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Abstract
Adaptive moment estimation (Adam) is a corner-
stone optimization algorithm in deep learning,
widely recognized for its flexibility with adaptive
learning rates and efficiency in handling large-
scale data. However, despite its practical success,
the theoretical understanding of Adam’s conver-
gence has been constrained by stringent assump-
tions, such as almost surely bounded stochastic
gradients or uniformly bounded gradients, which
are more restrictive than those typically required
for analyzing stochastic gradient descent (SGD).

In this paper, we introduce a novel and compre-
hensive framework for analyzing the convergence
properties of Adam. This framework offers a
versatile approach to establishing Adam’s conver-
gence. Specifically, we prove that Adam achieves
asymptotic (last iterate sense) convergence in
both the almost sure sense and the L1 sense un-
der the relaxed assumptions typically used for
SGD, namelyL-smoothness and the ABC inequal-
ity. Meanwhile, under the same assumptions, we
show that Adam attains non-asymptotic sample
complexity bounds similar to those of SGD.

1. Introduction
Adaptive Moment Estimation (Adam) is one of the most
widely used optimization algorithms in deep learning due
to its adaptive learning rate properties and efficiency in han-
dling large-scale data (Kingma & Ba, 2014). Despite its
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widespread use, the theoretical understanding of Adam’s
convergence is not as advanced as its practical success. Pre-
vious studies have often imposed stringent assumptions on
the loss function and stochastic gradients, such as uniformly
bounded loss functions and almost surely bounded gradi-
ents (Reddi et al., 2018; Zou & Shen, 2019), which are
more restrictive than those required for analyzing classical
stochastic gradient descent (SGD).

In this paper, we introduce a novel and comprehensive
framework for analyzing the convergence properties of
Adam. Our framework unifies various aspects of conver-
gence analysis, including non-asymptotic (average iterate
sense) sample complexity, asymptotic (last iterate sense)
almost sure convergence, and asymptotic L1 convergence.
Crucially, we demonstrate that under this framework, Adam
can achieve convergence under the same assumptions typi-
cally used for SGD—namely, the L-smooth condition and
the ABC inequality (L2 sense) (Khaled & Richtárik, 2023;
Bottou, 2010; Ghadimi & Lan, 2013).

Several recent works have attempted to relax the stringent
conditions required for Adam’s convergence, each focusing
on different aspects of the stochastic gradient assumptions
and convergence guarantees. However, limitations still exist
in terms of assumptions and the types of convergence results
obtained. Table 1 provides the references and a summary
of the works and compares the assumptions on stochastic
gradients, the resulting complexities, and the convergence
properties achieved.

Our approach builds upon these prior works and seeks to
offer a more comprehensive and general framework for
analysis. In contrast to these previous works, we study
Adam under the ABC inequality, which is more general
and less restrictive compared to the assumptions made in
the previous studies. Our analysis successfully establishes
non-asymptotic sample complexity and achieves asymptotic
almost sure convergence and L1 convergence under condi-
tions that align with those required for SGD. This makes our
framework theoretically sound and versatile for analyzing
multiple convergence properties of Adam. Our framework
might also be of independent interest in analyzing different
variants of Adam. In summary, our work presents a novel
and general theoretical framework for Adam, unifying vari-
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ous convergence properties. This framework demonstrates
that Adam’s convergence guarantees can be aligned with
those of SGD, which justifies the applicability of Adam
across a wide range of machine learning problems.

1.1. Related Works

In recent years, the convergence properties of Adam have
been extensively studied, with various works focusing on
different assumptions about stochastic gradients and the
types of convergence guarantees provided. In the follow-
ing discussion, we categorize and review key contributions
based on the different types of stochastic gradient assump-
tions they employ, as summarized in Table 1.

Bounded Variance and Coordinate Affine Noise Vari-
ance: Wang et al. (2024a) considered Adam’s conver-
gence under the assumption of bounded variance or co-
ordinate affine noise variance. The coordinate affine noise
variance condition (Eq. (10)) is particularly stringent as it
requires that each component of the stochastic gradient sat-
isfies an affine noise variance inequality, which is stronger
than the traditional affine noise variance condition (Eq. (9))
applied to the entire gradient. Under these assumptions,
Wang et al. successfully achieved a complexity free of
O(1/µ). However, their work did not focus on analyzing
almost sure convergence or L1 convergence, as the primary
emphasis was on the sample complexity of the algorithm’s
behavior.

Exponential-Tailed Affine Variance Noise Condition
Hong & Lin (2024) explored the assumption of affine vari-
ance noise with an exponential tail distribution (Eq. (11)),
which closely approximates the almost-sure form of affine
variance noise. The exponential-tailed affine variance noise
condition is stronger than the traditional affine variance
noise assumption, which is based on the second moment
of the stochastic gradient. Under these assumptions, they
successfully derived a complexity that eliminates O(1/µ).
However, their work did not focus on analyzing almost sure
convergence or L1 convergence, as their primary emphasis
was on the sample complexity of the algorithm’s perfor-
mance.

Almost Surely Bounded Stochastic Gradients: Several
works, including He et al. (2023) and Xiao et al. (2024), have
explored Adam’s convergence under the assumption that the
stochastic gradients are almost surely bounded. This is a
particularly strong assumption, as it implies several other
commonly made assumptions about stochastic gradients,
such as bounded variance, affine noise variance, coordinate
affine noise variance, and sub-Gaussian properties. The as-
sumption is often impractical in non-convex settings where
gradients can become unbounded. Moreover, studies in

Wang et al. (2023) have highlighted that this assumption is
unrealistic in many common machine learning frameworks,
failing to hold even for simple quadratic functions, let alone
for deep neural networks. While these works achieved al-
most sure convergence and, in some cases, L1 convergence,
the complexity result they obtained includes O(1/µ).

L2 Bounded Stochastic Gradients: Zou et al. (2019) ana-
lyzed Adam under the assumption of L2 bounded stochastic
gradients. Although this condition is milder than the almost
surely bounded gradients assumption, it is still stronger than
the traditional affine noise variance condition and the ABC
inequality. In the standard analytical framework, this as-
sumption can at best be weakened to the coordinate affine
noise variance condition, which remains more restrictive
than the assumptions typically considered for SGD. At the
same time, this work focused on complexity analysis with-
out addressing asymptotic convergence.

Randomly Reshuffled Stochastic Gradients: In other
works, such as those by Zhang et al. (2022) and Wang et al.
(2024b), the authors considered the case where the stochas-
tic gradients are randomly reshuffled. Randomly reshuffled
stochastic gradients represent a special case where the gra-
dients are typically assumed to satisfy certain inequalities
almost surely. This reliance on almost sure properties forms
a much stronger and more restrictive analytical framework
compared to those based on traditional affine noise variance
conditions or the ABC inequality. Meanwhile, they did not
focus on analyzing the asymptotic convergence property.

2. Preliminaries
In this section, we introduce the necessary preliminaries
and establish the foundational framework for our conver-
gence analysis of Adam. We begin by recalling the Adam
optimization algorithm. We then state the assumptions that
will be used throughout our analysis. These assumptions
are standard in stochastic optimization and are crucial for
deriving our main results. By laying out these assumptions
explicitly, we also facilitate a clear comparison with the
conditions used in previous works, highlighting the less
restrictive nature of our approach.

2.1. Adam

Adam is an extension of SGD that computes adaptive learn-
ing rates for each parameter by utilizing estimates of the
first and second moments of the gradients.

It combines the advantages of two other extensions of SGD:
AdaGrad, which works well with sparse gradients, and RM-
SProp, which works well in online and non-stationary set-
tings.
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Table 1. Comparison of Assumptions and Convergence Results. (♢) The smoothing term µ is often set to small values like 10−8 in
practice. It is difficult and relevant to avoid the O(poly( 1

µ
)) dependence (Wang et al., 2024a), which our analysis achieves. (♠) The work

focuses on learning rates and hyperparameters dependent on the total number of epochs T , leading to results without a O(lnT ) term. As
our asymptotic analysis uses T -independent parameters, terms regarding O(lnT ) inevitably appear, though our method can be easily
extended to T -dependent settings. (♢♢) These works have weakened the classical L-smooth condition, which is different from the focus
of this paper.

Reference Assumptions on Stochastic Gradient Sample Complexity A.S. Convergence L1 Convergence
(Wang et al., 2024a)♠ Bounded Variance (or Coordinate Affine Noise Variance) O

(
1√
T

)
No No

(Hong & Lin, 2024) Exponential-tailed Affine Variance Noise O
(

lnT√
T

)
No No

(He et al., 2023)♢ Almost Surely Bounded Stochastic Gradient O
(

poly
(

1
µ

)
· lnT√

T

)
Yes Yes

(Zou et al., 2019) L2 Bounded Stochastic Gradient O
(

lnT√
T

)
No No

(Zhang et al., 2022) Randomly Reshuffled Stochastic Gradient O
(

lnT√
T

)
No No

(Li et al., 2024)♢ ♢♢ Almost Surely Bounded Stochastic Gradient
or Sub-Gaussian Variance O

(
poly

(
1
µ

)
· lnT√

T

)
No No

(Wang et al., 2024b)♢♢ Randomly Reshuffled Stochastic Gradient O
(

lnT√
T

)
No No

(Xiao et al., 2024)♢♢ Almost Surely Bounded Stochastic Gradient No Result Yes No

Our Work ABC Inequality O
(

lnT√
T

)
Yes Yes

Algorithm 1 Adam
Input: Stochastic oracle O, initial learning rate η1 ≥ 0,
initial iterate w1 ∈ Rd, initial exponential moving averages
m0 = 0, v0 = v · 1⊤ with v > 0, hyperparameters β1 ∈
[0, 1), β2,1 ∈ (0, 1], smoothing term µ > 0, number of
epochs T
Output: Final iterate wT

t = 1 to T Generate learning rate ηt; Generate condi-
tioner parameter β2,t; Sample a random data point zt
and compute the stochastic gradient gt = Of (wt, zt);
Update the estimate: vt = β2,tvt−1+(1−β2,t)g◦2t ; Up-
date the estimate: mt = β1mt−1+(1−β1)gt; Compute
the adaptive learning rate: ηvt = ηt · 1√

vt+µ ; Update
the iterate: wt+1 = wt − ηvt ◦mt;

In Adam, the random variables {zt}t≥1 are mutually inde-
pendent. The stochastic gradient at epoch t is denoted by gt.
The quantities mt and vt represent the exponential moving
averages of the first and second moments of the gradients,
respectively. The hyperparameters β1 and β2,t control the
exponential decay rates for the moment estimates. A small
smoothing term µ is introduced to prevent division by zero,
and ηvt represents the adaptive learning rate for each param-
eter.

Notations: The Hadamard product (element-wise multi-
plication) is represented by β ◦ γ, and the element-wise
square root of a vector γ ∈ Rd is written as

√
γ. Operations

such as β + v0, 1
β , and β◦2 are performed element-wise.

Additionally, for a vector with subscripts, such as βt, we
use βt,i to denote its i-th coordinate. However, for a scalar
with subscripts, such as Φt, the double subscript Φt,i carries
a specific meaning, which will be explicitly defined when it

appears.

When analyzing Adam, ∇f(wt) refers to the true gradient of
the loss function at epoch t. We define Ft = σ(g1, . . . , gt)
as the σ-algebra generated by the stochastic gradients up
to epoch t, with F0 = {Ω, ∅} and F∞ = σ

(⋃
t≥1 Ft

)
.

Throughout this paper, unless explicitly stated otherwise,
the norm ∥ · ∥ denotes the Euclidean norm.

2.2. Assumptions

To establish our convergence results, we make the following
standard assumptions. The assumption regarding smooth-
ness is the classical L-smooth assumption. The assumption
about stochastic gradient are less restrictive than those im-
posed in some prior works, as highlighted in Table 1.

Assumption 2.1. (Bounded from Below Loss Function)
Let f : Rd → R be a loss function defined on Rd. We
assume that there exists a constant f∗ ∈ R such that for all
w ∈ Rd, the following inequality holds: f(w) ≥ f∗.

This assumption ensures that the loss function f is bounded
from below, preventing it from decreasing indefinitely dur-
ing the optimization process.

Assumption 2.2. (L-Smoothness) Let f : Rd → R be a
differentiable loss function. We assume that the gradient ∇f
is Lipschitz continuous. That is, there exists a constantLf ≥
0 such that for all w,w′ ∈ Rd, the following inequality
holds: ∥∇f(w)−∇f(w′)∥ ≤ Lf∥w − w′∥. The constant
Lf is known as the Lipschitz constant of the gradient.

Assumption 2.3. (ABC Inequality) We assume that the
stochastic gradient gt is an unbiased estimate of the true
gradient, i.e., E[gt | Ft−1] = ∇f(wt), and there exist
constants A,B,C ≥ 0 such that for all epochs t, we have:

3
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E[∥gt∥2 | Ft−1] ≤ A(f(wt)− f∗) +B∥∇f(wt)∥2 + C.

The ABC inequality provides a bound on the second mo-
ment of the stochastic gradients, which is crucial for an-
alyzing the convergence of stochastic optimization algo-
rithms. Notice identity E

[
∥gt −∇f(wt)∥2 | Ft−1

]
=

E
[
∥gt∥2 | Ft−1

]
− ∥∇f(wt)∥2. We can conclude that

the above ABC inequality has the following equivalent
form based on the variance of the stochastic gradients, i.e.,
there exist constants A ≥ 0, B ≥ 0, and C ≥ 0 such
that: E

[
∥gt −∇f(wt)∥2 | Ft−1

]
≤ A(f(wt) − f∗) +

B∥∇f(wt)∥2 + C.

2.3. Comparison with Prior Works on Stochastic
Gradient Assumptions

Due to space limitations in the main text, these compar-
isons have been moved to Appendix A.

Next, we introduce a property. We know that when the loss
function is L-smooth, the true gradient of the loss function
can be controlled by the loss function value f(wt)− f∗ (as
shown in Lemma C.2). Therefore, we can simplify the ABC
inequality as follows.

Property 1. Under Assumptions 2.2 and 2.3, for all epochs
t, we have: E[∥gt∥2 | Ft−1] ≤ (A+2LfB)(f(wt)−f∗)+
C.

This property demonstrates that the variance of the stochas-
tic gradients can be bounded by the function value differ-
ence, which is a key component in our convergence analysis.

2.4. Hyperparameter Settings

In this paper, to keep the proofs concise, we focus on a spe-
cific set of representative parameter configurations, defined
as follows:

β2,t :=

{
1− α0, if t = 1,

1− 1
tγ , if t ≥ 2,

β1 ∈ [0, 1), ηt =
1

t
1
2+δ

,

where α0 ∈ [0, 1), γ ∈ [1, 2δ + 1], and δ ∈
[
0, 12

)
.

It is essential to impose certain constraints on Adam’s pa-
rameters, particularly on β2,t, to ensure the algorithm con-
verges. Early studies (Reddi et al., 2018) have shown that
without proper restrictions on β2,t, counterexamples exist
where the algorithm fails to converge. Furthermore, for the
gradient norm to converge to zero, it is necessary that β2,t
approaches 1, as noted in earlier works (Zou et al., 2019;
He et al., 2023).

Some studies on complexity allow β2,t to be constant. How-
ever, these studies typically focus on the algorithm’s com-
plexity over a finite number of epochs T . In such cases, the
constant value of 1−β2,t is inversely related to T , effectively
causing β2,t to approach 1 as T increases. This is another

means of ensuring that β2,t asymptotically approaches 1,
which is crucial for convergence.

The hyperparameter settings adopted in this paper are rep-
resentative and have been considered in previous studies
(Zou et al., 2019; He et al., 2023). Our configuration in-
cludes settings that can achieve near-optimal complexity of
O(lnT/

√
T ). The logarithmic factor lnT arises because

β2,t is chosen independent of the total number of epochs
T , which is an unavoidable consequence with this class of
parameters.

Our choice of hyperparameters simplifies the analysis while
capturing the essential behavior of the Adam. Although
the proof techniques can be extended to a broader range
of parameter settings, this paper focuses primarily on the
assumptions related to the convergence of the algorithm
rather than an exhaustive exploration of hyperparameter
configurations.

3. Theoretical Results
In this section, we establish both non-asymptotic and asymp-
totic convergence guarantees for Adam within our smooth
non-convex framework, as defined by Assumptions 2.1–2.3.
For the non-asymptotic analysis, we derive a sample com-
plexity bound that is independent of O(1/µ), providing an
explicit bound on the number of epochs required to achieve
a specified accuracy. In the asymptotic analysis, we consider
two forms of convergence: almost sure convergence and
convergence in the L1 norm. The almost sure convergence
result demonstrates that, the gradient norm of almost every
trajectory converges to zero. Meanwhile, the L1 conver-
gence result reveals that the convergence across different
trajectories is uniform with respect to the L1 norm of the
gradient, where the L1 norm is taken in the sense of the
underlying random variable, meaning the expectation of the
gradient norm.

3.1. Non-Asymptotic Sample Complexity

Theorem 3.1 (Non-Asymptotic Sample Complexity). Con-
sider the Adam algorithm as specified in Algorithm 2.1, and
assume that Assumptions 2.1–2.3 are satisfied. Then, for any
initial point, any T ≥ 1, and any s ∈ (0, 1), the following
bound holds with probability at least 1− s:

1

T

T∑
t=1

∥∇f(wt)∥2 ≤


O
(

1
s2

1

T
1
2
−δ

)
, if δ ∈ (0, 1/2)

O
(

1
s2

lnT√
T

)
, if γ > 1, δ = 0

O
(

1
s2

ln2 T√
T

)
, if γ = 1, δ = 0.

The constant implied by the O notation depends on the ini-
tial point, the constants in Assumptions 2.1–2.3 (excluding
1/µ), and the parameters δ and α0.
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This theorem provides a non-asymptotic rate of convergence
for the square of the gradient norm, highlighting how the
choice of hyperparameters affects the convergence rate.

3.2. Asymptotic Convergence

We now present our main asymptotic convergence results,
demonstrating that the gradients of the Adam converge to
zero both almost surely and in the L1 sense under appropri-
ate conditions.
Theorem 3.2 (Asymptotic Almost Sure Convergence).
Under Assumptions 2.1–2.3, consider the Adam with hy-
perparameters specified in Subsection 2.4 with γ > 1 and
δ > 0. Then, the gradients of the Adam converge to zero
almost surely, i.e., limt→∞ ∥∇f(wt)∥ = 0 a.s.

This theorem shows that the gradients evaluated at the it-
erates converge to zero almost surely, indicating that the
algorithm approaches a critical point of the loss function
along almost every trajectory.
Remark 1. (Almost sure vs L1 convergence) As stated in
the introduction, it is important to note that the almost sure
convergence does not imply L1 convergence. To illustrate
this concept, let us consider a sequence of random variables
{ζn}n≥1, where P(ζn = 0) = 1−1/n2 and P(ζn = n2) =
1/n2. According to the Borel-Cantelli lemma, it follows that
limn→+∞ ζn = 0 almost surely. However, it can be shown
that E [|ζn|] = 1 for all n > 0 by simple calculations.
Theorem 3.3 (Asymptotic L1-Convergence). Under As-
sumptions 2.1–2.3, consider the Adam with hyperparame-
ters specified in Subsection 2.4 with γ > 1 and δ > 0. Then,
the gradients of the Adam converge to zero in the L1 sense,
i.e., limt→∞ E[∥∇f(wt)∥] = 0.

This result establishes convergence in the mean sense, show-
ing that the expected gradient norm approaches zero as
the number of epochs increases. It indicates that the con-
vergence of gradient norms across different trajectories is
uniform in the L1 norm of the random variables.

