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Abstract
Deceptive images can quickly spread via social networking services,
posing significant risks. The rapid progress in Image Manipulation
Localization (IML) seeks to address this issue. However, the scarcity
of public training datasets in the IML task directly hampers the
performance of models. To address the challenge, we propose a
Prompt-IML framework, which leverages the rich prior knowledge
of pre-trained models by employing tunable prompts. Specifically,
sets of tunable prompts enable the frozen pre-trained model to
extract multi-view features, including spatial and high-frequency
features. This approach minimizes redundant architecture for fea-
ture extraction across different views, resulting in reduced training
costs. In addition, we develop a plug-and-play Feature Alignment
and Fusion module that seamlessly integrates into the pre-trained
models without additional structural modifications. The proposed
module reduces noise and uncertainty in features through interac-
tive processing. The experimental results showcase that our pro-
posed method attains superior performance across 6 test datasets,
demonstrating exceptional robustness.

CCS Concepts
• Security and privacy→ Intrusion/anomaly detection and
malwaremitigation; •Computingmethodologies→Artificial
intelligence.
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Figure 1: Prompt-IML utilizes a single pre-trained backbone
with frozen parameters to handle multi-view features via
tunable prompts. The Feature Alignment and Fusion module
is designed as a plug-and-play component for feature inter-
action and enhancement.
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1 Introduction
With the evolution of image editing techniques, individuals can
now freely edit images while preserving high quality. Commonly
encountered methods such as copy-move, splicing, and inpainting
have the potential tomodify the original semantic content of images.
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The rapid progress of image editing tools significantly reduces the
difficulty and cost of creating deceptive images. Therefore, decep-
tive images widespread on the internet, posing a significant social
threat. In response, the Image Manipulation Localization (IML) task
is widely employed to address these challenges.

Advancements in deep learning lead researchers to develop
numerous manipulation localization networks [4, 8, 14, 19, 29,
31]. However, the performance of these models is limited by the
scarcity of large-scale training datasets[1, 24, 37]. For example, the
widely utilized CASIA2[5] dataset comprises only 7491 authentic
images and 5063 forged images. To address this limitation, some
researchers [4, 19, 29, 31] create extensive private training datasets
by employing sophisticated data augmentation techniques on part
of public datasets, e,g, COCO [17]. Other researchers attempt to
weaken tampering traces and generate realistic manipulated im-
ages using methods such as adversarial network [37] and style
transfer [1]. While these approaches improve model performance
to some extent, the challenges of accessibility to many private
datasets and the cost of manually creating manipulated images
persist.

We observe that tasks such as classification, object detection, and
semantic segmentation boast many pre-trained models endowed
with rich prior knowledge, e.g. Swin-Transformer [20]. It is natural
to consider leveraging these pre-trained models to address the chal-
lenges in IML task. However, directly applying them to IML task is
proven inefficient [22]. This inefficiency stems from the unique na-
ture of IML task, which focuses on extracting non-semantic visual
cues and low-level discontinuities from images. Two key aspects il-
lustrate this distinctiveness: 1) High-frequency information: images
captured by different cameras exhibit varying noise patterns [16].
This brings inconsistent noise into forged images when manipu-
lated and authentic areas come from different images. Moreover,
images generated by different networks may manifest differences in
the frequency domain [27]. 2) Edge information: the level of image
editing can vary, leading to jagged and non-smooth edges at the
boundary of forged area or color inconsistency [37]. These details
are critical for precise manipulation localization but are frequently
neglected in many tasks.

IML-ViT [22] is the pioneering attempt to employ pre-trained
models based on the plain ViT[6] architecture in the IML task. They
also incorporate edge supervision to direct the network’s attention
toward subtle forgery artifacts. However, IML-ViT overlooks the
high-frequency information that has been validated effective in
many previous works [4, 14, 15]. In IML task, processing multi-
view features often requires parallel backbone architectures [4, 14],
which becomes challenging as the emergency of models with in-
creasing parameters. Additionally, IML-ViT, despite leveraging pre-
trained models, necessitates training the model with datasets from
the scratch. This undoubtedly places a substantial demand on com-
putational resources, particularly for tuning large pre-trained mod-
els. Moreover, some previous works show that tuning large pre-
trained models on downstream tasks may harm the performance
of models [30], which is also observed during our comparison ex-
periments.

