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ABSTRACT

Training image-based object detectors presents formidable challenges, as it en-
tails not only the complexities of object detection but also the added intricacies
of precisely localizing objects within potentially diverse and noisy environments.
However, the collection of imagery itself can often be straightforward; for in-
stance, cameras mounted in vehicles can effortlessly capture vast amounts of data
in various real-world scenarios. In light of this, we introduce a groundbreak-
ing method for training single-stage object detectors through unsupervised/self-
supervised learning.
Our state-of-the-art approach has the potential to revolutionize the labeling pro-
cess, substantially reducing the time and cost associated with manual annotation.
Furthermore, it paves the way for previously unattainable research opportunities,
particularly for large, diverse, and challenging datasets lacking extensive labels.
In contrast to prevalent unsupervised learning methods that primarily target clas-
sification tasks, our approach takes on the unique challenge of object detection.
We pioneer the concept of intra-image contrastive learning alongside inter-image
counterparts, enabling the acquisition of crucial location information essential for
object detection. The method adeptly learns and represents this location infor-
mation, yielding informative heatmaps. Our results showcase an outstanding ac-
curacy of 89.2%, marking a significant breakthrough of approximately 15x over
random initialization in the realm of unsupervised object detection within the field
of computer vision.

1 INTRODUCTION

Object discovery is a fundamental task in computer vision, with supervised object detection making
significant strides, while its unsupervised counterpart remains relatively uncharted territory Wang
et al. (2022b). While large-scale labeled datasets play a pivotal role in the success of deep learning
models for vision tasks Sun et al. (2017), creating such datasets is resource-intensive and time-
consuming, posing limitations on their availability. This underscores the importance of reducing
reliance on extensive labeled data Wang et al. (2022b).

In stark contrast to the well-explored domain of supervised object detection, unsupervised ap-
proaches have received limited attention. Moreover, most existing self-supervised learning methods
have been primarily tailored for image classification tasks Wang et al. (2021) Xie et al. (2021) Wu
et al. (2018), often relying on various forms of pre-training.

In this study, we embark on the journey of detecting objects within images without the need for
manual annotation. Our approach draws inspiration from contrastive learning and operates in a fully
class-agnostic manner, training on the COCO dataset. We identify similar objects with an impressive
accuracy of 89.2%. This research explores the uncharted territory of unsupervised object detection,
shedding light on its potential in the field of computer vision.

2 RELATED WORKS

Unsupervised object detection has long been a formidable challenge, often requiring substantial
efforts to match the effectiveness of supervised learning counterparts. While recent strides have
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been made in this domain, it’s worth noting the unique characteristics that set our work apart from
existing approaches.

Prior efforts in unsupervised object detection have explored various avenues. Some methods have
relied on single images as their training data source, while others leveraged multiple images, incor-
porating temporal or viewpoint transformations into the mix Doersch et al. (2015) Wang & Gupta
(2015) Agrawal et al. (2015). Context prediction has also been a focal point, with strategies such as
predicting the relative location of a second crop in relation to the first crop or solving jigsaw puzzles
Noroozi & Favaro (2016). These endeavors aimed to impart the system with an understanding of an
object’s constituent parts.

In recent times, visual pre-training methods have gained traction as a means to complement super-
vised object detection. Contrastive learning, in particular, has garnered substantial attention for its
utility in unsupervised representation learning from images Noroozi & Favaro (2016) Chen et al.
(2020a) He et al. (2020) Oord et al. (2018) Hénaff et al. (2019). These techniques work by map-
ping similar samples or different augmentations of the same instance closer together while pushing
dissimilar instances farther apart, facilitating the learning process.

Additionally, some researchers have explored self-supervised methods defined as models that learn
by generating its own labels Kumar et al. (2023) and weakly supervised learning methods to glean
valuable visual representations Herrera et al. (2021). Notably, there has been a surge of interest in
unsupervised object discovery Vo et al. (2021), Lv et al. (2023), a methodology geared toward iden-
tifying salient objects without relying on manual annotations. However, many of these approaches
still hinge on the generation of masks, whether coarse or fine-grained, which effectively serve as
ground truth annotations Wang et al. (2023), Wang et al. (2022a). Our method, in contrast, breaks
free from the need for mask creation or annotations, offering a simpler and more straightforward
approach that doesn’t involve intricate training loops. This unique feature sets our work apart in the
realm of unsupervised object detection.