In previous works (He et al., 2023; Xiao et al., 2024),
the assumption that the stochastic gradients are uniformly
bounded, i.e., ∥gt∥ ≤ M a.s. (∀ t ≥ 1), or that the gradi-
ents themselves are uniformly bounded, i.e., ∥∇f(wt)∥ ≤
M (∀ t ≥ 1), allows almost sure convergence to directly
imply L1 convergence via the Lebesgue’s Dominated Con-
vergence theorem. However, in our framework, which deals
with potentially unbounded stochastic gradients or gradients,
proving L1 convergence is much more challenging. We will
elaborate on this in the next section.

4. Framework for Analyzing Adam
In this section, we present the analytical framework that
underpins our convergence analysis for the Adam. Our

approach is built upon the insights provided by existing
methods, while introducing new techniques to address the
limitations of previous analyses and provide a more com-
prehensive understanding of Adam’s behavior under weaker
assumptions. Our core innovations are detailed in Section
4.3.1, Section 4.4, and Section 4.5.

4.1. Key Properties of Adaptive Learning Rates

We begin by characterizing the fundamental properties of
the adaptive learning rate sequence ηvt in Section 2.4. These
properties are critical as they directly influence the behavior
of the algorithm and are foundational to our subsequent
analysis. By understanding how these properties interact
with the algorithm’s dynamics, we obtain more insights on
the conditions under which Adam converges.

Property 2. Each element ηvt,i of the sequence {ηvt}t≥1 =
{[ηvt,1, ηvt,2, . . . , ηvt,d]⊤}t≥1 is monotonically decreasing
with respect to t.

This property ensures that the learning rate becomes pro-
gressively smaller as the algorithm progresses, which is a
crucial factor in the stability and convergence of Adam.

Property 3. Each element ηvt,i of the sequence
{ηvt}t≥1 = {[ηvt,1, ηvt,2, . . . , ηvt,d]⊤}t≥1 satisfies the in-
equality tγvt,i ≥ α1St,i, where we define α1 := min{1−
α0, α0}, St,i := v+

∑t
k=1 g

2
k,i for all t ≥ 1, and S0,i := v.

This property highlights the relationship between the accu-
mulated gradient information St,i and the adaptive learning
rate, ensuring that the latter appropriately scales with the
former as epochs proceed.

Remark 4.1. For the purpose of simplifying the proofs of
subsequent theorems, we define two auxiliary parameters:
Σvt :=

∑d
i=1 vt,i and St :=

∑d
i=1 St,i. Additionally, for

convenience in the subsequent proofs, we define a new initial
parameter based on S0,i as ηv0,i = S0,i/α1 = v/α1.

These definitions of auxiliary parameters help streamline
the analysis, making the mathematical expressions more
manageable and the proofs more concise.

With the key properties of the adaptive learning rates estab-
lished, we now turn our attention to analyzing the momen-
tum term, which plays a crucial role in the Adam.

4.2. Handling the Momentum Term

To effectively analyze the momentum term in the Adam, we
adopt a classical method introduced by Liu et al. (2020).
The momentum term introduces additional complexity in
the analysis due to its recursive nature, which can compli-
cate the convergence proofs. To address this, we construct
an auxiliary variable ut that simplifies the analysis by de-
coupling the momentum term from the update process. This

5
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auxiliary variable is defined as follows:

ut :=
wt − β1wt−1

1− β1
= wt +

β1
1− β1

(wt − wt−1)

= wt −
β1

1− β1
ηvt−1 ◦mt−1. (1)

The introduction of ut allows us to handle the momentum
term more effectively by transforming the recursive nature
of the updates into a more tractable form. Specifically, we
can express the relationship between successive epochs of
ut as follows:

ut+1 − ut = −ηvt ◦ gt

+
β1

1− β1
(ηvt−1 − ηvt︸ ︷︷ ︸

∆t

) ◦mt−1. (2)

This recursive relation is instrumental in breaking down the
complex dependencies introduced by the momentum term,
which will facilitate the convergence analysis.

Then we establish two key properties that connect the origi-
nal variable wt and the auxiliary variable ut. These proper-
ties are crucial for bounding the changes in the momentum
term and connecting the function values at different points
in the epoch process.
Property 4. For any epoch t, the following inequality holds:

m2
t,i −m2

t−1,i ≤ −(1− β1)m
2
t−1,i + (1− β1)g

2
t,i.

This property establishes a bound on the change in the mo-
mentum term, which is critical for ensuring that the momen-
tum does not increase indefinitely during the optimization
process. Controlling the momentum in this manner is an
important step in proving the convergence.
Property 5. For any epoch t, the following inequality holds:

f(wt) ≤ (Lf + 1)f(ut) +
(Lf + 1)β2

1

2(1− β1)2
∥∥ηvt−1

◦mt−1

∥∥2 .
This property connects the function values at wt and ut,
which provides a foundation for analyzing the convergence
of f(wt). By establishing this relationship, we can relate
the behavior of the original variable wt to the more manage-
able auxiliary variable ut, thereby simplifying the overall
convergence analysis.

4.3. Establishing the Approximate Descent Inequality

In the convergence analysis of stochastic gradient descent
(SGD), a fundamental tool is the approximate descent in-
equality, which quantifies the expected decrease in the ob-
jective function at each epoch. Specifically, for SGD, the
approximate descent inequality is given by:

f(wt+1)− f(wt) ≤ −ηt∥∇f(wt)∥2︸ ︷︷ ︸
Descent Term

+
η2tL

2
∥gt∥2︸ ︷︷ ︸

Quadratic Error

+ ηt∇f(wt)
⊤(∇f(wt)− gt)︸ ︷︷ ︸

Martingale Difference Term

, (3)

where ηt is the learning rate, L is the Lipschitz constant,
and gt is the stochastic gradient.

Motivated by the success of this approach in analyzing SGD,
we aim to establish a similar approximate descent inequality
for the Adam. The goal is to develop a descent inequality
that captures the adaptive nature of Adam’s learning rates
while maintaining the essential structure seen in the analysis
of SGD.

To this end, we present the following key result, which forms
the cornerstone of our convergence analysis for Adam.

Lemma 4.1 (Approximate Descent Inequality). Consider
the sequences {wt}t≥1, {vt}t≥1, and {ut}t≥1 generated by
Algorithm 2.1 and Eq. (2). Under Assumptions 2.1–2.3, the
following sufficient decrease inequality holds:

Π∆,tf̂(ut+1)−Π∆,t−1f̂(ut)

≤ −1

2
Π∆,t

d∑
i=1

ζi(t) + C2∥ηvt−1 ◦mt−1∥2

+

d∑
i=1

∆t,i|∇if(ut)mt−1,i|

+ (Lf + 1)

d∑
i=1

η2vt,ig
2
t,i +Π∆,tMt. (4)

Here,

f̂(ut) := f(ut)− f∗ + C

d∑
i=1

ηvt−1,i,

ζi(t) := ηvt−1,i(∇if(wt))
2,

Π∆,t :=

t∏
k=1

(
1 +

(
D1

1−
√
β1

+ 1

)
∆√

β1,k

)−1

(t ≥ 1),

Π∆,0 := 1,

∆√
β1,k

:=

d∑
i=1

E

[
+∞∑
t=k

(
√
β1)

t−k∆t,i

∣∣∣∣Fk−1

]
,

where, ∆t,i denotes the i-th component of ∆t (defined in

Eq. 2). Mt :=Mt,1 +Mt,2 +Mt,3. (5)

Constants C2, D1 is defined in Eq. (26) and Lemma E.2;
Mt,1 is defined in Eq. (20); Mt,2 and Mt,3 are defined in
Eq. (21).

This lemma introduces Π∆,t−1f̂(ut) as a new Lyapunov
function for Adam, which plays a crucial role in our analysis.
In Eq. (4), the term − 1

2Π∆,t

∑d
i=1 ζi(t) can be interpreted

as the descent term, representing the expected decrease in
the Lyapunov function. We collectively refer to the 2nd,
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3rd, and 4th terms on the right side of the inequality as
the quadratic error terms. According to subsequent results
(Lemma D.2), we can show that the expectation of the sum-
mation from 1 to T over t of these terms is of the same order
as O

(∑T
t=1

∑d
i=1 E

[
η2vt,ig

2
t,i

])
. The 5th term, Π∆,tMt,

is a martingale difference sequence with respect to the fil-
tration {Ft}t≥1, which, due to its zero expectation, can
be considered to have no overall impact on the algorithm’s
epoch process.

This structure closely resembles the approximate descent
inequality commonly used in the analysis of SGD. For com-
parison, the approximate descent inequality for SGD is
given by Eq. (3).

We now proceed to provide the main idea of proving Lemma
4.1 and highlight the key steps and challenges involved in
establishing this result for Adam.

To begin with, we calculate the difference in the loss func-
tion values between two consecutive auxiliary variables
{ut}t≥1 that we introduced. We obtain the following ex-
pression (informal):

f(ut+1)− f(ut)

≤ −
d∑

i=1

E [ηvt,i∇if(wt)gt,i|Ft−1]︸ ︷︷ ︸
Termt,1

+O

(
d∑

i=1

η2vt,ig
2
t,i

)
︸ ︷︷ ︸

Termt,2

+

d∑
i=1

E [ηvt,i∇if(wt)gt,i|Ft−1]−
d∑

i=1

ηvt,i∇if(wt)gt,i︸ ︷︷ ︸
Termt,3

+Rt. (6)

It can be observed that the above equation is simply a
second-order Taylor expansion of f(ut+1)− f(ut) (since
an L-smooth function is almost everywhere twice differ-
entiable). Termt,1 represents the first-order term, which in
general serves as the descent term. Termt,2 is the quadratic
error, and Termt,3 is a martingale difference sequence. The
remaining term Rt is negligible and can be ignored. In
the informal explanation provided in the sketch, these were
collectively referred to as remainder terms. For the exact
formulation, refer to the detailed proof in Appendix D.3.2.

While handling the quadratic error term Termt,2 is relatively
straightforward using standard scaling techniques, address-
ing the first-order term Termt,1 is more challenging due to
the adaptive nature of Adam’s learning rates. Specifically,
ηvt,i and gt,i are both Ft-measurable, which necessitates
the introduction of an auxiliary random variable η̃vt,i which
is Ft−1−measurable to facilitate the extraction of the learn-
ing rate from the conditional expectation. In this paper, we
choose the auxiliary random variable ηvt−1,i to approximate
ηvt,i. There are also other forms of this approximation, as

discussed by (Wang et al., 2023; 2024a). This allows us to
rewrite the first-order term as:

−Termt,1 = −
d∑

i=1

E [ηvt,i∇if(wt)gt,i|Ft−1]

= −
d∑

i=1

E
[
ηvt−1,i∇if(wt)gt,i|Ft−1

]
︸ ︷︷ ︸

Descent-Termt

+

d∑
i=1

E
[
(ηvt−1,i − ηvt,i)∇if(wt)gt,i|Ft−1

]
︸ ︷︷ ︸

Termt,4

.

The presence of Termt,4 introduces an additional layer of
complexity in the analysis, as it reflects the difference be-
tween successive adaptive learning rates. Addressing this
extra error term is crucial for establishing robust conver-
gence guarantees under the ABC inequality or affine noise
variance conditions. Existing approaches to handling such
terms, which often rely on the cancellation of errors through
preceding descent terms, fall short in this context. This
necessitates a more innovative strategy, which we present in
the following section.

4.3.1. ADDRESSING THE EXTRA ERROR TERM: OUR
INNOVATIVE APPROACH

The term Termt,4, introduced by the difference between
ηvt−1,i and ηvt,i, presents a significant challenge in the con-
vergence analysis of Adam under the ABC inequality or
affine noise variance conditions. In existing methods, it is
common to attempt to cancel out such error terms by lever-
aging the preceding descent term Descent-Termt. However,
this approach might not work within the ABC framework.
Recent works such as Wang et al. (2023; 2024a) have shown
that, under existing techniques, the best one can achieve
is a weakened form of the stochastic gradient assumption,
namely the coordinate affine noise variance condition. To
overcome these limitations, we introduce a novel approach
to handle Termt,4. We scale it as follows:

Termt,4 ≤1

2

d∑
i=1

E
[
ηvt−1,i∇if(wt)gt,i | Ft−1

]
+ C1f(ut) ·

d∑
i=1

E[∆t,i | Ft−1] + R̃t

+ C

d∑
i=1

∆t,i + C

d∑
i=1

(
E[∆t,i | Ft−1]−∆t,i

)
︸ ︷︷ ︸

Term5

,

where ∆t,i := ηvt−1,i−ηvt,i, C1 :=
A+2LfB

2 (Lf +1), and
R̃t represents a negligible remainder term, primarily stem-
ming from the difference between f(wt) and f(ut). The
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critical term in this inequality is C1f(ut)
∑d

i=1 E[∆t,i |
Ft−1], which cannot be effectively canceled out using ex-
isting methods.

To handle this issue, we assign ∆t :=
∑d

i=1 E[∆t,i |
Ft−1], and move the term C1∆tf(ut) to the left-hand side
of inequality 6 and combine it with the existing f(ut) term.
This leads to a new epoch inequality of the form:

f(ut+1)− (1 + C1∆t)f(ut)

≤ −1

2
Descent-Termt + M-Termt + Termt,2

+ R-Termt. (7)

In the inequality M-Termt = Termt,3 + Termt,5 is a martin-
gale difference sequence and R-Termt is the (neglectable)
remainder term by combining all other terms from the in-
equalities. To express this inequality in a form resembling a
Lyapunov function, we introduce an auxiliary product vari-
able: Π∆,t :=

∏t
k=1(1+C1∆k)

−1 (∀ t ≥ 2), Π∆,1 :=
1 (Informal). Note that Π∆,t here is merely a simplified ver-
sion of the actual Π∆,t used in the formal lemma; it is not
the version we employ in practice. Multiplying both sides
of the inequality by Π∆,t, we obtain the following reformu-
lated inequality:

Π∆,tf(ut+1)−Π∆,t−1f(ut)

≤ −1

2
Π∆,t · Descent-Termt +Π∆,t · M-Termt

+Π∆,t · Termt,2 +Π∆,t+1 · R-Termt. (8)

This reformulation introduces Π∆,t as a scaling factor,
which, along with the original Lyapunov function, captures
the impact of Termt,4. The resulting inequality closely par-
allels the approximate descent inequality for SGD, with
additional terms accounting for Adam’s adaptive nature.

The handling of Termt,4 in our analysis framework is a
significant advancement over existing methods. It allows
us to establish stronger convergence guarantees under more
general conditions.

4.4. Deriving Sample Complexity and Almost Sure
Convergence

After establishing the Approximate Descent Inequality, the
next step is to derive the sample complexity and almost sure
convergence results for Adam. The methodology for obtain-
ing these results largely mirrors the approaches traditionally
used in the analysis of SGD. Specifically, the inequality
provides a foundation for bounding the expected decrease in
the loss function, which can then be used to establish both
sample complexity and almost sure convergence.

However, a key difference in our analysis lies in the intro-
duction of the term Π∆,t within the Approximate Descent

Inequality. This term introduces a new layer of complexity
not present in the standard SGD analysis. In particular, we
are required to bound the p-th moment of the reciprocal of
this term, i.e., E[Π−p

∆,t], (p ≥ 1). Due to the unique struc-
ture of Π∆,t+1, determining a bound for this p-th moment
is a non-trivial task.

To address this challenge, we leverage tools from discrete
martingale theory, particularly the Burkholder’s inequality.
It allows us to establish a recursive relationship between
the p-th moment E[Π−p

∆,t] and the p/2-th moment E[Π−p/2
∆,t ].

This recursive structure is crucial as it enables us to itera-
tively bound the higher moments of Π−1

∆,t.

Once the recursive relationship is established, we ap-
ply fundamental theorems from measure theory, such as
the Lebesgue’s Monotone Convergence theorem or the
Lebesgue’s Dominated Convergence theorem, to obtain the
final bound on the p-th moment. The detailed process for
bounding E[Π−p

∆,t] can be found in Lemma C.3, Lemma C.5
and Lemma D.1.

4.5. Establishing Asymptotic L1 Convergence

Since we have already proved almost sure convergence in
Theorem 3.2, it is natural to attempt to prove L1 conver-
gence via the Lebesgue’s Dominated Convergence theorem.
To achieve this, we need to find a function h that is F∞-
measurable and satisfies E|h| < +∞, and such that for all
t ≥ 1, we have ∥∇f(wt)∥ ≤ |h|. Since for all t we natu-
rally have ∥∇f(wt)∥ ≤ supk≥1 ∥∇f(wk)∥, we only need
to prove that E[supk≥1 ∥∇f(wk)∥] < +∞.

This task presents a significant challenge because, within
our analytical framework, we cannot assume that the gra-
dients are uniformly bounded, which means we cannot di-
rectly apply the Lebesgue’s Dominated Convergence theo-
rem. Instead, we need to utilize advanced techniques from
discrete martingale theory, specifically the first hitting time
decomposition method, to obtain a bound on this maximal
expectation. The detailed process can be found in Appendix
D.3.13.

5. Conclusion
We have introduced a novel and comprehensive framework
for analyzing the convergence properties of Adam. Our
frame starts with weak assumptions such as the ABC in-
equality. By identifying the key properties of the learning
rate, handling the momentum term, and establishing the ap-
proximate descent inequality, the frame concludes the sam-
ple complexity, almost surely convergence, and asymptotic
L1 convergence results of Adam. Our techniques overcome
existing limitations, aligning Adam’s convergence guaran-
tees with those of SGD, thereby justifying Adam’s broad
applicability in machine learning.
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A. Comparison with Prior Works on Stochastic Gradient Assumptions
Our assumption on the stochastic gradient (Assumption 2.3) is relatively mild compared to those in prior works. Here, we
focus on comparing with the traditional affine noise variance condition, coordinate affine noise variance assumption, and the
almost surely bounded stochastic gradient assumption.

Traditional Affine Noise Variance Condition The traditional affine noise variance condition (Affine noise variance) (e.g.,
(Bottou et al., 2018; Nguyen et al., 2018)) assumes that there exist constants B ≥ 0 and C ≥ 0 such that:

E[∥gt∥2 | Ft−1] ≤ B∥∇f(wt)∥2 + C. (9)

This condition bounds the expected squared norm of the stochastic gradient by a linear function of the squared norm of
the true gradient plus a constant. It is stronger than our ABC inequality because it does not include the term involving the
function value difference f(wt)− f∗.

Some works adopt the following form of affine variance noise:

E
[
∥gt −∇f(wt)∥2 | Ft−1

]
≤ B∥∇f(wt)∥2 + C.

It is important to note that, due to the identity

E
[
∥gt −∇f(wt)∥2 | Ft−1

]
= E

[
∥gt∥2 | Ft−1

]
− ∥∇f(wt)∥2,

it is straightforward to see that these two forms are equivalent.

Even under this condition, current methods for analyzing Adam encounter significant difficulties. We will explain these
challenges in the proof sketch of Lemma 4.1. Besides, both (Huang et al., 2021) and (Guo et al., 2021) provided convergence
bounds under traditional affine noise variance condition. However, they relied on the assumption for step-size where
Cl ≤

∥∥∥ 1√
vt+µ

∥∥∥
∞

≤ Cu ∀ t ∈ [T ].

Coordinate Affine Noise Variance Assumption Wang et al. (2024a) introduce the coordinate affine noise variance
assumption, which requires that each component of the stochastic gradient satisfies an affine noise variance inequality.
Specifically, for each coordinate i, there exist constants B,C ≥ 0 such that:

E[g2t,i | Ft−1] ≤ B∥∇if(wt)∥2 + C, (10)

where gt,i and ∇if(wt) are the i-th components of gt and ∇f(wt), respectively.

This assumption is stronger than the traditional affine noise variance condition because it imposes the inequality on each
coordinate individually, rather than on the overall gradient.