In this paper, we propose Prompt-IML, as shown in Fig. 1, aiming
to address the scarcity of datasets in IML task by leveraging the rich
prior knowledge of pre-trained models. Specifically, Prompt-IML

follows an encoder-decoder architecture. An encoder based on a
pre-trained model is responsible for feature extraction, and then a
decoder processes these features to accurately locate manipulated
regions. To process multi-view features beneficial for the IML task
without resorting to complex parallel architectures, we propose
employing sets of tunable prompts for exploiting the pre-trained
model as the encoder. We freeze the pre-trained model while train-
ing these prompts. It offers three main advantages. Firstly, it allows
the pre-trained model to be adapted for processing features from
each view. Secondly, the processed features retain the robustness
inherited from the pre-trained model. Lastly, it helps reduce the
computational resources required for training.

Furthermore, considering the variations among multi-view fea-
tures, we propose a Feature Alignment and Fusion (FAF) module.
This module is designed as a plug-and-play component that can be
seamlessly integrated into the encoder without additional structural
modifications. Within the FAF module, multiple attention mecha-
nisms are employed for different merits. The FAF module reduce
noise and uncertainty in features, while also suppressing sporadic
positive responses to ensure a consistent output.

To fairly evaluate the model’s capabilities, we follow the evalua-
tion protocol outlined in IML-ViT. It involves using only the CA-
SIA2 dataset for training and then testing on the other 6 datasets.
Importantly, we ensure zero data overlap between the training
dataset and test datasets, making this a cross-dataset evaluation.
Experimental results demonstrate that the proposed Prompt-IML
effectively leverages the prior knowledge in pre-trained models,
outperforming previous state-of-the-art methods and exhibiting
stronger robustness. Our contributions can be summarized in three
aspects:

• We introduce Prompt-IML to tackle the challenge posed by
the scarcity of IML datasets. Our approach extracts and ad-
justs multi-view features from a single pre-trained backbone
through the integration of tunable prompts, thereby preserv-
ing performance and robustness.

• We carefully craft a plug-and-play Feature Alignment and
Fusion (FAF) module that seamlessly integrates into the back-
bone. It efficiently reduces noise and uncertainty in features
while mitigating the impact of sporadic positive responses.

• Prompt-IML outperforms state-of-the-art methods across 6
test datasets. Our extensive experiments confirm the gener-
alizability and robustness of our approach, and also validate
the effectiveness of the proposed FAF module.

2 Related Works
2.1 Image Manipulation Localization
With the advancements in deep learning, researchers delve into
developing end-to-end manipulation localization networks[2, 4, 10,
11, 14, 15, 19, 33–35, 37]. MVSS-Net++[4] integrates multi-scale
features, edge-related features, and high-frequency features of im-
ages for feature extraction and utilizes spatial-channel attention for
feature fusion and enhancement. PSCC-Net[19] proposes a progres-
sive spatial-channel attention module, utilizing multi-scale features
and dense cross-connections to generate tampering masks of vari-
ous granularity. These works all employ CNN architecture as the
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backbone, primarily due to the convolutional layers’ local receptive
fields being more conducive to dense predictions[20].

However, in various other tasks like image classification, the
ViT architecture emerges as dominant. Some researchers are ac-
tively exploring ViT’s application in IML task due to its global
attention mechanism, which is particularly effective for modeling
relationships between any regions regardless of their visual seman-
tic relevance. ObjectFormer[31] constructs ViT-related architecture,
utilizing a set of learnable object prototypes as mid-level represen-
tations to capture object-level consistencies across different regions.
IML-ViT[22] is the first to incorporate a pre-trained ViT model into
IML task and fine-tune the model using only CASIA2 dataset. This
not only addresses the issue of data scarcity in the IML task but also
reduces the cost of training the model. This work demonstrates the
tremendous potential of pre-trained models based on the ViT archi-
tecture for IML task, offering an alternative approach to addressing
the challenge of data scarcity.

