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Abstract

Identifying causal effects is a key problem of interest across many disciplines.
The two long-standing approaches to estimate causal effects are observational
and experimental (randomized) studies. Observational studies can suffer from
unmeasured confounding, which may render the causal effects unidentifiable. On
the other hand, direct experiments on the target variable may be too costly or even
infeasible to conduct. A middle ground between these two approaches is to estimate
the causal effect of interest through proxy experiments, which are conducted on
variables with a lower cost to intervene on compared to the main target. In an earlier
work, we studied this setting and demonstrated that the problem of designing the
optimal (minimum-cost) experiment for causal effect identification is NP-complete
and provided a naive algorithm that may require solving exponentially many NP-
hard problems as a sub-routine in the worst case. In this work, we provide a few
reformulations of the problem that allow for designing significantly more efficient
algorithms to solve it as witnessed by our extensive simulations. Additionally,
we study the closely-related problem of designing experiments that enable us to
identify a given effect through valid adjustments sets.

1 Introduction
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Figure 1: The average runtime of our approach
compared with the state-of-the-art (S.O.T.A)
from Akbari et al. [2022].

Identifying causal effects is a central problem of
interest across many fields, ranging from epidemi-
ology all the way to economics and social sciences.
While conducting randomized (controlled) trials
provides a framework to analyze and estimate the
causal effects of interest, such experiments are of-
ten impractical due to various limitations, including
financial, logistical, and ethical constraints. Even
when they are practical, gathering sufficient data
to draw statistically significant conclusions is often
challenging due to the high costs.

Costs can arise in multiple forms: financial costs
(e.g., implementing costly interventions), time re-
sources (e.g., upgrading infrastructure), and other
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Figure 2: (a): Causal graph of Example 1. (b): Transformed graph when considering identifiability of
Pv2,v3(y), with S = {w, y}. (c): A causal graph with 2m minimal hedges. (d): Running example.

logistical constraints such as human resources. Moreover, certain experiments might be unethical or
outright unfeasible, such as exposing patients to harmful treatments, and hence have infinite cost.

Observational data, which is usually more abundant and accessible, offers an alternative avenue.
However, observational studies bring a new challenge: the causal effect may not be identifiable
due to unmeasured confounding, making it impossible to draw inferences from the observed data
[Pearl, 2009, Hernán and Robins, 2006]. A middle ground between observational and experimental
approaches is to fuse data from both types of studies [Bareinboim and Pearl, 2016, Athey et al., 2020].
For example, cities might introduce low-emission zones as a proxy experiment before banning diesel
vehicles [Dey et al., 2018], or governments might impose regional sugary drink taxes to estimate the
effects of nationwide policies Redondo et al. [2018]. Several works have studied the achievability of
identification from ensembles of observational and experimental data [Bareinboim and Pearl, 2012,
Lee et al., 2020a, Kivva et al., 2022, Jamshidi et al., 2024]. Our previous work [Akbari et al., 2022]
was the first to investigate the problem of designing proxy experiments to identify a causal effect that
is not identifiable from observational data alone.

To illustrate the need for proxy experiments, consider the following drug-drug interaction example,
based on the example in Lee et al. [2020a].

Example 1. (Complex Drug Interactions and Cardiovascular Risk) Consider a simplified example
involving the interaction between a new antihypertensive therapy (v1), anti-diabetic medications (v2),
renal function modulators (v3), and their effects on blood pressure (w) and cardiovascular disease
(y). Blood pressure and cardiovascular health are closely linked. The antihypertensive therapy v1
directly influences the need for renal function modulators v3, and v3 in turn directly affects blood
pressure w. Additionally, anti-diabetic medications v2 reduce the risk of cardiovascular disease y
by controlling blood sugar levels, while blood pressure w directly impacts y. Unmeasured factors
confound these relationships: shared health conditions can influence the prescription of both v1 and
v3; lifestyle factors affect both v1 and w; and common conditions like metabolic syndrome can impact
both v1 and v2. Fig. 2(a) illustrates the resulting causal graph, whose directed edges represent direct
causal effects, and bidirected edges indicate unmeasured confounders. Suppose we are interested in
estimating the intervention effects of v2 and v3 on y, which are not identifiable from observational
data alone. Moreover, we cannot directly intervene on these variables because v2 and v3 are essential
for managing immediate, life-threatening conditions. Instead, we can intervene on v1, which is a
feasible and safer approach due to the broader range of treatment options and more manageable
risks associated with adjusting antihypertensive therapy. As we shall see, intervention on v1 suffices
for identifying the effects of v2 and v3 on y.

Selecting the optimal set of proxy experiments is not straightforward in general. In particular, in
[Akbari et al., 2022] we proved that the problem of finding the minimum-cost intervention set to
identify a given causal effect, hereon called the MCID problem, is NP-complete and provided a naive
algorithm that requires solving exponentially many instances of the minimum hitting set problem in
the worst case. As the minimum hitting set problem is NP-complete itself, our earlier algorithm in
[Akbari et al., 2022] can become computationally intractable even for graphs with a modest number
of vertices. Moreover, this algorithm was tailored to a specific class of causal effects in which the
effect of interest is a functional of an interventional distribution where the intervention is made on
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every variable except one district of the causal graph2. For a general causal effect, the complexity of
this algorithm includes an additional (super-)exponential multiplicative factor, where the exponent is
the number of districts.

In this work, we revisit the MCID problem and develop tractable algorithms by reformulating the
problem as instances of well-known problems, such as the weighted maximum satisfiability and
integer linear programming problems. Furthermore, we analyze the problem of designing minimum
cost interventions to obtain a valid adjustment set for a query. This problem not only merits attention
in its own right, but also serves as a proxy for MCID. Our contributions are as follows:

• We formulate the MCID problem in terms of a partially weighted maximum satisfiability, integer
linear programming, submodular function maximization, and reinforcement learning problem.
While our main focus is on the former two reformulations, we state the others in Appendix D.

• We propose new, and in practice, much faster (up to six orders of magnitude) algorithms for solving
the problem optimally using our reformulations. Moreover, the computational complexity of our
proposed algorithms scales quadratically in the number of districts, a significant improvement
over the super-exponential growth exhibited by existing algorithms – see Remark 2.

• We formulate and study the problem of designing minimum-cost experiments for identifying
a given effect through finding a valid adjustments set. Besides the practical advantages of
valid adjustment, including ease of interpretability and tractable sample complexity, this approach
enables us to design a polynomial-time heuristic algorithm for the MCID problem that outperforms
the heuristic algorithms provided in Akbari et al. [2022].

• We present new numerical experiments that demonstrate the exceptional speed of our exact
algorithms when compared to the current state-of-the-art, along with our heuristic algorithm
showcasing superior performance over previous heuristic approaches.

2 Problem formulation

We begin by reviewing relevant graphical definitions. An acyclic directed mixed graph (ADMG)
is a graph with directed (→) and bidirected (↔) edges such that the directed edges form no cycles
[Richardson, 2003]. We denote an ADMG G by a tuple G = ⟨V,

−→
E ,
←→
E ⟩, where V ,

−→
E , and

←→
E

represent the set of vertices, directed edges, and bidirected edges, respectively. Note that
−→
E is a set

of ordered pairs of vertices in V , whereas
←→
E is a set of unordered pairs of vertices.

Vertices of G represent variables of the system under consideration, while the edges represent
causal relations between them. We use the terms ‘variable’ and ‘vertex’ interchangeably. When
(y, x) ∈

−→
E , we say y is a parent of x and x is a child of y. The set of parents of X ⊆ V denoted by

Pa(X) = {y : (y, x) ∈
−→
E for some x ∈ X} \X . We denote by G[W ], the induced subgraph of G

over vertices W ⊆ V . A subset S of V is said to form a district in G if S is a maximal set such that
any pair of vertices x, y ∈ S are connected through a bidirected path x↔ · · · ↔ y in G[S]. In other
words, G[S] is a connected component through its bidirected edges. We say x ∈ V is an ancestor
of S ⊆ V if there is a directed path x → · · · → s for some s ∈ S. We denote the set of ancestors
of S in the subgraph G[W ] by AncW (S). Note that S ⊆ AncW (S). When W = V , we drop the
subscript for ease of notation.

Let X,Y ⊆ V be two disjoint sets of variables. The probability distribution of Y under a (possibly
hypothetical) intervention on X setting its value to x is often represented as either P(Y (x)), using
Rubin’s potential outcomes model [Rubin, 1974], or P(Y | do(X = x)) using Pearl’s do operator
[Pearl, 2009]. We will adopt the shorthand Px(Y ) to denote this interventional distribution3.

Definition 1 (Identifiability). An interventional distribution Px(Y ) is identifiable given an ADMG G
and the intervention set family I = {I1, . . . , It}, with Ii ⊆ V , over the variables corresponding to
G, if Px(Y ) is uniquely computable as a functional of the members of {PI(·) : I ∈ I}.

2See Section 2 the definition of a district.
3This interventional distribution is often mistakenly referred to as the causal effect of X on Y . However, a

causal effect, such as an average treatment effect or a quantile treatment effect, is usually a specific functional of
this probability distribution for different values of x.
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Remark 1. It is common in the literature to define identifiability with respect to observational
data only (i.e., when I = {I1 = ∅}). Our definition above follows what is known as the ‘general
identifiability’ from Lee et al. [2020a].