Exponential-tailed Affine Variance Noise Condition Certain works, such as (Hong & Lin, 2024), examine the assumption
of affine variance noise with an exponential tail distribution, i.e.,

E

[
exp

{
∥gt −∇f(wt)∥2

B∥∇f(wt)∥2 + C

} ∣∣∣∣∣Ft−1

]
≤ e. (11)

This assumption is close to the almost sure form of affine variance noise, specifically ∥gt∥2 ≤ B∥∇f(wt)∥2 + C a.s. It
is important to emphasize that this assumption (exponential-tailed affine variance noise condition) is stronger than the
traditional affine variance noise assumption based on the second moment of the stochastic gradient. Furthermore, the
methods developed under this stronger assumption are not applicable to affine variance noise models that rely on the second
moment.

Almost Surely Bounded Stochastic Gradient Assumption Some prior works, such as (He et al., 2023; Xiao et al.,
2024), assume that the stochastic gradients are almost surely bounded. That is, there exists a constant M ≥ 0 such that
for all epochs t: ∥gt∥ ≤ M almost surely. This is a strong assumption, as it requires that the stochastic gradient norm is
uniformly bounded almost surely at all epochs. In practice, especially in non-convex optimization problems, this assumption
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is often violated (see Wang et al. 2023). For instance, when optimizing deep neural networks, gradient norms can become
unbounded due to the complexity and non-linearity of the models. Moreover, this assumption implies that the true gradient
is also bounded by M , because ∥∇f(wt)∥2 ≤ E[∥gt∥2 | Ft−1] ≤M2. Our assumption is clearly weaker than the almost
surely bounded stochastic gradient assumption, as we only require a bound on the expected squared norm of the stochastic
gradient, which can depend on the current function value and gradient norm, rather than a uniform almost sure bound.

Moreover, assuming almost surely bounded stochastic gradients is hard to satisfy in practice and may not reflect realistic
scenarios. As discussed in (Wang et al., 2023; Khaled & Richtárik, 2023), such assumptions can be unrealistic and limit the
applicability of theoretical results.

B. Proofs of the Properties of Adaptive Learning Rates and Momentum Term
B.1. Proof of Property 2

Proof. Due to Algorithm 2.1, we observe that

vt+1 = β2,t+1vt + (1− β2,t+1)g
◦2
t+1 =

(
1− 1

(t+ 1)γ

)
vt +

1

(t+ 1)γ
g◦2t+1, (∀ t ≥ 1).

which means

(t+ 1)γvt+1,i =
(
(t+ 1)γ − 1

)
vt,i + g2t+1,i ≥ tγvt,i. (12)

This implies that tγvt,i is monotonically non-decreasing. Subsequently, we have

ηvt,i =
ηt√

vt,i + µ
=

√
tγηt√

tγvt,i +
√
tγµ

=

1

tδ−
γ−1
2√

tγvt,i +
√
tγµ

.

Because the numerator is monotonically decreasing and greater than 0, while the denominator is monotonically non-
increasing and greater than 0, we deduce the monotonic non-increasing property of ηvt .

B.2. Proof of Property 3

Proof. For v1,i, we derive the following estimate

v1,i = β2,1v0,i + (1− β2,1)g
2
1,i = (1− α0)v + α0g

2
1,i.

It is immediate to find that α1S1,i ≤ v1,i ≤ S1,i. For ∀ k ≥ 2, by Eq. (12), we have kγvk,i ≥ (k − 1)γvk−1,i + g2k,i. Then,
by summing up the above iterative equations, we obtain ∀ t ≥ 2,

tγvt,i ≥ v1,i +

t∑
k=2

g2k,i.

Combining the estimate for v1,i, we have ∀ t ≥ 2:

tγvt,i ≥ (1− α0)v + α0g
2
1,i +

t∑
k=2

g2k,i.

Then tγvt,i ≥ α1St,i, which completes the proof.

B.3. Proof of Property 4

Proof. According to Algorithm 2.1, we have the following iterative equations

mt,i = β1mt−1,i + (1− β1)gt,i.

We take the square of the 2-norm on both sides, which yields

m2
t,i = (β1mt−1,i + (1− β1)gt,i)

2

14



A Comprehensive Framework for Analyzing the Convergence of Adam: Bridging the Gap with SGD

= β2
1m

2
t−1,i + 2β1(1− β1)mt−1,igt,i + (1− β1)

2g2t,i
(a)

≤ β1m
2
t−1,i + (1− β1)g

2
t,i.

In step (a), we used the AM-GM inequality, i.e.,

2β1(1− β1)mt−1,igt,i ≤ β1(1− β1)m
2
t−1,i + β1(1− β1)g

2
t,i,

that is,

m2
t,i −m2

t−1,i ≤ −(1− β1)m
2
t−1,i + (1− β1)g

2
t,i,

which completes the proof.

B.4. Proof of Property 5

Proof. Due to

|f(wt)− f(ut)| =
∣∣∣∣∇f(ut)⊤(wt − ut) +

Lf

2
∥wt − ut∥2

∣∣∣∣ ≤ ∥∇f(ut)∥∥wt − ut∥+
Lf

2
∥wt − ut∥2

≤ 1

2
∥∇f(ut)∥2 +

Lf + 1

2
∥wt − ut∥2

= Lf(ut) +
(Lf + 1)β2

1

2(1− β1)2
∥ηvt−1

◦mt−1∥2,

we have

f(wt) ≤ f(ut) + |f(wt)− f(ut)| ≤ (Lf + 1)f(ut) +
(Lf + 1)β2

1

2(1− β1)2
∥ηvt−1 ◦mt−1∥2.

C. Lemmas in Probability Theory and Real Analysis
Lemma C.1. If 0 < µ < 1 and 0 < σ < 1 (σ < µ) are two constants, then for any positive sequence {ψn}, there is

n∑
i=1

µn−iψi <

n∑
k=1

µn−k
k∑

i=1

σk−iψi ≤ 1/
(
1− ω0

) n∑
i=1

µn−iψi,

where ω0 := σ/µ.

Lemma C.2. Suppose that f(x) is differentiable and lower bounded, i.e. f∗ = infx∈ Rd f(x) > −∞, and ∇f(x) is
Lipschitz continuous with parameter L > 0, then ∀ x ∈ Rd, we have∥∥∇f(x)∥∥2 ≤ 2L

(
f(x)− f∗

)
.

Lemma C.3. Let {(Xn,Fn)}n≥1 be a non-negative adapted process such that
∑+∞

n=1Xn = M < +∞ almost surely,
where M is a finite constant. Define the partial sum of conditional expectations as ΛT :=

∑T
n=1 E[Xn | Fn−1]. Then the

following properties hold.

(i) The sequence {ΛT }T≥1 converges almost surely, i.e., ΛT
a.s.−−→ Λ, where Λ :=

∑+∞
n=1 E[Xn | Fn−1].

(ii) For any p ≥ 1, the sequence {ΛT }T≥1 converges in Lp, i.e., limT→∞ E [|ΛT − Λ|p] = 0. Meanwhile, the p-th moment
of the limit Λ is bounded by a constant CΛ(p) > 0, where CΛ(p) = o((2M)pp

√
p).

Lemma C.4. Let l ∈ (0, 1). Then, for sufficiently large n ∈ N+, we have

∞∑
k=0

lkk
√
n ∼ Γ (

√
n+ 1)(

ln 1
l

)√n+1
, n→ ∞.
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Lemma C.5. Let {(Xn,Fn)}n≥1 be a non-negative adapted process such that
∑+∞

n=1Xn =M < +∞ almost surely, where
M is a finite constant. For any k > 1, define the partial sum of conditional expectations as Λk,T :=

∑T
n=k E[Xn | Fn−k].

Then the following properties hold.

(i) The sequence {Λk,T }T≥1 converges almost surely, i.e., Λk,T
a.s.−−→ Λ(k), where Λ :=

∑+∞
n=k E[Xn | Fn−k].

(ii) For any p ≥ 1, the sequence {Λk,T }T≥1 converges in Lp, i.e., limT→∞ E
[
|Λk,T − Λ(k)|p

]
= 0. Meanwhile, the p-th

moment of the limit Λ(k) is bounded by a constant CΛ(k)(p) > 0, where CΛ(p) = o((2M)p(kp)
√
p).

(iii) For any 0 < l < 1, the arbitrary p-th moment of the random variable eΛ(l) exists, where

Λ(l) =

+∞∑
k=1

E

[(
+∞∑
t=k

lt−kXt

)∣∣∣∣Fk−1

]
.

The upper bound of this p-th moment depends only on p, l, and M . We denote this upper bound by CeΛ(l)(p,M).

C.1. Proofs of These Lemmas

C.1.1. PROOF OF LEMMA C.1

Proof. The proof of this lemma is through identities. We assume µ > σ (the case µ < σ is the similar), and let
ω0 = logµ σ > 1. Then we derive

n∑
k=1

µn−k
k∑

i=1

σk−iψi =

n∑
k=1

k∑
i=1

µn−kσk−iψi =

n∑
i=1

n∑
k=i

µn−kσk−iψi =

n∑
i=1

(
n∑

k=i

(
σ

µ

)k−i
)
µn−iψi,

where ω0 = σ/µ. Then combining 1 <
∑n

k=i

(
σ
µ

)k−i

< 1
1−ω0

we get the result.

C.1.2. PROOF OF LEMMA C.2

Proof. For ∀x ∈ Rd, define the function

g(t) = f

(
x+ t

x′ − x

∥x′ − x∥

)
,

where x′ is a constant point such that x′ − x is parallel to ∇f(x). By taking the derivative, we obtain

g′(t) = ∇
x+t x′−x

∥x′−x∥
f

(
x+ t

x′ − x

∥x′ − x∥

)⊤
x′ − x

∥x′ − x∥
. (13)

Through the Lipschitz condition of ∇f(x), we get ∀t1, t2

∣∣g′(t1)− g′(t2)
∣∣ = ∣∣∣∣∣

(
∇

x+t x′−x
∥x′−x∥

f

(
x+ t1

x′ − x

∥x′ − x∥

)
−∇

x+t x′−x
∥x′−x∥

f

(
x+ t2

x′ − x

∥x′ − x∥

))⊤
x′ − x

∥x′ − x∥

≤

∥∥∥∥∥∇x+t x′−x
∥x′−x∥

f

(
x+ t1

x′ − x

∥x′ − x∥

)
−∇

x+t x′−x
∥x′−x∥

f

(
x+ t2

x′ − x

∥x′ − x∥

)∥∥∥∥∥
∥∥∥∥ x′ − x

∥x′ − x∥

∥∥∥∥ ≤ L|t1 − t2|.

This indicates that g′(t) satisfies the Lipschitz condition as well. Then inft∈R g(t) ≥ infx∈Rd f(x) > −∞. Let g∗ =
infx∈R g(x). Subsequently, ∀ t0 ∈ R,

g(0)− g∗ ≥ g(0)− g(t0). (14)

By using the Newton-Leibniz’s formula,

g(0)− g(t0) =

∫ 0

t0

g′(α)dα =

∫ 0

t0

(
g′(α)− g′(0)

)
dα+

∫ 0

t0

g′(0)dα.
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Through the Lipschitz condition of g′, we get that

g(0)− g(t0) ≥
∫ 0

t0

−L|α− 0|dα+

∫ 0

t0

g′(0)dα =
1

2L
(
g′(0)

)2
.

Then we take a special value of t0. Let t0 = −g′(0)/L. We obtain

g(0)− g(t0) ≥ −
∫ 0

t0

L|α|dα+

∫ 0

t0

g(0)dt = −L
2
(0− t0)

2 + g′(0)(−t0)

= − 1

2L
(
g′(0)

)2
+

1

L
(
g′(0)

)2
=

1

2L
(
g′(0)

)2
.

(15)

Substituting Eq. (15) into Eq. (14), we have

g(0)− g∗ ≥ 1

2L
(
g′(0)

)2
.

Due to g∗ ≥ f∗ and
(
g′(0)

)2
= ∥∇f(x)∥2, it follows that∥∥∇f(x)∥∥2 ≤ 2L

(
f(x)− f∗

)
.

C.1.3. PROOF OF LEMMA C.3

Proof. (i) Consider the non-negative adapted process {Xn,Fn}n≥1 and define the partial sum of conditional expectations
as ΛT :=

∑T
n=1 E[Xn | Fn−1].

First, we compute the expectation of ΛT

E[ΛT ] = E

[
T∑

n=1

E[Xn | Fn−1]

]
=

T∑
n=1

E[Xn] ≤M.

Since Xn are non-negative, we know that ΛT is a non-decreasing sequence. Because E(ΛT ) (∀ T ≥ 1) is also bounded by
M , we apply the Lebesgue’s Monotone Convergence theorem. Thus, ΛT converges almost surely to a limit Λ:

Λ := lim
T→∞

ΛT =

∞∑
n=1

E[Xn | Fn−1] a.s.

This concludes that the sequence of conditional expectation sums converges almost surely.

(ii) We begin by normalizing Xn by considering the expression Yn = Xn

2M . According to the Lebesgue’s Monotone
Convergence theorem, we only need to prove that

∀ p ≥ 1, E

[ ∞∑
n=1

E[Yn|Fn−1]

]p
:=M(p) < +∞.

Next, we proceed with the calculation, and we obtain that ∀ p ≥ 2, there is (Strictly speaking, we should first consider a
finite N and compute

∑N
n=1, and only then take the limit as N → +∞, applying the Lebesgue’s monotone convergence

theorem to obtain the result for
∑∞

n=1. However, for the sake of simplicity in the proof, we have directly computed
∑∞

n=1.):

M(p) = E

[ ∞∑
n=1

E[Yn|Fn−1]

]p
= E

[ ∞∑
n=1

Yn +

∞∑
n=1

(E[Yn|Fn−1]− Yn)

]p
(a)

≤ E

[
1

2
+

∞∑
n=1

(E[Yn|Fn−1]− Yn)

]p
(b)

≤ 2p−1

(
1

2p
+ E

[ ∞∑
n=1

(E[Yn|Fn−1]− Yn)

]p)
(c)

≤ 1

2
+ 2p−1Cp E

[ ∞∑
n=1

|E[Yn|Fn−1]− Yn|2
]p/2

(d)

≤ 1

2
+ 2p−1Cp E

[ ∞∑
n=1

|E[Yn|Fn−1]− Yn|

]p/2
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(f)

≤ 1

2
+ 2p−2Cp + 2

3
2p−2Cp E

[ ∞∑
n=1

E[Yn|Fn−1]

]p/2
=

1

2
+ 2p−2Cp + 2

3
2p−2CpM(p/2). (16)

In the above derivation, Inequality (a) requires noting that
∑+∞

n=1 Yn = 1
2 . Inequality (b) uses the AM-GM inequality,

specifically, (
a+ b

2

)p

≤ ap + bp

2
.

Inequality (c) involves using Burkholder’s inequality,1 where Cp is a constant depending only on p, and its order with
respect to p is O(p) (see Theorem 5.27 in KHOSHNEVISAN (2006)). Inequality (d) requires noting that

|E[Yn|Fn−1]− Yn|2 ≤ |E[Yn|Fn−1]− Yn|.

By repeatedly using Equation (16) and using the fact that Cp = O(p), we obtain the following estimate

M(p) = o(p
√
p),

that is,
E[Λp] = o((2M)p · p

√
p).

C.1.4. PROOF OF LEMMA C.4

Proof. Consider the function
f(x) = lxx

√
n,

with its derivative
f ′(x) = lxx

√
n−1(ln l · x+

√
n).

We observe that f is decreasing for x >
√
n

ln 1
l

. Therefore, we have the following estimate

0 ≤
∑

0≤k≤
√

n

ln 1
l

+1

lkk
√
n ≤

(√
n

ln 1
l

+ 1

)√
n ∞∑

k=0

lk =
1

1− l

(√
n

ln 1
l

+ 1

)√
n

= O

(√
n

ln 1
l

)√
n

.

On the other hand, we can bound the remainder as follows:∑
k>

√
n

ln 1
l

+1

lkk
√
n ≥

∑
k>

√
n

ln 1
l

+1

∫ k+1

k

lxx
√
n dx

=

∞∑
k=0

∫ k+1

k

lxx
√
n dx−

∑
0≤k≤

√
n

ln 1
l

+1

∫ k+1

k

lxx
√
n dx

≥
∫ ∞

0

lxx
√
n dx−

(√
n

ln 1
l

+ 2

)√
n ∞∑

k=0

∫ k+1

k

lx dx

=
Γ (

√
n+ 1)(

ln 1
l

)√n+1
+O

(√
n

ln 1
l

)√
n

.

1Burkholder’s inequality: For any martingale {(Mn,Fn)}n≥1 with M0 = 0 almost surely, and for any 1 ≤ p < ∞, there exist
constants cp > 0 and Cp > 0 depending only on p such that:

cp E[(S(M))p] ≤ E[(M∗)p] ≤ Cp E[(S(M))p],

where M∗ = supn≥0 |Mn| and S(M) =
(∑

i≥1(Mi −Mi−1)
2
)1/2

.
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Similarly, we have the upper bound∑
k>

√
n

ln 1
l

+1

lkk
√
n ≤

∑
k>

√
n

ln 1
l

+1

∫ k

k−1

lxx
√
n dx

=

∞∑
k=1

∫ k

k−1

lxx
√
n dx−

∑
1≤k≤

√
n

ln 1
l

+1

∫ k

k−1

lxx
√
n dx

≤
∫ ∞

0

lxx
√
n dx =

Γ (
√
n+ 1)(

ln 1
l

)√n+1
.

Combining the estimates above, we have

∞∑
k=0

lkk
√
n ∼ Γ (

√
n+ 1)(

ln 1
l

)√n+1
, n→ ∞.

C.1.5. PROOF OF LEMMA C.5

Proof. (i) Consider the non-negative adapted process {Xn,Fn}n≥1 and define the partial sum of conditional expectations
as Λk,T :=

∑T
n=k E[Xn | Fn−k].

First, we compute the expectation of Λk,T

E[Λk,T ] = E

[
T∑

n=k

E[Xn | Fn−k]

]
=

T∑
n=k

E[Xn] <

T∑
n=1

E[Xn] ≤M.

Since Xn are non-negative, we know that Λk,T is a non-decreasing sequence, and considering that E(Λk,T ) (∀ T ≥ 1) is
also bounded by M , we apply the Lebesgue’s Monotone Convergence theorem. Thus, Λk,T converges almost surely to a
limit Λ(k)

Λ(k) := lim
T→∞

Λk,T =

∞∑
n=k

E[Xn | Fn−k] a.s.

This concludes that the sequence of conditional expectation sums converges almost surely.

(ii) We begin by normalizing Xn by considering the expression Yn = Xn

2M . According to the Lebesgue’s Monotone
Convergence theorem, we only need to prove that

∀ p ≥ 1, E

[ ∞∑
n=k

E[Yn|Fn−k]

]p
:=Mk(p) < +∞.

Next, we proceed with the calculation, and we obtain ∀ p ≥ 2, there is:

M(p) = E

k−1∑
i=0

∞∑
n=k,n mod k=i

E[Yn|Fn−k]

p

= E

 ∞∑
n=k

Yn +

k−1∑
i=0

∞∑
n=k,n mod k=i

(E[Yn|Fn−k]− Yn)

p

(a)

≤ E

1
2
+

k−1∑
i=0

∞∑
n=k,n mod k=i

(E[Yn|Fn−k]− Yn)

p

(b)

≤ 2p−1

(
1

2p
+ E

[ ∞∑
n=1

(E[Yn|Fn−1]− Yn)

]p)

(c)

≤ 1

2
+ 2p−1kp−1Cp

k−1∑
i=0

E

 ∞∑
n=k,n mod k=i

(E[Yn|Fn−k]− Yn)

p

(d)

≤ 1

2
+ 2p−1kp−1Cp

k−1∑
i=0

E

 ∞∑
n=k,n mod k=i

(E[Yn|Fn−k]− Yn)
2

p/2

19



A Comprehensive Framework for Analyzing the Convergence of Adam: Bridging the Gap with SGD

(e)

≤ 1

2
+ 2p−1kp−1Cp

k−1∑
i=0

E

 ∞∑
n=k,n mod k=i

|E[Yn|Fn−k]− Yn|

p/2

(f)

≤ 1

2
+ 2p−1kp−1Cp E

[ ∞∑
n=k

|E[Yn|Fn−k]− Yn|

]p/2

≤ 1

2
+ 2p−2kp−1Cp + 2

3
2p−2kp−1Cp E

[ ∞∑
n=1

E[Yn|Fn−1]

]p/2
=

1

2
+ 2p−2kp−1Cp + 2

3
2p−2kp−1CpM(p/2). (17)

In the above derivation, Inequality (a) is by noting that
∑+∞

n=1 Yn = 1
2 . Inequality (b) uses the AM-GM inequality,

specifically, (
a+ b

2

)p

≤ ap + bp

2
.

