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ABSTRACT

Imitation Learning (IL) enables agents to mimic expert behavior by learning
from demonstrations. However, traditional IL methods require large amounts of
medium-to-high-quality demonstrations as well as actions of expert demonstra-
tions, both of which are often unavailable. To address these limitations, we pro-
pose LWAIL (Latent Wasserstein Adversarial Imitation Learning), a novel adver-
sarial imitation learning framework that focuses on state-only distribution match-
ing by leveraging the Wasserstein distance computed in a latent space. To obtain
a meaningful latent space, our approach includes a pre-training stage, where we
employ the Intention Conditioned Value Function (ICVF) model to capture the
underlying structure of the state space using randomly generated state-only data.
This enhances the policy’s understanding of state transitions, enabling the learn-
ing process to use only one or a few state-only expert episodes to achieve expert-
level performance. Through experiments on multiple MuJoCo environments, we
demonstrate that our method outperforms prior Wasserstein-based IL methods and
prior adversarial IL methods, achieving better sample efficiency and policy robust-
ness across various tasks.

1 INTRODUCTION

As a powerful tool for solving sequential decision-making problems, Reinforcement Learning (RL)
has achieved remarkable success in recent years across various fields, such as gaming (Silver et al.,
2016) and training of large language models from human feedback (Ramamurthy et al., 2023).
However, RL relies heavily on well-defined reward signals (Li et al., 2021), which can be difficult to
obtain in real-world settings (e.g., robot control (Ibarz et al., 2021) with varied target tasks) or may
require careful, environment-specific considerations (Yu et al., 2020).

Imitation Learning (IL) provides a way to avoid the use of rewards, and can generally be divided
into two types: Behavioral Cloning (BC) (Ross et al., 2011; Torabi et al., 2018a) and Inverse Re-
inforcement Learning (IRL) (Ho & Ermon, 2016; Fu et al., 2018; Bobrin et al., 2024). Compared
to BC, which directly learns to map states to actions by imitating an expert, inverse reinforcement
learning is more flexible and robust as it recovers a (usually dense) reward function from existing
demonstrations (Arora & Doshi, 2021) that exhibit the essence of the target policy.

However, similar to well-defined reward signals, expert demonstrations are often sparse in real-life
applications too, as human effort is usually involved (e.g., teleoperating robotic arms) whenever a
new task is considered. In this paper, we focus on one type of expert data shortage that has been
widely studied by the community: state-only expert demonstrations, which is also referred to as
‘Imitation Learning from Observations’ (LfO). Classic IRL-based methods, such as GAIL (Ho &
Ermon, 2016) and AIRL (Fu et al., 2018), require access to expert actions, which are unavailable
in LfO. Existing methods for LfO (Torabi et al., 2018b; Zhu et al., 2020), similar to GAIL, train
a discriminator to distinguish an expert’s behavior observed via expert demonstrations from the
agent’s behavior encoded in the learned policy.

There are also recent LfO methods minimizing state (Ma et al., 2022) or adjacent state-pair (Liu
et al., 2020; Kim et al., 2022a) occupancy divergence. They often require large amounts of medium-
to-high-quality offline data to perform well. In contrast, random data are much easier to obtain from
suboptimal agents, exploratory behaviors, or even failed attempts at completing a task. Thus, we
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Figure 1: Illustrating our motivation for a better distance metric and an outline of the algorithm.
Panel a) illustrates a case where the Euclidean distance between states is not a good metric: state B
is closer to expert state C, but it is apparently less desirable than more distant state A, as it cannot
reach C. To address this, we use random data and ICVF to find a more meaningful embedding space
as shown in the lower half. Panel b), together with the lower half of panel a), shows our pre-training
stage: we first train ICVF to obtain ϕ(s), which serves as a reward for our agent in the online stage
shown in panel c). Flames indicate training weights and snowflakes indicate frozen weights.

wonder: can we learn a good policy from a few (preferably a single) state-only expert demonstra-
tions, optionally very low (random) quality offline data, and online interaction?

To answer this question, we propose an adversarial imitation learning approach for state-only dis-
tribution matching using the Wasserstein distance. Different from prior work, we improve upon the
classic and default Euclidean distance metric in the Wasserstein formulation by incorporating an
embedding model which is trained prior to policy optimization with a large amount of random data
via the Intention Conditioned Value Function (ICVF) (Ghosh et al., 2023). Using it, we acquire a
distance metric which captures the dynamics and hidden relationships between states. Compared to
prior adversarial imitation learning methods such as GAIL (Ho & Ermon, 2016) and AIRL (Fu et al.,
2018) which often use state-action pairs to learn, our proposed method needs much less data; com-
pared to prior Wasserstein-based imitation learning methods such as WDAIL (Zhang et al., 2020b)
and IQlearn (Garg et al., 2021), our learned distance metric improves upon the classic Euclidean
distance inherently applied by the popular Kantorovich-Rubinstein (KR) duality (see Sec. 3.2 for
details) without using surrogates such as the one in PWIL (Dadashi et al., 2021).

To validate our approach, we conduct experiments in two settings. First, we validate our method
on Maze2D environments from the D4RL benchmark (Fu et al., 2020). This setting provides the
added advantage of compelling visualizations, enabling a clear validation of our idea. Further, we
extend our experiments to challenging locomotion tasks in the MuJoCo environment. We train our
ICVF distance metric model via random data, both from the existing D4RL dataset and data we
collected through random actions. We find that the ICVF-learned metric grasps the reachability
relations within a trajectory much better than the Euclidean distance. In terms of imitation learning
we achieve strong results using only a single trajectory of state-based expert data.

Our contributions can be summarized as follows: 1) We conceptually and empirically show that the
latent space from ICVF provides a good metric for state-based Wasserstein occupancy matching,
circumventing an inherent problem of the KR duality; 2) We propose a simple but effective method
that can achieve expert level performance with a single state-only expert trajectory; 3) We empiri-
cally show that our method outperforms a variety of baselines on multiple testbeds, thus proving a
better distance metric can greatly benefit Wasserstein-based adversarial imitation learning.

2 PRELIMINARIES

Markov Decision Process (MDP). A Markov Decision Process (MDP) is a mathematical frame-
work which describes the interactions of an agent with an environment at discrete time steps. It is
defined by the tuple (S,A, P,R, γ), where S represents the state space, and A denotes the action
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space. The state transition probability function P (s′|s, a) defines the likelihood of transitioning to
a new state s′ ∈ S after taking an action a ∈ A in the current state s ∈ S. The reward function
R(s, a) ∈ R specifies the immediate reward received after taking action a in state s. γ ∈ [0, 1) is
the discount factor, determining the importance of future rewards relative to immediate ones.