2.2 Fine-tuning Methods
The primary purpose of fine-tuning is further training pre-trained
models with small-scale datasets, aiming at adapting models to
downstream tasks. This method leverages rich prior knowledge in
pre-trained models, leading to faster convergence during training.
The common method is full-tuning, which involves adjusting all
parameters in the pre-trained model. However, it faces challenges
in adapting to the emergence of models with increasing parameters
due to the more computational resources required.

Compared to full-tuning, prompt-tuning is an efficient, low-cost
way of adapting pre-trained models to downstream tasks. This tech-
nique is first used in NLP, and VPT[12] is an efficient way to adapt it
for the visual domain. It inserts a small number of tunable prompts
into the pre-trained model’s input and adjusts the original features
through self-attention mechanisms. Recently, EVP[18] attempts to
apply visual prompts to low-level structure segmentation tasks, in-
cluding IML task. They achieve precise localization of manipulated
regions by adjusting the embedding representation of images and
incorporating high-frequency information. However, their method
of combining multi-view features through a basic addition strategy
is considered inefficient due to potential variations among different
features. Our experimental section demonstrates the inefficiency
of their approach in IML task.

3 Proposed Method
3.1 Approach Overview
Fig. 2 illustrates the pipeline design of the proposed Prompt-IML,
which follows the common Encoder-Decoder framework. The com-
plete pipeline consists of two phases, i.e., feature extraction and
manipulation localization. In the feature extraction stage, we em-
ploy the pre-trained Swin-Transformer as the backbone and keep its
parameters frozen during training. Simultaneously, we utilize multi-
ple sets of tunable prompts to adjust the spatial and high-frequency
features of the images respectively. This approach thereby avoids
employing redundant model architectures to extract features from
additional views. Considering differences of multi-view features, we
propose a Feature Alignment and Fusion (FAF) module for process-
ing. FAF modules are integrated between the layers of the backbone,

effectively reducing noise and uncertainty within extracted features
of each layer. Meanwhile, they help suppress sporadic positive re-
sponses, leading to more consistent output. These modules are
plug-and-play, requiring no modifications to the backbone itself. In
the manipulation localization stage, we employMask2Former as the
decoder, which includes both a Pixel Decoder and a Transformer
Decoder. The decoder processes the multi-scale features acquired
from previous stage and produces the final prediction.

3.2 Feature Extraction Stage
We denote the input image asX ∈ Rℎ×𝑤×3. To acquire the input for
spatial features, we partition the image into specified-sized patches:

FRGB0 = Norm(Conv(X)) + F𝑃𝐸 , (1)

where FRGB0 ∈ R𝐻×𝑊 ×𝐶 , Conv represents the partition operation,
F𝑃𝐸 is a learnable positional embedding. Next, we employ a set
of BayarConv with varying size kernels to extract high-frequency
features:

FHFQ0 = Concat({BayarConvi×i (X)}), 𝑖 ∈ {3, 5, 7}, (2)

where FHFQ0 ∈ R𝐻×𝑊 ×𝐶 , and 𝑖 symbolizes the kernel size. The ob-
tained features will be sent to the backbone for further processing.

3.2.1 Multi-view Features Processing with Tunable Prompts. We em-
ploy the pre-trained Swin-Transformer, which is commonly used
in the semantic segmentation (SS) task, as the backbone for the
following reasons: 1) The Swin-Transformer includes a window
attention design that has linear time complexity compared to image
size; 2) Patch merging operations can generate multi-scale feature
maps, which is proven to be important in IML task[4, 11]. 3) SS task
and IML task share some similarities, as they are fundamentally
pixel-level classification tasks. We believe that pre-trained mod-
els used for SS task, after fine-tuning, are more advantageous in
achieving precise pixel-level manipulation localization.