Inequality (c) involves using the AM-GM inequality for k variables, specifically,(
a1 + a2 + ...+ ak

k

)p

≤
(
ap1 + ap2 + ...+ apk

k

)
.

Inequality (e) involves using Burkholder’s inequality, where Cp is a constant depending only on p, and its order with respect
to p is O(p). Inequality (d) is by noting that

|E[Yn|Fn−k]− Yn|2 ≤ |E[Yn|Fn−k]− Yn|.

By repeatedly using Equation (17) and using the fact that Cp = O(p), we obtain the following estimate

M(p) = o((kp)
√
p),

that is,
E[(Λ(k))p] = o((2M)p · (kp)

√
p).

(iii) For any 0 < l < 1, we obtain:

Λ(l) =

+∞∑
k=1

E

[(
+∞∑
t=k

lt−kXt

)∣∣∣∣Fk−1

]
=

+∞∑
k=1

E

[(
+∞∑
t=0

ltXk+t

)∣∣∣∣Fk−1

]

=

+∞∑
t=0

+∞∑
k=1

E
[
ltXk+t

∣∣∣∣Fk−1

]
=

+∞∑
t=0

ltΛ(t).

Next, we apply Hölder’s inequality, we obtain ∀ n ≥ 2

Λ(l)n =

(
+∞∑
t=0

ltΛ(t)

)n

≤
(

1

1− l

)n−1 +∞∑
t=0

lt(Λ(t))n.

Then we have:

E[epΛ(l)] =

+∞∑
n=0

pnE[Λ(l)n]
n!

≤
+∞∑
n=0

(
p

1− l

)n ∑+∞
t=0 l

t(Λ(t))n

n!
=

+∞∑
n=0

+∞∑
t=0

lt(Λ(t))n
(

p

1− l

)n
1

n!

(iii)
= O

(
+∞∑
n=0

+∞∑
t=0

lt(2M)n · (tp)
√
n

(
p

1− l

)n
1

n!

)

= O

(
+∞∑
n=0

(
+∞∑
t=0

ltt
√
n

)(
p

1− l

)n
(2M)n · (p)

√
n

n!

)
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Lemma C.4
= O

+∞∑
n=0

Γ(
√
n+ 1)

1(
ln 1

l

)√n+1

(
p

1− l

)n
(2M)n · (p)

√
n

n!

 .

By substituting the factorial in the denominator with Stirling’s approximation, it is evident that the series inside the O
notation converges and depends only on p, l and M . The lemma follows.

D. Supporting Lemmas
This section introduces key lemmas that are essential for the proofs. We start with a diagram illustrating their relationships
with the theorems. Rigorous proofs for all lemmas and theorems follow in the subsequent subsections. Due to its isolated,
lengthy proof, Lemma D.2 is addressed separately at the end of the paper (see Section E for details).

D.1. Dependency Graph of Lemmas and Theorems

Due to the large number of lemmas, we have combined these lemmas with those in the main text and theorems to create a
lemma-theorem dependency graph. We refer the audience to this graph for a whole picture of our proofs, while the reader
may also find the lemmas needed for a specific statement.
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D.2. Statements of the Lemmas

Lemma D.1. For Π∆,T defined in Equation (5), for any T ≥ 0 and any p ≥ 1, the p-th moment of its reciprocal is bounded,
i.e.,

E
[
Π−p

∆,T

]
< Cv,d,p < +∞,

where Cv,d,p is a constant that depends only on v, d, and p.

Moreover, we have that Π−1
∆,∞ := limt→+∞ Π−1

∆,t < +∞ a.s., and for any p ≥ 1, the p-th moment of Π−1
∆,∞ exists, with

E
[
Π−p

∆,∞

]
≤ Cv,d,p < +∞.
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Lemma D.2. Consider the Adam algorithm in Algorithm 2.1 and suppose that Assumption 2.1 - 2.3 hold. Then for any
initial point, and T ≥ 1, the following results hold

E[Π∆,T (f(wT )− f∗)] = O

(
T∑

t=1

E ∥ηvt ◦ gt∥2
)

+O(1),

T∑
t=1

E

[
Π∆,t

d∑
i=1

ζi(t)

]
= O

(
T∑

t=1

E ∥ηvt ◦ gt∥2
)

+O(1),

T∑
t=1

d∑
i=1

E [Π∆,t∆t,i|∇if(ut)mt−1,i|] = O

(
T∑

t=1

E ∥ηvt ◦ gt∥2
)

+O(1).

The specific form of the constants hidden behind the O() notation can be found in Equation (55) and Equation (56). All
constants depend on the initial point and the constants in our required assumptions (excluding 1/µ).

Lemma D.3. Consider the Adam algorithm defined in Algorithm 2.1 and suppose that Assumption 2.1−2.3 hold. Then for
any initial point and ∀ ϕ > 0, we have for any T ≥ 1, the following inequality holds

Π∆,T

√
ST

(T + 1)ϕ
≤

√
dv +

T∑
t=1

Π∆,tΛϕ,t, (18)

where

Λϕ,t :=
∥gt∥2

(t+ 1)ϕ
√
St−1

,

and ST is defined in Remark 4.1.

Lemma D.4. Consider the Adam algorithm defined in Algorithm 2.1 and suppose that Assumptions 2.1 - 2.3 hold. Then for
any initial point and for all T ≥ 1, there exists a random variable ζ such that the following results hold

(a) 0 ≤ ζ < +∞ almost surely, and E(ζ) is uniformly bounded above by a constant Cζ , which depends on the initial point
and the constants in the required assumptions (excluding 1/µ). The explicit form of this upper bound is provided in
Equation (29).

(b)
√
ST ≤ (T + 1)4Π−1

∆,∞ζ, and ln
(
ST

v

)
≤ ln(T + 1)ζ ′, where ζ ′ ≤ 4

(
1 + 1

2 ln
(
max

{
e,Π−1

∆,∞ζ
}))

.

Lemma D.5. Consider the Adam algorithm defined in Algorithm 2.1 and suppose that Assumption 2.1 - 2.3 hold. Then for
any initial point and T ≥ 1, the following results hold

T∑
t=1

E
[
Π∆,t

d∑
i=1

ζi(t)

]
≤

{
C4,δ, if δ ∈ (0, 1/2),

C5 + C6 E [ln(ST )] , if δ = 0,

where C5 and C6 are constants that depend on the initial point and the constants in our required assumptions (excluding
1/µ), and C4,δ is a constant that depends on the initial point, δ, and the constants in our required assumptions (excluding
1/µ).

Lemma D.6 (Subsequence Convergence). Under Assumptions 2.1 - 2.3, consider the Adam algorithm (Algorithm 2.1)
with hyperparameters as specified in Subsection 2.4, where δ > 0. Then, there exists a subsequence {wct}t≥1 such that its
gradients converge to zero almost surely, i.e., limt→∞ ∥∇f(wct)∥ = 0 a.s.

Lemma D.7. Consider the Adam algorithm defined in Algorithm 2.1 and assume that Assumptions 2.1 - 2.3 hold. Then, for
any initial point and for all T ≥ 1, the following results hold

- When δ = 0, we have

sup
t≥1

Π∆,t(f(wt)− f∗)

ln2(t+ 1)
< +∞ a.s., sup

T≥1
E
[
Π∆,t(f(wt)− f∗)

ln2(t+ 1)

]
< M0 < +∞.
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- When δ > 0, we have

sup
t≥1

Π∆,t(f(wt)− f∗) < +∞ a.s., sup
T≥1

E [Π∆,t(f(wt)− f∗)] < Mδ < +∞.

In the above equations, M0 and Mδ are two constants that depend on the initial point and the constants in our assumptions
(excluding 1/µ).

Lemma D.8. Consider the Adam algorithm defined in Algorithm 2.1 and suppose that Assumption 2.1 - 2.3 hold. Then for
any initial point, for all T ≥ 1, i ∈ [1, d], there is

E(S3/4
T ) =

{
O(T 3/4), if δ ∈ (0, 1/2),

O(T 3/4 ln3/2 T ), if δ = 0,

where constants hidden in O() depend on the initial point and the constants in our required assumptions (excluding 1/µ).

Lemma D.9. Under Assumptions 2.1 - 2.3, consider the Adam algorithm (Algorithm 2.1) with the hyperparameters specified
in Subsection 2.4. Then, for any t ≥ 1, the following inequality holds

sup
t≥1

E[Π∆,tΣvt ] <

{
E[Π∆,2Σv1 ] + (A+ 2LfB)Mδ + C, if δ ∈ (0, 1/2),

E[Π∆,2Σv1 ] + (A+ 2LfB)M0 ln
2 t+ C, if δ = 0.

Furthermore, if λ > 1, then

sup
t≥1

E[Π∆,tΣvt ] <

{(
(A+ 2LfB)Mδ + C

)∑+∞
t=1

1
(t+1)λ

, if δ ∈ (0, 1/2)(
(A+ 2LfB)M0 + C

)∑+∞
t=1

ln2 t
(t+1)λ

, if δ = 0
< +∞.

Additionally,
sup
t≥1

Σvt
< +∞ a.s.

Lemma D.10. Under Assumption 2.1 - 2.3, consider the Adam algorithm (Algorithm 2.1) with hyperparameters in
Subsection 2.4 with γ > 1, δ > 0. Then for any initial point, the following results hold

+∞∑
t=1

ηt∥∇f(wt)∥2 < +∞ a.s.,
+∞∑
t=1

ηt∥∇f(ut)∥2 < +∞ a.s., and
+∞∑
t=1

∥ηvt ◦mt∥2 < +∞ a.s.

D.3. Proofs of the Lemmas and the Theorems

D.3.1. PROOF OF LEMMA D.1

Proof. Consider the case where T is finite. For any T ∈ (0,+∞), the exponential-logarithmic transformation can be
applied to Π−p

∆,T , resulting in

Π−p
∆,T = exp

{
p

T∑
k=1

ln

(
1 +

(
D1

1−
√
β1

+ 1

)
∆√

β1,k

)}
ln(1+x)<x ∀ x>−1

≤ exp

{
p

(
D1

1−
√
β1

+ 1

) T∑
k=1

∆√
β1,k

}

= exp

{
p

(
D1

1−
√
β1

+ 1

) T∑
k=1

d∑
i=1

E

[
+∞∑
t=k

(
√
β1)

t−k∆t,i

∣∣∣∣∣Fk−1

]}

= exp

{
p

(
D1

1−
√
β1

+ 1

) T∑
k=1

E

[
+∞∑
t=k

(
√
β1)

t−k

(
d∑

i=1

∆t,i

)∣∣∣∣∣Fk−1

]}

≤ exp

{
p

(
D1

1−
√
β1

+ 1

) +∞∑
k=1

E

[
+∞∑
t=k

(
√
β1)

t−k

(
d∑

i=1

∆t,i

)∣∣∣∣∣Fk−1

]}
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It can be readily verified that
∑d

i=1 ∆t,i in the inequality above satisfies all the properties of Xt outlined in Lemma C.5.
Consequently, by Lemma C.5, we deduce that for any 0 < T < +∞ and any p ≥ 1, the p-th moment of its reciprocal is
bounded, i.e.,

E
[
Π−p

∆,T

]
< Cv,d,p < +∞,

where Cv,d,p is a constant depending only on v, d, and p. Letting T → +∞ and applying the Lebesgue’s Monotone
Convergence Theorem, we obtain

E
[
Π−p

∆,∞

]
≤ Cv,d,p < +∞.

D.3.2. PROOFS OF LEMMA 4.1

Proof. By the L-smoothness in Assumption 2.2, we have:

f(ut+1)− f(ut) ≤ ∇f(ut)⊤(ut+1 − ut) +
Lf

2
∥ut+1 − ut∥2.

Then, by substituting the iterative formula for ut from Equation (2) into the above inequality, we obtain

f(ut+1)− f(ut) ≤−
d∑

i=1

ηvt,i∇if(ut)gt,i +
β1

1− β1

d∑
i=1

∆t,i∇if(ut)mt−1,i + Lf

d∑
i=1

η2vt,ig
2
t,i

+ Lf

( β1
1− β1

)2 d∑
i=1

∆2
t,im

2
t−1,i

(a)
= −

d∑
i=1

ηvt,i∇if(wt)gt,i︸ ︷︷ ︸
Θt,1

+

d∑
i=1

(ηvt,i(∇if(wt)−∇if(ut))gt,i)︸ ︷︷ ︸
Θt,2

+
β1

1− β1

d∑
i=1

∆t,i∇if(ut)mt−1,i︸ ︷︷ ︸
Θt,3

+Lf

d∑
i=1

η2vt,ig
2
t,i

+ Lf

( β1
1− β1

)2 d∑
i=1

∆2
t,im

2
t−1,i︸ ︷︷ ︸

Θt,4

. (19)

Step (a) employs the identity ∇if(ut) = ∇if(wt) + ∇if(ut) − ∇if(wt). Next, we handle Θt,1, Θt,2, Θt,3 and Θt,4

separately. First, for Θt,1, we use the following identity.

Θt,1 = −
d∑

i=1

ηvt,i∇if(wt)gt,i = −
d∑

i=1

ηvt−1,i∇if(wt)gt,i +

d∑
i=1

∆t,i∇if(wt)gt,i

= −
d∑

i=1

ηvt−1,i(∇if(wt))
2︸ ︷︷ ︸

ζi(t)

+

d∑
i=1

∆t,i∇if(wt)gt,i︸ ︷︷ ︸
Θt,1,1

+

d∑
i=1

ηvt−1,i∇if(wt)(∇if(wt)− gt,i)︸ ︷︷ ︸
Mt,1

, (20)

where ∆t,i in the above equality represents the i-th component of the vector ∆t, which is defined in Equation (2). In this
way, we decompose Θ1 into a descent term −

∑d
i=1 ζi(t), an error term Θt,1,1, and a martingale difference term Mt,1. We

will further scale and control the error term Θt,1,1. Specifically, we have

Θt,1,1 =

d∑
i=1

E [∆t,i∇if(wt)gt,i | Ft−1]
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+

d∑
i=1

(
∆t,i∇if(wt)gt,i − E

[
∆t,i∇if(wt)gt,i | Ft−1

]
︸ ︷︷ ︸

Mt,2

)

(a)
<

d∑
i=1

√
ηvt−1,i∇if(wt)E

[√
∆t,igt,i | Ft−1

]
+Mt,2

(b)

≤ 1

2

d∑
i=1

ηvt−1,i(∇if(wt))
2 +

1

2

d∑
i=1

E2
[√

∆t,igt,i | Ft−1

]
+Mt,2

(c)

≤ 1

2

d∑
i=1

ζi(t) +
1

2

d∑
i=1

E[g2t,i | Ft−1] · E[∆t,i | Ft−1] +Mt,2

≤ 1

2

d∑
i=1

ζi(t) +
1

2

d∑
i=1

E[g2t,i | Ft−1] · E[∆t,i | Ft−1] +Mt,2

≤ 1

2

d∑
i=1

ζi(t) +
1

2

(
d∑

i=1

E[g2t,i | Ft−1]

)
·

(
d∑

i=1

E[∆t,i | Ft−1]

)
+Mt,2

(d)

≤ 1

2

d∑
i=1

ζi(t) +
1

2

(
(A+ 2LfB)f(wt) + C

)
·

(
d∑

i=1

E[∆t,i | Ft−1]

)
+Mt,2

=
1

2

d∑
i=1

ζi(t) +
1

2
(A+ 2LfB)f(wt) ·

(
d∑

i=1

E[∆t,i | Ft−1]

)

+ C

(
d∑

i=1

E[∆t,i | Ft−1]

)
+Mt,2

=
1

2

d∑
i=1

ζi(t) +
1

2
(A+ 2LfB)f(wt) ·

(
d∑

i=1

E[∆t,i | Ft−1]︸ ︷︷ ︸
∆t

)
+ C

d∑
i=1

∆t,i

+ C

(
d∑

i=1

(
E[∆t,i | Ft−1]−∆t,i

))
︸ ︷︷ ︸

Mt,3

+Mt,2. (21)

In the above derivation, in step (a), we utilized the property of conditional expectation, which states that for random variables
X ∈ Fn−1 and Y ∈ Fn, we have E[XY |Fn−1] = X E[Y |Fn−1]. Additionally, note that ∆t,i =

√
∆t,i

√
∆t,i <√

ηvt−1

√
∆t,i (due to Property 2, we know ∆t,i ≥ 0, so taking the square root is well-defined). In step (b), we employed

the AM-GM inequality, which states ab ≤ a2+b2

2 . In step (c), we used the Cauchy-Schwarz inequality for conditional
expectations, namely E[XY |Fn−1] ≤

√
E[X2|Fn−1]E[Y 2|Fn−1]. For step (d), we used Property 1. Specifically, we

have

d∑
i=1

E[g2t,i|Ft−1] = E[∥gt∥2|Ft−1] ≤ (A+ 2LfB)f(wt) + C.

Substituting the estimate of Θt,1,1 into Equation (21), we obtain

Θt,1 = −1

2

d∑
i=1

ζi(t) +
A+ 2LfB

2
∆t · f(wt) + C

d∑
i=1

∆t,i +Mt,1 +Mt,2 +Mt,3︸ ︷︷ ︸
Mt

.
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Then, we use Property 5 to replace f(wt) with f(ut) to obtain

Θt,1 = −1

2

d∑
i=1

ζi(t) +
(A+ 2LfB)(Lf + 1)

2
∆t · f(ut) + C

d∑
i=1

∆t,i

+
(Lf + 1)β2

1

2(1− β1)2
∥ηvt−1

◦mt−1∥2 +Mt. (22)

Next, we handle the term Θt,2 through the following derivation.

