (C

−
f (R), C

+
f (R), C

b
f (R)) the full subcategory of C(R) (C

−(R),

C+(R), Cb(R), respectively) whose objects are complexes with finitely generated
homology modules.

First, we present a list of basic facts about GK-dimension and GK-perfect mod-
ules required in what follows. We fix a module K. For a module P we set
P ∗ = HomR(P,K). The module P is said to be K-reflexive if the canonical bi-
duality homomorphism P → P ∗∗ is bijective.



1168 A.A. Gerko

Definition 1.1 [4]. If ExtiR(P,K) = 0 = Ext
i
R(P

∗, K) for a K-reflexive module P
and all i > 0, then we set

GK -dimR P = 0,

GK -dimRM = inf{n : there exists an exact sequence
0→ Pn → Pn−1→ · · ·→ P0 →M → 0, where GK -dimR Pi = 0}.

If GK -dimM is finite, then its value can be expressed in the following way.

Proposition 1.2 [4]. If GK -dimM <∞, then

GK -dimM = sup{n : ExtnR(M,K) (= 0}.

If GK -dimRR = 0, then K is said to be suitable. In other words, K is suitable if
and only if HomR(K,K) # R and ExtiR(K,K) = 0 for all i > 0. Trivial examples
are the free module of rank one (the corresponding dimension will be denoted
G-dimM) and the dualizing module. An analogue of the Auslander–Buchsbaum
formula holds for GK-dimension with respect to a suitable module, and we also
have the following result.

Proposition 1.3. The following assertions are equivalent :

(1) K is a dualizing module;
(2) GK -dimM <∞ for all R-modules M ;
(3) GK -dimk <∞.

Recall that gradeM = inf{i : ExtiR(M,R) (= 0}. If I is an ideal in R, then one
usually writes grade I instead of gradeR/I (the reason is that in this notation we
have grade I = {the length of a maximal R-regular sequence in I}).
It can be easily seen that gradeM " GK -dimM . If gradeM = GK -dimM ,

then M is said to be GK-perfect. An ideal I is said to be GK-perfect if R/I is a
GK-perfect module over R. The meaning of this concept is revealed by the following
result.

Theorem 1.4 ([4], Proposition 5). Let I be a GK-perfect ideal, and K a suitable
R-module. Then Extgrade IR (R/I,K) is a suitable R/I-module, and the following
implication holds for all R/I-modules M :

GK -dimRM <∞⇔ GK′ -dimR/IM <∞,

where K′ = Extgrade IR (R/I,K). Finally, if these dimensions are finite, then

GK -dimRM = grade I +GK′ -dimR/IM.

We give a new proof of this theorem below (Remark 1.16), which is different
from the proof given in [4].

Definition 1.5. Under the assumptions of Theorem 1.4 let K′ # R/I. Then the
ideal I is said to be GK-Gorenstein.

We proceed now to the main definitions.
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Definition 1.6. Let I ∈ Cbf (R) be an injective left-bounded complex. Then it is
said to be suitable if the natural biduality morphism R

αR−→ HomR(HomR(R, I), I)
is a quasi-isomorphism.

Note that if we impose an additional condition on I, namely, if we require that
it be quasi-isomorphic to a finite complex of injective modules, then we obtain the
definition of a dualizing complex (cf., for example, [12]). Another example of a
suitable complex is I = I(K), an injective resolution of a suitable module K.
We set for brevity M∗∗ = HomR(HomR(M, I), I).

Definition 1.7. Let M
αM−→M∗∗ be a quasi-isomorphism. Then we set

GI -dimM = sup(Hom(M, I)) − sup(I).

It can be easily seen that the GI-dimension of a module does not change if we
replace I by another injective complex I′ quasi-isomorphic to I. We shall now
explain the relation between Definitions 1.1 and 1.7.

Lemma 1.8. If a sequence of modules 0 → M → N → K → 0 is exact and
two of these modules have finite GI-dimension, then the third module also has this
property.

Proof. Everything follows from the consideration of the exact sequence of complexes
0 → Hom(K, I) → Hom(N, I) → Hom(M, I) → 0 and the following commutative
diagram of complexes with exact rows:

0 −−−−→ M −−−−→ N −−−−→ K −−−−→ 0
#αM

#αN
#αK

0 −−−−→ M∗∗ −−−−→ N∗∗ −−−−→ K∗∗ −−−−→ 0

.