The Swin-Transformer consists of 4 layers and outputs features
with specific resolutions. We denote the output features at the 𝑖-th
layer as F𝑖 :

F𝑖 = Layeri (F𝑖−1) ∈ R(𝐻𝑖×𝑊𝑖 )×𝐶𝑖 , 𝑖 ∈ {1, 2, 3, 4}, (3)

where𝐻𝑖 =
𝐻
2𝑖−1 ,𝑊𝑖 =

𝑊
2𝑖−1 ,𝐶𝑖 = 𝐶 ∗ 2𝑖−1, Layeri symbolize the 𝑖-th

layer of Swin-Transformer.
We adopt a prompt-tuning method[12] to enable a single pre-

trained model to process both spatial and high-frequency features.
Specifically, during training, we utilize two sets of prompts at each
layer for processing the spatial and high-frequency features respec-
tively while freezing the parameters of the backbone. We denote
the input features of the 𝑖-th layer as F𝑅𝐺𝐵

𝑖−1 and F𝐻𝐹𝑄

𝑖−1 . They are
first reshaped to R(𝐻𝑖−1×𝑊𝑖−1 )×𝐶𝑖−1 , then are joined by prompts
P𝑅𝐺𝐵
𝑖−1 and P𝐻𝐹𝑄

𝑖−1 ∈ R𝑛𝑝×𝐶𝑖−1 respectively. Therefore, the procedure
of each layer (Eq. 3) is altered as:

F𝑅𝐺𝐵
𝑖 = Layer𝑖

( [
P𝑅𝐺𝐵
𝑖−1 , F𝑅𝐺𝐵

𝑖−1
] )

,

F𝐻𝐹𝑄

𝑖
= Layer𝑖

( [
P𝐻𝐹𝑄

𝑖−1 , F𝐻𝐹𝑄

𝑖−1

] )
,

(4)

where [·] represents for Concat operation.
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3.2.2 Feature Alignment and Fusion Module. Given spatial and
high-frequency features processed by the backbone, we propose
a FAF module for feature alignment and fusion. FAF modules are
integrated between some adjacent layers of the backbone as shown
in Fig. 2. The FAF module consists of an alignment stage[36] and a
fusion stage, the detailed composition and procedure are depicted
in Fig. 3.

In the feature alignment stage, we employ both channel atten-
tion and spatial attention to investigate the inter-channel and inter-
spatial correlations of features, thereby enhancing features with
corresponding information. Unprocessed features then gather infor-
mation from enhanced features, reducing potential uncertainty and
noise within itself. Specifically, we first employ average pooling
operation (denoted by overline) to aggregate information. Then,
they are concatenated on the dimension of 𝐶𝑖 , which is denoted by
[·], and fed into an MLP layer to generate channel-attention vectors
W𝐶𝑅𝐺𝐵

𝑖
,W𝐶𝐻𝐹𝑄

𝑖
∈ R1×1×𝐶𝑖 . The above procedure is formulated as:

W𝐶𝑅𝐺𝐵

𝑖
,W𝐶𝐻𝐹𝑄

𝑖
= ChannelAttn

(
F𝑅𝐺𝐵
𝑖 , F𝐻𝐹𝑄

𝑖

)
= Split

(
MLP

( [
F𝑅𝐺𝐵
𝑖

, F𝐻𝐹𝑄

𝑖

] ))
,

(5)

where Split is the reverse operation of Concat. To obtain the spatial
attention vector, we utilize two 1×1 convolutions with an interme-
diate ReLU layer, denoted by 𝑔(·), to aggregate spatial information.
The procedure to obtain spatial-attention vectorsW𝑆𝑅𝐺𝐵

𝑖
,W𝑆𝐻𝐹𝑄

𝑖
∈

R𝐻𝑖×𝑊𝑖×1 can be formulated as:

W𝑆𝑅𝐺𝐵

𝑖
,W𝑆𝐻𝐹𝑄

𝑖
= SpatialAttn

(
F𝑅𝐺𝐵
𝑖 , F𝐻𝐹𝑄

𝑖

)
= Split

(
Conv

(
𝑔

(
Conv

( [
F𝑅𝐺𝐵
𝑖 , F𝐻𝐹𝑄

𝑖

] ))))
.