Θt,2 =
1

2

d∑
i=1

(ηvt,i(∇if(wt)−∇if(ut))gt,i)

≤
d∑

i=1

η2vt,ig
2
t,i +

1

2

d∑
i=1

(∇if(wt)−∇if(ut))
2

=

d∑
i=1

η2vt,ig
2
t,i +

1

2
∥∇f(wt)−∇f(ut)∥2

≤
d∑

i=1

η2vt,ig
2
t,i +

L2
f

2
∥wt − ut∥2

=

d∑
i=1

η2vt,ig
2
t,i +

β2
1L

2
f

2(1− β1)2
∥ηvt−1

◦mt−1∥2. (23)

Next, we handle the term Θt,3. We have

Θt,3 =

d∑
i=1

∆t,i∇if(ut)mt−1,i ≤
d∑

i=1

∆t,i|∇if(ut)mt−1,i|. (24)

For Θt,4, because ∆t,i ≤ ηvt−1,i, we obtain that

Θt,4 =

d∑
i=1

∆2
t,im

2
t−1,i <

d∑
i=1

η2vt−1,im
2
t−1,i = ∥ηvt−1 ◦mt−1∥2. (25)

Finally, substituting the estimates of Θt,1 from Equation (22), Θt,2 from Equation (23), Θt,3 from Equation (24), and Θt,4

from Equation (25) back into Equation (19), we obtain(
f(ut+1)− f∗ + C

d∑
i=1

ηvt,i︸ ︷︷ ︸
f̂(ut+1)

)
−
(
f(ut)− f∗ + C

d∑
i=1

ηvt−1,i︸ ︷︷ ︸
f̂(ut)

)
≤ −1

2

d∑
i=1

ζi(t) + C1∆t · f(ut)

+ C2∥ηvt−1
◦mt−1∥2 +

d∑
i=1

∆t,i|∇if(ut)mt−1,i|+ (Lf + 1)

d∑
i=1

η2vt,ig
2
t,i +Mt,

where

C1 :=
(A+ 2LfB)(Lf + 1)

2
, C2 :=

β2
1L

2
f

2(1− β1)2
+ Lf

( β1
1− β1

)2
. (26)

To the second term on the right side of the above inequality, we apply the inequality $[f(ut) < f(ut) − f∗ +

C
∑d

i=1 ηvt−1,i = f̂(ut) and then move the expanded term to the left side of the inequality. This obtains

f̂(ut+1)− (1 + C1∆t)f̂(ut) ≤− 1

2

d∑
i=1

ζi(t) + C1∆t · f(ut)
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+ C2∥ηvt−1
◦mt−1∥2 +

d∑
i=1

∆t,i|∇if(ut)mt−1,i|

+ (Lf + 1)

d∑
i=1

η2vt,ig
2
t,i +Mt.

Next, we define

∆√
β1,k

:=

d∑
i=1

E

[
+∞∑
t=k

(
√
β1)

t−k∆t,i

∣∣∣∣Fk−1

]
.

Observe that

1 + C1∆t ≤ 1 +

(
D1

1−
√
β1

+ 1

)
∆√

β1,t
,

where D1 is defined in Lemma E.2. Thus, we have

f̂(ut+1)−
(
1 +

(
D1

1−
√
β1

+ 1

)
∆√

β1,t

)
f̂(ut) ≤− 1

2

d∑
i=1

ζi(t) + C1∆t · f(ut)

+ C2∥ηvt−1
◦mt−1∥2 +

d∑
i=1

∆t,i|∇if(ut)mt−1,i|

+ (Lf + 1)

d∑
i=1

η2vt,ig
2
t,i +Mt.

Next, we construct an auxiliary variable

Π∆,t :=

t∏
k=1

(
1 +

(
D1

1−
√
β1

+ 1

)
∆√

β1,k

)−1

(t ≥ 1), Π∆,0 := 1.

Multiplying both sides of the above inequality by Π∆,t, we obtain

Π∆,tf̂(ut+1)−Π∆,t−1f̂(ut) ≤− 1

2
Π∆,t

d∑
i=1

ζi(t) + C2∥ηvt−1
◦mt−1∥2 +

d∑
i=1

∆t,i|∇if(ut)mt−1,i|

+ (Lf + 1)

d∑
i=1

η2vt,ig
2
t,i +Π∆,tMt.

With the inequality, we complete the proof.

D.3.3. PROOF OF LEMMA D.3

Proof. For any ϕ ∈ R, we consider
√
ST

(T+1)ϕ
. We have

√
ST

(T + 1)ϕ
=

ST

(T + 1)ϕ
√
ST

=
S0 +

∑T
t=1 ∥gt∥2

(T + 1)ϕ
√
ST

=
S0

(T + 1)ϕ
√
ST

+

T∑
t=1

∥gt∥2

(T + 1)ϕ
√
ST

≤ S0

(T + 1)ϕ
√
ST

+

T∑
t=1

∥gt∥2

(T + 1)ϕ
√
ST

≤
√
S0 +

T∑
t=1

∥gt∥2

(t+ 1)ϕ
√
St−1

=
√
dv +

T∑
t=1

∥gt∥2

(t+ 1)ϕ
√
St−1

.

By multiplying both sides of the above inequality by Π∆,T and noting the monotonicity of {Π∆,t}t≥1 as well as the fact
that Π∆,T ≤ 1 for all T ≥ 1, the lemma follows.
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D.3.4. PROOF OF LEMMA D.4

Proof. We take ϕ = 4 in Lemma D.3 and bound the expectation of the partial sum
∑T

t=1 Λ4,t. We have

E

[
T∑

t=1

Π∆,tΛ4,t

]
=

T∑
t=1

E[Π∆,tΛ4,t] =

T∑
t=1

E

[
Π∆,t∥gt∥2

(t+ 1)4
√
St−1

]
=

T∑
t=1

E

[
Π∆,t E[∥gt∥2|Ft−1]

(t+ 1)4
√
St−1

]
Property 1

≤
T∑

t=1

E

[
(A+ 2LfB)Π∆,t(f(wt)− f∗) + C

(t+ 1)4
√
St−1

]

≤ C3

T∑
t=1

1

(t+ 1)4
E [Π∆,t(f(wt)− f∗)] + C4

T∑
t=1

1

(t+ 1)4
, (27)

where
C3 :=

A+ 2LfB√
S0

, C4 :=
C√
S0

.

Based on the results in Lemma D.2, we can compute:

E [Π∆,t(f(wt)− f∗)] = O

(
t∑

k=1

E ∥ηvk ◦ gk∥2
)

+O(1) = O(t).

Substitute the above result into Equation (27), and combine ∀ p ≥ 2

T∑
t=1

1

(t+ 1)p
≤

T∑
t=1

1

(t+ 1)2
≤

+∞∑
t=1

1

t2
=
π2

6
.

We get

E

[
T∑

t=1

Π∆,tΛ4,t

]
= O(1).

It can be observed that the right-hand side of the above inequality is independent of T . Thus, according to the Lebesgue’s
Monotone Convergence theorem, we have

T∑
t=1

Π∆,tΛ4,t →
+∞∑
t=1

Π∆,tΛ4,t a.s.,

and

E

[
+∞∑
t=1

Π∆,tΛ4,t

]
= lim

T→∞
E

[
T∑

t=1

Π∆,tΛ4,t

]
= lim

T→∞

T∑
t=1

E[Π∆,tΛ4,t] = O(1).

By setting

ζ :=
√
dv +

+∞∑
t=1

Π∆,tΛ4,t,

and combining Lemma D.3, we have √
ST ≤ Π−1

∆,T (T + 1)4ζ < Π−1
∆,∞(T + 1)4ζ. (28)

Meanwhile,

E[ζ] =
√
dv + E

[
+∞∑
t=1

Λ4,t

]
= O(1). (29)

Then through Equation (28), we have

1

2
ln

(
ST

v

)
≤ 4 ln(T + 1) + ln

(
Π−1

∆,∞ζ
)
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≤ 4 ln(T + 1) + ln
(
max

{
e,Π−1

∆,∞ζ
})

≤ 4 ln(T + 1)

1 +
ln
(
max

{
e,Π−1

∆,∞ζ
})

4 ln(T + 1)


ln(T+1)≥1/2

≤ 4 ln(T + 1)

(
1 +

1

2
ln
(
max

{
e,Π−1

∆,∞ζ
}))

.

The lemma follows

D.3.5. PROOF OF LEMMA D.5

Proof. According to the second conclusion of Lemma D.2, we have

T∑
t=1

E

[
Π∆,t

d∑
i=1

ζi(t)

]
= O

(
T∑

t=1

E ∥ηvt ◦ gt∥2
)

+O(1).

To prove the conclusion of this lemma, we only need to bound
∑T

t=1 E ∥ηvt ◦ gt∥2. Specifically,

E ∥ηvt ◦ gt∥2 = E

[
d∑

i=1

η2vt,ig
2
t,i

]
= E

[
d∑

i=1

η2t g
2
t,i

(
√
vt,i + µ)2

]
≤ E

[
d∑

i=1

1

t2δ
g2t,i
tvt,i

]
Property 3

≤ (t+ 1)2δ

t2δ
E

[
d∑

i=1

1

α1(t+ 1)2δ
g2t,i
St,i

]
(30)

(a)

≤ 22δ

α1
ζ

δ
2Π

− δ
2

∆,∞

d∑
i=1

g2t,i

St,i
1+ δ

4

. (31)

In step (a) of the above derivation, we apply Lemma D.4 to (t+ 1)2δ . Specifically, according to Lemma D.4, we have√
St ≤ Π−1

∆,∞(t+ 1)4ζ.

Next, with the estimate for E ∥ηvt ◦ gt∥2, we can estimate
∑T

t=1 E ∥ηvt ◦ gt∥2. To achieve this, note that

T∑
t=1

E ∥ηvt ◦ gt∥2 = E

[
22δ

α1
ζ

δ
2Π

− δ
2

∆,∞

d∑
i=1

T∑
t=1

g2t,i

St,i
1+ δ

4

]
≤ E

[
22δ

α1
ζ

δ
2Π

− δ
2

∆,∞

d∑
i=1

∫ ST,i

S0,i

1

x1+
δ
4

dx

]

≤

 22δ

α1
E
[
ζ

δ
4Π

− δ
2

∆,∞

]
, if δ ∈ (0, 1/2)

22δ

α1
E
[
ln
(
ST

dv

)]
, if δ = 0

(b)

≤

{
O(1), if δ ∈ (0, 1/2)
d22δ

α1
E
[
ln
(
ST

dv

)]
, if δ = 0

. (32)

In step (b), we used the following inequality, i.e. the Hölder’s inequality, to obtain the O(1) result

E
[
ζ

δ
4Π

− δ
2

∆,∞

]
≤ Eδ/4 [ζ] · E

4−δ
4

[
Π

− 2δ
4−δ

∆,∞

]
Lemma D.1 and D.4

≤ C
δ/4
ζ .C

4−δ
4

v,d, 2δ
4−δ

= O(1).

This completes the proof.

D.3.6. PROOF OF LEMMA D.7

Proof. We only present the case where δ = 0. The case where δ > 0 can be treated using exactly the same approach. Recall
the approximate descent inequality (Lemma 4.1)

Π∆,tf̂(ut+1)−Π∆,t−1f̂(ut) ≤− 1

2
Π∆,t

d∑
i=1

ζi(t) + C2∥ηvt−1
◦mt−1∥2 +

d∑
i=1

∆t,i|∇if(ut)mt−1,i|
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+ (Lf + 1)

d∑
i=1

η2vt,ig
2
t,i +Π∆,tMt.

We divide both sides of the above inequality by ln2(t+ 1). Noticing that ln2(t+ 1) < ln2(t+ 2), we obtain

Π∆,tf̂(ut+1)

ln2(t+ 2)
− Π∆,t−1f̂(ut)

ln2(t+ 1)
≤ C2

∥ηvt−1
◦mt−1∥2

ln2(t+ 1)
+

d∑
i=1

∆t,i|∇if(ut)mt−1,i|
ln2(t+ 1)

(33)

+ (Lf + 1)

d∑
i=1

η2vt,ig
2
t,i

ln2(t+ 1)
+ Π∆,t

Mt

ln2(t+ 1)
. (34)

Assign

Ωt := C2
∥ηvt−1

◦mt−1∥2

lnt+1 +

d∑
i=1

∆t,i|∇if(ut)mt−1,i|
ln2(t+ 1)

+ (Lf + 1)

d∑
i=1

η2vt,ig
2
t,i

ln2(t+ 1)
.

For the term
∑+∞

t=1 E[Ωt], we can estimate it as

+∞∑
t=1

E[Ωt] := C2

+∞∑
t=1

E ∥ηvt−1 ◦mt−1∥2

lnt+1 +

+∞∑
t=1

d∑
i=1

E[∆t,i|∇if(ut)mt−1,i|]
ln2(t+ 1)

+ (Lf + 1)

d∑
i=1

+∞∑
t=1

E[η2vt,ig
2
t,i]

ln2(t+ 1)

(a)

≤ O(1) +

d∑
i=1

O

(
+∞∑
t=1

E

[
E[η2vt,i

g2t,i]

ln2(t+ 1)

])
(b)

≤ O(1) +

d∑
i=1

O

 +∞∑
t=1,St,i>2v

E

[
ζ ′2

E[η2vt,ig
2
t,i]

ln2 (St,i/v)

] .

In step (a), we use Property 4 and Lemma D.2. In step (b), we use the last result from Lemma D.4, which states

ln
(St,i

v

)
≤ ln

(St

v

)
≤ ζ ′ ln(T + 1).

Then, using the series-integral inequality, we bound
∑+∞

t=1 E[Ωt] and obtain

+∞∑
t=1

E[Ωt] ≤ O(1) +O

 d∑
i=1

E
[ +∞∑
t=1,St,i>2v

(ζ ′
2
)
g2
t,i

v

ln2(
St,i

v )
St,i

v

]
< O(1) +O

(
d∑

i=1

E

[∫ +∞

2

ζ ′
2

x ln2 x
dx

])
= O(1) +O(E[ζ ′2]).

Next, we use the explicit expression for ζ ′ given in Lemma D.4 to bound E[ζ ′2]. We have:

E[ζ ′2] = E
[
16

(
1 +

1

2
ln
(
max

{
e,Π−1

∆,∞ζ
}))]

< +∞.

As a result, we have

+∞∑
t=1

E[Ωt] < +∞. (35)
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According to the Lebesgue’s Monotone Convergence theorem, we know that the above result implies

+∞∑
t=1

E[Ωt|Ft−1] < +∞ a.s. (36)

Next, we take the conditional expectation with respect to Ft−1 on both sides of Equation (33), which obtains

E

[
Π∆,t+1f̂(ut+1)

ln2(t+ 2)

∣∣∣∣∣Ft−1

]
≤ Π∆,tf̂(ut)

ln2(t+ 1)
+ E[Ωt|Ft−1] + 0. (37)

Based on the result from Equation (36) and the Supermartingale Convergence theorem, we deduce that Π∆,tf̂(ut)

ln2(t+1)
converges

almost surely. Then, according to Property 5, we bound f(wt)− f∗ using f̂(ut). This concludes our first result. Next, we
take the expectation on both sides of Equation (33), which yields

E

[
Π∆,t+1f̂(ut+1)

ln2(t+ 2)

]
≤ E

[
Π∆,tf̂(ut)

ln2(t+ 1)

]
+ E[Ωt] + 0. (38)

Based on the convergence result of the expectation summation in Equation (35) and a summation formula for a recursive
sequence, we conclude our second result. Thus, the analysis for the case δ = 0 has been completed. The case δ > 0 could
be analyzed using the same method, which concludes the lemma.

D.3.7. PROOF OF LEMMA D.8

Proof. Since the case of δ > 0 is relatively straightforward, we first analyze the scenario where δ > 0. According to the
second conclusion for δ > 0 in Lemma D.7, we obtain

E[S3/4
T ] = E[Π−3/4

∆,T Π
3/4
∆,TS

3/4
T ]

Hölder’s inequality
≤ E1/4[Π−3

∆,T ]E
3/4[Π∆,TST ].

Then according to Lemma D.1, we have E[Π−3
∆,T ] ≤ Cv,d,3. For the other term, E[Π∆,TST ], we can handle the term as

follows.

E[Π∆,TST ] ≤ S0 + E

[
Π∆,T

T∑
t=1

∥gt∥2
]
≤ dv + E

[
T∑

t=1

Π∆,T ∥gt∥2
]

= dv +

T∑
t=1

E
[
Π∆,T E[∥gt∥2|Ft−1]

]
Property 1

≤ dv +

T∑
t=1

E
[
Π∆,T ((A+ 2LfB)(f(wt)− f∗) + C)

]
Lemma D.7

≤ dv + ((A+ 2LfB)Mδ + C)T.

This implies

E[
√
ST ] ≤ C

1/4
v,d,3(dv + ((A+ 2LfB)Mδ + C)T 3/4 = O(T 3/4).

For the case where δ = 0, we use the same approach as in the case of δ > 0 and apply the corresponding conclusion for
δ = 0 from Lemma D.7. Thus, we obtain

E[S3/4
T ] = O(T 3/4 ln3/2 T ).

D.3.8. PROOF OF LEMMA D.9

Proof. We discuss two cases based on the value of λ. In the first case, when λ = 1, we have

vt+1 =
(
1− 1

t+ 1

)
vt +

1

t+ 1
g◦2t (∀ t ≥ 1),
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that is
(t+ 1)vt+1 = tvt + g◦2t .

Summing over all the coordinates, we obtain

(t+ 1)Σvt+1 = tΣvt + ∥gt∥2. (39)

Multiplying both sides of the above equation by Π∆,t, and noting that Π∆,t ≥ Π∆,t+1, we have

(t+ 1)Π∆,t+1Σvt+1 = tΠ∆,tΣvt +Π∆,t∥gt∥2.

Taking the expectation on both sides, we obtain

(t+ 1)E[Π∆,t+1Σvt+1
] ≤ tE[Π∆,tΣvt ] + E[Π∆,t∥gt∥2]
= tE[Π∆,tΣvt ] + E[Π∆,t E[∥gt∥2|Ft−1]]

Property 1
≤ tE[Π∆,tΣvt ] + (A+ 2LfB)E[Π∆,t(f(wt)− f∗)] + C

≤ tE[Π∆,tΣvt ] + (A+ 2LfB)
(
sup
t≥1

E[Π∆,t(f(wt)− f∗)]
)
+ C

Lemma D.7
≤

{
tE[Π∆,tΣvt ] + (A+ 2LfB)Mδ + C, if δ ∈ (0, 1/2)

tE[Π∆,tΣvt ] + (A+ 2LfB)M0 ln
2 t+ C, if δ = 0

.

By iterating the above inequality, we finally have

(t+ 1)E[Π∆,t+1Σvt+1
] ≤

{
E[Π∆,2Σv1 ] +

(
(A+ 2LfB)Mδ + C

)
t, if δ ∈ (0, 1/2)

E[Π∆,2Σv1 ] +
(
(A+ 2LfB)M0 ln

2 t+ C
)
t, if δ = 0

.

This implies that for any t ≥ 1,

E[Π∆,t+1Σvt+1
] ≤

{
E[Π∆,2Σv1 ] + (A+ 2LfB)Mδ + C, if δ ∈ (0, 1/2)

E[Π∆,2Σv1 ] + (A+ 2LfB)M0 ln
2 t+ C, if δ = 0

,

that is

sup
t≥1

E[Π∆,tΣvt ] <

{
E[Π∆,2Σv1 ] + (A+ 2LfB)Mδ + C, if δ ∈ (0, 1/2)

E[Π∆,2Σv1 ] + (A+ 2LfB)M0 ln
2 t+ C, if δ = 0

.

Next, we discuss the scenario when λ > 1. In this case, we have the following inequality.

Σvt+1
≤ Σvt +

1

(t+ 1)λ
∥gt∥2.

We multiply both sides of the above inequality by Π∆,t and, noting its monotonicity, we have

Π∆,t+1Σvt+1
≤ Π∆,tΣvt

+
Π∆,t

(t+ 1)λ
∥gt∥2. (40)

Taking the conditional expectation with respect to Ft−1 on both sides of the inequality, we have

E[Π∆,t+1Σvt+1 |Ft−1] ≤ Π∆,tΣvt +
Π∆,t

(t+ 1)λ
E[Π∆,t∥gt∥2|Ft−1].

According to Property 1 and Lemma D.7, we obtain

+∞∑
t=1

Π∆,t

(t+ 1)λ
E[Π∆,t∥gt∥2|Ft−1]
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≤


(
(A+ 2LfB) supt≥1

(
Π∆,t(f(wt)− f∗)

)
+ C

)
·
∑+∞

t=1
1

(t+1)λ
, if δ ∈ (0, 1/2)(

(A+ 2LfB) supt≥1

(
Π∆,t(f(wt)−f∗)

ln2 t

)
+ C

)
·
∑+∞

t=1
ln2 t

(t+1)λ
, if δ = 0

<+∞ a.s.