Lemma 1.9. Let 0 → M → N → K → 0 be an exact sequence of modules, and
assume that GI -dimN=0 and 0<GI -dimK<∞. Then GI -dimM=GI -dimK − 1.
Proof. This is similar to the previous lemma.

Theorem 1.10. Let I be an injective resolution of a suitable module K. Then
GI -dimM = GK -dimM for all modules M .

Proof. We carry out induction on one of the above dimensions, provided that it is
finite. It is easy to see that GK -dimM = 0⇔ GI -dimM = 0. For if one of these
dimensions is zero, then we have ExtnR(M,K) = 0 for all n > 0. In this case

M
αM−→M∗∗ is a quasi-isomorphism

⇔ the canonical homomorphism M → M∗∗ is an isomorphism,
as required. Now, if one of the dimensions is finite and greater than zero, then
we consider a projective cover of the module M and apply Lemma 1.9 and the
inductive hypothesis.

Remark 1.11. From Lemma 1.8 we can see, in particular, that if pdM < ∞, then
GI -dimM <∞ for each suitable complex I.
Suitable complexes that are not resolutions of suitable modules can be encoun-

tered only over ‘bad’ rings. More precisely, the following result holds.
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Proposition 1.12. If I is a suitable complex over R and amp(I) > 0, then R is
not Cohen–Macaulay.

Proof. Assume that R is a Cohen–Macaulay ring. If x is an R-regular element,
then we see from the exact sequence 0 → HomR(R/xR, I) → I

x→ I → 0 that
amp(HomR(R/xR, I)) ! amp(I). Using induction on depth we can content our-
selves with the case of an Artin ring. The complex Hom(I, I) is quasi-isomorphic
to Hom(P(I), I). We have

0 = Hn− amp(I)(P(I), I) = Hom(Hnsup(I)(I),Hninf(I)(I)),

and amp(I) (= 0. This is a contradiction since Hom(M,N) (= 0 over Artin rings.

We shall repeatedly require the following technical result.

Lemma 1.13 ([12], Lemma 3.4(ii)). Let I ∈ Cf (R) be a left-bounded injective
complex and let M be a finitely generated module. Then Hom(M, I) ∈ Cf (R).

Proposition 1.14. Let I be a suitable complex over S, and R a finite (=finitely
generated as an S-module) S-algebra. Let I′ = HomS(R, I). Then

GI -dimS R <∞ ⇔ I′ is a suitable complex over R.

Proof. Assume that GI -dimS R < ∞. In this case I′ has only finitely many non-
zero homology modules (by the definition of GI -dimS R), all of which are finitely
generated in view of Lemma 1.13. The injectivity of I′ is well known. The functor
HomR( · ,HomS(R, I)) from C(R) into itself is isomorphic to HomS( · , I). Combin-
ing this with the quasi-isomorphism R → HomS(HomS(R, I), I) we see that I′ is
R-suitable. The converse is proved in the same manner.

It is easy to see that for an R-moduleM in the above situation GI -dimSM <∞
if and only if GI′ dimRM <∞. Moreover, the following result holds.

Theorem 1.15. If M is an R-module, then GI -dimSM < ∞ if and only if
GI′ -dimRM <∞ In addition, GI -dimSM = GI′ -dimRM +GI -dimS R.

Proof. By definition, sup(I) − sup(I′) = GI -dimS R. Furthermore, we have the
equality sup(HomS(M, I)) = sup(HomR(M, I′)). Subtracting it from the first
equality we obtain the required result.

Remark 1.16. Let I = I(K) be an injective resolution of a suitable R-moduleK and
let a be a GK-perfect ideal. Then it is easy to see that I′ = I(K′) is an injective
resolution of the R/a-suitable module K′. Applying Theorem 1.15 we obtain the
result of Theorem 1.4.
We now describe suitable complexes I such that for all R-modules M we have

GI -dimM < ∞. Let µi(p, I) = dimk(p) (Hi(HomRp(k(p), Ip))), where k(p) =
Rp/pRp, be an analogue of the Bass numbers. We shall require a slight modification
of Lemma 3.1 in [13].
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Lemma 1.17. Let q and p, q ⊂ p, be distinct prime ideals such that there is no
prime ideal between them. If I ∈ Cf(R) is a left-bounded injective complex, then

µi(q, I) > 0⇒ µi+1(p, I) > 0.