We will now formally define a hedge, which, as we will see shortly after, is central to deciding the
identifiability of an interventional distribution given the data at hand.
Definition 2 (Hedge). Let S ⊆ V be a district in G[S]. We say W ⊋ S forms a hedge for S if (i) W
is a district in G[W ], and (ii) every vertex w ∈W is an ancestor of S in G[W ] (i.e., W = AncW (S)).
We denote by HG(S) the set of hedges formed for S in G.

For example, in Fig. 2(b), S has two hedges given by HG(S) = {S ∪ {v3, v1}, S ∪ {v3, v1, v2}}.
Definition 3 (Hedge hull Akbari et al., 2022). Let S be a district in ADMG G. Also let HG(S) be
the set of all hedges formed for S in G. The union of all hedges in HG(S), denoted by HG(S) =⋃

W∈HG(S) W, is said to be the hedge hull of S in G.

For instance, in Fig. 2(d), the hedge hull of S1 = {s1} isHG(S1) = {s1, s2, v1, v2, v3, v4, v5} and
the hedge hull of S2 = {s2} isHG(S2) = {s2, v3}. When a set S consists of more than one district,
we simply define the hedge hull of S as the union of the hedge hulls of each district of S. The hedge
hull of a set can be found through a series of at most |V | depth-first-searches. In the latter example,
the hedge hull of S = {s1, s2} isHG(S) = {s1, s2, v1, v2, v3, v4, v5}. For the sake of completeness,
we have included the algorithm for finding a hedge hull in Appendix B.1.

The following proposition from Lee et al. [2020a] and Kivva et al. [2022] establishes the graphical
criterion for deciding the identifiability of a causal effect given a set family of interventions.
Proposition 1. Let G be an ADMG over the vertices V . Also let X,Y ⊆ V be disjoint sets of
variables. Define S = AncV \X(Y ), and let S = {S1, . . . , Sr} be the (unique) set of districts in
G[S]. The interventional distribution Px(Y ) is identifiable given G and the intervention set family
I = {I1, . . . , It}, if and only if for every Sℓ ∈ S, there exists an intervention set Ik ∈ I such that
(i) Ik ∩ Sℓ = ∅, and (ii) there is no hedge formed for Sℓ in G[V \ Ik].

Note that there is no hedge formed for Sℓ in G[V \ Ik] if and only if Ik hits every hedge of Sℓ (i.e.,
for any hedge W ∈ HG(Sℓ), Ik∩W ̸= ∅). For ease of presentation, we will use Ik

id−→ Sℓ to denote
that Ik ∩ Sℓ = ∅ and Ik hits every hedge formed for Sℓ. For example, given the graph in Fig. 2(d)
and with S = {S1, S2}, an intervention set family that hits every hedge is I = {{s2}, {v3}}.
Minimum-cost intervention for causal effect identification (MCID) problem. Let C : V →
R≥0 ∪{+∞} be a known function4 indicating the cost of intervening on each vertex v ∈ V . An
infinite cost is assigned to variables where an intervention is not feasible. Given G and disjoint sets
X,Y ⊆ V , our objective is to find a set family I∗ with minimum cost such that Px(Y ) is identifiable
given I∗; that is, for every district Sℓ of S, there exists Ik such that Ik

id−→ Sℓ. Since every I ∈ I
is a subset of V , the space of such set families is the power set of the power set of V .

To formalize the MCID problem, we first write the cost of a set family I as C(I) :=∑
I∈I

∑
v∈I C(v), where with a slight abuse of notation, we denoted the cost of I by C(I).

The MCID problem then can be formalized as follows.

I∗ ∈ argmin
I∈22V

C(I) s.t. ∀ Sℓ ∈ S : (∃ Ik ∈ I : Ik
id−→ Sℓ), (1)

where S = {S1, . . . , Sr} is the set of districts of S = AncV \X(Y ), and 22
V

represents the power
set of the power set of V . In the special case where S comprises a single district, the MCID problem
can be presented in a simpler way.
Proposition 2 (Akbari et al., 2022). If S = AncV \X(Y ) comprises a single district S = {S1 = S},
then the optimization in (1) is equivalent to the following optimization:

I∗ ∈ argmin
I∈2V \S

C(I) s.t. ∀W ∈ HG(S) : I ∩W ̸= ∅. (2)

That is, the problem reduces to finding the minimum-cost set that ‘hits’ every hedge formed for S.
4Although it only makes sense to assign non-negative costs to interventions, adopting non-negative costs is

without loss of generality. If certain intervention costs are negative, one can shift all the costs equally so that the
most negative cost becomes zero. This constant shift would not affect the minimization problem in any way.
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Recall example Example 1, we were interested in finding the least costly proxy experiment to identify
the effect of v2 and v3 on y. By Proposition 2, this problem is equivalent to finding an intervention
set with the least cost (i.e., a set of proxy experiments) that hits every hedge of S = {y, w} in the
transformed graph (Fig. 2(b)). If C(v1) < C(v3), then the optimal solution would be I∗ = {v1}.
In the remainder of the paper, we consider the problem of identification of PX(Y ) for a given pair
(X,Y ), and with S defined as S = AncV \X(Y ), unless otherwise stated. We will first consider the
case where S comprises a single district, and then generalize our findings to multiple districts.

3 Reformulations of the min-cost intervention problem

In the previous section, we delineated the MCID problem as a discrete optimization problem.
This problem, cast as Eq. (1), necessitates search within a doubly exponential space, which is
computationally intractable. Algorithm 2 of [Akbari et al., 2022] is an algorithm that conducts this
search and eventually finds the optimal solution. However, even when S comprises a single district,
this algorithm requires, in the worst case, exponentially many calls to a subroutine which solves
the NP-complete minimum hitting set problem on exponentially many input sets, hence resulting
in a doubly exponential complexity. More specifically, our previous algorithm described in Akbari
et al. [2022] attempts to find a set of minimal hedges, where minimal indicates a hedge that contains
no other hedges, and solves the minimum hitting set problem on them. However, there can be
exponentially many minimal hedges, as shown for example in Fig. 2(c). Letting m = n/2, then any
set that contains one vertex from each level (i.e., directed distance from S) is a minimal hedge, of
which there are O(2n/2).
Furthermore, the computational complexity of Algorithm 2 of Akbari et al. [2022] grows super-
exponentially in the number of districts of S. This is due to the necessity of exhaustively enumerating
every possible partitioning of these districts and executing their algorithm once for each partitioning.

In this section, we reformulate the MCID problem as a weighted partially maximum satisfiability
(WPMAX-SAT) problem [Fu and Malik, 2006], as well as an integer linear programming (ILP)
problem. We focus on the WPMAX-SAT and ILP reformulations due to their computational efficiency
and practical applicability, but we provide alternative reformulations as a submodular maximization
problem and a reinforcement learning problem in Appendix D for completeness. The advantage of the
WPMAX-SAT and ILP formulations is two-fold: (i) compared to Algorithm 2 of [Akbari et al., 2022],
we state the problem as a single instance of another problem for which a range of well-studied solvers
exist, and (ii) these formulations allow us to propose algorithms with computational complexity that
is quadratic in the number of districts of S. We will see how these advantages translate to drastic
performance gains in Section 5.

3.1 Min-cost intervention as a WPMAX-SAT problem

We begin with constructing a 3-SAT formula F that is satisfiable if and only if the given query
PX(Y ) is identifiable. To this end, we define m + 2 variables {xi,j}m+1

j=0 for each vertex vi ∈ V ,
where m = |HG(S) \ S| is the cardinality of the hedge hull of S, excluding S. Intuitively, xi,j

is going to indicate whether or not vertex vi is reachable from S after j iterations of alternating
depth-first-searches on directed and bidirected edges. This is in line with the workings of Algorithm 2
for finding the hedge hull of S. In particular, if a vertex vi is reachable after m+ 1 iterations, that is,
xi,m+1 = 1, then vi is a member of the hedge hull of S. The query of interest is identifiable if and
only ifHG(S) = S, that is, the hedge hull of S contains no other vertices. Therefore, we ensure that
the formula F is satisfiable if and only if xi,m+1 = 0 for every vi /∈ S. The formal procedure for
constructing this formula is as follows.

SAT Construction Procedure. Suppose a causal ADMG G = ⟨V,
−→
E ,
←→
E ⟩ and a set S ⊂ V are

given, where S is a district in G. Suppose HG(S) = {v1, . . . , vn} is the hedge hull of S in G,
where without loss of generality, S = {vm+1, . . . vn}, and {v1, . . . vm} ∩ S = ∅. We will construct
a corresponding boolean expression in conjunctive normal form (CNF) using variables {xi,j} for
i ∈ {1, . . . ,m} and j ∈ {0, . . . ,m + 1}. For ease of presentation, we also define xi,j = 1 for all
i ∈ {m+ 1, . . . , n}, j ∈ {0, . . . ,m+ 1}. The construction is carried out in m+ 2 steps, where in
each step, we conjoin new clauses to the previous formula using ‘and’. The procedure is as follows:
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• For odd j∈{1, . . . ,m+1}, for each directed edge (vi, vℓ)∈
−→
E , add (¬xi,j−1 ∨ xi,j∨¬xℓ,j) to F .

• For even j ∈ {1, . . . ,m+1}, for each bidirected edge {vi, vℓ} ∈
←→
E , add both clauses (¬xi,j−1∨

xi,j ∨ ¬xℓ,j) and (¬xℓ,j−1 ∨ xℓ,j ∨ ¬xi,j) to F .
• Finally, at step m+ 2, add clauses ¬xi,m+1 to the expression F for every i ∈ {1, . . . ,m}.

v1

v2

v3

Figure 3: Example graph for 3SAT
construction, where S = {v3}.