2.1 CONTRIBUTIONS

We are proud to present our latest work, in which we have made the following noteworthy contribu-
tions:

• We introduce a simple, new algorithm for unsupervised object detection. Our approach,
drawing inspiration from the principle of contrastive learning, seamlessly combines inter-
image and intra-image contrastive techniques, thereby capturing location information for
unparalleled high similarity within an image.

• We have devised a novel, modified Anchor-based NT-Xent loss function. This loss function
encompasses the location information of the random crop to bolster learning. We have
expanded upon the existing NT-Xent loss function to include anchor data as well.

• We achieve 89.2% accuracy on Similarity grid accuracy which is approximately 15 times
greater than Random initialized grid accuracy.

3 OUR METHOD

3.1 WORKFLOW

Our approach is based on the contrastive learning method. As shown in Figure 1, for every input
image (x), our algorithm generates two images - Image (xi) which is a random crop (3.5) of the
input image, and Image (xj) which is an exact copy of the input image. This creates two distinct
pipelines for processing the images, namely Pipeline 1 and Pipeline 2.

Pipeline 1 augments the image (xi) and processes the augmented Image (xi) using the ResNet archi-
tecture, and generates embeddings from the ResNet He et al. (2015) architecture. These embeddings
are then passed through a projection head which reduces their dimensions. The resulting embeddings
are then used as input for our loss function.

Pipeline 2 works with full-size images, specifically Image (xj). It also augments the image (xj)
and the augmented full-size image is passed through a RetinaNetLin et al. (2017) network that
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employs a Feature Pyramid Network (FPN) Lin et al. (2016) backbone built on top of a feed-forward
ResNet architecture. This RetinaNetLin et al. (2017) architecture produces both a regression head
and a projection (classification) head. In our experiment, we do not use regression outputs or the
classification. We only use the outputs from FPN which acts as our projection head. This projection
head reduces the dimensions of the embeddings, and we select the embedding that is closely linked
to the embedding from Pipeline 1, i.e. a positive pair. As per He et al. (2020) and Grill et al. (2020)
a positive pair is when the query and the key are data-augmented versions of the same image. The
generation of positive pairs can be considered as a joint distribution over views and negative pair can
be considered as a product of marginals Tian et al. (2020). We then match the embeddings based on
their location information, comparing the location information from Pipeline 1 and Pipeline 2.
It is important to acknowledge that in pipeline 2, our approach trains the Feature Pyramid Network
(FPN) in conjunction with the backbone i.e. Resnet.

Figure 1: The diagram illustrates the interplay between our two pipelines. In the upper pipeline,
refered to as Pipeline 1, we begin with input data xi and proceed to process the image, ultimately
generating a representation suitable for deployment in our Anchor-Based NT-Xent loss. Similarly,
the lower pipeline, referred to as Pipeline 2, takes the input xj and conducts image processing oper-
ations, culminating in the extraction of FPN outputs. These FPN outputs are thoughtfully curated to
identify positive and negative samples within the image, as depicted below.

(a) In this visualization, the image on
the right illustrates the utilization of
FPN representations. Each black dot
signifies a specific location extracted
from the FPN output of a chosen layer,
indicated by the red box. The red dot
at the image center represents the fo-
cal point for cropping the image used
in xi. Within this pipeline, we iden-
tify the closest FPN location to this
center, denoted as a positive counter-
part, zj (white dot). Additionally, we
randomly select other locations within
the image, serving as anchor negatives,
collectively represented as za. Figure 2: Selection of embeddings from FPN layers
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Algorithm 1 Unsupervised Object Detection

Input: Image(X); Training epochs (E); Batch Size (B)
for each input image (X) in a minibatch do

Create two images:
Image (xi) = (x[a : a+ w, b : b+ h])

▷ randomly cropping image x at coordinates (a,b) with width and height (w,h).
Image (xj) ≜ Image (x)

Create two pipelines for processing the images:
Pipeline 1:

xi =

{
HFlip(xi) with probability 0.5
VFlip(xi) with probability 0.5

▷ Apply augmentations (e.g., HFlip and VFlip) to xi randomly
ri = e1(xi) = Resnet(xi)
▷ ri is the representation generated by passing the image xi to Resnet encoder network
zi = p(ri)

▷ zi is the embedding generated after passing embeddings ri in the projection head
Pipeline 2:

xj =

{
HFlip(xj) with probability 0.5
VFlip(xj) with probability 0.5

▷ Apply augmentations (e.g., HFlip and VFlip) to xi randomly
rj = e2(xj) = Retinanet(xj)
▷ rj is the representation generated by passing the image xj to the RetinaNet encoder

network e2(xj)
zj = positive pair(rj) ▷ Positive pair zj
za = neg anchor(rj) ▷ Randomly selected negative Anchors za
zj = zj · za ▷ Embedding zj

define loss, li,j = − log
exp(sim(zi,zj)/τ)∑2N

k=1 1k ̸=i exp(sim(zi,zk)/τ)+
∑A

k=1 exp(sim(zi,zk)/τ)