(6)

Finally, we align the features from different branches by applying
crosswise attention vectors, which produce the input for the next
backbone layer through element-wise addition:

F𝐶𝑅𝐺𝐵

𝑖
= W𝐶𝑅𝐺𝐵

𝑖
⊙ F𝑅𝐺𝐵

𝑖 , F𝑆𝑅𝐺𝐵

𝑖
= W𝑆𝑅𝐺𝐵

𝑖
⊙ F𝑅𝐺𝐵

𝑖 ,

F𝐶𝐻𝐹𝑄

𝑖
= W𝐶𝐻𝐹𝑄

𝑖
⊙ F𝐻𝐹𝑄

𝑖
, F𝑆𝐻𝐹𝑄

𝑖
= W𝑆𝐻𝐹𝑄

𝑖
⊙ F𝐻𝐹𝑄

𝑖
,

F𝑅𝐺𝐵
𝑖 := F𝑅𝐺𝐵

𝑖 + F𝐶𝐻𝐹𝑄

𝑖
+ F𝑆𝐻𝐹𝑄

𝑖
,

F𝐻𝐹𝑄

𝑖
:= F𝐻𝐹𝑄

𝑖
+ F𝐶𝑅𝐺𝐵

𝑖
+ F𝑆𝑅𝐺𝐵

𝑖
.

(7)

In the feature fusion stage, we first utilize dilated convolutions
DConvwith different dilation rates to process feature maps, enhanc-
ing interactions within patches. Specifically, we employ dilation
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Fake Image Ground-truth Prompt-IML EVP Mantra-Net MVSS-Net++ IML-ViT

Figure 4: Manipulation localization results on images originating from multiple datasets. Columns from left to right are: fake
image, ground-truth, Prompt-IML, EVP, Mantra-Net, MVSS-Net++ and IML-ViT.

rate 𝑘 ∈ {1, 3, 5} for processing, then concatenate outputs on the di-
mension of𝐶𝑖 . The concatenated features are processed to integrate
information along with unprocessed features:

F̃𝑖 = Conv ( [Conv ( [DConvk×k (F𝑖 )]) , F𝑖 ]) , 𝑘 ∈ {1, 3, 5}. (8)

Then, we apply deformable attention to facilitate the information
interaction among patches from multi-views for fusion. The de-
formable attention mechanism not only reduces computational
complexity through sampling with learnable offsets, but also helps
suppress sporadic positive responses in feature maps, which aids
localization since tampering operations typically affect specific re-
gions of pixels rather than isolated ones[4]. Given the processed
features from the previous step F̃𝑅𝐺𝐵

𝑖
and F̃𝐻𝐹𝑄

𝑖
:

attn𝑅𝐺𝐵 = DeformAttn1
(
Q = F̃𝑅𝐺𝐵

𝑖 ,K&V = F̃𝐻𝐹𝑄

𝑖

)
,

attn𝐻𝐹𝑄 = DeformAttn2
(
Q = F̃𝐻𝐹𝑄

𝑖
,K&V = F̃𝑅𝐺𝐵

𝑖

)
,

F𝑑𝑖 = 𝛾1 ·
(
F̃𝑅𝐺𝐵
𝑖 + attn𝑅𝐺𝐵

)
+ 𝛾2 ·

(
F̃𝐻𝐹𝑄

𝑖
+ attn𝐻𝐹𝑄

)
,

(9)

where 𝛾1, 𝛾2 are learnable parameters. The output F𝑑
𝑖
is utilized for

decoder.

3.3 Manipulation Localization Stage
To refine the multi-scale features obtained in the previous stage, we
utilize theMask2Former[3] as the decoder, which comprises two key
components: a Pixel Decoder and a Transformer Decoder. The Pixel
Decoder is responsible for progressively upsampling features from
low to high resolution. The Transformer Decoder leverages query
embeddings and multi-scale features for localization. This approach
offers several advantages. Firstly, utilizing multi-scale features is
advantageous for locating small tampered regions. Moreover, the
integration of query embeddings with Masked-Attention helps
constrain cross-attention solely to the tampered regions, thereby
enhancing the extraction of tampering-related features.

3.4 Loss Function
Considering that the boundaries of tampered regions may exhibit
jagged, non-smoothed edges and color inconsistencies, we draw in-
spiration from IML-ViT[22] and introduce edge supervision. Specifi-
cally, we use morphological operations, such as erosion and dilation,
to process the mask𝑀 and generate corresponding edge mask𝑀★.
In comparison to methods that utilize a network to generate edge
predictions[4], this strategy not only incorporates edge information
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Table 1: Image Manipulation Localization Performance (F1 score with fixed threshold of 0.5). All methods are trained with
CASIA2 for fair comparisons except for Mantra-Net and HP-FCN. We highlight the best and the second results in each column
in bold and underlined respectively.