At each time step t, the agent observes the current state st ∈ S , selects an action at ∈ A, receives a
reward rt = R(st, at), and transitions to the next state st+1 according to the transition function P . A
complete running process is called a trajectory. The goal of the agent is to learn a policy π : S → A
that maximizes the expected cumulative discounted reward defined as: Gt =

∑∞
k=0 γ

krt+k. In this
paper, we focus on the state and state-pair occupancy, which are the visitation frequency of states
and state-pairs. Given policy π, the state occupancy is defined as dπs (s) = (1− γ)

∑∞
t=0 γ

tPr(st =
s) and the state-pair occupancy is given by dπss(s, s

′) = (1− γ)
∑∞

t=0 γ
t Pr(st = s, st+1 = s′).

Wasserstein Distance. Wasserstein distance, also known as Earth Mover’s Distance (EMD) (Kan-
torovich, 1939), is widely used to measure the distance between two probability distributions. For
the metric space (M, c) where M is a set and c : M × M → R is a metric, the 1-Wasserstein
distance1 between two distributions p(x) and q(x) on the metric space (M, c) is defined as:

W1(p, q) = inf
Π(p,q)

∫
M×M

c(x, y) dΠ(x, y). (1)

Intuitively, this equation quantifies the optimal way to “move” mass from p to q while minimiz-
ing the total movement, as described by the joint distributions Π(p, q) with marginals p and q. A
more popular form adopted by the machine learning community is the Kantorovich-Rubinstein (KR)
dual (Kantorovich & Rubinstein, 1958) of the 1-Wasserstein distance which reads as follows:

W1(p, q) = sup
∥f∥L≤1

(Ex∼p[f(x)]− Ex∼q[f(x)]) . (2)

Here, ∥f∥L ≤ 1 restricts function f to be 1-Lipschitz, i.e., for any x, x′, |f(x)−f(x′)|
c(x,x′) ≤ 1. As the

most prominent way to compel Lipschitzness is regularization of the gradient (Gulrajani et al., 2017;
Stanczuk et al., 2021) (i.e., ∇f(x0) = f(x)−f(x0)

∥x−x0∥2
for local x), the 1-Lipschitz constraint inherently

limits the distance metric c to be Euclidean (Stanczuk et al., 2021), which is often undesirable (Yan
et al., 2024). In this paper, we fix this issue by introducing an ICVF-learned distance metric.

TD3. Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018) extends the
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016) algorithm, designed to mitigate
the overestimation bias commonly found in Q-learning. TD3 introduces three key modifications:

1) Clipped Double Q-learning: TD3 maintains two Q-networks, Qθ1 and Qθ2 parameterized by θ1
and θ2 respectively, and uses the smaller of the two as the critic loss to reduce overestimation (Lee
& Lee, 2023). More specifically, the fitting target y is calculated by

y = r + γmin(Qθ1(s
′, πϕ(s

′)), Qθ2(s
′, πϕ(s

′))),

where πϕ is the policy π parameterized by ϕ. The clipped value stabilizes training and results.

2) Delayed Policy Updates: To further stabilize learning, the policy is updated less frequently than
the critic, reducing the chance of policy updates based on inaccurate Q-values.

3) Target Policy Smoothing: To address overfitting to deterministic policies, when calculating the
target for the critic loss, a Gaussian noise ϵ with variance σ2 > 0 is clipped with a threshold c0 > 0
before being added to the target action a′. More specifically, we have

a′ = πϕ(s
′) + ϵ, ϵ ∼ clip(N (0, σ2),−c0, c0).

This regularizes the policy, making it more robust to small state changes.

TD3 improves upon DDPG and works well particularly in high-dimensional continuous action
spaces. In this work, we adopt TD3 for the downstream RL component of our method.

1Unless otherwise specified, we will discuss 1-Wasserstein distance in this paper.
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3 LATENT WASSERSTEIN ADVERSARIAL IMITATION LEARNING

This section is organized as follows: In Sec. 3.1 we first define our goal and frame it using a Wasser-
stein adversarial state occupancy matching objective with KR duality. We then point out its inherent
shortcomings and propose the ICVF-trained latent space metric as a solution in Sec. 3.2. Finally, we
introduce our algorithm in Sec. 3.3. See Fig. 1 for an overview of our work.

3.1 WASSERSTEIN ADVERSARIAL STATE OCCUPANCY MATCHING

Our goal is to learn a good policy π using three sources of information: a few-shot, state-only
expert dataset E, a dataset I with state-only random transitions (s, s′) (either given or collected
with an untrained policy), and online interactions. Inspired by recent state occupancy matching
works (Kostrikov et al., 2020; Garg et al., 2021; Ma et al., 2022; Kim et al., 2022a), in this paper, we
aim to minimize the 1-Wasserstein distance between state-pair occupancy distributions of the policy
π, i.e., dπss(s, s

′), and of the empirical policy of the expert, i.e., dEss(s, s
′). Formally, we address

min
π

W1(d
π
ss(s, s

′), dEss(s, s
′)), (3)

where s and s′ are adjacent states in a trajectory. Note, while many occupancy matching works such
as SMODICE (Ma et al., 2022) and LobsDICE (Kim et al., 2022a) use f -divergences, we opt to
use the 1-Wasserstein distance because it provides a smoother measure and leverages the underlying
geometric property of the state space, unlike f -divergences.

However, the Wasserstein distance itself is hard to compute as it is inherently a constrained linear
programming problem (see Eq. (1)), which is difficult to solve via gradient descent. While there
exist workarounds such as convex regularizers (Yan et al., 2024), surrogates (Dadashi et al., 2021),
and direct matching on trajectories (Luo et al., 2023; Bobrin et al., 2024), here, we choose the
widely adopted KR dual (Kantorovich & Rubinstein, 1958) as our objective. Combined with policy
optimization, our final objective reads as follows:

min
π

max
∥f∥L≤1

(
E(s,s′)∼dπ

ss
[f(s, s′)]− E(s,s′)∼dE

ss
[f(s, s′)]

)
, (4)

where the 1-Lipschitz constraint can be encouraged by prominent methods such as gradient regular-
ization (Gulrajani et al., 2017). With constraint ‘addressed,’ Eq. (4) is a bi-level optimization and
can be optimized iteratively by any RL algorithm. Specifically, since dEss is independent of π, the
objective for finding policy π is maxπ E(s,s′)∼dπ

ss
[−f(s, s′)]. This can be optimized with any RL

algorithm using reward r(s, a) = Es′∼P (s′|s,a)[−f(s, s′)]. From an adversarial imitation learning
perspective, f(s, s′) can be interpreted as a discriminator that outputs a high score f(s, s′) for expert
state pairs and a low score f(s, s′) for non-expert ones.

3.2 OVERCOMING METRIC LIMITATIONS

While the objective mentioned in Eq. (4) already provides a viable solution, it has a subtle limitation:
As mentioned in Sec. 2, the metric c(s, s′) is limited to be Euclidean in practice due to the Lipschitz
constraint |f(x)−f(x′)|

c(x,x′) ≤ 1. However, as illustrated in Fig. 1, for complex locomotion tasks, a
Euclidean distance in the raw state space often fails to capture the true relation between states due
to the high-dimensional and intricate nature of the state representation. This subtle reliance on
the Euclidean distance is overlooked by prior KR duality-based imitation learning methods such as
IQlearn (Garg et al., 2021) and WDAIL (Zhang et al., 2020b).