As an example, consider the graph of Figure 3 with n = 3
vertices. The hedge hull of S = {v3} is {v1, v2, v3}, and
m = |{v1, v2}| = 2. Following the SAT construction pro-
cedure outlined above, the construction is carried out in
m + 2 = 4 steps. Our SAT expression will consist of 8
variables, xi,j for i ∈ {1, 2} – corresponding to v1 and v2
– and j ∈ {0, 1, 2, 3} – corresponding to the four steps of
construction. Below, we explain each step.

At step 1, we add the clauses (¬x1,0 ∨ x1,1 ∨ ¬x2,1) and
(¬x2,0 ∨ x2,1 ∨ ¬x3,1), corresponding to the edges v1 → v2
and v2 → v3, respectively. Note that by convention, x3,1 = 1,
hence the second clause reduces to (¬x2,0 ∨ x2,1). At step 2,
for the edge v1 ↔ v2, we add the clauses (¬x1,1∨x1,2∨¬x2,2) and (¬x2,1∨x2,2∨¬x1,2). Similarly
for the edge v1 ↔ v3, we add the clauses (¬x1,1 ∨ x1,2 ∨ ¬x3,2) and (¬x3,1 ∨ x3,2 ∨ ¬x1,2). Since
by convention, x3,1 = x3,2 = 1, the latter two clauses reduce to (¬x1,1 ∨ x1,2) and 1, respectively.
At step 3, we add the clauses (¬x1,2 ∨ x1,3 ∨ ¬x2,3) and (¬x2,2 ∨ x2,3 ∨ ¬x3,3), corresponding
to the edges v1 → v2 and v2 → v3, respectively. Again x3,3 = 1, and the latter clause reduces to
(¬x2,2 ∨ x2,3). At step 4, the clauses ¬x1,3 and ¬x2,3 are added.

Finally, combining all the clauses together, the SAT expression is given by

(¬x1,0 ∨ x1,1 ∨ ¬x2,1) ∧ (¬x2,0 ∨ x2,1) ∧ (¬x1,1 ∨ x1,2 ∨ ¬x2,2) ∧ (¬x2,1 ∨ x2,2 ∨ ¬x1,2)

∧ (¬x1,1 ∨ x1,2) ∧ (¬x1,2 ∨ x1,3 ∨ ¬x2,3) ∧ (¬x2,2 ∨ x2,3) ∧ ¬x1,3 ∧ ¬x2,3.

Theorem 1. The 3-SAT formula F constructed by the procedure above given G and S has a satisfying
solution {x∗

i,j} where x∗
i,0=0 for i∈I⊆{1, . . . ,m} and x∗

i,0=1 for i∈{1, . . . ,m}\I if and only if
I intersects every hedge formed for S in G; i.e., I is a feasible solution to the optimization in Eq. (2).

The proofs of all our results appear in Appendix C. The first corollary of Theorem 1 is that the SAT
formula is always satisfiable, for instance by setting x∗

i,0 = 0 for every i ∈ {1, . . . ,m}. The second
(and more important) corollary is that the optimal solution to Eq. (2) corresponds to the satisfying
assignment for the SAT formula F that minimizes

m∑
i=1

(1− x∗
i,0)C(vi). (3)

This suggests that the problem in Eq. (2) can be reformulated as a weighted partial MAX-SAT
(WPMAX-SAT) problem. WPMAX-SAT is a generalization of the MAX-SAT problem, where the
clauses are partitioned into hard and soft clauses, and each soft clause is assigned a weight. The goal
is to maximize the aggregate weight of the satisfied soft clauses while satisfying all of the hard ones.

To construct the WPMAX-SAT instance, we simply define all clauses in F as hard constraints, and
add a soft clause xi,0 with weight C(vi) for every i ∈ {1, . . . ,m}. The former ensures that the
assignment corresponds to a feasible solution of Eq. (2), while the latter ensures that the objective in
Eq. (3) is minimized – which, consequently, minimizes the cost of the corresponding intervention.

Multiple districts. The formulation above was presented for the case where S is a single district.
In the more general case where S has multiple districts, we can extend our formulation to solve the
general problem of Eq. (1) instead. To this end, we will use the following lemma.
Lemma 1. Let S = {S1, . . . , Sr} be the set of districts of S, where S = AncV \X(Y ). There exists
an intervention set family I∗ of size |S| = r that is optimal for identifying PX(Y ).

Based on Lemma 1, we can assume w.l.o.g. that the optimizer of Eq. (1) contains exactly r intervention
sets I1, . . . , Ir. We will modify the SAT construction procedure described in the previous section
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to allow for multiple districts as follows. For any district Sℓ, we will construct r copies of the SAT
expression, one corresponding to each intervention set Ik, k ∈ {1, . . . , r}. Each copy is built on new
sets of variables indexed by (k, ℓ), except the variables with index j = 0, which are common across
districts. We introduce variables {zk,ℓ}rk,ℓ=1, which will serve as indicators for whether Ik hits all
the hedges formed for Sℓ. We relax every clause corresponding to the k-th copy by conjoining a
¬zk,ℓ literal with an ‘or.’ Intuitively, this is because it suffices to hit the hedges formed for Sℓ with
some Ik. Additionally, we add the clauses (z1,ℓ ∨ · · · ∨ zr,ℓ) for any ℓ ∈ {1, . . . , r} to ensure that for
every district, there is at least one intervention set that hits every hedge. This modified procedure,
detailed in Algorithm 3, appears in Appendix B.2. The following result generalizes Theorem 1.

Theorem 2. Suppose G, a set of its vertices S with districts S = {S1, . . . , Sr}, and an intervention
set family 2 I = {I1, . . . , Ir} are given. Define mℓ = |HG(Sℓ) \ Sℓ|, i.e., the cardinality of the
hedge hull of Sℓ excluding Sℓ itself. The SAT formula F constructed by Algorithm 3 has a satisfying
solution {x∗

i,0,k}∪{x∗
i,j,k,ℓ}∪{z∗k,ℓ} where for every ℓ ∈ {1, . . . , r}, there exists k ∈ {1, . . . , r} such

that (i) z∗k,ℓ = 1, (ii) x∗
i,0,k = 0 for every i ∈ Ik, and (iii) x∗

i,0,k = 1 for every i ∈ {1, . . . ,mℓ} \ Ik,
if and only if I is a feasible solution to optimization of Eq. (1).

Constructing the corresponding WPMAX-SAT instance follows the same steps as the case for a
single district, except that the soft clauses are of the form (xi,0,k ∨ ¬zk,ℓ) with weight C(vi) for
every i ∈ {1, . . . ,mℓ} and k ∈ {1, . . . , r}.
Remark 2. The SAT construction of Algorithm 3 is advantageous because its complexity grows
quadratically with the number of districts of S in the worst case. This is because the inner-loop of the
SAT construction algorithm (line 8 of Algorithm 3) is executed r2 many times. In contrast, the runtime
of the algorithm of Akbari et al. [2022], when S consists of multiple districts, is super-exponential in
the number of districts, because they need to execute their single-district algorithm at least as many
times as the number of partitions of the set {1, . . . , r}.

Min-cost intervention as an ILP problem. The WPMAX-SAT formulation of Section 3.1 paves
the way for a straightforward formulation of an integer linear program (ILP) for the MCID problem.
ILP allows for straightforward integration of various constraints and objectives, enabling flexible
modeling of potential extra constraints. Moreover, there exist efficient and scalable solvers for ILP
[Gearhart et al., 2013, Gurobi Optimization, LLC, 2023]. To construct the ILP instance for the MCID
problem, it suffices to represent every clause in the boolean expression F of Algorithm 3 as a linear
inequality. For example, clauses of the form (¬a ∨ b ∨ ¬c) is rewritten as (1− a) + b+ (1− c) ≥ 1.
The soft constraints may be rewritten as a sum to maximize over, given by Eq. (3).

4 Minimum-cost intervention design for adjustment criterion

A special case of identifying interventional distributions is identification through adjusting for
confounders. A set Z ⊆ V is a valid adjustment set for PX(Y ) if PX(Y ) is identified as

PX(Y ) = EP[P(Y | X,Z)], (4)

where the expectation w.r.t. P(Z). Adjustment sets have received extensive attention in the literature
because of the straightforward form of the identification formula (Eq. 4) and the intuitive interpretation:
Z is the set of confounders that we need to adjust for to identify the effect of interest. The simple
form of Eq. (4) has the added desirable property that its sample efficiency and asymptotic behavior are
easy to analyze [Witte et al., 2020, Rotnitzky and Smucler, 2020, Henckel et al., 2022]. A complete
graphical criterion for adjustment sets was given by Shpitser et al. [2010]. As an example, when all
parents of X (i.e., Pa(X)) are observable, they form a valid adjustment set. However, in the presence
of unmeasured confounding, no valid adjustment sets may exist. Below, we generalize the notion of
adjustment sets to the interventional setting.

Definition 4 (Generalized adjustment). We say Z ⊆ V is a generalized adjustment set for PX(Y )
under intervention I if PX(Y ) is identified as PX(Y ) = EPI [PI(Y | X,Z)], where PI(·) represents
the distribution after intervening on I⊆V and the expectation is w.r.t. PI(Z).