Compute final loss across all positive and negative pairs
Update the model based on the loss function’s output

end for

3.2 OUR ALGORITHM

We propose algorithm 1 that summarizes our method. Owing to the contrastive learning approach
of our method, our algorithm extends the simCLR Chen et al. (2020a) framework to learn location
information as well. In the encoder network, we input a batch of pairs. Within this batch, all images
except for xik and xjk are considered negatives. Specifically, xik represents a cropped image derived
from the original image xk, while xjk is an augmentation of the image xk. We use two different
encoder networks e1(·) and e2(·) i.e. one for each pipeline.

Pipeline 1 obtains the representations using the Resnet network. Hence the representations can be
denoted as ri = e1(xi) = Resnet(xi). For pipeline 2 the representations are obtained via the
Retinanet network. This can be denoted as rj = e2(xj) = Retinanet(xj). The representations ri
are then passed on to the projection function represented as p1(·) which yields the embeddings zi. In
pipeline 2, the representations rj from retinanet pass throuth the FPN layers of retianet to produce
embeddings zj . These embeddings are mapped to our Anchor-based NT-Xent Loss function. The
final loss is computed across all positive and negative pairs. It is important to note that we also
sample embeddings other than the location cropped image was centered on. These embeddings are
the negatives within the image known as intra-image negatives. They enable the algorithm to learn
the location information within the image.

3.3 NEGATIVE ANCHOR SELECTION

In Figure 1, we present a visual representation elucidating the interpretation of FPN outputs within
the context of our methodology. The FPN partitions the image into a grid-like structure, a fundamen-
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tal component of our approach. Within the figure, one such grid level is showcased, accompanied
by an image from the corresponding batch.

The black dots superimposed on the image denote individual FPN features. For the establishment
of positive pairs, we utilize the center point of a bounding box (highlighted by the red dot) and
perform a comparative analysis across all locations within the image grid. This procedure facilitates
the identification of the grid cell closest to this center point, visually manifested as the white dot (zj)
in this illustrative instance.

In contrast, the procurement of negative samples involves a randomized selection process from al-
ternative cells within the image grid. This approach ensures the availability of both positive and
negative examples, thereby enhancing the efficacy of our model training process.

3.4 ANCHOR-BASED NT-XENT LOSS FUNCTION

We use Normalised Temperature-scaled Cross Entropy Loss (NT-Xent) Chen et al. (2020a) as our
base loss function and make a few modifications to it. The original NT-Xent loss function was
formed by adding a temperature parameter to N-pair loss. This temperature parameter was used
to scale cosine similarities and using an appropriate parameter can help the model learn from hard
negative examplesChen et al. (2020a). We expand on this knowledge in our modified loss function.
While the original NT-Xent loss function has negative and positive samples, we generate anchor
negative as well as positive samples. The generation of this anchor negative allows us to contrast
based on the location of the crop.

li,j = −log
exp(sim(zi, zj)/τ)∑2N

k=1 1k ̸=iexp(sim(zi, zk)/τ) +
∑A

k=1 exp(sim(zi, zk)/τ)
(1)

Where A is the set of new negative anchor and τ represents the temperature parameter Wu et al.
(2018). With the introduction of anchor negatives, we are able to perform instance-level (i.e. intra-
image) contrastive learning in addition to image-level (i.e. inter-image) classification contrastive
learning. We also perform a few experiments limiting the number of anchor negatives as equal to
batch size and as half the batch size.

3.4.1 INTER-IMAGE LEVEL AND INTRA-IMAGE LEVEL CONTRASTIVE LEARNING

In section 3.4, we talk about image level and instance level contrastive learning. The contrastive
learning technique uses finding similar representations in the augmentations of the same input over
augmentations of different inputs Saunshi et al. (2022). The popular contrastive learning approaches
are generally at an image level as they cater to finding similarities between two augmented views
of an image. We name such approaches as image-level or inter-image contrastive learning. We
also perform contrastive learning within the same image for each instance and hence we name it
as intra-image contrastive learning. The important difference between the two types of contrastive
learning methods is that while Contrastive learning for image-level classification is about setting
some baseline assumptions such as different images have different classes (negative-positive com-
binations have inherent differences at an image level) whereas With instance detection we need to
pre-train the model to capture both distinct class information and location information. In order to
perform an instance-level detection the model needs to learn the location information alongside the
class information. Hence, we need to compare the negative pair-positive pair combination within an
image as well as in addition to between images.Also, although the idea of dual contrastive learning
has been applied before in the work by Li et al. (2020), to the best of our knowledge, this is the first
of its kind contrastive learning approach that utilizes intra-image contrastive learning in addition to
inter-image.