To address this issue, we aim to learn a latent state representation, where the Euclidean distance
within the latent space serves as a more effective metric. Intuitively, the latent space permits to
capture the environment’s dynamics and relationship between states from randomly collected, un-
labeled data, even without access to ground-truth actions and rewards. To achieve this goal with-
out relying on high quality offline data, we benefit from the Intention Conditioned Value Function
(ICVF) (Ghosh et al., 2023) framework, which has provided a compelling representation of the value
function. ICVF introduced the concepts of intention to replace the traditional actions, and can be
defined as the un-normalized likelihood of achieving an outcome state s+ in the future when the
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Figure 2: Visualization of the same trajectory in the original state space and the embedding (latent)
space. The color of the points represents the ground truth reward of the state. We observe that an
ICVF-trained embedding provides a much more dynamics-aware metric than the vanilla Euclidean
distance.

agent acts according to intention z starting from a state s. More specifically, the value function can
be formulated as:

V (s, s+, z) = Est+1∼Pz(·|st)

[∑
t

γtI(st = s+) | s0 = s

]
, (5)

where I(condition) is 1 if the condition is true, and 0 otherwise; Pz(st+1|s) is the transition proba-
bility from st to st+1 when acting according to intent z. This objective can be learned from a random
state-action dataset I with offline RL. In this paper, we use Implicit Q-Learning (IQL) (Kostrikov
et al., 2022) with the following critic objective where α ∈ (0.5, 1], Vtarget is the target function and
A is the “advantage” of the current value function (see Appendix A for details):

L(Vθ) = E(s,s′),z,s+

[
|α− I(A < 0)| · (Vθ(s, s+, z)− I(s = s+)− γVtarget(s

′, s+, z))
2
]
.

(6)

Note, the ICVF value function is designed to be structured as follows:

V (s, s+, z) = ϕ(s)TT (z)ψ(s+), (7)

where ϕ(s) ∈ Rd is the state representation that maps a state into a latent space, T (z) ∈ Rd×d is the
matrix of counterfactual intention, and ψ(s+) ∈ Rd is the outcome representation (see Appendix A
for details).

Prior work (Yan et al., 2024) has shown that selecting a good metric is crucial for the performance
of Wasserstein-based solutions. Importantly, Euclidean distance c(s, s′) = ∥ϕ(s) − ϕ(s′)∥2 in the
latent space can serve as a more suitable Wasserstein distance metric, capturing the structure of the
environment (Bobrin et al., 2024) more faithfully. To better show this, we provide a t-SNE (Van der
Maaten & Hinton, 2008) visualization of the same trajectory in both the raw state space and the
latent space in Fig. 2. The result shows that the latent space better captures the dynamic relationship
between states. This finding highlights that the Euclidean distance in this space is a more suitable
metric for Wasserstein distance-based state matching.

3.3 LWAIL

In this subsection, we introduce the pipeline of our proposed method, LWAIL, which consists of two
stages: pre-training and imitation. We will also provide pseudo-code to summarize our approach.
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Algorithm 1 LWAIL
Require: State-only expert dataset E, state-action random dataset I (optional), initial policy π,

discriminator f , replay buffer B, update frequency m
Pretrain:

1: Collect transitions into buffer B with random actions or use random dataset provided
2: Use ICVF to pre-train the representation network ϕ (Eq. (6))
3: Pre-train f with initial policy π (inner level of Eq. (9))
4: Imitation:
5: while t ≤ T do
6: Collect transitions (s, a, s′, done) using π
7: Calculate pseudo-reward rp = σ(−f(ϕ(s), ϕ(s′)− ϕ(s)))
8: Add (s, a, s′, rp, done) to replay buffer B
9: if t mod m == 0 then

10: Update f (inner level of Eq. (9))
11: end if
12: Sample mini-batch of N transitions from B to perform TD3 update
13: end while

Pre-training. The pre-training stage contains three steps. The first step is to collect random tran-
sition data using a randomly initialized policy within the environment. This step can be skipped
if a random dataset is available, e.g., in a setting following Yue et al. (2024). The second step in-
volves training of ICVF following Eq. (6) with IQL. We then retrieve the projection function ϕ from
Eq. (7). Finally, the third step is to train f(·, ·) using the following objective with frozen latent
variable mapping ϕ and frozen, untrained, random policy π:

max
∥f∥L≤1

E(s,s′)∼dπ
ss
[f(ϕ(s), ϕ(s′)− ϕ(s))]− E(s,s′)∼dE

ss
[f(ϕ(s), ϕ(s′)− ϕ(s))]. (8)

Here, f serves as the discriminator (from an adversarial learning perspective), the reward func-
tion for the policy in later imitation (from an RL perspective) and the KR dual function (from a
Wasserstein perspective). To encourage the Lipschitz constraint, f is trained with a gradient penalty,
following WGAN-GP (Gulrajani et al., 2017). Note, instead of directly operating on ϕ(s′), we use
ϕ(s′)−ϕ(s) as the second input to f (which also applies for offline initialization of f ), allowing the
discriminator to better learn the difference between expert and non-expert transitions.

Imitation. In the (online) imitation learning stage, we again freeze the ICVF-learned embedding
ϕ and replace s and s′ with their latent space representations, ϕ(s) and ϕ(s′). Then the imitation
learning problem in Eq. (4) can be addressed via

min
π

max
∥f∥L≤1

E(s,s′)∼dπ
ss
[f(ϕ(s), ϕ(s′)− ϕ(s))]− E(s,s′)∼dE

ss
[f(ϕ(s), ϕ(s′)− ϕ(s))]. (9)

Following the standard off-policy approach, the agent interacts with the environment to gather data
and iteratively updates the value function and policy. Once the policy has collected a batch of tra-
jectories, we update the discriminator network f based on Eq. (9). Following Sec. 3.1, using an ad-
versarial learning framework, we then use f to generate rewards for the downstream reinforcement
learning algorithm, for which we employ TD3 (Fujimoto et al., 2018), a robust, off-policy reinforce-
ment learning method selected due to its stability and effectiveness. Slightly different from Sec. 3.1
however, the reward for the TD3 policy π is defined as r(s, s′) = σ(−f(ϕ(s), ϕ(s′) − ϕ(s))). σ is
the sigmoid function that normalizes the reward to the range [0, 1], stabilizing the downstream RL al-
gorithm. −f(ϕ(s), ϕ(s′)−ϕ(s)) is a 1-sample estimation of Es′∼P (s′|s,a) [−f(ϕ(s), ϕ(s′)− ϕ(s))]
for transition (s, a, s′), following Kim et al. (2022a). f and π are then iteratively updated until the
policy π is properly trained. The entire procedure of our method is summarized in Alg. 1.