Proof. Localizing we can reduce the problem to the case R = Rp. For x ∈ p, x /∈ q,
we set S = R/q and T = S/xS = R/(x, q). The module T has finite length and x is
S-regular. From the exact sequence 0→ S x→ S → T → 0 we see that the sequence

Hi(HomR(S, I))
x→ Hi(HomR(S, I))→ Hi+1(HomR(T, I))

is exact. Since Hi(HomR(S, I)q) (= 0 and Hi(HomR(S, I)) is finitely generated, we
can apply Nakayama’s lemma and obtain

Hi+1(HomR(T, I)) (= 0.

Conversely, assuming that Hi+1(HomR(R/p, I)) = 0 and using the half-exactness
of Hi+1(HomR( · , I)) we can show by induction that

Hi+1(HomR(T, I)) = 0,

which is a contradiction.

Theorem 1.18. If I is a suitable complex over a ring R and GI -dimR k <∞,
then I is a dualizing complex and GI -dimRM <∞ for all R-modules M .

Proof. By Proposition 1.14 HomR(R/m, I) is a suitable complex over the vector
space k, therefore there exists a unique integer i = i0 such that µi(m, I) (= 0. From
Lemma 1.17 we now see that µi(p, I) = 0 for all i " i0. Hence I is the direct sum
of an acyclic and a bounded injective complex, and therefore it is dualizing.

Injective modules are generally not finitely generated, which makes it more com-
plicated to analyse the behaviour of GI -dimension under localization. The following
technical lemma is helpful here.

Lemma 1.19. Let I ∈ C(R) be an injective left-bounded complex and let

ξ : HomR( · , I)⊗ Rp→ HomRp( · ⊗Rp, I⊗ Rp)

be the natural morphism of functors from C(R) to C(Rp). If X ∈ C−f (R), then ξ(X)
is a quasi-isomorphism.

Proof. Note that this is true when X is either acyclic or has only one homology
distinct from zero. Let us introduce the following notation:

σ>n(X) is the complex · · ·→ 0→ imdnX → Xn+1 → Xn+2 → · · · ;
σ′!n(X) is the complex · · ·→ 0→ coker dn−1X → Xn+1 → Xn+2 → · · · .

We have the exact sequence of complexes

0→ {−n}Hn(X)→ σ′!n(X)→ σ>n(X)→ 0.
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We shall prove that ξ(σ>n(X)) is an isomorphism by descending induction on n.
This is obvious for n+ 0 since ξ(σ>n(X)) is acyclic in this case. Setting for brevity
F( · ) = HomR( · , I)⊗Rp and G( · ) = HomRp( ·⊗Rp, I⊗Rp) we obtain the following
commutative diagram:

0 −−−−→ F(σ>n(X)) −−−−→ F(σ′!n(X)) −−−−→ F({−n}Hn(X)) −−−−→ 0
#ξ(σ>n(X))

#ξ(σ′!n(X))
#ξ({−n}Hn(X))

0 −−−−→ G(σ>n(X)) −−−−→ G(σ′!n(X)) −−−−→ G({−n}Hn(X)) −−−−→ 0

,

in which the rows are exact. We know that ξ(σ>n(X)) is a quasi-isomorphism by
the inductive hypothesis, and ξ({−n}Hn(X)) is a quasi-isomorphism since Hn(X)
is finitely generated. Using now the five lemma for morphisms of the corresponding
long homology sequences we see that ξ(σ′!n(X)) is also a quasi-isomorphism. How-
ever, the complex σ′!n(X) is quasi-isomorphic to σ>n−1(X), therefore ξ(σ>n(X))
is a quasi-isomorphism for each n. Hence the lemma holds in the case when X is
bounded from the left because then σ>n(X) # X for n , 0. Consider now the
case of an arbitrary complex X. Note that the complex F(X) (respectively, G(X))
can be represented as the union of the complexes F(σ>n(X)) (respectively, of the
G(σ>n(X))), and by the above ξ(σ>n(X)) is a quasi-isomorphism for each n.
We claim that the map in the homology induced by ξ(X) is an isomorphism.

Injectivity. Let x be an arbitrary cycle in F(X) such that its image is a bound-
ary y in G(X). Then y is already a boundary in G(σ>n(X)) for n < n0 and x
belongs to the complexes F(σ>m(X)) for m < m0. Hence ξ(σ>k(X)) is not a
quasi-isomorphism for k < min(n0, m0). The surjectivity is obvious.