By the Supermartingale Convergence theorem, we obtain that Π∆,tΣvt converges almost surely, which implies that
supt≥1 Π∆,tΣvt < +∞ a.s. According to Lemma D.1, where supt≥1 Π

−1
∆,t < +∞ a.s., we can immediately deduce that

supt≥1 Σvt < +∞ a.s. Next, we prove that the expected supremum is finite. Taking the expectation on both sides of
Equation (40), we obtain

E
[
Π∆,t+1Σvt+1

]
≤ E

[
Π∆,tΣvt

]
+

1

(t+ 1)λ
E[Π∆,t∥gt∥2].

By summing the above recursive inequalities and using the results from Property 1 and Lemma D.7, we can easily prove that

sup
t≥1

E[Π∆,tΣvt ] <

{(
(A+ 2LfB)Mδ + C

)∑+∞
t=1

1
(t+1)λ

, if δ ∈ (0, 1/2)(
(A+ 2LfB)M0 + C

)∑+∞
t=1

ln2 t
(t+1)λ

, if δ = 0
< +∞.

With this inequality we complete the proof.

D.3.9. PROOF OF LEMMA D.10

Proof. According to the result from Lemma D.5, it is straightforward to see that when δ > 0,

T∑
t=2

E
[
Π∆,t

ηt−1∥∇f(wt)∥2√
Σvt−1

+ µ

]
≤

T∑
t=2

E
[
Π∆,t

ηt−1√
Σvt−1

+ µ

d∑
i=1

(∇if(wt))
2

]

≤
T∑

t=1

E
[
Π∆,t

d∑
i=1

ζi(t)

]
< C4,δ < +∞.

Next, we apply the Lebesgue’s Monotone Convergence theorem

+∞∑
t=2

Π∆,t
ηt−1∥∇f(wt)∥2√

Σvt−1
+ µ

< +∞ a.s.

Then, by combining the almost surely boundedness of supt≥1 Π
−1
∆,t and supt≥1 Σvt from Lemma D.1 and Lemma D.9, it

follows
+∞∑
t=1

ηt∥∇f(wt)∥2 ≤ ∥∇f(w1)∥2 +
+∞∑
t=2

ηt−1∥∇f(wt)∥2

< ∥∇f(w1)∥2 +
(
sup
t≥1

Π
−3/2
∆,t+1

)
·
(√

sup
t≥1

Π∆,tΣvt + µ
)
·
+∞∑
t=2

Π∆,t
ηt−1∥∇f(wt)∥2√

Σvt−1
+ µ

< +∞ a.s.

According to the L-smoothness assumption (Assumption 2.2), it is immediate that

|∥∇f(wt)∥ − ∥∇f(ut)∥| ≤ Lf∥wt − ut∥ =
Lfβ1
1− β1

∥ηvt−1 ◦mt−1∥,

that is,

∥∇f(ut)∥2 ≤
(
∥∇f(wt)∥+

Lfβ1
1− β1

∥ηvt−1
◦mt−1∥

)2

≤ 2∥∇f(wt)∥2 +
2L2

fβ
2
1

(1− β1)2
∥ηvt−1

◦mt−1∥2.
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This implies

+∞∑
t=1

ηt∥∇f(ut)∥2 ≤ 2

+∞∑
t=1

ηt∥∇f(wt)∥2 +
2L2

fβ
2
1

(1− β1)2

+∞∑
t=1

∥ηvt−1
◦mt−1∥2.

According to Property 5, for any δ > 0,(
Lfβ1
1− β1

)2 T∑
t=1

E ∥ηvt−1
◦mt−1∥2 ≤ O

(
T∑

t=1

E ∥ηvt ◦ gt∥2
)

+O(1)

Eq. (32)
≤ O(1).

Applying the Lebesgue’s Monotone Convergence theorem, we obtain(
Lfβ1
1− β1

)2 T∑
t=1

∥ηvt−1
◦mt−1∥2 < +∞ a.s., (41)

that is

+∞∑
t=1

ηt∥∇f(ut)∥2 ≤ 2

+∞∑
t=1

ηt∥∇f(wt)∥2 +
2L2

fβ
2
1

(1− β1)2

+∞∑
t=1

∥ηvt−1 ◦mt−1∥2 < +∞ a.s..

D.3.10. PROOF OF THEOREM 3.1

Proof. According to Lemma D.5, we have:

T∑
t=1

E
[
Π∆,t

d∑
i=1

ζi(t)

]
≤

{
C4,δ, if δ ∈ (0, 1/2)

C5 + C6 E [ln(ST )] , if δ = 0
.

According to the monotonicity of ηvt,i in Property 2 and the monotonicity of Π∆,t itself, we obtain the following inequality.

T∑
t=1

E

[
Π∆,T

∥∇f(wt)∥2

T
1
2+δ(

√
vT + µ)

]
≤

T∑
t=1

E
[
Π∆,T

d∑
i=1

ζi(t)

]
≤

{
C4,δ, if δ ∈ (0, 1/2)

C5 + C6 E [ln(ST )] , if δ = 0
.

For the leftmost part of the above inequality, we apply the Cauchy-Schwarz inequality and obtain

E
[
Π−1

∆,TT
1
2+δ(

√
vT + µ)

]( T∑
t=1

E

[
Π∆,T

∥∇f(wt)∥2

T
1
2+δ(

√
vT + µ)

])
≥ E


√√√√ T∑

t=1

∥∇f(wt)∥2

 ,
which means

E


√√√√ T∑

t=1

∥∇f(wt)∥2

 ≤

{
C4,δ E

[
Π−1

∆,TT
1
2+δ(

√
vT + µ)

]
, if δ ∈ (0, 1/2)

C5 E
[
Π−1

∆,TT
1
2+δ(

√
vT + µ)

]
+ C6 E

[
Π−1

∆,TT
1
2+δ(

√
vT + µ)

]
E [ln(ST )] , if δ = 0

.

Combining the results from Lemma D.8, Lemma D.9 and Lemma D.1, we obtain

E
[
Π−1

∆,TT
1
2+δ(

√
vT + µ)

]
≤ 2T

1
2+δ
√
E[Π−3

∆,T ]
√
E[Π∆,T (vT + µ2)]

≤


C

1/2
v,d,3O(T

1
2+δ), if γ > 1

C
1/2
v,d,3O(T

1
2+δ), if γ = 1, δ ∈ (0, 1]

C
1/2
v,d,3O(

√
T lnT ), if γ = 1, δ = 0.
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and

E[ln(ST )] =
4

3
E[ln(S3/4

T )] ≤ 4

3
ln(E[S3/4

T ]) =

{
O(lnT ), if δ ∈ (0, 1/2)

O(lnT ) +O(ln lnT ), if δ = 0
.

Combining the two estimates above, we finally obtain

E


√√√√ T∑

t=1

∥∇f(wt)∥2

 ≤


O(T

1
2+δ), if δ ∈ (0, 1/2)

O(
√
T lnT ), if γ > 1, δ = 0

O(
√
T ln2 T ), if γ = 1, δ = 0.

(42)

This implies that for any s ∈ (0, 1), the inequality

1

T

T∑
t=1

∥∇f(wt)∥2 ≤


O
(

1
s2

1

T
1
2
−δ

)
, if δ ∈ (0, 1/2)

O
(

1
s2

lnT√
T

)
, if γ > 1, δ = 0

O
(

1
s2

ln2 T√
T

)
, if γ = 1, δ = 0

holds with probability at least 1− s.

D.3.11. PROOF OF LEMMA D.6

Proof. From Eq. (42), we have ∀ t0 ≥ 0,

lim
T→+∞

E
[

inf
t0<t≤T

∥∇f(wt)∥
]
≤ lim

T→+∞

1

T − t0 + 1
E


√√√√ T∑

t=t0

∥∇f(wt)∥2

 = 0.

Since, for a fixed t0, the sequence {inft0<t≤T ∥f(wt)∥}T>t0
is monotonically decreasing and non-negative, by the

Lebesgue’s Monotone Convergence theorem, we readily obtain:

E
[
inf
t>t0

∥∇f(wt)∥
]
= E

[
lim

T→+∞
inf

t0<t≤T
∥∇f(wt)∥

]
= lim

T→+∞
E
[

inf
t0<t≤T

∥∇f(wt)∥
]
= 0

The second equality follows from the Lebesgue’s Monotone Convergence theorem, which allows the interchange of the
limit and expectation. Since inft>t0 ∥∇f(wt)∥ ≥ 0, we can directly deduce that inft>t0 ∥∇f(wt)∥ = 0 a.s., from the fact
that E [inft>t0 ∥∇f(wt)∥] = 0. Furthermore, given the arbitrariness of t0, we can obtain that there exists a subsequence
{wct}t≥1 of {wt}t≥1 such that

lim
t→+∞

∥∇f(wct)∥ = 0 a.s.

This completes the proof.

D.3.12. PROOF OF THEOREM 3.2

Proof. According to Lemma D.10, we have

|∥∇f(wt)∥ − ∥∇f(ut)∥| ≤ Lf∥wt − ut∥ =
Lfβ1
1− β1

∥ηvt−1
◦mt−1∥ → 0 a.s.

This implies that we only need to prove limt→+∞ ∥∇f(ut)∥ = 0 a.s. To achieve this objective, we proceed as follows.

For any l > 0, we construct the following stopping time2 sequence {τl,n}n≥1 :

τl,1 := min{t ≥ 1 : ∥∇f(ut)∥ > l}, τl,2 := min{t > τl,1 : ∥∇f(ut)∥ ≤ l},
2In this paper, we adopt the following definition of stopping time: Let τ be a random variable defined on the filtered probability space

(Ω,F , (Fn)n∈N,P) with values in N ∪ {+∞}. Then τ is called a stopping time (with respect to the filtration (Fn)n∈N) if the condition
{τ = n} ∈ Fn holds for all n.
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...,

τl,2k−1 := min{t > τl,2k−2 : ∥∇f(ut)∥ > l}, τl,2k := min{t > τl,2k−1 : ∥∇f(ut)∥ ≤ l}.

According to the subsequence convergence result in Lemma D.6, we know that when τ2k−1 < +∞ (∀ k ≥ 1), it must hold
that τ2k < +∞ a.s. We now discuss two cases.

1. When there exists some k0 ≥ 1 such that τ2k0−1 = +∞, this implies that eventually {∥∇f(ut)∥}t≥1 will remain below
l, i.e.,

lim sup
t→+∞

∥∇f(ut)∥ < l. (43)

2. Next, we focus on the second case, where for all τ2k−1, we have τ2k−1 < +∞. In this situation, we examine the behavior
of supτ2k−1≤t<τ2k

∥∇f(ut)∥. We have

sup
τ2k−1≤t<τ2k

∥∇f(ut)∥ ≤ l + sup
τ2k−1≤t<τ2k

∥∇f(ut)∥ − ∥∇f(uτ2k−1−1)∥

≤ l +

(
τ2k−1∑

t=τ2k−1−1

∣∣∥∇f(ut)∥ − ∥∇f(ut−1)∥
∣∣)

l-smooth
≤ l +

(
Lf

τ2k−1∑
t=τ2k−1−1

∥ut − ut−1∥

)
Eq. (2)
≤ l + Lf

(
τ2k−1∑

t=τ2k−1−1

∥ηvt ◦ gt∥

)
︸ ︷︷ ︸

Υk,1

+
β1L

2
f

1− β1

(
τ2k−1∑

t=τ2k−1−1

∥∆t ◦mt−1∥

)
︸ ︷︷ ︸

Υk,2

.

Our next goal is to prove separately that lim supk→+∞ Υk,1 = 0 a.s. and lim supk→+∞ Υk,2 = 0 a.s. For Υk,1, we have

Υk,1 =

(
τ2k−1∑

t=τ2k−1−1

∥ηvt ◦ gt∥

)
=

(
τ2k−1∑

t=τ2k−1−1

d∑
i=1

ηvt,i|gt,i|

)

=

(
τ2k−1∑

t=τ2k−1−1

d∑
i=1

ηt|gt,i|√
vt + µ

)
≤

(
τ2k−1∑

t=τ2k−1−1

d∑
i=1

ηt|gt,i|
µ

)

=
1

µ

(
τ2k−1∑

t=τ2k−1−1

d∑
i=1

ηt E[|gt,i||Ft−1]

)

+
1

µ

(
τ2k−1∑

t=τ2k−1−1

d∑
i=1

ηt(|gt,i| − E[|gt,i||Ft−1])

)

=
1

µ

(
τ2k−1∑

t=τ2k−1−1

ηtE[|gt||Ft−1]

)
︸ ︷︷ ︸

Υk,1,1

+
1

µ

(
τ2k−1∑

t=τ2k−1−1

d∑
i=1

ηt(|gt,i| − E[|gt,i||Ft−1])

)
︸ ︷︷ ︸

Υk,1,2

.

For Υk,1,1, we have

Υk,1,1

Property 1
≤

(
τ2k−1∑

t=τ2k−1−1

ηt
(
(A+ 2LfB)(f(wt)− f∗) + C

))
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≤
(
(A+ 2LfB) sup

t≥1
(f(wt)− f∗) + C

)
·

(
τ2k−1∑

t=τ2k−1−1

ηt

)

=
(
(A+ 2LfB) sup

t≥1
(f(wt)− f∗) + C

)
·

(
ητ2k−1

+

(
τ2k∑

t=τ2k−1−1

ηt

))
(a)

≤ 1

l2
(
(A+ 2LfB) sup

t≥1
(f(wt)− f∗) + C

)
·

(
ητ2k−1

+

(
τ2k−1∑

t=τ2k−1

ηt∥∇f(ut)∥2
))

.

In step (a), this is due to the fact that, over the interval [τ2k−1, τ2k), we always have ∥∇f(ut)∥2 > l2. Based on Lemma
D.10, we know that

+∞∑
t=1

ηt∥∇f(ut)∥2 < +∞ a.s.

By applying the Cauchy’s convergence principle, we can prove that

lim
k→+∞

τ2k−1∑
t=τ2k−1

ηt∥∇f(ut)∥2 = 0 a.s.

On the other hand, it is evident that limk→+∞ ητ2k−1
= 0. Meanwhile, based on Lemma D.7 and Lemma D.1, we have

sup
t≥1

(f(wt)− f∗) ≤
(
sup
t≥1

Π−1
∆,t

)
·
(
sup
t≥1

(
Π∆,t+1(f(wt)− f∗)

))
< +∞ a.s.

Therefore,
lim sup
k→+∞

Υk,1,1 = lim
k→+∞

Υk,1,1 = 0.

For Υk,1,2, we consider the following martingale difference sequence

XT :=

T∑
t=1

d∑
i=1

ηt(|gt,i| − E[|gt,i| | Ft−1]).

We can compute

+∞∑
t=1

E

[(
d∑

i=1

ηt(|gt,i| − E[|gt,i| | Ft−1])

)2 ∣∣∣∣Ft−1

]
≤ d

+∞∑
t=1

η2t

d∑
i=1

E[(|gt,i| − E[|gt,i| | Ft−1])
2]

≤d
+∞∑
t=1

η2t

d∑
i=1

E[∥gt∥2 | Ft−1]

Property 1
≤ d

+∞∑
t=1

η2t

d∑
i=1

(
(A+ 2LfB) sup

t≥1
(f(wt)− f∗) + C

)
≤d

d∑
i=1

(
(A+ 2LfB)

(
sup
t≥1

Π∆,t

)(
sup
t≥1

(f(wt)− f∗) + C
))

·
+∞∑
t=1

η2t

Lemma D.1 and D.7
< +∞ a.s.

By the Martingale Convergence theorem, we obtain

lim
T→+∞

XT =

+∞∑
t=1

d∑
i=1

ηt(|gt,i| − E[|gt,i| | Ft−1]) < +∞ a.s.
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Using the Cauchy’s Convergence principle, we prove that

lim sup
k→+∞

Υk,1,2 = lim
k→+∞

τ2k−1∑
t=τ2k−1−1

d∑
i=1

ηt(|gt,i| − E[|gt,i||Ft−1]) = 0 a.s.

Combining the above two limit proofs for Υt,1,1 and Υt,1,2, we conclude that

lim sup
k→+∞

Υt,1 = 0 a.s.

Similarly, it can be shown that limk→+∞ Υk,2 = 0 a.s. Combining the limit results for Υk,1 and Υk,2, we conclude that

lim sup
k→+∞

sup
τ2k−1≤t<τ2k

∥∇f(ut)∥ ≤ l + 0 = l.

Moreover, combining supτ2k≤t<τ2k+1
∥∇f(ut)∥ < l, we can deduce that

lim sup
t→+∞

∥∇f(ut)∥ ≤ l a.s.

Then, due to the arbitrariness of l, we conclude that

lim sup
t→+∞

∥∇f(ut)∥ = 0 a.s.

This implies that
lim

t→+∞
∥∇f(ut)∥ = 0 a.s.

D.3.13. PROOF OF THEOREM 3.3

Proof. Since we have already proved the almost sure convergence in Theorem 3.2, it is natural to attempt to prove L1

convergence via the Lebesgue’s Dominated Convergence theorem. To achieve this, we need to find a function h that is
F∞-measurable and satisfies E |h| < +∞, and such that for all t ≥ 1, we have ∥∇f(wt)∥ ≤ |h|. Since for all t, we
naturally have ∥∇f(wt)∥ ≤ supk≥1 ∥∇f(wk)∥, we only need to prove that E[supk≥1 ∥∇f(wk)∥] < +∞. We proceed to
achieve this goal in the rest of the proof.

Recall the Approximate Descent Inequality (Lemma 4.1). We have

Π∆,tf̂(ut+1)−Π∆,t−1f̂(ut) ≤− 1

2
Π∆,t

d∑
i=1

ζi(t) + C2∥ηvt−1
◦mt−1∥2 +

d∑
i=1

∆t,i|∇if(ut)mt−1,i|

+ (Lf + 1)

d∑
i=1

η2vt,ig
2
t,i +Π∆,tMt. (44)

For any λ > 0, define the stopping time τλ as the first time the sequence {Π∆,tf̂(ut)}t≥1 exceeds λ, i.e.,

τλ := min{t ≥ 2 : Π∆,tf̂(ut) > λ}.

It can be rigorously verified that τλ is a stopping time with respect to the filtration {Ft}t≥1, and satisfies a special property
[τλ = n] ∈ Fn−1 for all n ≥ 1. This implies that the preceding time τλ − 1 is also a stopping time. Next, for any
deterministic time T ≥ 3, we define τλ,T := τλ ∧ T . We then sum the indices of Equation (44) from 1 to τλ,T − 1.
Specifically, we have

Π∆,τλ,T−1f̂(uτλ,T
) ≤Π∆,0f̂(u1) + C2

τλ,T−1∑
t=1

∥ηvt−1
◦mt−1∥2 +

τλ,T−1∑
t=1

d∑
i=1

∆t,i|∇if(ut)mt−1,i|

+ (Lf + 1)

τλ,T−1∑
t=1

d∑
i=1

η2vt,ig
2
t,i +

τλ,T−1∑
t=1

Π∆,tMt.
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Taking the expectation on both sides, we obtain

E
[
Π∆,τλ,T−1f̂(uτλ,T

)
]
≤E

[
Π∆,0f̂(u1)

]
+ C2 E

τλ,T−1∑
t=1

∥ηvt−1 ◦mt−1∥2


+ E

τλ,T−1∑
t=1

d∑
i=1

∆t,i|∇if(ut)mt−1,i|

+ (Lf + 1)E

τλ,T−1∑
t=1

d∑
i=1

η2vt,ig
2
t,i


+ E

τλ,T−1∑
t=1

Π∆,tMt

 .
Since {Π∆,tMt,Ft}t≥1 is a martingale difference sequence and τλ,T ≤ T < +∞, by Doob’s Stopped theorem, we know
that

E

τλ,T−1∑
t=1

Π∆,tMt

 = 0.