Method Pixel-level F1 score
CASIA1 Columbia NIST16 COVER DEF-12K IMD20 Average

HP-FCN, ICCV19[15] 0.154 0.067 0.121 0.003 0.055 0.112 0.085
Mantra-Net, CVPR19[33] 0.155 0.364 0.000 0.286 0.155 0.187 0.191
CR-CNN, ICME20[34] 0.405 0.436 0.238 0.291 0.132 0.262 0.294
GSR-Net, AAAI20[37] 0.387 0.613 0.283 0.285 0.051 0.243 0.310
MVSS-Net, ICCV21[2] 0.452 0.638 0.292 0.453 0.137 0.260 0.372
MVSS-Net++, PAMI22[4] 0.513 0.660 0.304 0.482 0.095 0.270 0.387
EVP, CVPR23[18] 0.426 0.379 0.226 0.096 0.062 0.188 0.230
IML-ViT, AAAI24[22] 0.658 0.836 0.339 0.425 0.156 0.422 0.473

Prompt-IML 0.686 0.882 0.415 0.429 0.237 0.471 0.520

but also eliminates the need for adjustments to the backbone, en-
hancing its flexibility. The loss function comprises two components,
each corresponding to the supervision of the prediction result and
the edge:

L = L𝑠𝑒𝑔 (𝑀𝑔𝑡 , 𝑀𝑝𝑟𝑒𝑑 ) + 𝜆L𝑒𝑑𝑔𝑒 (𝑀★
𝑔𝑡 , 𝑀

★
𝑝𝑟𝑒𝑑

) (10)

where L𝑠𝑒𝑔 and L𝑒𝑑𝑔𝑒 are binary cross-entropy functions, 𝑀𝑔𝑡 ,
𝑀★
𝑔𝑡 denotes ground-truth mask and edge mask, and𝑀𝑝𝑟𝑒𝑑 , 𝑀

★
𝑝𝑟𝑒𝑑

symbolize predictions. 𝜆 is a hyper-parameter and we set 𝜆 = 20 by
default.

4 Experiments
4.1 Experimental Setup
4.1.1 Datasets. We adopt a common training protocol [2, 22, 37]
of the IML task to facilitate fair comparisons of model performance
and avoid the influence of private synthesis datasets. We solely
utilize CASIA2 [5] to train Prompt-IML. 6 public test datasets, in-
cluding CASIA1 [5], NIST16 [7], COVERAGE [32], Columbia [25],
IMD2020 [26], and DEFACTO [23], are utilized for evaluation. Fol-
lowing MVSS-Net[2], we conduct testing on a sampled sub-dataset
from DEFACTO, containing 6,000 genuine images and 6,000 manip-
ulated images. The evaluation constitutes cross-dataset analysis, as
there is no overlap between our training and test datasets.

4.1.2 Evaluation Criteria. We evaluate our model’s performance
on the test datasets using the pixel-level F1 score. Some previous
methods employ the strategy of optimizing the F1 score with the
optimal threshold, in which different thresholds are chosen for each
image. However, the decision for optimal threshold necessitates
ground-truth data, which is not feasible in real-world scenarios.
Therefore, we report F1 score with fixed threshold, which is inde-
pendent of the model itself and provides a fair assessment of model
performance.

4.1.3 Implementation Details. We train our Prompt-IML on RTX
3090 GPUs for 80 epochs with a batch size of 2 in each GPU. Both
the encoder and decoder are initialized with pre-trained weights
on COCO[17]. Unless otherwise specified, all images are resized
to 1024 × 1024. Following IML-ViT[22], we use simple and public

data augmentation techniques, including flipping, blurring, rota-
tion, JPEG compression, randomly copy-moving, and inpainting
rectangular areas within a single image. We use the AdamW[21]
optimizer with a base learning rate of 1 × 10−4 and schedule the
learning rate utilizing a cosine decay strategy.