The next result is a generalization of Lemma 1.13.

Proposition 1.20. If I∈Cf (R) is an injective left-bounded complex and X∈C−f (R),
then Hom(X, I) ∈ C+f (R).

Proof. This is similar to the proof of the previous lemma. We use the com-
plexes σ>n(X), descending induction, and the fact that if in an exact sequence
N ′ → N → N ′′ the modules N ′ and N ′′ are finitely generated, then N too is
finitely generated.

Theorem 1.21. Let I be a suitable complex over R, and M an R-module. Then Ip
is suitable over Rp and the finiteness of GI -dimRM ensures the finiteness of
GIp -dimRpMp.

Proof. We merely need to demonstrate the properties relating to reflexivity. We see
from Lemma 1.19 applied toX = I that Ip is Rp-suitable. Applying the same lemma
to X = Hom(M, I) we see that Mp → HomRp(HomRp(Mp, Ip), Ip) is a quasi-iso-
morphism as a localization of the quasi-isomorphism M → HomR(HomR(M, I), I).
We shall now prove an analogue of the Auslander–Buchsbaum formula for GI-

dimension.

Theorem 1.22. If I is a suitable complex over R and GI -dimRM < ∞, then
GI -dimRM + depthM = depthR. In particular, the value of GI -dimM , provided
that it is finite, does not depend on the choice of the suitable complex I.
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Proof. We have

depthM = inf(Hom(P(k),M)) = inf(Hom(P(k),Hom(Hom(M, I), I)))

= inf(Hom(P(k)⊗ Hom(M, I), I)) = inf(Hom(k ⊗P(Hom(M, I)), I)).

The complex k ⊗ P(Hom(M, I)) is a complex of vector spaces over the field k;
moreover, we have sup(k ⊗ P(Hom(M, I))) = sup(Hom(M, I)). Hence we obtain
depthM = inf(Hom(k⊗P(Hom(M, I)), I)) = inf(Hom(k, I))−sup(Hom(M, I)). In
a similar way, depthR = inf(Hom(k, I)) − sup(I). The last two equalities give us
the required result

depthR− depthM = GI -dimM.

Consider now the following situation: R is a finite S-algebra, pdS R is finite,
and M is an R-module of finite R-projective dimension. Then it is easy to see
that pdSM is also finite and, moreover, pdSM = pdRM + pdS R. The following
question has been posed in [14], Remark 4.8: does an analogue of this result hold
for G-dimension? Using Theorem 1.15 we can put forward the following, possibly
more general, formulation of this conjecture:

Conjecture 1.23. Let I be a suitable complex over R. Then

GI -dimM " G-dimM

and this relation becomes an equality if the right-hand side is finite.

We now show how a confirmation of this conjecture in the case of suitable com-
plexes of a certain special form brings us to the required result.

Corollary 1.24. Let R be a finite S-algebra, assume that G-dimS R < ∞, and
let M be an R-module. If Conjecture 1.23 holds for the ring R, then the fol-
lowing implication also holds: G-dimRM < ∞ ⇒ G-dimSM < ∞; moreover,
G-dimSM = G-dimRM +G-dimS R if these dimensions are finite.

Proof. Consider the complex I′ = HomS(R, I), where I is an injective resolution
of S as a module over itself. From Proposition 1.14 we see that I′ is a suitable
complex over R, therefore if Conjecture 1.23 is true, then

GI′ dimRM <∞.

Applying 1.15 we see that GI -dimSM <∞. The equality

GI -dimSM = GI′ -dimRM +GI -dimS R

now follows from Theorem 1.22.

The following question is also interesting.

Question 1.25. Is it true that all suitable complexes over R have the following
form: I = HomS(R, I(S)), where R is a quotient ring of the ring S?

In § 3 we show that the answer is affirmative in the case when I is an injective
resolution of a suitable module.
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2. CICICI-dimension

Definition 2.1 [6]. A quasi-deformation of a ring R is a diagram of local homo-
morphisms R → R′ ← Q, where R → R′ is a flat extension and R′ ← Q is a
deformation, that is, a surjective homomorphism with kernel generated by a regu-
lar sequence.

Definition 2.2 [6]. CI-dimRM = inf{pdQ(M ⊗R R′) − pdQR′ : R → R′ ← Q is
a quasi-deformation}.