3.5 GENERATION OF CROPS:

In our network, we employ random cropping as part of our contrastive learning process. Let W and
H represent the width and height of the input image, respectively. We generate a random crop by
selecting the maximum dimension (max(W,H)) and then selecting a value between 10% and 25%
of this maximum dimension. This selected value becomes both the height and width of the new
bounding box.
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Mathematically, this can be expressed as:
New Crop Width and Height (both) = Random(0.10 ·max(W,H), 0.25 ·max(W,H))

The newly generated bounding box is then placed randomly within the image while ensuring that the
entire crop remains within the image boundaries. This is achieved by selecting random coordinates
for the top-left corner of the bounding box, denoted as (x, y), such that:

0 ≤ x ≤ W − New Crop Width
0 ≤ y ≤ H − New Crop Height

This guarantees that the crop is always contained within the image, and no edges of the crop extend
beyond the image’s boundaries. We perform batch-based image padding, where we determine the
maximum width and height within each batch. Subsequently, we pad the images to match the
required size based on this maximum width and height.

3.6 AUGMENTATIONS

Data augmentations have been extensively researched and validated as a powerful technique in
various vision tasks Simonyan & Zisserman (2014) Liu et al. (2015) Qi et al. (2019) Ratner
et al. (2017) He et al. (2020) Shorten & Khoshgoftaar (2019) and have become a crucial element
in achieving state-of-the-art results. In this experiment, we have also studied the impact of
augmentations on our proposed method. We have used various augmentations such as Horizontal
Flip (HFlip), Vertical Flip (VFlip) (Figure. 3) and applied them to the image in random order. We
have avoided incorporating augmentations that cause significant color distortion, as they have been
shown to decrease the overall gains He et al. (2020).

(a) Original Image (b) Horizontal Flip (c) Vertical Flip

Figure 3: Augmentations

4 EXPERIMENTS

Our approach is exclusively trained on images from MS-COCO (Lin et al. (2014)) and is evaluated
in a zero-shot manner, without any fine-tuning of labels or data. The experiments aim to identify the
regions of highest similarity within an image when compared to a cropped image.

It is a well-known fact that contrastive learning methods tend to necessitate substantial memory
banks and can be relatively time-consuming to train (Chen et al. (2020a);He et al. (2020);Chen et al.
(2020b); Caron et al. (2020);Xie et al. (2021)). As such, we elected to limit our model training
to 200 epochs in this study. Despite this, we found that these iterations were sufficient to discern
the trends our model was generating. In the future, we intend to expand our experiments further,
taking into account the necessary time and computational resources, so that more comprehensive
evaluations can be carried out.

In our experimental setup, we conducted end-to-end training of our models. As previously men-
tioned, our model adopts a non-siamese architecture composed of two distinct pipelines. We trained
the model utilizing the Adam Kingma & Ba (2015) optimizer, and for the backbone of both pipelines,
we employed the ResNet18 architecture. Due to the image size requirements, we employed a batch
size of 4, as the images necessitated a minimum size of 608 pixels, resulting in high memory usage.
To generate negatives within each image, we chose 10 anchor negatives per image, resulting in a
total of 40 aditional negative locations in each batch.
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4.1 HEATMAPS

Figure 4: In this visual representation, we present the model’s output per layer. Our approach
involves showcasing the representations obtained at each layer of the Feature Pyramid Network
(FPN) and distributing the corresponding similarities, centered around the FPN grid cells, across the
entire image. This approach enables the generation of heatmaps for each layer of the FPN, providing
valuable insights into the model’s hierarchical feature representations.

In these figures, we employ a colormap to render our heatmaps, which span the gradient from blue
to red. In this color scheme, blue signifies areas of low similarity, whereas red indicates regions
of high similarity. We have created two distinct figures to elucidate and discuss the output of our
model.

Figure 4, we can observe the presence of an orange bounding box, which signifies the random crop
generated from the original image. This crop serves as a focal point for our analysis. Additionally,
within each heatmap, a white bounding box is displayed, indicating the center of the grid with the
maximum similarity. This distinctive feature aids in pinpointing the areas of greatest interest within
the generated heatmaps, providing a comprehensive perspective on the patterns and correlations
identified by our model.