4 EXPERIMENTS

In this section, we assess efficacy of LWAIL across multiple benchmark tasks. Specifically, we want
to verify the following questions: 1) How is our assigned reward f(ϕ(s), ϕ(s′) − ϕ(s)) different
from the ground-truth reward? 2) Can our algorithm work well on complicated continuous control
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(a) Normal Space (b) Latent Space (c) Maze Performance

Figure 3: Results on the Maze2D environment. Panel a) and panel b) illustrate the reward distri-
bution in the Maze2D environment, without and with the ICVF embedding. Panel c) shows the
performance of our method and TD3 with ground truth sparse reward in this environment, using the
normalized score as the evaluation metric.

environments? 3) How much do the components of LWAIL contribute to its performance? We will
answer 1) in Sec. 4.1, 2) in Sec. 4.2, and 3) in Sec. 4.3 respectively.

4.1 SIMPLE ENVIRONMENT ON MAZE2D

We first evaluate LWAIL in the Maze2D environment, offering clear visualizations for better un-
derstanding of our method; specifically, how LWAIL effectively learns reward representations for
downstream tasks.

Experimental and Dataset Setup. We use the maze2d-open-v0 environment from D4RL (Fu et al.,
2020), a simple setting where a 2D point mass is guided from a random starting point to a specific
target at coordinates (2,3). The observation space is 4-dimensional, consisting of the x and y coor-
dinates of the point mass’s position and its x and y velocities. Actions correspond to linear forces
applied to the point mass in the x and y directions. The sparse reward is 1 if the ball is in the final
target position (the Euclidean distance between the ball and the goal is lower than 0.5 m). The ICVF
model is trained using the D4RL random dataset from maze2d-open-v0. Next, we apply the standard
Wasserstein learning method using both Euclidean distance and a latent space representation.

Results. After convergence, the resulting reward map is shown in Fig. 3 a) and b), where the input
state used to calculate rewards is the position with zero velocity. These results demonstrate that the
ICVF-learned metric provides a more distinctive reward signal that is trajectory-aware, and such
awareness of trajectory dynamics improves reward signal feedback quality during the exploration
process of online inverse RL. We further plot the reward curve in Fig. 3 c) to show that our method
converges to a good result on Maze2d, outperforming TD3 with ground-truth sparse reward.

4.2 MUJOCO ENVIRONMENT

Baselines. We test a variety of baselines in this section, which can be categorized into four types: 1)
classic imitation methods, including GAIL (Ho & Ermon, 2016), AIRL (Fu et al., 2018) and the plain
Behavior Cloning (BC); 2) Wasserstein-based imitation methods, including PWIL (Dadashi et al.,
2021), WDAIL (Zhang et al., 2020b) and IQlearn (Garg et al., 2021); 3) LfO methods, including
BCO (Torabi et al., 2018a), GAIfO (Torabi et al., 2018b), DACfO (LfO variant of (Kostrikov et al.,
2019) serves as a baseline in Zhu et al. (2020)) and OPOLO (Zhu et al., 2020); 4) offline to online
imitation learning, which includes OLLIE (Yue et al., 2024).2 Some methods such as GAIL and
WDAIL require expert action; for these methods, we report the results with extra access to the expert
actions. We report mean and standard deviation from 5 independent runs with different seeds. The
performance is measured by the normalized reward defined in the D4RL dataset (higher is better).

Experimental and Dataset Setup. We test our method on four standard MuJoCo (Todorov et al.,
2012) environments: hopper, walker2d, halfcheetah and ant. The expert data for our method and

2We are unable to run the github version of OLLIE due to non-trivial typos in their code. We directly report
the final numbers for random dataset from their paper instead.
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Figure 4: Performance comparison on the MuJoCo environments. Our method generally shows
compelling results among all environments and baselines. Gradient steps is equal to online samples
in our method.

Hopper HalfCheetah Walker Ant Average
OLLIE* 71.10 ± 3.5 35.50 ± 4.0 59.80 ±8.5 57.10 ± 7.0 55.87
BC* 1.51 ± 0.61 1.92 ± 0.80 2.06 ± 0.99 12.74 ± 2.34 4.56
GAIL* 7.78 ± 2.13 -0.33 ± 0.60 2.14 ± 1.03 -1.98 ± 4.41 1.90
AIRL* 1.16 ± 0.43 6.02 ± 3.59 0.83 ± 0.95 3.30 ± 11.39 2.83
WDAIL* 107.72 ± 4.70 38.30 ± 1.09 126.07 ± 19.36 87.59 ± 13.12 89.92
PWIL 78.93 ± 39.00 20.81 ± 33.21 84.01 ± 26.53 105.62 ± 2.36 72.34
IQlearn 86.24 ± 21.92 2.51 ± 1.05 7.07 ± 7.23 7.39 ± 0.13 25.80
BCO 21.31 ± 4.06 4.08 ± 1.72 0.88 ± 0.85 25.33 ± 0.87 12.90
DACfO 109.46 ± 0.39 61.52 ± 0.76 45.28 ± 37.26 113.40 ± 10.20 82.41
GAIfO 58.74 ± 9.07 29.79 ± 2.12 52.73 ± 4.16 12.99 ± 2.77 38.56
OPOLO 99.24 ± 5.49 58.98 ± 7.46 37.07 ± 12.67 129.46 ± 3.64 81.19
LWAIL (ours) 110.52 ± 1.06 86.71 ± 5.67 105.30 ± 2.33 80.56 ± 13.09 95.77

Table 1: Performance comparison on the MuJoCo environments. Here, “*” represents methods with
extra access to expert actions. Results are averaged over 50 trajectories. It is apparent that our
method outperforms most baselines, even those with access to expert actions. DACfO and OPOLO
are the most competitive expert state-only baselines.

baselines is one trajectory from the D4RL expert dataset. The random data used for ICVF pre-
training is from the D4RL random dataset. We use a single state-only trajectory as the expert data
for all the baselines. We use normalized average reward from 10 evaluation trajectories as our metric
and report its mean and standard deviation (higher reward means better results). We train our method
and baselines for 1M online samples. See Appendix B.3 for more hyperparameters.

Results. Fig. 4 shows the reward curve of each methods on MuJoCo environments, while Tab. 1
summarizes the final results. Both figure and table show that our method achieves compelling results
and convergence compared to the baselines across tasks. BCO, DACFO, OPOLO and PWIL perform
well on some environments, while other methods struggle.

4.3 ABLATION STUDY

Is our learned reward better than the ground truth reward? We compare our method with
ground truth guided TD3. Mean and standard deviation are obtained from 3 independent runs with
different seeds. The result is illustrated in Fig. 5. It empirically shows that LWAIL with our learned
reward can achieve comparable or better performance than a human designed ground truth reward.