Note that unlike the classic adjustment, the generalized adjustment is always feasible – a trivial
generalized adjustment can be formed by choosing I = X and Z = ∅.
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Equipped with Definition 4, we can define a problem closely linked to Eq. (2), but with a (possibly)
narrower set of solutions, which can be defined as follows: find the minimum-cost intervention I
such that a generalized adjustment exists for PX(Y ) under I:

I∗ = argmin
I∈2V

C(I) s.t. ∃ Z ⊆ V : PX(Y ) = EPI [PI(Y | X,Z)]. (5)

Observation. The existence of a valid (generalized) adjustment set ensures the identifiability of
PX(Y ). As such, any feasible solution to the optimization above is also a feasible solution to Eq. (2).
Eq. (5) is not only a problem that deserves attention in its own right, but also serves as a proxy for
our initial problem (Eq. 2).

To proceed, we need the following definitions. Given an ADMG G = ⟨V,
−→
E ,
←→
E ⟩, let Gd =

⟨V d,
−→
E d, ∅⟩ be the ADMG resulting from replacing every bidirected edge e = {x, y} ∈

←→
E by a

vertex e and two directed edges (e, x), (e, y). In particular, V d = V ∪
←→
E , and

−→
E d =

−→
E ∪ {(e, x) :

e ∈
←→
E , x ∈ e}. Note that Gd is a directed acyclic graph (DAG). The moralized graph of G, denoted

by Gm, is the undirected graph constructed by moralizing Gd as follows: The set of vertices of Gm is
V d. Each pair of vertices x, y ∈ V d are connected by an (undirected) edge if either (i) (x, y) ∈

−→
E d,

or (ii) ∃z ∈ V d such that {(x, z), (y, z)} ⊆
−→
E d.

Throughout this section, we assume without loss of generality that X is minimal in the following
sense: there exists no proper subset X1 ⊊ X such that PX(Y ) = PX1

(Y ) everywhere5. Otherwise,
we apply the third rule of do calculus [Pearl, 2009] as many times as possible to make X minimal.
We also assume w.l.o.g. that V = Anc(X ∪ Y ) as other vertices are irrelevant for our purposes [Lee
et al., 2020b]. We will utilize the following graphical criterion for generalized adjustment.

Lemma 2. Let X,Y be two disjoint sets of vertices in G such that X is minimal as defined above.
Set Z ⊆ V is a generalized adjustment set for PX(Y ) under intervention I if (i) Z ⊆ Anc(S), and
(ii) Z is a vertex cut6 between S and Pa(S) in (GIPa(S))

m, where S = AncV \X(Y ), and GIPa(S) is

the ADMG resulting from omitting all edges incoming to I and all edges outgoing of Pa(S).

Based on the graphical criterion of Lemma 2, we present the following polynomial-time7 algorithm
for finding an intervention set that allows for identification of the query of interest in the form of
a (generalized) adjustment. This algorithm will find the intervention set I and the corresponding
generalized adjustment set Z simultaneously. We begin by making X minimal in the sense of
applicability of rule 3 of do calculus. Then we omit all edges going out of Pa(S), and construct
the graph (GPa(S))

d = ⟨V d,
−→
E d, ∅⟩ as defined above – by replacing bidirected edges with vertices

representing unobserved confounding. Finally, we construct an (undirected) vertex cut network
Gvc = ⟨V vc, Evc⟩ as follows. Each vertex v ∈ V d is represented by two connected vertices v1, v2
in Gvc. If v ∈ V , then v1 has a cost of zero, and v2 has cost C(v). Otherwise, both v1 and v2 have
infinite costs. Intuitively, choosing v1 will correspond to including v in the adjustment set, whereas
choosing v2 in the cut would imply intervention on v. We connect v2 to all vertices corresponding to
Pa(v) with index 1, i.e., {w1 : (w, v) ∈

−→
E d}. This serves two purposes: (i) if v2 is included in the

cut (corresponding to an intervention on v), all connections between v and its parents are broken,
and (ii) when v2 is not included in the cut (corresponding to no intervention on v), v2 connects the
parents of v to each other, completing the necessary moralization process. We solve for the minimum
vertex cut between vertices with index 1 corresponding to S and Pa(S). Algorithm 1 summarizes this
approach. In the solution set J , the vertices with index 2 represent the vertices where an intervention
is required, while those with index 1 represent the generalized adjustment set under this intervention.

Theorem 3. Let (I, Z) be the output returned by Algorithm 1 for the query PX(Y ). Then,
- Z is a generalized adjustment set for PX(Y ) under intervention I.
- I is the minimum-cost intervention for which there exists a generalized adjustment set based on the
graphical criterion of Lemma 2.

5This is to say, the third rule of do calculus does not apply to PX(Y ).
6This corresponds to Z blocking all the backdoor paths between Pa(S) and S, in the modified graph GI .
7The computational bottleneck of the algorithm is an instance of minimum vertex cut problem, which can be

solved using any off-the-shelf max-flow algorithm.
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Algorithm 1 Intervention design for generalized adjustment

1: procedure MINCOSTGENADJUSTMENT(X,Y,G = ⟨V,
−→
E ,
←→
E ⟩, {C(v) : v ∈ V })

2: while ∃x ∈ X s.t. x is m-sep from Y given X \ {x} in GX do ▷ Make X minimal
3: X ← X \ {x}
4: S ← AncV \X(Y )

5:
−→
E ←

−→
E \ {(x, s) : x ∈ Pa(S)} ▷ GPa(S)

6: V d ← V ∪
←→
E ,

−→
E d ←

−→
E ∪ {(e, v) : e ∈

←→
E , v ∈ e} ▷ Construct (GPa(S))

d

7: V vc ← ∪v∈V d{v1, v2}, Evc ←
{
{v1, v2} : v ∈ V d

}
∪
{
{w1, v2} : (w, v) ∈

−→
E d
}

8: Construct a minimum vertex cut instance on the network Gvc = ⟨V vc, Evc⟩, with costs 0 for
any v1 where v ∈ V , C(v) for any v2 where v ∈ V , and∞ for any other vertex

9: J ← the minimum vertex cut between {x1 : x ∈ Pa(S)} and {s1 : s ∈ S}
10: I ← {v : v2 ∈ J}, Z ← {v : v1 ∈ J}
11: return (I, Z)
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Figure 4: Average time taken by Algorithm 2 of Akbari et al. [2022] (MHS), ILP, and WPMAX-SAT
to solve one graph versus (a) the number of vertices in the graph and (b) the number of districts of S.

Remark 3. Algorithm 1 enforces identification based on (generalized) adjustment for PX(Y ). As
discussed above, this algorithm can be utilized as a heuristic approach to solve the MCID problem in
(2). In this case, one can run the algorithm on the hedge hull of S rather than the whole graph. We
prove in Appendix C that the cost of this approach is always at most as high as heuristic algorithm 1
of Akbari et al. [2022], and is often in practice lower, as verified by our experiments.

The worst-case time complexity of Algorithm 1 is cubic in the number of variables. The two
main computational bottlenecks are (i) the preprocessing in lines 2-3, which involves up to |V |
rounds of m-separation tests (performed via depth-first search), resulting in a complexity of
O
(
|V |
[
|V |+ |

−→
E |+ |

←→
E |
])

, and (ii) the minimum-cut instance in line 9, solved using a max-

flow algorithm with |V vc| ∼ O(|V |+ |
←→
E |) and |Evc| ∼ O(|V |+ |

−→
E |+ |

←→
E |) many vertices and

edges, respectively.

5 Experiments

In this section, we present numerical experiments that showcase the empirical performance and time
efficiency of our proposed exact and heuristic algorithms. A comprehensive set of synthetic and
real-world experiments analyzing the impact of various problem parameters on the performance of
these algorithms, along with the complete implementation details, is provided in Appendix A. We
first compare the time efficiency of our exact algorithms: WPMAX-SAT and ILP, with the exact
algorithm of Akbari et al. [2022]. Then, we present results pertaining to performance of our heuristic
algorithm. All experiments, coded in Python, were conducted on a machine equipped two Intel Xeon
E5-2680 v3 CPUs, 256GB of RAM, and running Ubuntu 20.04.3 LTS.
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Figure 5: Average normalized cost of the heuristic algorithms H1 and H2 of Akbari et al. [2022] and
Algorithm 1 versus the number of vertices in the graph.

Results on exact algorithms. We compare the performance of the WPMAX-SAT formulation, the
ILP formulation, and Algorithm 2 of Akbari et al. [2022], called Minimal Hedge Solver (MHS)
from hereon. We used the RC2 algorithm [Ignatiev et al., 2019], and the Gurobi solver [Gurobi
Optimization, LLC, 2023], to solve the WPMAX-SAT problem, and the ILP, respectively. We ran
each algorithm for solving the MCID problem on 100 randomly generated Erdos-Renyi [Erdos and
Renyi, 1960] ADMG graphs with directed and bidirected edge probabilities ranging from 0.01 to 1.00,
in increments of 0.01. We performed two sets of simulations: for single-district and multiple-district
settings, respectively. In the single-district case, we varied n, the number of vertices, from 20 to 100,
while in the multiple-district case, we fixed n = 20 and varied the number of districts from 1 to 9.

We plot the average time taken to solve each graph versus the number of vertices (single-district) in
Fig. 4(a) and versus the number of districts (n = 20) in Fig. 4(b). The error bands in our figures
represent 99% confidence intervals. Focusing on the single-district plot, we observe that both of our
algorithms are faster than MHS of Akbari et al. [2022] for all graph sizes. More specifically, ILP is
on average one to two orders of magnitude faster than MHS, while SAT is on average four to five
orders of magnitude faster. All three algorithms exhibit exponential growth in time complexity with
the number of vertices, which is expected as the problem is NP-hard, but SAT grows at a much slower
rate than the other two algorithms. This is likely due to RC2’s ability of exploiting the structure of
the SAT problem to reduce the search space efficiently. In the multiple-district case, we observe that
the time complexity of both SAT and ILP grows polynomially with the number of districts, while the
time complexity of MHS grows exponentially. This is consistent with theory, as MHS iterates over
all partitions of the set of districts, which grows exponentially with the number of districts.