4.2 Performance Comparisons
We compare our method with the other 8 state-of-the-art methods
to comprehensively evaluate our approach and report the F1 score
in Tab. 1. We can observe that our method improves the best base-
lines with 2.8%, 4.6%, 7.6%, 8.1%, and 4.9% for each improved dataset,
respectively. On average, it improves 4.3% compared to sub-optimal
baseline IML-ViT [22]. These sufficiently demonstrate the superior-
ity of our model. However, on COVER[32] dataset, MVSS-Net-based
methods [2, 4] outperform all the other methods. COVER is a small-
scale dataset of forged images created solely through copy-move
techniques, with most detection clues located around the boundary
of the forged regions. So, we attribute this phenomenon to their
carefully designed edge information extraction structure and data
augmentation techniques.

Furthermore, Fig. 4 showcases the predicted localization results
of each model, with each image originating from a different dataset
with substantial variations in the manipulated regions. The results
underscore the remarkable generalization ability of our method,
suggesting that the proposed approach can effectively leverage
the prior knowledge embedded in pre-trained models to detect
tampering traces.

4.3 Robustness
In this section, we utilize 6 test datasets to comprehensively evaluate
the robustness of Prompt-IML. Following IML-ViT[22], we apply
two common attack methods, i.e. JPEG compression and Gaussian
blur, at various levels of perturbation, to create attacked images.
The results are exhibited in Fig. 5.

In the JPEG compression test, the proposed Prompt-IML keeps
clear advantages on 4 datasets. On COVER and NIST16, our method
performs closely to the leading method. In the Gaussian blur test,
Prompt-IML significantly outperforms othermethods on all datasets.
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Figure 5: Robustness evaluation against two image post-processing techniques, i.e. JPEG compression and Gaussian blurs. We
report the processing intensity on the x-axis and the F1 score on the y-axis.

Table 2: Ablation study of Prompt-IML. We ablate spatial in-
formation (SP), high-frequency information (HF), alignment
stage of FAF (ALN), and fusion stage of FAF (FSN) for study.

components Pixel-level F1 score
SP HF ALN FSN COVER NIST16 IMD20

1 ✓ - - - 0.338 0.346 0.374
2 ✓ ✓ - - 0.363 0.365 0.401
3 ✓ ✓ ✓ - 0.399 0.384 0.402
4 ✓ ✓ - ✓ 0.393 0.386 0.441
5 ✓ ✓ ✓ ✓ 0.429 0.415 0.471

Overall, in comparison to other methods, Prompt-IML presents a re-
markable ability to withstand both JPEG compression and Gaussian
blur, especially against the latter. We also notice that IML-ViT ex-
hibits better average robustness than other methods, so we attribute
the robustness of our approach to the more effective utilization of
large-scale pre-trained models, since these models can learn more
robust features due to the extensive training datasets they are ex-
posed to.

It’s worth noting that our method exhibits a significant perfor-
mance improvement compared to IML-ViT in resisting Gaussian
blur attack. We believe these advantages stem from the use of
high-frequency features and promot-tuning, leading to the follow-
ing speculations. Firstly, IML-ViT fully fine-tunes the pre-trained
network, which may harm its robustness due to catastrophic for-
getting [30]. Additionally, the resistance of different features to
various attacks vary, so leveraging multi-view features adequately
may contributes to enhancing the robustness of the method.

4.4 Ablation Studies
We conduct several experiments following the settings outlined in
Tab. 2, to thoroughly assess the effectiveness of the modules in our
approach. We report the F1 score of each model on COVER [32],
NIST16 [7], and IMD20 [26].

4.4.1 Influence of Multi-view Features. In setting 2, we employ a
single backbone with frozen parameters to simultaneously extract
both spatial and high-frequency features from images. Compared to
setting 1, which only employs spatial features, we observe that the
utilization of high-frequency features increases 2.5%, 1.9%, and 2.7%
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Table 3: Pre-trained backbone comparisons of Prompt-IML. All experiments are conducted using 512 × 512 manipulated images
as input, and designed modules are slightly modified to match the requirements of feature map sizes.

Backbone Pixel-level F1 score
CASIA1 Columbia COVER NIST16 IMD20 DEF-12K

CLIP[28] 0.522 0.528 0.185 0.269 0.241 0.077
MAE[9] 0.538 0.528 0.256 0.272 0.285 0.133
SAM[13] 0.596 0.481 0.228 0.281 0.219 0.094
Swin-Transformer[20] 0.631 0.814 0.278 0.350 0.332 0.177

Table 4: The comparisons between Prompt Tuning and Full Tuning. In Full Tuning, we modify the model into a dual-branch
structure to handle multi-view features and initialize all branches with pre-trained parameters.