Is ICVF-learned embedding helping the performance? We compare the performance between
our original method and our method without ICVF-learned embedding, that is, we get a pseudo
reward generated by f(s, s′ − s) without embedding ϕ. Mean and standard deviation are obtained
from 3 independent runs with different seeds. The result is in Fig. 6. We observe that agents without
ICVF-learned embedding tend to remain in stable but relatively low-reward states, exhibiting less
tendency to improve due to less positive feedback in exploration.
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Figure 5: Ablations on the pseudo reward learned by discriminator and ground truth reward. Our
learned reward (red) performs equal to or better than TD3 (blue) with ground truth reward.

Figure 6: Ablations on the ICVF-learned embedding part, where the red curve is LWAIL and the
orange curve is LWAIL without ICVF-learned ϕ for f(·, ·). In more complicated environments like
Walker2d and Ant. The result shows that with ICVF-learned metric, LWAIL performs better.

5 RELATED WORK

Imitation by occupancy matching / adversarial training. GAIL (Ho & Ermon, 2016) is one
of the first works to study adversarial imitation learning. A bi-level optimization of “RL over in-
verse RL” is considered, which corresponds to state-action occupancy matching between an expert
and the learner’s policy. Followup works (Fu et al., 2018; Kostrikov et al., 2019; Torabi et al.,
2018b; Zhu et al., 2020) have further explored the adversarial training paradigm, jointly training
1) a discriminator to distinguish policy occupancy from expert occupancy; and 2) the policy fitting
expert demonstrations. While some occupancy matching works like DIstribution Corrected Estima-
tion (DICE) (Ma et al., 2022; Kim et al., 2022a; Yan et al., 2024) are trained using a single-level
optimization instead of an adversarial setup, they essentially derive a closed-form solution for the
policy given the discriminator. Most works in this field, however, focuses on f -divergence (espe-
cially KL (Zhu et al., 2020) or χ2 (Ma et al., 2022)) minimization. In contrast, our work studies the
Wasserstein distance and overcomes initial limitations.

Wasserstein-based imitation learning. The Wasserstein distance (Kantorovich, 1939), is widely
adopted in IL/RL (Xiao et al., 2019; Agarwal et al., 2021; Fickinger et al., 2022). It provides a
geometry-aware measure between policy occupancies. Among different forms of the Wasserstein
distance, the primal form (Dadashi et al., 2021; Luo et al., 2023; Yan et al., 2024; Bobrin et al.,
2024) and the Rubinstein-Kantorovich dual (Kantorovich & Rubinstein, 1958; Zhang et al., 2020b;
Garg et al., 2021; Sun et al., 2021) are most prominent. The former allows for larger freedom in
its underlying metric, but requires a regularizer (Yan et al., 2024), surrogates (Dadashi et al., 2021),
or a direct match between trajectories (Luo et al., 2023; Bobrin et al., 2024). The latter is easier
to optimize with gradient descent, but the underlying metric is limited to Euclidean, which is often
suboptimal (Stanczuk et al., 2021; Yan et al., 2024). Our work chooses the latter but overcomes its
shortcomings.

Among all these works, IQ-learn (Garg et al., 2021) is most similar to ours. Our objective in Eq. (4)
is a special case of IQ-learn with Wasserstein distance. However, three key differences exist: 1)
IQ-learn uses SAC (Haarnoja et al., 2018) instead of TD3; 2) IQ-learn focuses on χ2-divergence
in the online setting, which was found to be less effective in several prior works (Ma et al., 2022;
Yan et al., 2024); 3) We point out and overcome the underlying metric limitation by adopting ICVF,
which is not considered in IQ-learn.
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Imitation from observation. Imitation (Learning) from Observation (LfO) aims to retrieve an ex-
pert policy without labeled actions. This is particularly interesting in robotics, where the expert
action can be either inapplicable during cross-embodiment imitation (Sermanet et al., 2017) or un-
available when imitating from videos (Pari et al., 2022). The three primary strategies of LfO can
be categorized as follows: 1) minimizing an occupancy divergence through DICE methods (Zhu
et al., 2020; Lee et al., 2021; Ma et al., 2022; Kim et al., 2022a;b; Yan et al., 2024) or iterative
inverse-RL updates (Torabi et al., 2018b; Xu & Denil, 2019; Zolna et al., 2020); 2) predicting miss-
ing actions through inverse dynamics modeling (Torabi et al., 2018a; Kumar et al., 2019); and 3)
similarity-based reward assignment (Sermanet et al., 2017; Chen et al., 2019; Wu et al., 2019). Our
work belongs to the second category, and adopts the Wasserstein distance as the measure between
occupancies, which improves results over prior works.

Offline-to-online IL. While offline IL (Zolna et al., 2020; Ma et al., 2022; Kim et al., 2022a) and
online IL (Ho & Ermon, 2016; Fu et al., 2018) are both well-studied areas, offline-to-online IL
is relatively under-explored, especially when compared with offline-to-online RL (Schmitt et al.,
2018; Kostrikov et al., 2022; Zhang et al., 2023) which combines the best of offline RL (high data
efficiency) and online RL (active data collection). While there are some works that use offline data
to aid online imitation (Watson et al., 2024) by building dynamic models (Chang et al., 2021; Yue
et al., 2023) or aligning discriminator and policy (Yue et al., 2024), they have two shortcomings
compare to our proposed method: 1) their solution requires medium-to-high quality offline data
and does not work well with random offline data, while our ICVF-learned metric works well with
random offline data; 2) they require state-action pairs for expert demonstrations, while our method
only requires expert states.

State embedding. Many works have explored the possibility of learning a good state space em-
bedding that better captures the dynamics of the environment and boosts RL performance (Zhang
et al., 2020a; Ghosh et al., 2023; Modi et al., 2024). These works can be roughly categorized into
two groups: 1) the ‘theoretical group’, which focuses on state equivalence (also known as “bisim-
ulation”) (Zhang et al., 2020a; Kemertas & Aumentado-Armstrong, 2021; Le Lan et al., 2021) and
the low-rank property of the MDP (Agarwal et al., 2020; Uehara et al., 2022; Modi et al., 2024); and
2) the ‘empirical group’ often tested on visual RL with high-dimensional input (Anand et al., 2019;
Laskin et al., 2020; Yarats et al., 2022)), which focuses on representation learning (Ha & Schmidhu-
ber, 2018; Hafner et al., 2023; Bruce et al., 2024), autoencoder methods (Senthilnath et al., 2024),
and contrastive learning (Sermanet et al., 2017; Anand et al., 2019; Laskin et al., 2020). The recently
proposed ICVF (Ghosh et al., 2023) studies an empirical, intention-based method for state embed-
ding computation. It was shown to be effective in downstream tasks (Ghosh et al., 2023; Bobrin
et al., 2024). Our work is the first to leverage ICVF state embeddings to successfully overcome the
metric limitation of the KR duality of the Wasserstein distance.