Results on inexact algorithms. We compared Algorithm 1, our proposed heuristic, with the two
best performing heuristic algorithms in Akbari et al. [2022], H1 and H2. We ran each algorithm on
500 randomly generated Erdos-Renyi ADMG graphs with directed and bidirected edge probabilities
in {0.1, 0.5}, with n ranging from 10 to 200. We randomly sampled the cost of each vertex from
a discrete uniform distribution on [1, n]. In Fig. 5, we plot the normalized cost of each algorithm,
computed by dividing the cost of the algorithm by the cost of the optimal solution, provided by
WPMAX-SAT. Observe that Algorithm 1 consistently outperforms H1 and H2 for all graph sizes.

6 Conclusion

We introduced novel formulations and efficient algorithms for the MCID problem, demonstrating
significant improvements over existing methods. Our extensive experiments showed that the WPMAX-
SAT reformulation, particularly when using a high-performance solver like RC2, excels in both speed
and effectiveness. In contrast, the ILP reformulation offers a more interpretable approach, especially
valuable for incorporating additional constraints such as domain expert knowledge.

Moreover, our work on designing minimum-cost experiments for obtaining valid adjustment sets
demonstrates both practical and theoretical advancements. We highlighted the superior performance
of our proposed methods through extensive numerical experiments. We envision designing efficient
approximation algorithms for MCID as future work.
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Appendix

A Implementation details and further experimental results

A.1 Implementation details

Our codebase is implemented fully in Python. We use the PySAT library for formulating and solving
the WPMAX-SAT problem, and the PuLP library for formulating and solving the ILP problem.

Solving the WPMAX-SAT problem. There are several algorithms to solve the WPMAX-SAT
instance to optimality. These algorithms include RC2 [Ignatiev et al., 2019] and OLL [Morgado et al.,
2014], both of which are core-based algorithms that utilize unsatisfiable cores to iteratively refine the
solution. In this context, a “core” refers to an unsatisfiable subset of clauses within the CNF formula
that cannot be satisfied simultaneously under any assignment. These algorithms relax the unsatisfiable
soft clauses in the core by adding relaxation variables and enforce cardinality constraints on these
variables. By strategically increasing the bounds on these cardinality constraints or modifying the
weights of soft clauses based on the cores identified, the algorithms efficiently reduce the search space
and converge on the maximum weighted set of satisfiable clauses, thereby solving the WPMAX-SAT
problem optimally.

Solving the ILP problem. Similarly, with the ILP formulation of the MCID problem presented
in Section 3, we can utilize exact algorithms designed for solving ILP problems to find an optimal
solution. ILP solvers work by formulating the problem with linear inequalities as constraints and
integer variables that need to be optimized. Popular ILP solvers include CPLEX [IBM Corporation,
2023], Gurobi [Gurobi Optimization, LLC, 2023], and the open-source solver CBC [Forrest and
Lougee-Heimer, 2023]. The latter is a branch-and-cut-based solver, and cutting plane methods to
explore feasible integer solutions systematically while pruning the search space based on bounds
calculated during the solving process.

We use the Gurobi solver in our experiments.
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A.2 Experiments on real-world data

We conduct experiments using 17 real-world networks from the Bayesian Network Repository8. This
repository encompasses networks from diverse domains such as biology, engineering, medicine, and
social science. In our experiments, each network from the repository is utilized as the DAG on the
known variables. We assign a random cost to each variable, sampled uniformly at random from
[1, n]. We then introduce hidden variables by randomly sampling bidirected edges with probabilities
of 0.01, 0.1, and 0.3, resulting in 50 ADMGs per network. For each ADMG, we select S to be a
singleton consisting of the last node in the causal order. This choice ensures that any other node
would not reduce the network’s size by ignoring some vertices and edges, as outgoing edges from S
are irrelevant for the MCID problem.

Subsequently, we implemented the exact algorithms: minimal hedge solver (Algorithm 2 of Akbari
et al. [2022]), ILP, and WPMAX-SAT. We also tested the heuristic algorithms H1 and H2 from
Akbari et al. [2022], alongside Algorithm 1 from this work.

In Figure 6, we present a semi-log bar chart of the average time taken for each exact algorithm to
solve an instance of a graph for each network. Notably, our approaches, ILP and SAT, consistently
outperform MHS by an average factor of over 100, and by more than 1000 times on the largest
network, link. Additionally, SAT demonstrates superior performance in all but two networks, andes
and diabetes.

In Figure 7, we provide a semi-log plot of the normalized cost of the heuristics H1 and H2 from
Akbari et al., 2022, and our Algorithm 1, averaged across each network. It is evident that Algorithm
1 significantly outperforms H1, often by one to two orders of magnitude. Although H2 performs
better due to its focus on performing cuts on nodes over directed edges (which are fewer), its cost
remains higher than that of Algorithm 1. Overall, the results align with our findings from synthetic
simulations in the main text. Our WPMAX-SAT and ILP formulations surpass the previous state-
of-the-art approach of Akbari et al. [2022], with WPMAX-SAT being the fastest. Furthermore, our
polynomial-time Algorithm 1 consistently outperforms the heuristics of Akbari et al. [2022].

as
ia 

(8
)

sa
ch

s (
11

)
ch

ild
 (2

0)
in

su
ra

nc
e (

27
)

wa
ter

 (3
2)

m
ild

ew
 (3

5)
ala

rm
 (3

7)
ba

rle
y (

48
)

ha
ilf

in
de

r (
56

)
he

pa
r2

 (7
0)

wi
n9

5p
ts 

(7
6)

pa
th

fin
de

r (
10

9)
m

un
in

1 (
18

6)
an

de
s (

22
3)

di
ab

ete
s (

41
3)

pi
gs

 (4
41

)
lin

k (
72

4)

Network (size)

10 3

10 2

10 1

100

101

102

103

104

D
ur

at
io

n 
(s

)

Algorithm
MHS
ILP (ours)
SAT (ours)

Figure 6: Semi-log plot of the average time taken by Algorithm 2 of Akbari et al. [2022] (MHS), ILP,
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Figure 8: Semi-log plot of the average time taken by WPMAX-SAT to solve one graph versus the
number of vertices in the graph.

A.3 Extended WPMAX-SAT simulations

We extended the simulations in Section 5 for up to n = 500 vertices, and the results are presented in
Fig. 8. We observe that even at n = 500, WPMAX-SAT takes around the same time as Algorithm
2 of Akbari et al. [2022] does to solve n = 40 (230 s for both). Moreover, we can clearly see the
exponential growth in time complexity, as expected, especially for n > 400.

A.4 Investigating the effects of directed and bidirected edge probabilities on the performance
of exact algorithms

We run experiments on varying the probabilities of directed and bidirected edges in the graph. We fix
the number of vertices at n = 20 and vary the probabilities of directed and bidirected edges from
0.001 to 1.00 in increments of 0.001. The results are presented in Fig. 9.
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Figure 9: Heatmap of the average time taken by WPMAX-SAT (on the left) and Algorithm 2 of
Akbari et al. [2022] (on the right) to solve one graph versus the probabilities of directed and bidirected
edges in the graph.
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Figure 10: Average time taken by Algorithm 2 of Akbari et al. [2022] (MHS), ILP, and WPMAX-SAT
to solve one graph versus the mean parameter of the Poisson distribution from which the costs are
sampled.

A.5 Investigating the effect of cost on the performance of the algorithms

We run experiments with n = 20 and costs sampled from a Poisson distributions with mean parameter
ranging from 1 to 100. The results are presented in Fig. 10. Interestingly, there appears to be no clear
trend in the time complexity of the algorithms with respect to the mean parameter of the Poisson
distribution. This suggests that the time complexity of the algorithms is not significantly affected by
the cost of the vertices.
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Figure 11: Average running time of the heuristic algorithms H1 and H2 of Akbari et al. [2022] and
Algorithm 1 versus the number of vertices in the graph for different probabilities of directed and
bidirected edges in the graph.

A.6 Investigating the effects of directed and bidirected edge probabilities on the performance
of the heuristic algorithms

We run experiments on varying the probabilities of directed and bidirected edges in the graph. We
vary n from n = 10 to n = 200 and the probabilities of directed and bidirected edges in {0.1, 0.5}.
The results are presented in Fig. 11. We see that our proposed heuristic algorithm consistently
outperforms the heuristic algorithms of Akbari et al. [2022] for all graph sizes and edge probabilities.
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B Algorithms

B.1 Pruning algorithm for finding the hedge hull

We include the algorithm for finding the hedge hull for the sake of completeness. This algorithm is
adopted from Akbari et al. [2022].

Algorithm 2 Pruning algorithm

1: procedure PRUNE(G = ⟨V,
−→
E ,
←→
E ⟩, S)

2: H ← AncV (S)
3: while True do
4: H′ ← {v ∈ H : v has a bidirected path to S in G[H]}
5: ifH′ = H then
6: returnH
7: H ← AncH′(S)
8: ifH = H′ then
9: returnH

B.2 SAT construction procedure for multiple districts

The procedure for constructing the SAT formula when S comprises multiple districts was postponed
to this section due to space limitations. This procedure is detailed below.