Definition 2.3. For a module M over a field R we say that PCI-dimRM = 0 if

G-dimRM = 0

and the Betti numbers βRn (M) of M have an estimate that is polynomial in n. For
arbitrary modules we set

PCI-dimRM = inf{n : there exists an exact sequence
0→ Pn → Pn−1 → · · ·→ P0→M → 0, where PCI-dimR Pi = 0}.

The next result is well known [15], but we give a simpler proof.

Proposition 2.4. If R is a local complete intersection, then for each R-module M
the Betti numbers βRn (M) have an estimate that is polynomial in n.

Proof. We reduce the problem to the case depthM = depthR first. We set n =
depthR − depthM and denote by SyzRn (M) the cokernel of the map δn+1, where
(F, δ) is a minimal free resolution of M . Then βRi (Syz

R
n (M)) = β

R
i+n(M) for i+ 0.

On the other hand G-dimRM=depthR−depthM , therefore G-dimR SyzRn (M)=0,
so that depth SyzRn (M) = depthR. If depthM = depthR, then we select an R-
and M -regular sequence (x) = (x1, x2, . . . , xdepthR). Since Tor

R
i (R/(x),M) = 0,

it follows that βRi (M) = β
R/(x)
i (M/(x)). Thus, our problem reduces to the case

when R is Artin. The proof proceeds by induction on the length of M . For the
residue field k this is a classical result [16]. The inductive step is an easy consequence
of the exact sequence 0→ k→M → M/k→ 0.

Proposition 2.5. If R is a complete intersection, then PCI-dimRM <∞ for each
R-module M . Conversely, if PCI-dimR k <∞, then R is a complete intersection.

Proof. Let R be a complete intersection. For an R-module M we shall construct
its resolution from modules of PCI-dimension zero. We set n = depthR−depthM .
Let SyzRn (M) = coker δn+1, where (F, δ) is a minimal free resolution of M over R.
The ring R is Gorenstein, therefore G-dimM is finite and G-dimR Syz

R
n (M) = 0.

For i + 0 we have βRi (SyzRn (M)) = βRi+n(M). Hence using the fact that the Betti
numbers of an arbitrary module over a complete intersection have a polynomial
estimate (Proposition 2.4) we obtain the equality PCI-dimR Syz

R
n (M) = 0.

Conversely, if PCI-dimR k <∞, then the βRi (k) have a polynomial estimate, and
therefore R is a complete intersection [17].
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Proposition 2.6. The inequality PCI-dimRM " CI-dimRM holds, with equality
in the case when the right-hand side is finite.

Proof. If CI-dimRM < ∞ then G-dimRM < ∞ ([6], Theorem 1.4). We now set
n = depthR− depthM . Let SyzRn (M) = coker δn+1, where (F, δ) is a minimal free
resolution ofM over R. Since G-dimM is finite, it follows that G-dimR Syz

R
n (M)=0.

For i+ 0 we have βRi (Syz
R
n (M)) = β

R
i+n(M). Hence, using the fact that the Betti

numbers of a module of finite CI-dimension are bounded by a polynomial (cf. [6],
Lemma 1.5) we obtain

PCI-dimR Syz
R
n (M) = 0.

Proposition 2.7. If PCI-dimM <∞, then PCI-dimM + depthM = depthR.

This is trivial since under the conditions imposed

PCI-dimM = G-dimM,

and the required formula holds for G-dimension.
In the same manner we can prove some other properties of PCI-dimension similar

to properties of CI-dimension. The main point here is that if in a short exact
sequence there is a polynomial bound on the growth of the Betti numbers of two
of the modules, then the same holds for the third module. Moreover, the following
result clearly follows from the properties of G-dimension.

Proposition 2.8. If two modules in a short exact sequence have finite PCI-dimen-
sion, then the third module also has this property.

It is unknown, however, if a similar result holds for CI-dimension.
As shown by Proposition 2.6, finite CI-dimension ensures finite PCI-dimension,

and there arises a natural question: is it true that the corresponding classes of
modules are the same? The answer is negative as shown by Veliche [18], who
proved the following result.

Proposition 2.9 [18]. If a local ringQ contains a field and depthQ ! 4, then there
exist a perfect ideal I ⊂ Q such that grade I = 4 and a module M over R = Q/I
such that

0 = PCI-dimRM < CI-dimRM =∞.