This implies

E
[
Π∆,τλ,T−1f̂(uτλ,T

)
]
≤ E

[
Π∆,0f̂(u1)

]
+ C2 E

τλ,T−1∑
t=1

∥ηvt−1
◦mt−1∥2


+ E

τλ,T−1∑
t=1

d∑
i=1

∆t,i|∇if(ut)mt−1,i|

+ (Lf + 1)E

τλ,T−1∑
t=1

d∑
i=1

η2vt,ig
2
t,i

 .
Using Property 5 and Lemma D.2, we obtain

C2 E

τλ,T−1∑
t=1

∥ηvt−1 ◦mt−1∥2
+ E

τλ,T−1∑
t=1

d∑
i=1

∆t,i|∇if(ut)mt−1,i|


+ (Lf + 1)E

τλ,T−1∑
t=1

d∑
i=1

η2vt,ig
2
t,i


≤C2 E

[
T∑

t=1

∥ηvt−1
◦mt−1∥2

]
+ E

[
T∑

t=1

d∑
i=1

∆t,i|∇if(ut)mt−1,i|

]

+ (Lf + 1)E

[
T∑

t=1

d∑
i=1

η2vt,ig
2
t,i

]

=O

(
T∑

t=1

E
[
∥ηvt ◦ gt∥2

])
+O(1)

Eq. (32)
= O(1).

This means
E
[
Π∆,τλ,T−1f̂(uτλ,T

)
]
≤M < +∞,

where

M := C2 E

[
+∞∑
t=1

∥ηvt−1 ◦mt−1∥2
]
+ E

[
+∞∑
t=1

d∑
i=1

∆t,i|∇if(ut)mt−1,i|

]

+ (Lf + 1)E

[
+∞∑
t=1

d∑
i=1

η2vt,ig
2
t,i

]
.
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Meanwhile, we observe the following event decomposition[
sup

2≤t<T
Π∆,t−1f̂(ut) > λ

]
=

T−1⋃
k=2

[τλ = k] =

T−1⋃
k=2

[τλ,T = k].

Moreover, since for any j ̸= k, we have [τλ,T = j] ∩ [τλ,T = k] = ∅, it follows that

P
[

sup
2≤t<T

Π∆,t−1f̂(ut) > λ
]
=

T−1∑
k=2

P[τλ,T = k]
Markov’s inequality

≤ 1

λ

T−1∑
k=2

E
[
Π∆,kf̂(uk)I[τλ,T=k]

]
<

1

λ
E
[
Π∆,τλ,T−1f̂(uτλ,T

)
]
≤ M

λ
. (45)

Next, for any K ≥ 1, we compute E
[(

sup2≤t<T Π∆,t−1f̂(ut)
)3/4 ∧K]. We have

E
[(

sup
2≤t<T

Π∆,t−1f̂(ut)
)3/4 ∧K] = −

∫ +∞

0

x d

(
P

[(
sup

2≤t<T
Π∆,t−1f̂(ut)

)3/4

∧K > x

])

= −
∫ +∞

0

(∫ x

0

1dλ
)

d

(
P

[(
sup

2≤t<T
Π∆,t−1f̂(ut)

)3/4

∧K > x

])
Fubini’s theorem

= −
∫ +∞

0

(∫ +∞

λ

1d

(
P

[(
sup

2≤t<T
Π∆,t−1f̂(ut)

)3/4

∧K > x

]))
dλ

=

∫ +∞

0

P

[(
sup

2≤t<T
Π∆,t−1f̂(ut)

)3/4

∧K > λ

]
dλ

≤ 1 +

∫ +∞

1

P

[(
sup

2≤t<T
Π∆,t−1f̂(ut)

)3/4

∧K > λ

]
dλ

= 1 +

∫ +∞

1

P
[(

sup
2≤t<T

Π∆,t−1f̂(ut)

)
∧K4/3 > λ4/3

]
dλ

< 1 +

∫ +∞

1

P
[(

sup
2≤t<T

Π∆,t−1f̂(ut)

)
> λ4/3

]
dλ

Eq. (45)
< 1 +

∫ +∞

1

M

λ4/3
dλ

= 1 + 3M.

Next, we take K → +∞ and apply the Lebesgue’s Monotone Convergence theorem, which yield

E
[(

sup
2≤t<T

Π∆,t−1f̂(ut)
)3/4]

≤ 1 + 3M.

By taking T → +∞ and applying the Lebesgue’s Monotone Convergence theorem once again, we obtain

E
[(

sup
t≥2

Π∆,t−1f̂(ut)
)3/4]

≤ 1 + 3M.

Note that for any finite t, we have Π∆,t+1 ≥ Π∆,∞ (where Π∆,∞ is defined in Lemma D.1). Thus, we have

E
[
Π

3/4
∆,∞

(
sup
t≥2

f̂(ut)
)3/4]

≤ E
[(

sup
t≥2

Π∆,t−1f̂(ut)
)3/4]

≤ 1 + 3M.

Next, by applying Hölder’s inequality, we obtain

E
[(

sup
t≥2

f̂(ut)
)1/2]

≤ E1/3
[
Π

−3/2
∆,∞

]
E2/3

[
Π

3/4
∆,∞

(
sup
t≥2

f̂(ut)
)3/4] Lemma D.1

≤ C
1/3
v,d,3/2(1 + 3M)2/3.
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Then, according to Property 5, we can bound f(wt)− f∗ using f̂(ut), i.e.,

f(wt)− f∗ ≤ (Lf + 1)(f(ut)− f∗) +
(Lf + 1)β2

1

2(1− β1)2
∥ηvt−1

◦mt−1∥2 + Lff
∗

≤ (Lf + 1)f̂(ut) +
(Lf + 1)β2

1

2α1(1− β1)2
+ Lff

∗.

That means

E
[(

sup
t≥2

(
f(wt)− f∗

))1/2]
≤
√
Lf + 1C

1/3
v,d,3/2(1 + 3M)2/3 +

√
(Lf + 1)β2

1

2α1(1− β1)2
+ Lf |f∗|.

Finally, according to Lemma C.2, we obtain

E
[
sup
t≥2

∥∇f(wt)∥
]
≤
√
2Lf E

[(
sup
t≥2

(
f(wt)− f∗

))1/2]
<
√
2Lf

(√
Lf + 1C

1/3
v,d,3/2(1 + 3M)2/3 +

√
(Lf + 1)β2

1

2α1(1− β1)2
+ Lf |f∗|

)
.

Adding the first term concludes

E
[
sup
t≥1

∥∇f(wt)∥
]
< ∥∇f(w1)∥+

√
2Lf

(√
Lf + 1C

1/3
v,d,3/2(1 + 3M)2/3 +

√
(Lf + 1)β2

1

2α1(1− β1)2
+ Lf |f∗|

)
< +∞.

By combining the almost sure convergence result from Theorem 3.2 with the Lebesgue’s Dominated Convergence theorem,
we obtain the L1 convergence result, namely

lim
t→+∞

E[∥∇f(wt)∥] = 0.

E. The Proof of Lemma D.2
E.1. Auxiliary Lemmas for Proving Lemma D.2

Lemma E.1. For any epoch step t ≥ 1, the following inequality holds

∥mt∥2 ≤ (1− β1)

t∑
k=1

βt−k
1 ∥gk∥2, and ∥ηvt ◦mt∥2 ≤ (1− β1)

t∑
k=1

βt−k
1 ∥ηvt ◦ gk∥2.

Proof. Due to Property 4, we have

∥mt∥2 ≤ β1∥mt−1∥2 + (1− β1)∥gt∥2.

We multiply 1/βt
1 on the both sides of above inequality and obtain

β−t
1 ∥mt∥2 ≤ β

−(t−1)
1 ∥mt−1∥2 + β−t

1 (1− β1)∥gt∥2,

Iterating the above inequality, we acquire

β−t
1 ∥mt∥2 ≤ ∥m0∥2 + (1− β1)

t∑
k=1

β−k
1 ∥gk∥2,

that is

∥mt∥2 ≤ βt
1∥m0∥2 + (1− β1)

t∑
k=1

βt−k
1 ∥gk∥2
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= (1− β1)

t∑
k=1

βt−k
1 ∥gk∥2.

Similarly, applying the same approach and noting the monotonicity of ηvt,i, we obtain

∥ηvt ◦mt∥2 ≤ (1− β1)

t∑
k=1

βt−k
1 ∥ηvt ◦ gk∥2.

Lemma E.2. For any t ≥ 1 and any positive, monotonically decreasing, adapted process {Z(t),Ft−1} with Z(t) ≤ 1, the
following inequality holds

d∑
i=1

n∑
t=1

(
√
β1)

n−t∆t,iZ(t)|∇if(wt)mt,i| ≤
(1− β1)(1−

√
β1)

8

d∑
i=1

n∑
k=1

ηvk−1,iZ(k)(
√
β1)

n−k(∇if(wk))
2

+D1

n∑
k=1

Z(k)(
√
β1)

n−k∆β1,k(f(wk)− f∗)

+D2

n∑
k=1

(
√
β1)

n−kZ(k)∥ηvk−1
◦mk−1∥2

+D3

n∑
k=1

Z(k)(
√
β1)

n−k∆√
β1,k

+

n∑
k=1

Nn,k,

where

∆√
β1,k

:=

d∑
i=1

E

[
+∞∑
t=k

(
√
β1)

t−k∆t,i

∣∣∣∣Fk−1

]
,

Nn,k :=

d∑
i=1

(
∆√

β1,k,i
(
√
β1)

n−kZ(k)|∇if(wk)gk,i| − E
[
∆√

β1,k,i
(
√
β1)

n−kZ(k)|∇if(wk)gk,i| | Fk−1

])
D1 :=

2

1−
√
β1

(A+ 2LfB)(Lf + 1), D2 :=
Lf

1−
√
β1
, D3 :=

2

1−
√
β1

((A+ 2LfB)|f∗|+ C) . (46)

Proof. Note that

|∇if(wt)mt,i| = |∇if(wt)(β1mt−1,i + (1− β1)gt,i)| ≤ β1|∇if(wt)mt−1,i|+ (1− β1)|∇if(wt)gt,i|
≤ β1|∇if(wt−1)mt−1,i|+ β1|(∇if(wt)−∇if(wt−1))mt−1,i|+ (1− β1)|∇if(wt)gt,i|
L-smooth
≤ β1|∇if(wt−1)mt−1,i|+ (1− β1)|∇if(wt)gt,i|+ Lf∥ηvt−1

◦mt−1∥|mt−1,i|.

By iterating the above recursive inequality, we obtain

|∇if(wt)mt,i| ≤ (1− β1)

t∑
k=1

βt−k
1 |∇if(wk)gk,i|+ Lf

t∑
k=1

βt−k
1 ∥ηvk−1

◦mk−1∥|mk−1,i|.

Then we get that

∆t,iZ(t)|∇if(wt)mt,i| ≤ (1− β1)∆t,i

t∑
k=1

βt−k
1 Z(k)|∇if(wk)gk,i|

+ Lf∆t,i

t∑
k=1

βt−k
1 Z(k)∥ηvk−1

◦mk−1∥|mk−1,i|.
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Next, we proceed with the calculation.

n∑
t=1

(
√
β1)

n−t∆t,iZ(t)|∇if(wt)mt,i| ≤ (1− β1)

n∑
t=1

(
√
β1)

n−t∆t,i

t∑
k=1

βt−k
1 Z(k)|∇if(wk)gk,i|

+ Lf

n∑
t=1

(
√
β1)

n−t∆t,i

t∑
k=1

βt−k
1 Z(k)∥ηvk−1

◦mk−1∥|mk−1,i|

= (1− β1)

n∑
t=1

t∑
k=1

(
√
β1)

n−t∆t,iβ
t−k
1 Z(k)|∇if(wk)gk,i|

+ Lf

n∑
t=1

t∑
k=1

(
√
β1)

n−t∆t,iβ
t−k
1 Z(k)∥ηvk−1

◦mk−1∥|mk−1,i|

= (1− β1)

n∑
k=1

n∑
t=k

(
√
β1)

n−t∆t,iβ
t−k
1 Z(k)|∇if(wk)gk,i|

+ Lf

n∑
k=1

n∑
t=k

(
√
β1)

n−t∆t,iβ
t−k
1 Z(k)∥ηvk−1

◦mk−1∥|mk−1,i|

= (1− β1)

n∑
k=1

(
n∑

t=k

(
√
β1)

t−k∆t,i

)
(
√
β1)

n−kZ(k)|∇if(wk)gk,i|

+ Lf

n∑
k=1

(
n∑

t=k

(
√
β1)

t−k∆t,i

)
(
√
β1)

n−kZ(k)∥ηvk−1
◦mk−1∥|mk−1,i|

< (1− β1)

n∑
k=1


+∞∑
t=k

(
√
β1)

t−k∆t,i︸ ︷︷ ︸
∆√

β1,k,i

 (
√
β1)

n−kZ(k)|∇if(wk)gk,i|

+
Lf

1− (
√
β1)

n∑
k=1

(
√
β1)

n−kZ(k)∥ηvk−1
◦mk−1∥|ηvk−1,imk−1,i|

= (1− β1)

n∑
k=1

∆√
β1,k,i

(
√
β1)

n−kZ(k)|∇if(wk)gk,i|︸ ︷︷ ︸
Ψn,i

+
Lf

1− (
√
β1)

n∑
k=1

(
√
β1)

n−kZ(k)∥ηvk−1
◦mk−1∥|ηvk−1,imk−1,i|. (47)

Next, we estimate Ψn,i and obtain

Ψn,i =

n∑
k=1

E
[
∆√

β1,k,i
(
√
β1)

n−kZ(k)|∇if(wk)gk,i||Fk−1

]
+

n∑
k=1

(
∆√

β1,k,i
(
√
β1)

n−kZ(k)|∇if(wk)gk,i| − E
[
∆√

β1,k,i
(
√
β1)

n−kZ(k)|∇if(wk)gk,i||Fk−1

])
︸ ︷︷ ︸

Nn,k,i

AM-GM
≤ 1−

√
β1

8

n∑
k=1

ηvk−1,i(
√
β1)

n−kZ(k)(∇if(wk))
2

+
2

1−
√
β1

n∑
k=1

E2
[√

∆√
β1,k,i

(
√
β1)

n−k
2

√
Z(k)g2k,i|Fk−1

]
+

n∑
k=1

Nn,k,i
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≤ 1−
√
β1

8

n∑
k=1

ηvk−1,iZ(k)(
√
β1)

n−k(∇if(wk))
2

+
2

1−
√
β1

n∑
k=1

Z(k)(
√
β1)

n−k E[∆√
β1,k,i

|Fk−1]E
[
g2k,i|Fk−1

]
+

n∑
k=1

Nn,k,i. (48)

Summing Equation (47) over the coordinate components i, we obtain

d∑
i=1

n∑
t=1

(
√
β1)

n−t∆t,iZ(t)|∇if(wt)mt,i| ≤ (1− β1)

d∑
i=1

Ψn,i + Lf

√
d

n∑
k=1

(
√
β1)

n−kZ(k)∥ηvk−1
◦mk−1∥2

Eq. (48)
≤ (1− β1)(1−

√
β1)

8

d∑
i=1

n∑
k=1

ηvk−1,iZ(k)(
√
β1)

n−k(∇if(wk))
2

+
2

1−
√
β1

d∑
i=1

n∑
k=1

Z(k)(
√
β1)

n−k E[∆√
β1,k,i

|Fk−1]E
[
g2k,i|Fk−1

]
+

Lf

1−
√
β1

n∑
k=1

(
√
β1)

n−kZ(k)∥ηvk−1
◦mk−1∥2 +

d∑
i=1

n∑
k=1

Nn,k,i︸ ︷︷ ︸∑n
k=1 Nn,k

≤ (1− β1)(1−
√
β1)

8

d∑
i=1

n∑
k=1

ηvk−1,iZ(k)(
√
β1)

n−k(∇if(wk))
2

+
2

1−
√
β1

n∑
k=1

Z(k)(
√
β1)

n−k


d∑

i=1

E[∆√
β1,k,i

|Fk−1]︸ ︷︷ ︸
∆√

β1,k

E
[
∥gk∥2|Fk−1

]

+
Lf

1−
√
β1

n∑
k=1

(
√
β1)

n−kZ(k)∥ηvk−1
◦mk−1∥2

+

n∑
k=1

Nn,k. (49)

Noting that

E
[
∥gk∥2|Fk−1

] Property 1
≤ (A+ 2LfB)(f(wk)− f∗) + C.

Using the above inequality to estimate the first term on the right-hand side of Equation (49) yields

d∑
i=1

n∑
t=1

(
√
β1)

n−t∆t,iZ(t)|∇if(wt)mt,i| ≤
1− β1

8

d∑
i=1

n∑
k=1

ηvk−1,iZ(k)(
√
β1)

n−k(∇if(wk))
2

+D1

n∑
k=1

Z(k)(
√
β1)

n−k∆β1,k(f(wk)− f∗)

+D2

n∑
k=1

(
√
β1)

n−kZ(k)∥ηvk−1
◦mk−1∥2

+D3

n∑
k=1

Z(k)(
√
β1)

n−k∆√
β1,k

+

n∑
k=1

Nn,k,
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where

D1 :=
2

1−
√
β1

(A+ 2LfB)(Lf + 1), D2 :=
Lf

1−
√
β1
, D3 :=

2

1−
√
β1

((A+ 2LfB)|f∗|+ C) .

Lemma E.3. For any t ≥ 1, φ > 0 and any positive, monotonically decreasing, adapted process {Z(t),Ft−1} with
Z(t) ≤ 1, Z(t− 1)− Z(t) ≤ φ∆√

β1,t
Z(t) (∀ t ≥ 1), the following inequality holds.

−
n∑

t=1

√
β1

n−t
d∑

i=1

Z(t)ηvt,i∇if(wt)mt,i ≤− 3(1− β1)

8

d∑
i=1

n∑
k=1

ηvk−1,iZ(k)(
√
β1)

n−k(∇if(wk))
2

+

(
D1

1−
√
β1

+ 1

) n∑
k=1

Z(k)(
√
β1)

n−k∆β1,k(f(wk)− f∗)

+
D2 + F1

1−
√
β1

n∑
k=1

(
√
β1)

n−k∥ηvk−1
◦mk−1∥2

+
D3

1−
√
β1

n∑
k=1

Z(k)(
√
β1)

n−k∆√
β1,k

+
1

1−
√
β1

n∑
k=1

Nn,k

+

n∑
t=1

(
√
β1)

n−t
t∑

k=1

βt−k
1 M ′

k,1,i, (50)

where
M ′

k,1,i := (1− β1)Z(k)ηvk−1,i∇if(wk)(∇if(wk)− gk,i),

and Nn,k is defined in Lemma E.2.