Method Pixel-level F1 score
CASIA1 Columbia COVER NIST16 IMD20 DEF-12K

Prompt-Tuning 0.686 0.882 0.429 0.415 0.471 0.237
Full-Tuning 0.702 0.885 0.610 0.414 0.542 0.280

in F1 scores respectively, effectively demonstrating the feasibility
of exploiting pre-trained models to process multi-view features.

4.4.2 Influence of FAF Module. The proposed FAF module com-
prises two independent stages: alignment and fusion. So setting 3
and 4 are used to validate the effectiveness of each stage respec-
tively. In setting 4, we skip the feature alignment stage and directly
pass the features to the next layer. Compared with setting 5, we
note a decrease in F1 scores on all three datasets when the feature
alignment stage is absent, resulting in decreases of 3.6%, 2.9%, and
3.0% respectively. In setting 3, we skip the feature fusion stage and
directly add multi-view features as fused features. Compared with
setting 5, the absence of the feature fusion stage leads to decreases
of 3.0%, 3.1%, and 7.1% in F1 scores individually. These results ef-
fectively demonstrate that the FAF module successfully enhances
features through information interaction between features.

4.5 Choice of Pre-trianed Backbone
We investigate the impact of selecting different pre-trained models
as the backbone. We utilize CLIP [28], MAE [9], SAM[13] and Swin-
Transformer [20]. Both CLIP and MAE adopt architectures of the
plain ViT, while SAM is similar to Swin-Transformer. Given the
computational demands of the global self-attention mechanism
especially for large images, we resize all images to 512 × 512 for
this comparison. Moreover, due to the fixed feature map size output
by the plain ViT, we incorporate several convolutions at the end of
each Fusion stage within the FAF module to align with the input
requirements of the decoder. We report the F1 scores for different
backbones in Tab. 3. The Swin-Transformer model, which is trained
on the COCO [17] dataset for semantic segmentation task, deliver
superior results. We attribute this success primarily to its varied
receptive fields across different layers, enabling it to uncover subtle
tampering traces. Although CLIP is pre-trained on a large dataset, it
emphasizes alignment between text and image features, hence using
the image encoder alone may not be the optimal choice. Besides,
we hypothesis that the implementation of the window attention
mechanism in SAM may limit its performance on lower-resolution

images. Therefore, we select pre-trained Swin-Transformers as our
backbone.

4.6 Prompt Tuning v.s. Full Tuning
We compare two approaches, prompt tuning and full tuning, for
adapting pre-trained models to the IML task and assess their im-
pact on model performance. When using the full tuning method,
as a single backbone faces limitations in processing spatial and
high-frequency features simultaneously, we adjust the backbone
to a dual-branch architecture following the guidelines in [2, 14].
Tab.4 presents the F1 scores of different tuning methods. Full tuning
does not lead to significant performance gains on most datasets but
shows a substantial 19.1% improvement on the COVER dataset. We
attribute this anomaly to the small scale of the COVER dataset and
its use of a single manipulation technique. Although full tuning
exhibits a degree of performance improvement, the dual-branch
structure introduces significantly more trainable parameters com-
pared to tunable prompts. For a more straightforward comparison,
we do not calculate the learnable parameters of the FAF module
and decoder, because they are included in both methods. The learn-
able parameters’ size for the tunable prompts is 0.09M, and for the
dual-branch backbones in full tuning is 93.14M. Therefore, prompt
tuning is more advantageous in adapting to the development of
large models and handling multi-view features.

5 Conclusion
In this paper, we explore the potential of utilizing existing pre-
trained models to address the scarcity of public available datasets
in the IML task. We propose Prompt-IML, which utilizes a single
pre-trained network to extract multi-view features through tunable
prompts. A specially designed Feature Alignment and Fusion (FAF)
module is employed to integrate multi-view features, effectively
reducing noise and uncertainty in features, and suppressing spo-
radic positive responses. Extensive experiments on 6 test datasets
demonstrate outstanding performance, better generalization ability,
and higher robustness of Prompt-IML.
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