6 CONCLUSION

We propose a novel adversarial imitation learning approach for state-only distribution matching us-
ing the Wasserstein distance. Unlike prior methods that rely on Euclidean distance metrics, we op-
timize this distance metric by leveraging an embedding learned by the Intention Conditioned Value
Function (ICVF), which captures environmental dynamics. This allows us to better align the state
distributions between the expert and the agent, even when only sparse state-only demonstrations are
available. Through multiple experiments on the Maze2D and MuJoCo environments, we demon-
strate that the ICVF-learned distance metric outperforms several baselines, enabling more efficient
and accurate imitation from limited expert data with only one expert trajectory. We believe our
work provides a new direction for improving state-only imitation learning by using the Wasserstein
distance while addressing the limitations of traditional distance metrics.

Limitations. Similar to other prior adversarial imitation learning methods such as WDAIL (Zhang
et al., 2020b), our pipeline requires an iterative update of the actor-critic agent and the discriminator
during online training. The update frequency needs to be balanced during training. Also, testing our
method on more complicated environments, such as image-based ones, is interesting future research.
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7 REPRODUCIBILITY STATEMENT

We include the procedure of our algorithm in Alg. 1. For environments used in our experiments,
we list their details in Sec. 4.1 (for Maze2d) and Appendix B.1 (for MuJoCo); for datasets in our
experiment, we list their statistics in Appendix B.2; for the hyperparameters of our method, we
list them in Tab. 3 in Appendix B.3; for implementation of the baselines, their related repositories
and licenses, we summarize them in Appendix B.4. Finally, we state our computational resource
consumption in Appendix E. We will publish our code upon acceptance.
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APPENDIX: LATENT WASSERSTEIN ADVERSARIAL IMITATION LEARNING

Our appendix is organized as follows. In Sec. A, we discuss ICVF and provide a more detailed
explanation of Eq. (6). In Sec. B, we provide the details of the environment in our experiments
(Sec. B.1), the dataset used in our experiments (Sec. B.2), the hyperparameters we used for our
method (Sec. B.3), and the details for our baselines (Sec. B.4). In Sec. D, we summarize the notation
used in our paper. Finally, in Sec. E, we state the computational resource used for running our
experiments.

A EXTENDED PRELIMINARIES

Intention Conditioned Value Function (ICVF). Intuitively, V (s, s+, z) is designed to evaluate the
likelihood of the following question: How likely am I to see s+ if I act to perform z from state s?
The learning of ICVF is similar to other value-learning algorithms. ICVF satisfies the following
Bellman equation:

V (s, s+, z) = Ea∼π∗
z

[
I(s = s+) + γEs′∼Pz(·|st) [V (s′, s+, z)]

]
,

where π∗
z = argmax

a
rz(s) + γEs′ [V (s′, z, z)] .

(10)

Here, (s, s′) is a transition and Pz(st+1|s) is the transition probability from st to st+1 when acting
according to intent z. Further, rz defines the agent’s objective for a particular intention z. Note,
rz(s) is not the ground truth reward signal. Instead, it describes whether a state s is desirable by
intent z and thus depends on data; in other words, the agent aims to maximize the reward specified
by rz when pursuing intention z. The original reward is not needed in ICVF training.

The original paper adopts implicit Q-learning (IQL) for ICVF learning. In one update batch,
we sample transition (s, s′), potential future outcome s+, and intent z. Similar to the original
IQL (Kostrikov et al., 2022), we update the critic with asymmetric critic losses to avoid out-of-
distribution overestimation. To do this, we apply different weights on critic loss with respect to the
positivity of advantage. Note, as we care about whether the transition (s, s′) corresponds to acting
with intention z, our goal s+ is equal to z. Thus, the advantage A is defined as:

A = rz(s) + γVθ(s
′, z, z)− Vθ(s, z, z). (11)

Following that, the critic loss is defined as:

L(Vθ) = E(s,s′),z,s+

[
|α− I(A < 0)|(Vθ(s, s+, z)− I(s = s+)− γVtarget(s

′, s+, z))
2
]
. (12)

B EXPERIMENTAL DETAILS

B.1 ENVIRONMENTS

We use five MuJoCo (Todorov et al., 2012) and D4RL (Fu et al., 2020) environments: Maze2d,
hopper, halfcheetah, walker2d and ant. The environment specifications for maze2d are provided in
Sec. 4.1. In this section, we will briefly introduce the other MuJoCo environments. Fig. 7 provides
an illustration of those environments.

1. Hopper. The hopper environment (as well as the other three environments) is a locomotion
task. In hopper, the agent needs to control a single-legged robot leaping forward in a 2D
space with x- and z-axis. The 11-dimensional state space encompasses joint angles and
velocities of the robot, while the 3-dimensional action space corresponds to torques applied
on each joint.

2. Halfcheetah. In the Halfcheetah environment, the agent needs to control a cheetah-shaped
robot to sprint forward. It also operates in a 2D space with x- and z-axis, but has a 17-
dimensional state representing joint positions and velocities, and a 6-dimensional action
space that modulates joint torques.
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(a) Hopper (b) Halfcheetah (c) Walker2d (d) Ant

Figure 7: Illustration of the MuJoCo (Todorov et al., 2012) environments we test in Sec. 4.2.

3. Walker2d. As implied by its name, in Walker2d, the agent needs to control a 8-DoF
bipedal robot to walk in the two dimensional space. It has a 27-dimensional state space and
an 8-dimensional action space.

4. Ant. Different from the other three environments, the Ant environment is a 3D setting
where the agent navigates a four-legged robotic ant moving towards a particular direc-
tion. The state is represented by 111 dimensions, including joint coordinates and velocities,
while the action space has 8 dimensions.

B.2 DATASETS

For expert datasets of the MuJoCo environments, we use 1 trajectory from the D4RL expert dataset,
which has 1000 steps. Some baselines such as PWIL (Dadashi et al., 2021) employ a subsampling
hyperparameter, which creates a low-data training task by taking only one state/state-action pair
from every 20 steps of the expert demonstration. For fairness, we set all baselines’ subsampling
factors to be 1, i.e., no subsampling.

Dataset Size Normalized Reward (Expert is 100)
Hopper-random-v2 999996 1.19± 1.16

HalfCheetah-random-v2 1000000 0.07± 2.90
Walker2d-random-v2 999997 0.01± 0.09

Ant-random-v2 999930 6.36± 10.07

Table 2: The basic statistics of the random datasets from D4RL (Fu et al., 2020) applied in our
experiments. It is apparent that all these data are of very low quality compared to an expert, yet our
ICVF-learned metric still works well.

B.3 HYPERPARAMETERS

Tab. 3 summarized the hyperparameters for our method. We use the same settings for all environ-
ments, and keep hyperparameters identical to TD3 (Fujimoto et al., 2018) and ICVF (Ghosh et al.,
2023) whenever possible.

B.4 BASELINES

We use several different github repositories for our baselines. We use default settings of those repos,
except for the number of expert trajectories (which is set to 1) and the subsampling factor (see
Appendix B.2). Below are the repos we used in our experiments for each baseline:

• BC (Ross et al., 2011), GAIL (Ho & Ermon, 2016), AIRL (Fu et al., 2018): We use the
imitation (Gleave et al., 2022) library, which provides clean implementations of several
imitation learning algorithms and has a MIT license.