Proof. According to the update rule of the Adam algorithm (Equation (2.1)), we derive the following recursive formula

−Z(t)ηvt,i∇if(wt)mt,i = −β1Z(t)ηvt,i∇if(wt)mt−1,i + Z(t)ηvt,i∇if(wt) (β1mt−1,i −mt,i)

= −β1Z(t)ηvt,i∇if(wt)mt−1,i − (1− β1)Z(t)ηvt,i∇if(wt)gt,i

= −β1(ηvt,iZ(t)− ηvt−1,iZ(t− 1))f(wt)mt−1,i

− β1Z(t− 1)ηvt−1,i∇if(wt)mt−1,i − (1− β1)Z(t)ηvt,i∇if(wt)gt,i
(a)

≤ −β1(ηvt,i − ηvt−1,i)Z(t)∇if(wt)mt−1,i

+ (Z(t− 1)− Z(t))ηvt−1,i|∇if(wt)mt−1,i|
− β1Z(t− 1)ηvt−1,i∇if(wt−1)mt−1,i − (1− β1)Z(t)ηvt,i∇if(wt)gt,i

+ β1Z(t− 1)ηvt−1,i|∇if(wt)−∇if(wt−1)|mt−1,i

(b)

≤ β1∆t,iZ(t)∇if(wt)mt−1,i + (1− βi)∆t,iZ(t)∇if(wt)gt,i︸ ︷︷ ︸
=∆t,iZ(t)∇if(wt)mt,i

+ φZ(t)∆√
β1,t

ηvt−1,i|∇if(wt)mt−1,i|
− β1Z(t− 1)ηvt−1,i∇if(wt−1)mt−1,i − (1− β1)Z(t)ηvt−1,i∇if(wt)gt,i

+ Lf∥ηvt−1
◦mt−1∥|ηvt−1,imt−1,i|

(c)

≤ ∆t,iZ(t)|∇if(wt)mt,i|

+
1

2Lf
Z(t)∆√

β1,t
(∇if(wt))

2 +
φ2Lf

2
√
v
η2vt−1,im

2
t−1,i

− β1Z(t− 1)ηvt−1,i∇if(wt−1)mt−1,i − (1− β1)Z(t)ηvt−1,i(∇if(wt))
2
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+ Lf∥ηvt−1
◦mt−1∥|ηvt−1,imt−1,i|

+ (1− β1)Z(t)ηvt−1,i∇if(wt)(∇if(wt)− gt,i)︸ ︷︷ ︸
M ′

t,1,i

.

In step (a), we apply the following substitution

ηvt,iZ(t)− ηvt−1,iZ(t− 1) = (ηvt,i − ηvt−1,i)Z(t)− ηvt−1,i(Z(t)− Z(t− 1)).

In step (b), we first apply a transformation to the fourth term from the previous step, denoted by

−(1− β1)Z(t)ηvt,i∇if(wt)gt,i = −(1− β1)Z(t)ηvt−1,i∇if(wt)gt,i + (1− β1)∆t,iZ(t)∇if(wt)gt,i.

Next, we combine the second term of this transformation with the first term from the prior step of Step (b) in order to obtain

β1∆t,iZ(t)∇if(wt)mt,i.

We then use the inequality Z(t− 1)− Z(t) ≤ φ∆√
β1,t

Z(t).

Finally, in step (c), we begin by applying an absolute value bound to the first term from the previous step:

β1∆t,iZ(t)∇if(wt)mt,i ≤ β1∆t,iZ(t)|∇if(wt)mt,i|.

Next, for the second term in the previous step, we use the following application of the AM-GM inequality

φZ(t)∆√
β1,t

ηvt−1,i|∇if(wt)mt−1,i| ≤
1

2Lf
Z(t)∆√

β1,t
(∇if(wt))

2 +
φ2Lf

2
√
v
η2vt−1,im

2
t−1,i.

Summing both sides of the above inequality over the coordinate components i and applying the arithmetic mean inequality,
we obtain

−
d∑

i=1

Z(t)ηvt,i∇if(wt)mt,i ≤ β1

d∑
i=1

−Z(t− 1)ηvt−1,i∇if(wt−1)mt−1,i +
1

2Lf
Z(t)∆√

β1,t
∥∇f(wt)∥2

+

d∑
i=1

∆t,iZ(t)|∇if(wt)mt,i|+ F1∥ηvt−1
◦mt−1∥2 +

d∑
i=1

M ′
t,1,i

− (1− β1)

d∑
i=1

Z(t)ηvt−1,i(∇if(wt))
2

Lemma C.2
≤ β1

d∑
i=1

−Z(t− 1)ηvt−1,i∇if(wt−1)mt−1,i + Z(t)∆√
β1,t

(f(wt)− f∗)

+

d∑
i=1

∆t,iZ(t)|∇if(wt)mt,i|+ F1∥ηvt−1
◦mt−1∥2 +

d∑
i=1

M ′
t,1,i

− (1− β1)

d∑
i=1

Z(t)ηvt−1,i(∇if(wt))
2,

where

F1 :=
√
dLf +

k2Lf

2
√
v
.

By iterating the above inequality, we obtain

−
d∑

i=1

Z(t)ηvt,i∇if(wt)mt,i ≤
t∑

k=1

βt−k
1

d∑
i=1

∆k,iZ(k)|∇if(wk)mk,i|+
d∑

i=1

Z(t)∆√
β1,t

(f(wt)− f∗)
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+ F1

t∑
k=1

βt−k
1 ∥ηvk−1

◦mk−1∥2 +
t∑

k=1

βt−k
1 M ′

k,1,i

− (1− β1)

t∑
k=1

βt−k
1 Z(k)ηvk−1,i(∇if(wk))

2.

We further obtain

−
n∑

t=1

(
√
β1)

n−t
d∑

i=1

Z(t)ηvt,i∇if(wt)mt,i ≤
n∑

t=1

√
β1

n−t
t∑

k=1

βt−k
1

d∑
i=1

∆k,iZ(k)|∇if(wk)mk,i|

+ F1

n∑
t=1

√
β1

n−t
t∑

k=1

βt−k
1 ∥ηvk−1

◦mk−1∥2

+

n∑
t=1

(
√
β1)

n−t
t∑

k=1

βt−k
1 M ′

k,1,i

+

n∑
t=1

(
√
β1)

n−t
d∑

i=1

Z(t)∆√
β1,t

(f(wt)− f∗)

− (1− β1)

n∑
t=1

√
β1

n−t
t∑

k=1

βt−k
1 Z(k)ηvk−1,i(∇if(wk))

2

Lemma C.1
≤ 1

1−
√
β1

n∑
k=1

(
√
β1)

n−k∆k,iZ(k)|∇if(wk)mk,i|︸ ︷︷ ︸
Φn,1

+
F1

1−
√
β1

n∑
k=1

(
√
β1)

n−k∥ηvk−1
◦mk−1∥2

+

n∑
t=1

(
√
β1)

n−t
t∑

k=1

βt−k
1 M ′

k,1,i

+

n∑
t=1

(
√
β1)

n−t
d∑

i=1

Z(t)∆√
β1,t

(f(wt)− f∗)

− (1− β1)

n∑
k=1

(
√
β1)

n−kZ(k)ηvk−1,i(∇if(wk))
2. (51)

Now, we focus on estimating the term Φn,1. By applying Lemma E.2, we obtain

1

1−
√
β1

d∑
i=1

n∑
t=1

(
√
β1)

n−t∆t,iZ(t)|∇if(wt)mt,i| ≤
1− β1

8

d∑
i=1

n∑
k=1

ηvk−1,iZ(k)(
√
β1)

n−k(∇if(wk))
2

+
D1

1−
√
β1

n∑
k=1

Z(k)(
√
β1)

n−k∆β1,k(f(wk)− f∗)

+
D2

1−
√
β1

n∑
k=1

(
√
β1)

n−kZ(k)∥ηvk−1
◦mk−1∥2

+
D3

1−
√
β1

n∑
k=1

Z(k)(
√
β1)

n−k∆√
β1,k

+
1

1−
√
β1

n∑
k=1

Nn,k,

48



A Comprehensive Framework for Analyzing the Convergence of Adam: Bridging the Gap with SGD

where D1, D2, D3,∆√
β1,k

are defined in Equation (46). Substituting the above estimate for Φn,1 back into Equation (51),
we obtain

−
n∑

t=1

√
β1

n−t
d∑

i=1

Z(t)ηvt,i∇if(wt)mt,i ≤ − 3(1− β1)

8

d∑
i=1

n∑
k=1

ηvk−1,iZ(k)(
√
β1)

n−k(∇if(wk))
2

+

(
D1

1−
√
β1

+ 1

) n∑
k=1

Z(k)(
√
β1)

n−k∆β1,k(f(wk)− f∗)

+
D2 + F1

1−
√
β1

n∑
k=1

(
√
β1)

n−k∥ηvk−1
◦mk−1∥2

+
D3

1−
√
β1

n∑
k=1

Z(k)(
√
β1)

n−k∆√
β1,k

+
1

1−
√
β1

n∑
k=1

Nn,k

+

n∑
t=1

(
√
β1)

n−t
t∑

k=1

βt−k
1 M ′

k,1,i.

E.2. Proof of Lemma D.2

Proof. First, we compute f(wt+1)− f(wt). Based on the L-smoothness condition, we make the following estimate

f(wt+1)− f(wt) ≤ ∇f(wt)
⊤(wt+1 − wt) +

Lf

2
∥wt+1 − wt∥2

= −
d∑

i=1

ηvt,i∇if(wt)mt,i +
Lf

2
∥ηvt ◦mt∥2. (52)

Next, we construct Π∆,t, which is defined as follows

Π∆,t :=

t∏
k=1

(
1 +

(
D1

1−
√
β1

+ 1

)
∆√

β1,k

)−1

(t ≥ 1), Π∆,0 := 1,

where D1,∆√
β1,k

are defined in Equation (46). Note that the Π∆,t here is a specific Z(t) used in Lemma E.2 and Lemma
E.3 with φ = D1

1−
√
β1

+ 1. We can subsequently apply the results from Lemma E.2 and Lemma E.3. We multiply both sides
of Equation (52) by this specific Π∆,t and, noting its monotonically decreasing property, we obtain

Π∆,t+1(f(wt+1)− f∗)−Π∆,t(f(wt)− f∗) ≤ −
d∑

i=1

Π∆,tηvt,i∇if(wt)mt,i +
Lf

2
∥ηvt ◦mt∥2.

Next, we compute
n∑

t=1

(
√
β1)

n−t (Π∆,t+1(f(wt+1)− f∗)−Π∆,t(f(wt)− f∗)) .

We have
n∑

t=1

(
√
β1)

n−t (Π∆,t+1(f(wt+1)− f∗)−Π∆,t(f(wt)− f∗))

≤−
n∑

t=1

(
√
β1)

n−t
d∑

i=1

Π∆,tηvt,i∇if(wt)mt,i +
Lf

2

n∑
t=1

(
√
β1)

n−t
d∑

i=1

∥ηvt ◦mt∥2

Lemma E.3
≤ − 3(1− β1)

8

d∑
i=1

n∑
t=1

ηvt−1,iΠ∆,t(
√
β1)

n−t(∇if(wt))
2
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+

(
D1

1−
√
β1

+ 1

) n∑
t=1

Π∆,t(
√
β1)

n−t∆β1,t(f(wt)− f∗)

+

(
D2 + F1√
β1(1−

√
β1)

+
Lf

2

) n∑
t=1

(
√
β1)

n−t∥ηvt ◦mt∥2

+
D3

1−
√
β1

n∑
t=1

Π∆,t(
√
β1)

n−t∆√
β1,k

+
1

1−
√
β1

n∑
t=1

Nn,t

+

n∑
t=1

(
√
β1)

n−t
t∑

k=1

βt−k
1 M ′

k,1,i. (53)

We then observe that the left side of the above inequality can be rewritten as

n∑
t=1

(
√
β1)

n−t (Π∆,t+1(f(wt+1)− f∗)−Π∆,t(f(wt)− f∗))

=

n∑
t=1

(
√
β1)

n−tΠ∆,t+1(f(wt+1)− f∗)−
n∑

t=1

(
√
β1)

n−tΠ∆,t(f(wt)− f∗)

=

n∑
t=1

(
√
β1)

(n+1)−(t+1)Π∆,t+1(f(wt+1)− f∗)−
n∑

t=1

(
√
β1)

n−tΠ∆,t(f(wt)− f∗)

=

n+1∑
t=2

(
√
β1)

(n+1)−tΠ∆,t(f(wt)− f∗)−
n∑

t=1

(
√
β1)

n−tΠ∆,t(f(wt)− f∗)

= −(
√
β1)

n(f(w1)− f∗)

+

n+1∑
t=1

(
√
β1)

(n+1)−tΠ∆,t(f(wt)− f∗)︸ ︷︷ ︸
Fn+1

−
n∑

t=1

(
√
β1)

n−tΠ∆,t(f(wt)− f∗)︸ ︷︷ ︸
F ′

n

.

Substituting the above transformation back to Equation (53), we obtain

Fn+1 −

(
F ′
n +

(
D1

1−
√
β1

+ 1

) n∑
t=1

Π∆,t(
√
β1)

n−t∆β1,t(f(wt)− f∗)

)

≤ (
√
β1)

n(f(w1)− f∗)− 3(1− β1)

8

d∑
i=1

n∑
t=1

ηvt−1,iΠ∆,t(
√
β1)

n−t(∇if(wt))
2

+

(
D2 + F1√
β1(1−

√
β1)

+
Lf

2

) n∑
t=1

(
√
β1)

n−t∥ηvt ◦mt∥2

+
D3

1−
√
β1

n∑
t=1

Π∆,t(
√
β1)

n−t∆√
β1,k

+
1

1−
√
β1

n∑
t=1

Nn,t

+

n∑
t=1

(
√
β1)

n−t
t∑

k=1

βt−k
1 M ′

k,1,i.

Observe that

F ′
n +

(
D1

1−
√
β1

+ 1

) n∑
t=1

Π∆,t(
√
β1)

n−t∆β1,t(f(wt)− f∗)

=

n∑
t=1

(
√
β1)

n−t

(
1 +

(
D1

1−
√
β1

+ 1

)
∆β1,t

)
Π∆,t(f(wt)− f∗)
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=

n∑
t=1

(
√
β1)

n−tΠ∆,t−1(f(wt)− f∗) = Fn.

We get

Fn+1 − Fn

≤ (
√
β1)

n(f(w1)− f∗)− 3(1− β1)

8

d∑
i=1

n∑
t=1

ηvt−1,iΠ∆,t(
√
β1)

n−t(∇if(wt))
2

+

(
D2 + F1√
β1(1−

√
β1)

+
Lf

2

) n∑
t=1

(
√
β1)

n−t∥ηvt ◦mt∥2

+
D3

1−
√
β1

n∑
t=1

Π∆,t(
√
β1)

n−t∆√
β1,k

+
1

1−
√
β1

n∑
t=1

Nn,t

+

n∑
t=1

(
√
β1)

n−t
t∑

k=1

βt−k
1 M ′

k,1,i.

Next, we take the expectation on both sides of the above inequality and note that E[Nn,t] = E[M ′
k,1,i] = 0. We then obtain

E[Fn+1]− E[Fn]

≤ (
√
β1)

n(f(w1)− f∗)− 3(1− β1)

8

d∑
i=1

n∑
t=1

(
√
β1)

n−t E
[
ηvt−1,iΠ∆,t(∇if(wt))

2
]

+

(
D2 + F1√
β1(1−

√
β1)

+
Lf

2

) n∑
t=1

(
√
β1)

n−t E
[
∥ηvt ◦mt∥2

]
+

D3

1−
√
β1

n∑
t=1

(
√
β1)

n−t E
[
∆√

β1,k

]
+ 0 + 0.

Summing both sides of the above inequality over the index n from 1 to T , we obtain

E[FT+1]− E[F1]

≤ 1

1−
√
β1

(f(w1)− f∗)− 3(1− β1)

8

T∑
n=1

d∑
i=1

n∑
t=1

(
√
β1)

n−t E
[
ηvt−1,iΠ∆,t(∇if(wt))

2
]

+

(
D2 + F1√
β1(1−

√
β1)

+
Lf

2

) T∑
n=1

n∑
t=1

(
√
β1)

n−t E
[
∥ηvt ◦mt∥2

]
+

D3

1−
√
β1

T∑
n=1

n∑
t=1

(
√
β1)

n−t E
[
∆√

β1,k

]
Lemma C.1

≤ 1

1−
√
β1

(f(w1)− f∗)− 3(1− β1)

8

T∑
n=1

d∑
i=1

E
[
ηvn−1,iΠ∆,n(∇if(wn))

2
]

+
1

1−
√
β1

(
D2 + F1√
β1(1−

√
β1)

+
Lf

2

) T∑
n=1

E
[
∥ηvn ◦mn∥2

]
+

D3√
v(1−

√
β1)2

.

To maintain consistency with the notation in the subsequent proofs, we replace the index n with t in the summation
∑T

n=1

on the right side of the above inequality as follows.

E[FT+1]− E[F1]

Lemma C.1
≤ 1

1−
√
β1

(f(w1)− f∗)− 3(1− β1)

8

T∑
t=1

d∑
i=1

E
[
ηvt−1,iΠ∆,t(∇if(wt))

2
]
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+
1

1−
√
β1

(
D2 + F1√
β1(1−

√
β1)

+
Lf

2

) T∑
t=1

E
[
∥ηvt ◦mt∥2

]
+

D3√
v(1−

√
β1)2

. (54)

Using Lemma E.1, we can transform the third term on the right side of the above inequality as follows

T∑
t=1

E
[
∥ηvt ◦mt∥2

]
≤ (1− β1)

T∑
t=1

t∑
k=1

βt−k
1 E ∥ηvt ◦ gk∥2

Lemma C.1
≤

T∑
t=1

E ∥ηvt ◦ gt∥2.

Substituting this back into Equation (54) and rearranging the terms, we obtain the following two inequalities.

E[Π∆,t(f(wt)− f∗)] ≤ E[F1] +
1

1−
√
β1

(f(w1)− f∗) +
D3√

v(1−
√
β1)2

+
1

1−
√
β1

(
D2 + F1√
β1(1−

√
β1)

+
Lf

2

) T∑
t=1

E ∥ηvt ◦ gt∥2, (55)

and

T∑
t=1

d∑
i=1

E
[
ηvt−1,iΠ∆,t(∇if(wt))

2
]
≤ 8

3(1− β1)
E[F1] +

8

3(1− β1)

1

1−
√
β1

(f(w1)− f∗)

+
D3√

v(1−
√
β1)2

+
8

(1−
√
β1)3(1− β1)

(
D2 + F1√
β1(1−

√
β1)

+
Lf

2

) T∑
t=1

E ∥ηvt ◦ gt∥2. (56)

Next, we proceed to estimate
T∑

t=1

d∑
i=1

E [Π∆,t∆t,i|∇if(ut)mt−1,i|] .

We have

T∑
t=1

d∑
i=1

E [Π∆,t∆t,i|∇if(ut)mt−1,i|]

Cauchy-Schwarz inequality
≤

d∑
i=1

T∑
t=1

√
E
[
∆2

t,iΠ∆,t(∇if(ut))2
]
·
√
E [Π∆,tmt−1,i]

≤ 1√
v

d∑
i=1

T∑
t=1

√
E
[
ηvt−1,iΠ∆,t(∇if(ut))2

]
·
√
E
[
Π∆,tm2

t−1,i

]
Cauchy-Schwarz inequality

≤ 1√
v

d∑
i=1

√√√√ T∑
t=1

E
[
ηvt−1,iΠ∆,t(∇if(ut))2

]
·

√√√√ T∑
t=1

E
[
Π∆,tm2

t−1,i

]
Cauchy-Schwarz inequality

≤ 1√
v

√√√√ d∑
i=1

T∑
t=1

E
[
ηvt−1,iΠ∆,t(∇if(ut))2

]
·

√√√√ T∑
t=1

E [Π∆,t∥mt−1∥2]

Lemma E.1
≤

√
1− β1√
v

d∑
i=1

√√√√ T∑
t=1

E
[
ηvt−1,iΠ∆,t(∇if(ut))2

]
·

√√√√ T∑
t=1

t∑
k=1

βt−k
1 E[Π∆,t∥gk∥2]

(a)

≤O

(
T∑

t=1

E[∥ηvt ◦ gt∥2]

)
+O(1).

In the final step (a), we first apply Property 1 to bound E[Π∆,t∥gt∥2] for all t ≤ T , by E[Π∆,t(f(wt) − f∗)] for t ≤ T .

Then, using Equation (55), we further bound E[Π∆,t(f(wt)− f∗)] as O
(∑T

t=1 ∥ηvt
◦ gt∥2

)
. Finally, we apply Equation

(56) to the previous summation. This completes the proof.
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