We prove next that PCI-dimension localizes.

Proposition 2.10. The inequality βRpi (Mp) " βRi (M) holds for all M and p.
In particular, a polynomial estimate of the right-hand side ensures a polynomial
estimate of the left-hand side.

Proof. We consider the minimal free resolution of M over R and its tensor product
with the (R-flat) module Rp. The resulting complex consists of free Rp-modules,
and is a direct sum of the minimal resolution of Mp over Rp and several complexes
of the form 0 → Rp → Rp → 0. Since the ith Betti number is the rank of the ith
module in the minimal resolution, the proof is complete.
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Proposition 2.11. PCI-dimRpMp " PCI-dimRM .

This is clear from the corresponding property of G-dimension and Proposi-
tion 2.10.

Proposition 2.12 [11]. If R is a complete intersection, then Rp is also a complete
intersection.

Proof. If R is a complete intersection, then the βRn (R/p) are bounded by a poly-
nomial (see Proposition 2.4). Using Proposition 2.10 we obtain that the quantities

β
Rp
i (Rp/pRp) are also bounded by a polynomial. However, Rp/pRp is a residue
field of Rp, and a polynomial bound on its Betti numbers ensures [17] that Rp is a
complete intersection.

3. CMCMCM-dimension

Definition 3.1. A G-quasi-deformation of a ring R is a diagram of local homo-
morphisms R → R′ ← Q, where R → R′ is a flat extension and R′ ← Q is a
G-deformation, that is, a surjective homomorphism whose kernel I is a G-perfect
ideal.

Definition 3.2. CM-dimRM = inf{G-dimQ(M⊗RR′)−G-dimQR′ : R→ R′ ← Q
is a G-quasi-deformation}.

We prove first that the finiteness of GK -dimRM with respect to some suitable
module K ensures the finiteness of CM-dimRM .
The following construction was considered in a similar context in [19] in the

case when K was the dualizing module. Let K be a suitable module over a
ring R. We define multiplication on the module S = R ⊕ K in the following
way: (a1, r1) ∗ (a2, r2) = B(a1 ∗ a2, a1 ∗ r2 + a2 ∗ r1). It is easy to see that this
definition endows S with the structure of a ring. Note that we have a surjective
homomorphism from S to R with kernel K, and therefore R can be regarded as an
S-module.

Lemma 3.3. R is reflexive as an S-module.

Proof. Since HomR(K,K) = R, it follows that AnnR(K) = 0, and therefore
AnnS(K) = K. Hence HomS(R, S) # K because the identity of R is taken to
an element annihilated by the S-ideal K.
Similarly, HomS(K, S) # R. Thus, the natural homomorphism of S-modules

R→ R∗∗ is an isomorphism.

Lemma 3.4. Ext1S(R, S) = 0.

Proof. We have an exact sequence of S-modules: 0 → K → S → R → 0. It
suffices to prove that each homomorphism from K into S can be extended to a
homomorphism from S into S. Since the range of each homomorphism from K into
S is annihilated by the ideal K, it lies in AnnS(K) = K. We know, however, that
each element of HomR(K,K) is in fact multiplication by an element x ∈ R. Such
a homomorphism can be extended to S as multiplication by (x, 0).
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Remark 3.5. It is obvious from the short exact sequence 0→ K → S → R → 0 of
S-modules that

Exti+1S (R, S) # Ext
i
S(K, S)

for all i > 0.

Lemma 3.6. G-dimS R = 0.

Proof. S-reflexivity is already established, therefore we only need to prove that
ExtiS(R, S) = 0 and Ext

i
S(R

∗, S) # ExtiS(K, S) = 0 for all i > 0. In view of
Remark 3.5, it suffices to show that ExtiS(R, S) = 0 for all i > 0. The proof proceeds
by induction on i. We take for its basis the result of Lemma 3.4. Assume now that
ExtiS(R, S) = 0 for 0 < i " n (respectively, ExtiS(K, S) = 0 for 0 < i " n− 1). We
consider the following change-of-rings spectral sequence:

Epq2 = Ext
p
R(K,Ext

q
S(R, S)) ⇒ Extp+qS (K, S).

By the induction hypothesis we obtain Epq2 = 0 for p + q = n, q > 0. More-
over, En,02 = 0 since ExtnR(K,K) = 0 for n > 0. Hence Ext

n
S(K, S) = 0 and

Extn+1S (R, S) = 0.