Algorithm 3 SAT construction

1: procedure CONSTRUCTSAT(X,Y,G = ⟨V,
−→
E ,
←→
E ⟩)

2: S ← AncV \X(Y )
3: S ← districts of S in G[S]
4: r ← |S|
5: F ← 1
6: for ℓ ∈ {1, . . . r} do ▷ iterate over districts of S
7: m← |HG(Sℓ) \ Sℓ| ▷ # iterations
8: for k ∈ {1, . . . , r} do ▷ iterate over expressions
9: F ← F ∧ (xi,0,k ∨ ¬zk,ℓ) for every i s.t. vi ∈ Sℓ

10: F ← F ∧ (xi,j,k,ℓ ∨ ¬zk,ℓ) for every i s.t. vi ∈ Sℓ and every j ∈ {1, . . . ,m+ 1}
11: for (vi, vp) ∈

−→
E do ▷ iteration j = 1

12: F ← F ∧ (¬xi,0,k ∨ xi,1,k,ℓ ∨ ¬xp,1,k,ℓ ∨ ¬zk,ℓ)
13: for j ∈ {2, . . . ,m+ 1} do
14: if j is odd then
15: for (vi, vp) ∈

−→
E do

16: F ← F ∧ (¬xi,j−1,k,ℓ ∨ xi,j,k,ℓ ∨ ¬xp,j,k,ℓ ∨ ¬zk,ℓ)
17: else
18: for {vi, vp} ∈

←→
E do

19: F ← F ∧ (¬xi,j−1,k,ℓ ∨ xi,j,k,ℓ ∨ ¬xp,j,k,ℓ ∨ ¬zk,ℓ)
20: F ← F ∧ (¬xp,j−1,k,ℓ ∨ xp,j,k,ℓ ∨ ¬xi,j,k,ℓ ∨ ¬zk,ℓ)
21: F ← F ∧ (¬xi,m+1,k,ℓ ∨ ¬zk,ℓ) for every vi /∈ Sℓ

22: F ← F ∧ (z1,ℓ ∨ · · · ∨ zr,ℓ)

23: return F

18



C Missing Proofs

C.1 Results of Section 3

Theorem 1. The 3-SAT formula F constructed by the procedure above given G and S has a satisfying
solution {x∗

i,j} where x∗
i,0=0 for i∈I⊆{1, . . . ,m} and x∗

i,0=1 for i∈{1, . . . ,m}\I if and only if
I intersects every hedge formed for S in G; i.e., I is a feasible solution to the optimization in Eq. (2).

Proof. Proof of ‘if:’ Suppose I hits every hedge formed for S. We construct a satisfying solution for
the SAT formula as follows. We begin with xi,0:

x∗
i,0 =

{
0; if i ∈ I
1; o.w.

For every j ∈ {1, . . . ,m+ 1}, define Hj = {i : xi,j−1 = 1}. Then x∗
i,j for j ∈ {1, . . . ,m+ 1} is

chosen recursively as below.

• Odd j: x∗
i,j = 1 if i ∈ Hj and vi has a directed path to S in G[Hj ], and x∗

i,j = 0 otherwise.

• Even j: x∗
i,j = 1 if i ∈ Hj and vi has a bidirected path to S in G[Hj ], and x∗

i,j = 0 otherwise.

Next, we prove that {x∗
i,j} as defined above satisfies F . We consider the three types of clauses in F

separately:

• For odd j ∈ {1, . . . ,m+1}, the clause (¬xi,j−1 ∨xi,j ∨¬xℓ,j) corresponds to the directed edge
(vi, vℓ) ∈

−→
E : if either x∗

i,j−1 = 0 or x∗
ℓ,j = 0, then this clause is trivially satisfied. So suppose

x∗
i,j−1 = 1, and x∗

ℓ,j = 1, which implies by construction that x∗
ℓ,j−1 = 1. Therefore, i, ℓ ∈ Hj .

Further, since x∗
ℓ,j = 1, vℓ has a directed path to S in G[Hj ]. Then vi has a directed path to S in

G[Hj ] because of the edge (vi, vℓ) ∈
−→
E . By the construction above, x∗

i,j = 1, which satisfies the
clause.

• For even j ∈ {1, . . . ,m+ 1}, the clause (¬xi,j−1 ∨ xi,j ∨ ¬xℓ,j) corresponds to the bidirected
edge {vi, vℓ} ∈

←→
E : if either x∗

i,j−1 = 0 or x∗
ℓ,j = 0, then this clause is trivially satisfied. So

suppose x∗
i,j−1 = 1, and x∗

ℓ,j = 1, which implies by construction that x∗
ℓ,j−1 = 1. Therefore,

i, ℓ ∈ Hj . Further, since x∗
ℓ,j = 1, vℓ has a bidirected path to S in G[Hj ]. Then vi has a bidirected

path to S in G[Hj ] because of the edge {vi, vℓ} ∈
←→
E . By the construction above, x∗

i,j = 1, which
satisfies the clause.

• The clauses ¬xi,m+1: First note that by construction, if for some j ∈ {1, . . . ,m+1}, x∗
i,j−1 = 0,

then x∗
i,j = x∗

i,j+1 = · · · = x∗
i,m = 0. That is, {x∗

i,j}mj=0 is a non-increasing binary-valued
sequence for every i. Therefore, for every i ∈ {1, . . . ,m}, there exists at most one j such that
x∗
i,j−1 > x∗

i,j . We consider two cases separately:

– There are exactly m many j ∈ {1, . . . ,m + 1} for which there exists at least one i such
that x∗

i,j−1 > x∗
i,j . In this case, for every i ∈ {1, . . . ,m}, there exists exactly one j ∈

{1, . . . ,m + 1} such that x∗
i,j−1 > x∗

i,j . Then for every i, there exists j such that x∗
i,j = 0,

and following the argument above, x∗
i,m+1 = 0. Hence, the clauses ¬xi,m+1 are all satisfied.

– There are strictly less than m many j ∈ {1, . . . ,m + 1} for which there exists at least
one i such that x∗

i,j−1 > x∗
i,j . Then there exist j, j′ ∈ {1, . . . ,m + 1} such that for every

i ∈ {1, . . . ,m}, x∗
i,j−1 = x∗

i,j and x∗
i,j′−1 = x∗

x,j′ . Assume without loss of generality that
j′ < j and therefore, j > 1. If x∗

i,j = 0 for every i, then by similar arguments as the
previous case, x∗

i,m+1 = 0 and the clauses ¬xi,m are satisfied. So suppose for the sake
of contradiction that there exists a non-empty set Hj = {i : x∗

i,j−1 = 1} ≠ ∅. Note that
Hj+1 := {i : x∗

i,j = 1} = Hj , since x∗
i,j−1 = x∗

i,j for every i. Moreover, I ∩Hj = ∅ since
x∗
i,0 = 0 for every i ∈ I and {x∗

i,k}k is non-increasing. Assume without loss of generality that
j is odd. The proof is identical in case j is even. By definition, the set of vertices Hj+1 = Hj

have a directed path to S in G[Hj ]. Moreover, the set of vertices Hj are those vertices in Hj−1
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that have a bidirected path to S in G[Hj−1] (here we used j > 1 for Hj−1 to be well-defined.)
That is, Hj is the connected component of S in G[Hj−1]. The latter implies that every vertex
in Hj has a bidirected path to S in G[Hj ]. We proved that Hj is a hedge formed for S, and
Hj ∩ I = ∅. This contradicts with I intersecting with every hedge formed for S.

Proof of ‘only if:’ Suppose {x∗
i,j} is a satisfying solution, where x∗

i,0 = 1 for every i /∈ I. To prove
I intersects every hedge formed for S, it suffices to show that there is no hedge formed for S in
G[V \ I]. Assume, for the sake of contradiction, that this is not the case. That is, there exists a hedge
H ⊆ V \ I formed for S in G. Suppose for some j ∈ {1, . . . ,m + 1}, it holds that x∗

i,j−1 = 1
for every vi ∈ H . We show that x∗

i,j = 1 for every vi ∈ H . We consider the following two cases
separately:

• Even j: for arbitrary vi, vℓ ∈ H such that {vi, vℓ} ∈
←→
E , consider the clauses (¬xi,j−1 ∨

xi,j ∨ ¬xℓ,j) and (¬xℓ,j−1 ∨ xℓ,j ∨ ¬xi,j) that are in F by construction for even j. Since
x∗
i,j−1 = x∗

ℓ,j−1 = 1, the expression (x∗
i,j ∨ ¬x∗

ℓ,j) ∧ (x∗
ℓ,j ∨ ¬x∗

i,j) is satisfied; i.e., it evaluates
to ‘true.’ The latter expression is equivalent to (x∗

i,j ∧ x∗
ℓ,j) ∨ (¬x∗

i,j ∧ ¬x∗
ℓ,j), which implies that

x∗
i,j = x∗

ℓ,j . Note that i, ℓ were chosen arbitrarily. This implies that x∗
i,j is equal for every i, since

H is a connected component through bidirected edges by definition of a hedge. Finally, since by
construction, xi,j = 1 for every vi ∈ S ⊆ H , that equal value is 1. Therefore, x∗

i,j = 1 for every
i such that vi ∈ H .