• OPOLO (Zhu et al., 2020), DACfO (Kostrikov et al., 2019), BCO (Torabi et al., 2018a),
GAIfO (Torabi et al., 2018b): We use OPOLO’s official code (https://github.com/
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Type Hyperparameter Value Note
ICVF. Network Size of ϕ [256, 256] same as original paper
Disc. Network Size [64, 64]

Activation Function ReLU
Learning Rate 0.001
Update Epoch 40 steps
Update interval 4000

Batch Size 4000
Optimizer Adam

Gradient Penalty coefficient 10
Actor Network Size [256, 256]

Activation Function ReLU
Learning Rate 0.0003
Training length 1M steps

Batch Size 256
Optimizer Adam

Critic Network Size [256, 256]
Activation Function ReLU

Learning Rate 0.001
Training Length 1M steps

Batch Size 256
Optimizer Adam

γ 0.99 discount factor

Table 3: Summary of the hyperparameters of LWAIL.

Hopper HalfCheetah Walker Ant Average
1 trajectory 110.52 ± 1.06 86.71 ± 5.67 105.30 ± 2.33 80.56 ± 13.09 95.77
5 trajectories 107.65 ± 7.47 93.28 ± 1.97 107.32 ± 1.36 87.23 ± 10.43 98.87
All expert dataset 109.34 ± 3.87 94.18 ± 3.12 104.37 ± 1.97 90.81 ± 9.61 99.67

Table 4: Ablation on using multiple trajectories as expert demonstrations. Our method shows con-
sistent expert-level performance regardless of the number of expert demonstrations.

illidanlab/opolo-code), where DACfO, BCO and GAIfO are integrated as base-
lines, which does not have a license.

• OLLIE (Yue et al., 2024): We tried to use the official code but it can’t be executed due to
non-trivial typos. Thus we use their reported numbers on random dataset instead.

• PWIL: We use another widely adopted imitation learning repository (Arulku-
maran & Ogawa Lillrank, 2023) (https://github.com/Kaixhin/
imitation-learning), which has an MIT license.

• WDAIL: We use their official code (https://github.com/mingzhangPHD/
Adversarial-Imitation-Learning/tree/master), which does not have a li-
cense.

• IQlearn: We use their official code (https://github.com/Div99/IQ-Learn/
tree/main) with a research-only license.

C MORE ABLATIONS

In this section, we provide additional ablation results of our method. We report normalized reward
(higher is better) for all results.

C.1 MULTIPLE TRAJECTORIES

To demonstrate robustness of our method even if the expert data is scarce, we test our method with
5 expert trajectories and the whole expert dataset (1M transitions). Tab. 4 summarizes the results.
We observe consistent compelling performance regardless of the number of expert trajectories.

C.2 EMBEDDINGS

In this section, we compare our method with ICVF embeddings to use of other embeddings. It
is worth noting that while there are embedding methods for RL/IL, most of them are not applica-
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Hopper HalfCheetah Walker Ant Average
LWAIL 110.52 ± 1.06 86.71 ± 5.67 105.30 ± 2.33 80.56 ± 13.09 95.77
PW-DICE 110.60 ± 0.77 46.07 ± 27.95 106.63 ± 1.03 85.36 ± 8.12 87.16
CURL 105.70 ± 1.22 87.62 ± 5.10 102.97 ± 4.19 52.03 ± 8.33 87.08
No Embedding 108.34 ± 3.42 85.98 ± 3.42 62.39 ± 20.43 40.72 ± 18.95 74.36

Table 5: Ablation of different embedding methods with LWAIL. The result shows that ICVF em-
beddings outperform other contrastive learning-based embeddings.

Hopper HalfCheetah Walker Ant Average
LWAIL 110.52 ± 1.06 86.71 ± 5.67 105.30 ± 2.33 80.56 ± 13.09 95.77
LWAIL subsample 109.00 ± 0.46 86.73 ± 7.02 106.13 ± 2.47 83.21 ± 8.80 96.27
WDAIL subsample 108.21 ± 4.90 35.41 ± 2.07 114.32 ± 2.07 83.87 ± 10.92 85.45
IQlearn subsample 60.26 ± 14.21 4.12 ± 1.03 8.31 ± 1.48 5.32 ± 3.87 19.50

Table 6: Ablation on subsampled expert trajectories. The result shows that LWAIL is robust to
subsampled expert demonstrations and outperforms other baselines with subsampled expert demon-
strations.

ble to our scenario. For instance, most empirical state embedding methods are for visual environ-
ments (Meng et al., 2023; Sermanet et al., 2018) or for cross-domain dynamics matching (Duan
et al., 2017; Franzmeyer et al., 2022). Among theoretical state embedding methods, low-rank
MDPs (Modi et al., 2024) are not applicable to the MuJoCo environment, and bisimulation (Zhang
et al., 2020a) requires a reward signal which is not available in imitation learning.

Nonetheless, we identify two contrastive learning-based baselines that are most suitable for our
scenario: CURL (Laskin et al., 2020) and PW-DICE (Yan et al., 2024). Both methods use In-
foNCE (Oord et al., 2018) as their contrastive loss for better state embeddings. Their difference: 1)
CURL updates embeddings with an auxiliary loss during online training, while PW-DICE updates
embeddings before all other training; 2) CURL compares the current state with different noises
added as positive contrast examples, while PW-DICE uses the next states as positive contrast sam-
ples. Tab. 5 summarizes the results. The result shows that 1) state embeddings generally aid learning;
and 2) our proposed method works best.

C.3 SUBSAMPLE

To validate the robustness of our policy, we provide results with subsampled expert trajectories, a
widely-adopted scenario in many prior works such as PWIL and IQ-learn. Only a small portion of
the complete expert trajectories are present. Our subsample ratio is 10, i.e., we take 1 expert state
pair out of adjacent 10 pairs. Tab. 6 summarizes the results, which show that 1) our method with
subsampled trajectories outperforms Wasserstein-based baselines such as WDAIL (Zhang et al.,
2020b) and IQlearn (Garg et al., 2021), and 2) the performance of our method is not affected by
incomplete expert trajectories.

C.4 DOWNSTREAM RL ALGORITHM

We used TD3 as our downstream RL algorithm rather than PPO with entropy regularizer. Our choice
is motivated by better efficiency and stability, especially because TD3 is an off-policy algorithm
which is more robust to the shift of the reward function and our adversarial training pipeline. We
ablate this choice of the downstream RL algorithm and show that TD3 outperforms PPO in our
framework. Tab. 7 summarizes the results.