Theorem 3.7. If GK -dimM <∞ for a suitable module K, then CM-dimM <∞.

Proof. Consider the following G-quasi-deformation: R → R ← S, where S is the
ring R ⊕K considered above. Then the equality GK -dimRM = G-dimSM holds
by Theorem 1.4.

The following definition of CM-dimension is equivalent to Definition 3.2, but is
more convenient from all points of view.

Definition 3.2′. CM-dimRM = inf{GK -dimR′(M ⊗R R′) : R→ R′ is a local flat
extension and K is a suitable R′-module}.

In particular, it is now clear that CM-dimM ! 0. We shall use this definition
to prove that CM-dimension actually characterizes Cohen–Macaulay rings.

Theorem 3.8. If CM-dimRM <∞, then CM-dimRM + depthM = depthR.

Proof. This follows from the corresponding equality for G-dimension:

CM-dimRM = G-dimQM
′ −G-dimQR′

= (depthQ− depthQM ′)− (depthQ− depthQR′)
= depthQR

′ − depthQM ′ = depthR′ − depthR′(M ⊗R R′)
= depthR− depthM.

Theorem 3.9. If R is a Cohen–Macaulay ring, then CM-dimRM < ∞ for each
R-module M . Conversely, if CM-dimR k <∞, then R is a Cohen–Macaulay ring.

Proof. If R is Cohen–Macaulay, then its completion R′ can be represented as
a quotient ring of a regular ring S modulo a G-perfect ideal, and CM-dimRM is
finite because all modules over regular rings have finite G-dimension (and even finite
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projective dimension). Conversely, if CM-dimR k <∞, then let R→ R′ be a corre-
sponding flat extension and K an R′-suitable module. Let (x) = (x1, . . . , xdepthR)
be a maximal R-regular sequence. Then CM-dimR/(x) k < ∞. For since R → R′
is a flat extension, (x) is an R′-regular sequence and R/(x)→ R′/(x) is also a flat
extension. By Theorem 1.4 the R′/(x)-module K/(x)K is suitable and

GK/(x)K dimR′/(x)(k ⊗R′/(x)) = GK -dimR′(k ⊗R′)− depthR.

We can thus assume without loss of generality that depthR = 0. We claim
that R is Artin. For otherwise mn is non-zero for each n. For each n we also
have an injection 0 → Hom(k,mn) → Hom(k, R). Since

⋂
mn = 0, it follows that

Hom(k,mn) = 0 for all n+ 0; hence depthmn (= 0.
On the other hand, using Lemma 1.8 and induction on length we can prove that

for an R-moduleM of finite length we have GK -dimR′M ⊗R′ <∞. Consider now
the exact sequence

0→ mn ⊗R R′ → R′ → R/mn ⊗R R′ → 0.

The length of the module R/mn is finite, therefore GK -dimR′ R/mn⊗R′ <∞, and
by Lemma 1.8 we obtain GK -dimR′ mn ⊗R R′ < ∞, so that CM-dimRmn < ∞.
This is in contradiction with Theorem 3.8:

0 < depthmn + CM-dimRm
n = depthR = 0.

Proposition 3.10. CM-dimRpMp " CM-dimRM .
Proof. Obviously, we can assume that CM-dimRM is finite. Let R→ R′ ← Q be a
corresponding G-quasi-deformation. Since R → R′ is a flat extension, there exists
p′ ⊂ R′ such that R ∩ p′ = p. Let q ⊂ Q be the inverse image of p′. It easy to see
that the diagram Rp → R′p′ ← Qq is a G-quasi-deformation. We have

G-dimQM ⊗R R′ ! G-dimQq(M ⊗R R′)q = G-dimQqMp ⊗Rp R′p′ ,
G-dimQR

′ = G-dimQq R
′
p′ ,

as required.

Remark 3.11. From Theorem 3.8 and Proposition 3.10 we see that if a module M
has a finite CM-dimension, then depthR − depthM ! depthRp − depthMp for
each prime ideal p. Such an assumption about a moduleM was used, for example,
in [9]; in particular, the authors note in Remark 5 of [9] that it holds in the case of
G-dimM <∞. We have thus obtained a certain extension of the class of modules
for which the assumptions of [9], Corollary 4 are known to be satisfied.
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