• Odd j: the proof is analogous to the case where j is even. For arbitrary vi, vℓ ∈ H such that
(vi, vℓ) ∈

−→
E , consider the clause (¬xi,j−1 ∨ xi,j ∨ ¬xℓ,j). Since x∗

i,j−1 = 1, the expression
(x∗

i,j ∨ ¬x∗
ℓ,j) is satisfied; i.e., it evaluates to ‘true.’ The latter implies that if x∗

ℓ,j = 1 and vi has a
directed edge to vj , then x∗

i,j = 1. Using the same argument recursively, if x∗
ℓ,j = 1 and vi has a

directed ‘path’ to vj in G[H], then x∗
i,j = 1. By construction, x∗

ℓ,j = 1 for every vℓ ∈ S, and by
definition of a hedge, every vertex vi ∈ H has a directed path to S. As a result, x∗

i,j = 1 for every
vi ∈ H .

Since for every vi ∈ H , x∗
i,0 = 1, using the arguments above, by induction, x∗

i,m+1 = 1 for every
vi ∈ H . However, this contradicts the fact that {x∗

i,j} satisfies F , since F includes the clauses
¬xi,m+1 for every i.

Lemma 1. Let S = {S1, . . . , Sr} be the set of districts of S, where S = AncV \X(Y ). There exists
an intervention set family I∗ of size |S| = r that is optimal for identifying PX(Y ).

Proof. Let I be an optimizer of Eq. (1). By Proposition 1, for every Si ∈ S, there exists Ij ∈ I that
hits every hedge formed for Si. The set of such Ijs is a subset of at most size r of I , which implies
that |I| ≤ r since I is optimal. If |I| = r, the claim is trivial. If |I| < r, then simply add (r − |I|)
empty intervention sets to I to form an intervention set family I∗ with the same cost which is an
optimal solution to Eq. (1).

Theorem 2. Suppose G, a set of its vertices S with districts S = {S1, . . . , Sr}, and an intervention
set family 2 I = {I1, . . . , Ir} are given. Define mℓ = |HG(Sℓ) \ Sℓ|, i.e., the cardinality of the
hedge hull of Sℓ excluding Sℓ itself. The SAT formula F constructed by Algorithm 3 has a satisfying
solution {x∗

i,0,k}∪{x∗
i,j,k,ℓ}∪{z∗k,ℓ} where for every ℓ ∈ {1, . . . , r}, there exists k ∈ {1, . . . , r} such

that (i) z∗k,ℓ = 1, (ii) x∗
i,0,k = 0 for every i ∈ Ik, and (iii) x∗

i,0,k = 1 for every i ∈ {1, . . . ,mℓ} \ Ik,
if and only if I is a feasible solution to optimization of Eq. (1).

Proof. The proof is identical to that of Theorem 1 with necessary adaptations.

Proof of ‘if:’ Suppose I is a solution to Eq. (1). From Proposition 1, for every Sℓ ∈ S, there
exists k such that Ik hits every hedge formed for Sℓ. Assign z∗k,ℓ = 1 and zk′,ℓ = 0 for every
other k′ ̸= k, thereby satisfying every clause that includes ¬zk′,ℓ, k′ ̸= k. So it suffices to assign
values to other variables so that clauses including ¬zk,ℓ. Since zk,ℓ = 1, these clauses reduce to
(¬xi,j−1,k,ℓ ∨ xi,j,k,ℓ ∨ ¬xp,j,k,ℓ) (see lines 16, 19, or 20.) These clauses are exactly in the form of
3-SAT clauses as in the single-district case procedure. An assignment exactly parallel to the proof of
Theorem 1 satisfies these clauses.
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Proof of ‘only if:’ Suppose {x∗
i,0,k} ∪ {x∗

i,j,k,ℓ} is a satisfying solution, where for some k, ℓ ∈
{1, . . . , r}, it holds that z∗k,ℓ = 1 and x∗

i,0,k = 1 for every i /∈ Ik. We show that Ik hits every hedge
formed for Sℓ. Since such a k exists for every Sℓ, we will conclude that I is feasible for Eq. (1) by
Proposition 1. Finally, to show that Ik hits every hedge formed for Sℓ, note that satisfiability of all
clauses containing the literal ¬z∗k,ℓ reduces to the satisfiability of (¬xi,j−1,k,ℓ ∨ xi,j,k,ℓ ∨ ¬xp,j,k,ℓ)
(see lines 16, 19, or 20), and the same arguments as in the proof of Theorem 1 apply.

C.2 Results of Section 4

Lemma 2. Let X,Y be two disjoint sets of vertices in G such that X is minimal as defined above.
Set Z ⊆ V is a generalized adjustment set for PX(Y ) under intervention I if (i) Z ⊆ Anc(S), and
(ii) Z is a vertex cut9 between S and Pa(S) in (GIPa(S))

m, where S = AncV \X(Y ), and GIPa(S) is

the ADMG resulting from omitting all edges incoming to I and all edges outgoing of Pa(S).

Proof. Define S = AncV \X(Y ). First, we show that Pa(S) ⊆ X . Assume the contrary, i.e.,
there is a vertex w ∈ Pa(S) \ X . Clearly w has a directed path to S (a direct edge) that does
not go through X . This implies that w ∈ AncV \X(S), and since by definition, S = AncV \X(Y ),
w ∈ AncV \X(Y ) = S. However, the latter contradicts with w ∈ Pa(S). Second, we note that from
the third rule of do calculus [Pearl, 2009], PW (S) = PPa(S)(S) for any W ⊇ Pa(S). Combining
the two arguments, we have the following:

PW (S) = PX(S), ∀W ⊇ Pa(S). (6)

To proceed, we will use the following proposition.

Proposition 3 (Lauritzen et al., 1990). Let S,R, and Z be disjoint subsets of vertices in a directed
acyclic graph G. Then Z d-separates S from R if and only if Z is a vertex cut between S and R in
(G[Anc(S ∪R ∪ Z)])m.

Choose R = Pa(S) in the proposition above. Since Z ⊆ Anc(S), we have that Anc(S ∪R ∪ Z) =
Anc(S). From condition (ii) in the lemma, Z is a vertex cut between S and R in (GIPa(S))

m, which
implies it is also a vertex cut in (GIPa(S)[Anc(S)])m, as every path in the latter graph exists in
(GIPa(S))

m. Using the proposition above, Z d-separates S and Pa(S) in GIPa(S). This is to say, Z
blocks all non-causal paths from Pa(S) to S in GI , and it clearly has no elements that are descendants
of Pa(S). Therefore, Z satisfies the adjustment criterion of Shpitser et al. [2010] w.r.t. PPa(S)(S) in
GI . That is, the following holds:

PI∪Pa(S)(S) = EPI [PI(S | Pa(S), Z)],

where the expectation is w.r.t. PI(Z). Choosing W = I ∪ Pa(S) in Eq. (6), we get

PX(S) = EPI [PI(S | Pa(S), Z)].

Marginalizing S \ Y out in both sides of the equation above, we have

PX(Y ) = EPI [PI(Y | Pa(S), Z)].

The last step of the proof is to show that Pa(S) = X . We already showed that Pa(S) ⊆ X . For the
other direction, we will use the minimality of X . Suppose to the contrary that x ∈ X \ Pa(S). We
first show that every causal path from x to Y goes through X \ {x}. Suppose not. Then take a causal
path x, s1, . . . , sm, y be a causal path from x to y ∈ Y . Note that s1 has a causal path to Y that
does not go through X . By definition, s1 ∈ S, which implies x ∈ Pa(S), which is a contradiction.
Therefore, every causal path from x to Y goes through X \ {x}, and consequently, there is no causal
path from x to Y in GX . Clearly there is no backdoor path either. Every other path has a collider on
it, and therefore is blocked by X \ {x} – note that none of these can be colliders in GX . Therefore,
{x} is d-separated from Y given X \ {x} in GX , which contradicts the minimality of X w.r.t. the
third rule of do calculus. This shows X ⊆ Pa(S), completing the proof.

9This corresponds to Z blocking all the backdoor paths between Pa(S) and S, in the modified graph GI .
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Theorem 3. Let (I, Z) be the output returned by Algorithm 1 for the query PX(Y ). Then,
- Z is a generalized adjustment set for PX(Y ) under intervention I.
- I is the minimum-cost intervention for which there exists a generalized adjustment set based on the
graphical criterion of Lemma 2.

Proof. For the first part, using Lemma 2, it suffices to show that Z is a vertex cut between S and
Pa(S) in (GIPa(S))

m. Suppose not. That is, there exists a path from S to Pa(S) in (GIPa(S))
m

that does not pass through any member of Z. Let P = s, v1, . . . , vl, x represent this path, where
s ∈ S and x ∈ Pa(S). We construct a corresponding path P ′ in Gvc as follows. The first vertex
on P ′ is s1, which corresponds to the first vertex on P , s. We then walk along P and add a path to
P ′ corresponding to each edge we traverse on P as follows. Consider this edge to be {v, w} – for
instance, the first edge would be {s, v1}. By definition of (GIPa(S))

m, for every pair of adjacent

vertices v, w on the path P , one of the following holds: (i) v → w in (GIPa(S))
d, (ii) v ← w in

(GIPa(S))
d, or (iii) v and w have a common child t in (GIPa(S))

d. In case (i), we add v1, w2, w1. In
case (ii), we add v2, w1. Finally, in case (iii), we add v1, t2, w1 to P ′. We continue this procedure
until we traverse all edges on P . The last vertex on P ′ is x2, as x has no children in (GIPa(S))

d.
Finally we add x1 to this path, as x2 and x1 are always connected by construction. Note that by
construction of P ′, any vertex that appears with index 2 has a parent in v → w in (GIPa(S))

d, and
therefore is not a member of I . Hence, {v2 : v ∈ I} does not intersect with P ′. Further, {v1 : v ∈ Z}
does not intersect with P ′ either, as none of the vertices appearing on P ′ correspond to Z. This is to
say that J = {v2 : v ∈ I} ∪ {v1 : v ∈ Z}, which is the solution obtained by Algorithm 1 in line 10,
does not cut the path P ′. This contradicts with J being a vertex cut.