C.5 ICVF EMBEDDING WITH OTHER METHODS

We also show that our proposed solution outperforms existing methods with ICVF embedding, both
Wasserstein-based (IQlearn, WDAIL) and f -divergence based. The results are summarized in Tab. 8
(using average reward; higher is better). We find that 1) our method outperforms prior methods with
ICVF embedding, and 2) ICVF does not necessarily improve the performance of prior methods,
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Hopper HalfCheetah Walker Ant Average
LWAIL+TD3 (original) 110.52 ± 1.06 86.71 ± 5.67 105.30 ± 2.33 80.56 ± 13.09 95.77
LWAIL+PPO 65.21 ± 4.81 1.02 ± 0.21 24.13 ± 2.14 9.12 ± 0.85 24.87

Table 7: Ablation on downstream RL algorithms. The result shows that TD3 works much better
than PPO.

Hopper HalfCheetah Walker Ant Average
LWAIL 110.52 ± 1.06 86.71 ± 5.67 105.30 ± 2.33 80.56 ± 13.09 95.77
WDAIL+ICVF 110.02 ± 0.53 30.07 ± 2.32 68.68 ± 9.16 3.42 ± 1.01 53.04
IQlearn+ICVF 29.80 ± 10.12 3.82 ± 0.98 6.54 ± 1.23 8.91 ± 0.45 12.27
GAIL+ICVF 8.96 ± 2.09 0.12 ± 0.40 3.98 ± 1.41 -3.09 ± 0.85 2.49

Table 8: ICVF with other methods. Our method far outperforms other methods with ICVF embed-
dings.

due to other components of our method (e.g., normalized input for the Wasserstein discriminator,
downstream RL algorithm).

C.6 MISMATCHED DYNAMICS

It is worth noting that the very motivation of LWAIL is to find a latent space which aligns well
with the environment’s true dynamics. Despite this, we agree that there might be cases where the
latent space employed in LWAIL does not align with the true dynamics due to inaccurate data,
e.g., mismatched dynamics between expert demonstrations and the actual environment. To test such
cases, we use the halfcheetah mismatched experts scenario analyzed in SMODICE (Ma et al., 2022):
for expert demonstration, the torso of the cheetah agent is halved in length, thus causing inaccurate
alignment. We compared our methods with the results reported in the SMODICE paper. Tab. 9
summarizes the final average normalized reward (higher is better). Results show that 1) our method
works better than several baselines including SMODICE; and 2) our method is robust to mismatched
dynamics.

C.7 SIGMOID REWARD MAPPING

We adopt the sigmoid function to regulate the output of our neural networks for better stability
(similar to WDAIL (Zhang et al., 2020b)). However, one cannot naively apply the sigmoid to the
reward function for better performance. To show this, we compare to TD3 with a sigmoid function
applied to the ground truth reward. The result is illustrated in Tab. 10. The result shows that a naive
sigmoid mapping of the reward does not improve TD3 results.

C.8 PSEUDO-REWARD METRIC CURVE

To validate the effect of using sigmoid and ICVF embedding for our pseudo-reward generated by f ,
we conduct two experiments:

1) Run a standard setting of LWAIL, and compare pseudo-rewards generated by f with the sigmoid
function, and pseudo-rewards without the sigmoid function for the MuJoCo environments. This is
illustrated in Fig. 8.

2) Run standard LWAIL and LWAIL without ICVF embedding, and compare pseudo-rewards (with
the sigmoid function) for the MuJoCo environments. This is illustrated in Fig. 9.

The result clearly shows that both ICVF-embedding and sigmoid function are very important for
pseudo-reward stability and positive correlation with ground-truth reward.

D LIST OF NOTATIONS

Tab. 11 summarizes the symbols which appear in our paper.
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Normalized Reward
LWAIL 24.31 ± 4.51

SMODICE 23.2 ± 7.43
SAIL 0 ± 0
ORIL 2.47 ± 0.32

Table 9: Performance on the Halfcheetah environment with mismatched dynamics. Our method
outperforms baselines.

Environment Hopper HalfCheetah Walker Ant Maze2D Average
TD3 105.54 76.13 89.68 89.21 120.14 96.14

TD3+Sigmoid reward 84.23 30.76 42.55 34.79 119.03 62.27

Table 10: Results of TD3 with and without sigmoid applied on the ground truth reward. The results
show that applying the sigmoid function does not yield better performance.

E COMPUTATIONAL RESOURCES

All our experiments are performed with an Ubuntu 20.04 server, which has 128 AMD EPYC 7543
32-Core Processor and a single NVIDIA RTX A6000 GPU. With these resources, our method needs
about 65− 75 minutes for the MuJoCo environments.
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Figure 8: The reward curves of pseudo- and ground-truth reward in a single training session, where
pseudo-reward is generated by f following Alg. 1 and serves as the reward signal for our downstream
TD3. We note that the pseudo-reward is much more stable and positively correlated with ground-
truth reward when using a sigmoid function.
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Figure 9: The pseudo-reward curves with and without ICVF embedding in a single training session.
We note that without ICVF, the pseudo-reward is generally less stable (e.g. fluctuation in halfcheetah
and sudden drop in walker2d and ant) and sometimes less correlated with ground-truth reward (e.g.
ant environment).

Name Meaning Note
S State space
s State s ∈ S
A Action space
a Action a ∈ A
t Time step t ∈ {0, 1, 2, . . . }
γ Discount factor γ ∈ [0, 1)
r Reward function r(s, a) for single state-action pair
P Transition P (s′|s, a) ∈ ∆(S)
E Expert dataset state-only expert demonstrations
I Random dataset state-action trajectories of very low quality
π Learner policy The policy we aim to optimize
dπs State occupancy of π dπs (s) = (1− γ)

∑∞
i=0 γ

iPr(si = s), where si is the i-th state
in a trajectory

dπss State-pair occupancy of π dπs (s, s
′) = (1 − γ)

∑∞
i=0 γ

iPr(si = s, si+1 = s′), where si
is the i-th state in a trajectory

dEss State-pair occupancy of expert policy The expert policy here is empirically induced from E
c Underlying metric for Wasserstein distance
f Dual function / Discriminator Dual function in Rubinstein dual form of 1-Wasserstein dis-

tance; also a discriminator from adversarial perspective and a
reward model from IRL perspective

Π Wasserstein matching variable In our case,
∑

s∈S Π(s, s′) = dEs (s
′),

∑
s′∈S Π(s, s′) =

dπs (s)
W1 1-Wasserstein distance
s+ Outcome state
z Latent intention
V Value function takes s, s+, z as input in ICVF; only takes s in normal RL
Vtarget Target value target value function in the critic objective of RL
I indicator function I[condition] = 1 if the condition is true, and = 0 otherwise
ϕ State representation (embedding) the embedding function we use for f ; ϕ(s) ∈ Rd

T Counterfactual intention T (z) ∈ Rd×d

ψ Outcome representation ψ(s+) ∈ Rd

α ICVF constant α ∈ (0.5, 1]
σ Sigmoid function

Table 11: A list of symbols used in the paper. The first part focuses on RL-specific symbols. The
second part details Wasserstein-specific notation. The third part summarizes ICVF-specific symbols
(Sec. 3.2).
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