Furthermore, in Figure 4, we focus on highlighting the disparity between the layers of the FPN.
This examination provides valuable insights into the hierarchical representation of features within
our model. Meanwhile, in Figure 5, our emphasis shifts towards illustrating the dynamic behavior
that emerges from the aggregation of these FPN layers, culminating in the production of a heatmap
reflecting the combined similarity across different levels. The utilization of this combined output
serves as a critical step in our process for selecting the highest similarity score images within the
entire dataset.

In Figure 5, we present a comprehensive analysis of how our model meticulously selects images
sharing common attributes. For example, in the first row, we observe the model’s inclination to-
wards images featuring crowds in the background, showcasing its ability to effectively discern and
group such content. In the second row, it becomes apparent that the model excels at identifying im-
ages containing water or snow-related elements, underscoring its proficiency in recognizing specific
environmental characteristics. Lastly, the third row highlights instances where the model excels in
identifying images primarily focused on subjects related to food. This in-depth analysis underscores
the model’s robustness in capturing and categorizing a diverse range of visual content, significantly
enhancing our understanding of its performance.
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Figure 5: This figure shows a grid of images gathered after selecting a crop within the dataset and
searching the top10 similar images. The selected crop is passed to the RetinaNet to produce a
representation and the highest similarity images are process on a batch to produce the FPN outputs
used to compare and execute the selection.

5 RESULTS

We introduce the following three key metrics to evaluate grid alignment performance:

Definition 1: Similarity Grid Accuracy (SGA) SGA measures the accuracy of the similar-
ity grid’s alignment with the bounding box within a dataset of images.

SGA =
SGI

N
× 100% (2)

Where:

SGA is the Similarity Grid Accuracy.
N is the total number of images in the dataset.
SGI is the count of instances where the similarity grid is entirely contained within the bounding box for a given image.

Definition 2: Random Initialization Grid Accuracy (RIGA) RIGA evaluates the accuracy of
randomly initialized grids in terms of their alignment with bounding boxes within the same dataset
of images.

RIGA =
RIGI

N
× 100% (3)

Where:

RIGA is the Random Initialization Grid Accuracy.
N is the total number of images in the dataset.
RIGI is the count of instances where a randomly initialized grid is entirely contained within the bounding box for a given image.
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Table 1: Accuracy per layer of FPN

Layer SGA RIGA GAP-R
Layer 0 0.892 0.0601 14.882
Layer 1 0.889 0.0601 14.792
Layer 2 0.881 0.0601 14.659
Layer 3 0.848 0.0610 13.902
Layer 4 0.709 0.0614 11.547

Definition 3: Grid Alignment Performance Ratio (GAP-R) GAP-R quantifies the alignment per-
formance of the similarity grid relative to random initialization within the dataset.

GAP-R =
SGA

RIGA
(4)

A GAP-R value greater than 1 indicates superior alignment of the similarity grid with the bounding
box compared to random initialization, while a value less than 1 suggests the opposite. This metric
provides a straightforward method to assess grid alignment accuracy across different initialization
methods.

In Table 1, we present the layer-by-layer (of FPN) Similarity Grid Accuracy (SGA), Random Ini-
tialization Grid Accuracy (RIGA), as well as the Grid Alignment Performance Ratio (GAP-R). All
results are based on the evaluation of COCO-5k images.

We observe that using our algorithm, the highest similarity grid aligns inside the bounding box
89.2% of the time, compared to only 6% of the time with random initialization. Our method also
outperforms random initialization by a factor of approximately 14.882, as denoted by RIGA.

6 CONCLUSION

In this study, our goal was to simplify the arduous process of labeling for object detection applica-
tions. We built upon the foundation of visual pre-training, striving to take it a step further by entirely
replacing the need for visual pre-training. In essence, our research delves into the implications of
relying solely on unsupervised learning for detection tasks.

To achieve this, we harnessed feature learning techniques akin to those employed in widely used
supervised learning approaches but adapted them to an unsupervised learning framework. This
adaptation facilitated the localization of objects of interest and enabled us to visualize their closest
counterparts with remarkable accuracy. Hence, our method has the potential to revolutionize the
labeling process, substantially reducing the time and cost associated with manual annotation.

Our results speak to the efficacy of our method, as we achieved an impressive 89.2% accuracy in
identifying similarities to the object of interest. This represents a substantial improvement, nearly
15 times better than the results obtained without the application of our method.
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Olivier J. Hénaff, A. Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, S. M. Ali Eslami, and
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