For the second part, let (I ′, Z ′) be so that Z ′ is a vertex cut between S and Pa(S) in (GI′Pa(S))
m, and

I ′ induces a lower cost than I; that is, C(I ′) < C(I). Define J ′ = {v2 : v ∈ I ′} ∪ {v1 : v ∈ Z ′}.
Clearly, the cost of J ′ is equal to C(I ′), which is lower than the cost of minimum vertex cut found in
line 10 of Algorithm 1. It suffices to show that J ′ is also a vertex cut between {x1 : x ∈ Pa(S)} and
{s1 : s ∈ S} in Gvc to arrive at a contradiction. Suppose not; that is, there is a path P = s1, . . . , x1

on Gvc that J ′ = {v2 : v ∈ I ′} ∪ {v1 : v ∈ Z ′} does not intersect. None of the vertices with index 2
on P belong to I ′, and none of the vertices with index 1 belong to Z ′. Analogous to the first part, we
construct a corresponding path P ′ – this time in (GI′Pa(S))

m. The starting vertex on P ′ is s, which
corresponds to s1, the initial vertex on P . Let us imagine a cursor on s1. We then sequentially build
P ′ by traversing P as follows. We always look at sequences starting with v1 (where the cursor is
located): when the sequence is of the form v1, w2, w1 or v1, v2, w1, we add w to P ′, and move the
cursor to w1; however, when the sequence is of the form v1, w2, r1, we add r1 to P ′ and move the
cursor to r1. By construction of Gvc, no other sequence is possible – note that there are no edges
between v1 and w1 or v2 and w2 where v and w are distinct. Since none of the vertices with index 2
on P belong to I , in the first case, the corresponding edge v ← w or v → w is present in (GI′Pa(S))

d

and consequently, the edge {v, w} is present in (GI′Pa(S))
m; and in the latter case, both edges v → w

and w ← r are present in (GI′Pa(S))
d and consequently, the edge {v, r} is present in (GI′Pa(S))

m.
P ′ is therefore a path between S and Pa(S) in (GI′Pa(S))

m. Notice that by construction, only those
vertices appear on P ′ that their corresponding vertex with index 1 appears on P – the cursor always
stays on vertices with index 1. As argued above, none of such vertices belong to Z ′, which means Z ′

does not intersect with P ′ which is a path from S to Pa(S) in (GI′Pa(S))
m. This contradicts with Z ′

being a vertex cut.

C.2.1 Proof of Remark 3

Proof. Since the algorithms are run in the hedge hull of S, assume without loss of generality that
V = HG(S), i.e., V is the hedge hull of S. From Theorem 3, Algorithm 1 finds the optimal
(minimum-cost) intervention I such that there exists a set Z ⊆ V that is a vertex cut between S
and Pa(S) in (GIPa(S))

m. To prove that the cost of the solution returned by Algorithm 1 is always
smaller than or equal to that of heuristic algorithm 1 of Akbari et al. [2022], it suffices to show that
the solution of their algorithm is a feasible point for the statement above. That is, denoting the output
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of heuristic algorithm 1 of Akbari et al. [2022] by I1, we will show that there exist sets Z1 ⊆ V such
that it is a vertex cut between S and Pa(S) in (GI1Pa(S))

m.

Heuristic algorithm 1: This algorithm returns an intervention set I1 such that there is no bidirected
path from Pa(S) to S in GI1 . We claim Z1 = V \ Pa(S) \ S satisfies the criterion above. To prove
this, consider an arbitrary path P between S and Pa(S) in (GI1Pa(S))

m. If there is an observed
vertex v ∈ V on P , this vertex is included in Z1 and separates the path. So it suffices to show that
there is no path P between S and Pa(S) in (GI1Pa(S))

m where all the intermediate vertices on P

correspond to unobserved confounders. Suppose there is. That is, P = x, u1, . . . , um, s, where
x ∈ Pa(S) and {ui}mi=1 are unobserved. Since ui is not connected to uj in (GI1Pa(S))

d, it must be

the case that any ui and ui+1 have a common child vi,j in (GI1Pa(S))
d. This is to say, there is a path

x ← u1 → v1,2 ← u2 → · · · → vm−1,m ← um → s in (GI1Pa(S))
d, which corresponds to the

bidirected path x, v1,2, . . . , vm−1,m, s in GI1 . This contradicts with the fact that there is no bidirected
path between Pa(S) and S in GI1 .

C.3 Results in the appendices

Lemma 3. For any district S ⊆ V , the function fS : 2V \S → Z≤0 is submodular.

Proof. Take two distinct vertices {x, y} ∈ V \ S and an arbitrary set I ⊂ V \ S \ {x, y}. It suffices
to show that

fS(I ∪ {x, y})− fS(I ∪ {y}) ≤ fS(I ∪ {x})− fS(I).

By definition, the right hand side is the number of hedges H ⊆ V \ I formed for S such that x /∈ H .
Similarly, the left hand side counts the number of hedges H ⊆ V \ (I ∪ {y}) formed for S such that
x /∈ H . The inequality holds because the set of hedges counted by the left hand side is a subset of
that on the right hand side.

Proposition 4. The combinatorial optimization of Eq. (2) is equivalent to the following unconstrained
submodular optimization problem.

I∗ = argmax
I⊆V \S

(
fS(I)−

∑
v∈I C(v)

1 +
∑

v∈V \S C(v)

)
. (7)

Proof. The submodularity of the objective function follows from Lemma 3. To show the equivalence
of the two optimization problems, we show that a maximizer I∗ of Eq. (7) (i) hits every hedge formed
for S, and (ii) has the optimal cost among such sets.

Proof of ‘(i):’ Note that fS(I) = 0 if and only if there are no hedges formed for S in G[V \ I∗],
or equivalently, I hits every hedge formed for S. So it suffices to show that fS(I∗) = 0 for every
maximizer I∗ of Eq. (7). To this end, first note that

fS(V \ S)−
∑

v∈V \S C(v)

1 +
∑

v∈V \S C(v)
= 0− 1 +

1

1 +
∑

v∈V \S C(v)
> −1,

which implies that

fS(I∗)−
∑

v∈I∗ C(v)

1 +
∑

v∈V \S C(v)
> −1.

On the other hand, clearly
∑

v∈I∗ C(v)

1+
∑

v∈V \S C(v) ≥ 0, which combined with the inequality above implies

fS(I∗) > −1. Since fS(I∗) ∈ Z≤0, it is only possible that fS(I∗) = 0.

Proof of ‘(ii):’ We showed that fS(I∗) = 0. So I∗ maximizes
∑

v∈I C(v)

1+
∑

v∈V \S C(v) among all those

I such that fS(I) = 0. Since the denominator is a constant, this is equivalent to minimizing
C(I) =

∑
v∈I C(v) among all those I that hit all the hedges formed for S, which matches the

optimization of Eq. (2).
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D Alternative Formulations

D.1 Min-cost intervention as a submodular function maximization problem

In this Section, we reformulate the minimum-cost intervention design as a submodular optimization
problem. Submodular functions exhibit a property akin to diminishing returns: the incremental gain
from adding an element to a set decreases as the set grows [Nemhauser et al., 1978].
Definition 5. A function f : 2V → R is submodular if for all A ⊆ B ⊆ V and v ∈ V \B, we have
that f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B).

Given an ADMG G = ⟨V,
−→
E ,
←→
E ⟩ a district S in G, and an arbitrary set I ⊆ V \ S, we define fS(I)

as the negative count of hedges formed for S in G[V \ I].
Lemma 3. For any district S ⊆ V , the function fS : 2V \S → Z≤0 is submodular.

Note that gS : 2V \S → R, where gS(I) := fS(I) + α
∑

v∈I C(v), and α is an arbitrary constant, is
also submodular as the second component is a modular function (similar definition as in 5 only with
equality instead of inequality.).
Proposition 4. The combinatorial optimization of Eq. (2) is equivalent to the following unconstrained
submodular optimization problem.

I∗ = argmax
I⊆V \S

(
fS(I)−

∑
v∈I C(v)

1 +
∑

v∈V \S C(v)

)
. (7)

D.2 Min-cost intervention as an RL problem

We model the MCID problem given a graph G = (V,E) and S ⊂ V , as a Markov decision process
(MDP), where a vertex is removed in each step t until there are no hedges left. The goal is to minimize
the cost of the removed vertices (i.e., intervention set). Naturally, the action space is the set of vertices,
V and the state space is the set of all subsets of V . More precisely, let st and at denote the state
and the action of the MDP at iteration t, respectively. Then, st is the hedge hull for S from the
remaining vertices at time t, and action at is the vertex that will be removed from Vt in that iteration.
Consequently, the state transition due to action at is st+1 = Hhull(Vt \ {at}). The immediate reward
of selecting action at at state st will be the negative of the cost of removing (i.e., intervening on) at,
given by

r(st, at) = −C(at).

The MDP terminates when there are no hedges left and the hedge hull of the remaining vertices
is empty (i.e., st = ∅). The goal is to find a policy π that maximizes sum of the rewards until the
termination of the MDP. Formally, the goal is to solve

argmax
π

[
T∑

t=1

r(st, at)

]
,

where s1 = V and T is the time step at which the MDP terminates (i.e., sT = ∅).
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